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Abstract
Modern bioprocess development employs statistically optimized design of experiments (DOE) and regression modeling to 
find optimal bioprocess set points. Using modeling software, such as JMP Pro, it is possible to leverage artificial neural net-
works (ANNs) to improve model accuracy beyond the capabilities of regression models. Herein, we bridge the gap between 
a DOE skill set and a machine learning skill set by demonstrating a novel use of DOE to systematically create and evaluate 
ANN architecture using JMP Pro software. Additionally, we run a mammalian cell culture process at historical, one factor 
at a time, standard least squares regression, and ANN-derived set points. This case study demonstrates the significant differ-
ences between one factor at a time bioprocess development, DOE bioprocess development and the relative power of linear 
regression versus an ANN-DOE hybrid modeling approach.
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Introduction

Due to multivariate datasets, sophisticated data interpreta-
tion is increasingly attractive to bioprocess professionals 
[1–3]. Traditional regression techniques have limitations, 
including the shapes that they can use to model data, poor 
extrapolation properties, and sensitivity to outliers [4]. Mod-
eling with artificial neural networks (ANN) overcomes many 
of these shortcomings by implementing many smaller mod-
els to interpret sections of data [5].

An ANN is an algorithm which finds relationships by per-
forming discrete computations in artificial “neurons” and fit-
ting these computations into a larger model [6]. Each neuron 
in an ANN models data using a distinct activation function 
[6–8]. ANN can be optimized by changing the number of 

neurons and type of activation functions [5, 7, 9]. Although 
previous bioprocess ANN approaches have shown success, 
they primarily rely on complex machine learning techniques 
and frequently require coding experience to implement [2, 
8, 10–12].

Design of experiments (DOE) is a method of employing 
mathematics to generate optimal experimental conditions 
[13–15]. DOE serves two distinct roles in our project. The 
first is to establish experimental conditions which test four 
bioprocess inputs for their ability to maximize cell prolifera-
tion. We then model this bioprocess dataset using standard 
least squares (SLS) regression and ANN [16]. DOE’s second 
use in our project is to evaluate neuron activation functions 
and quantities in each layer of the ANN. By creating a DOE 
which optimizes an ANN using neuron numbers and activa-
tion functions as inputs and model outputs as desirability 
functions, we can systematically explore relationships to find 
the optimal ANN architecture [17, 18]. DOE in this context 
replaces traditional machine training activities with directed, 
mathematically optimized, exploration of inputs and outputs. 
Therefore, the ANN-DOE approach ensures appropriate and 
efficient leverage of ANN to maximize cell proliferation. 
Further background on the terms and techniques used in this 
manuscript can be found in Online Resource 1.
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A well modeled bioprocess shows us which combina-
tion of inputs results in optimal outputs. To test the various 
modeling approaches, we utilize a bioprocess unit opera-
tion related to the manufacture of an allogeneic cell therapy 
for low back pain, which is currently in clinical evaluation 
(Clinicaltrials.gov NCT03347708 and NCT03955315) [19]. 
In this case study, we test how the cell seeding density, 
media supplement percentage, media exchange volume dur-
ing routine feeding, and cell line maximize cell doublings.

In addition to modeling our bioprocess dataset with SLS 
regression and ANN, we test a historical bioprocess set point 
optimized with one factor at a time (OFAT) experimentation. 
Growing cells at each set point allows us to directly compare 
the relative merits of OFAT and DOE process optimization, 
as well as the value of modeling a bioprocess dataset with 
SLS regression or ANN-DOE hybrid modeling. We hypoth-
esize that applying DOE to ANN architecture will result 
in an optimized network which we can use to model our 
bioprocess and improve cell doublings compared to a linear 
regression, OFAT-derived set point, or our historical process 
set point. If successful, this approach will improve the pro-
cess with optimized set points and provide a valuable tool 
with which to assess future bioprocess operations.

Materials and methods

All analyses and modeling were conducted using JMP Pro 
v. 14.0 on a 2019 MacBook Pro running Mojave 10.14.6.

Establishing a DOE bioprocess dataset

Intervertebral disc material was obtained from two recently 
deceased donors under IRB approval and transported to the 
lab in Hypothermasol (Biolife Solutions) containing genta-
mycin (Mediatech) and amphotericin B (Mediatech). Each 
donor was processed independently into a distinct cell line. 
Nucleus pulposus tissue was dissected from the interverte-
bral discs using scalpels and tweezers. Cells were isolated 
from nucleus pulposus tissue using NB5 collagenase (Nor-
dmark). Isolated cells were expanded in vented cap T150 
attachment culture flasks (Corning) in the presence of 
DMEM/F12 (Corning), amphotericin B (Mediatech), genta-
mycin (Mediatech), and a cocktail of other proprietary media 
supplements. Temperature and pH were passively controlled 
by growing cells in a 37 °C, 5%  CO2, incubator. At conflu-
ency, cells were dissociated from the flask using TrypLE 
(Thermo Fisher Scientific), formulated in 90% Character-
ized Fetal Bovine Serum (Hyclone), 10% DMSO (Protide 
Pharmaceuticals), and cryopreserved at − 196 °C for sub-
sequent use.

At the time of testing, cells were thawed at 37 °C, washed 
with phosphate-buffed saline (pH 7.2; Thermo Fisher 

Scientific), and counted using a K2 automated cell coun-
ter (Nexcellom Bioscience). Cells were then passaged onto 
T25 attachment culture flasks (Corning) and grown under 
the same conditions as above except in the case of DOE 
parameters. Following 7 days of growth, cells were disso-
ciated from the flask and counted using the K2 automated 
cell counter. Doublings were calculated using the formula: 
doublings = 3.32[log (total viable cells at harvest/total viable 
cells at seed)]. Microscopic images of the attached cells were 
obtained immediately prior to harvest.

Twenty-four unique conditions were derived from a 
D-optimal DOE. DOE input parameters were cell line, 
seeding density, media supplement percentage, and media 
exchange percentage. Each input parameter was investigated 
from the lowest (− 1) to highest (+ 1) points of our histori-
cally investigated ranges except for cell line, which accounts 
for two unique allogeneic cell lineages. All primary inter-
actions, 2nd level interactions, and 2nd level powers were 
given necessary estimability in the DOE dialog with the 
response output as doublings. Finally, an SLS regression 
model of the bioprocess dataset was created.

Analysis of bioprocess using DOE of neural network 
architecture.

In our ANN-DOE hybrid, 32 feedforward neural networks 
were constructed. Each ANN model in this exercise mod-
els the ability of cell line, seeding density, media supple-
ment percentage, and media exchange percentage from the 
bioprocess dataset to predict doublings. The architecture of 
these 32 neural networks was chosen by running a D-opti-
mal DOE with ANN node number and activation functions 
as input parameters (Table 1) and ANN output quality as 
response functions (Table 2). For ANN-DOE inputs, up 
to 100 linear, 100 TanH (sigmoid) and 100 Gaussian (bell 
curve) activation functions were evaluated at two levels 
each. ANN quality was evaluated using the coefficient of 
determination (R2) and Standard Square Error (SSE) for the 
training model as well as the difference between R2 and SSE 
between the training and validation datasets.

All primary terms, 2nd level interaction terms, and 2nd 
level powers estimability were set to necessary. Five random 

Table 1  Neural network DOE input levels

Input factors  − 1 0 1

First layer TanH 0 50 100
First layer Linear 0 50 100
First layer Gaussian 0 50 100
Second layer TanH 0 50 100
Second layer Linear 0 50 100
Second layer Gaussian 0 50 100



1303Bioprocess and Biosystems Engineering (2021) 44:1301–1308 

1 3

starts were employed for each ANN. The bioprocess dataset 
was randomly split into a training (n = 16) and validation 
(n = 8) dataset. The training and validation datasets were 
maintained for all models. To find our optimal ANN archi-
tecture, we made an SLS regression model of the ANN-
DOE. A new ANN of the bioprocess unit operation was 
created using the maximally desirable ANN architecture.

The doublings predicted by our training set versus the 
actual doublings observed in our validation set were com-
pared for goodness of fit in the JMP Pro 14 Compare Model 
dialog. If successful, our optimized ANN should have a 
higher R2 and lower average absolute error (AAE) than a lin-
ear regression model or the non-optimized neural networks, 
when measuring the goodness fit for doublings.

In vitro model qualification

Cells were grown in triplicate using the optimal seeding 
density, media supplement percentage, cell line, and media 
exchange percentage as defined by the following models: 
the SLS regression theorized optimum, the ANN theorized 

optimum, our OFAT set point, and a historical set point. 
Average doublings and standard deviation (SD) for each 
condition were calculated. A successful run will have a 
statistically improved doublings compared to our OFAT or 
historical set point, as measured by an LSMeans Differences 
Student’s T test at an α of 0.050.

Results

Model creation and evaluation

This bioprocess DOE was evaluated using 32 unoptimized 
ANN (Fig.  1a). The 32 unoptimized ANNs were mod-
eled using SLS regression. Parameters with an effects test 
p > 0.05 were removed from the regression model. Desirabil-
ity of  R2 Training was maximized, whereas R2 Delta, SSE-
Training, and SSE-Delta response values were minimized 
(Fig. 1b). By providing equal weight to all four model output 
functions, the maximum desirable ANN was determined to 
be a 1-layer, 91 Gaussian ANN (Fig. 1c). All ANN response 
values were recorded (Online Resource 2) and compared 
(Fig. 2) (Online Resource 3):

R2 Training represents our ANN ability to model the 
training dataset. Our DOE-ANN hybrid (R2 Training = 0.97) 
outperformed the mean unoptimized ANN (Mean R2 Train-
ing = 0.92, SD 0.08). The improvement suggests that our 
modeling approach improved our ability to model our train-
ing dataset.

The  R2 Delta values represent the difference between 
R2 values in our training and validation data sets. The 

Table 2  Neural Network DOE 
response functions

Responses Function

R2 Training Maximize
SSE Training Minimize
R2 Fit = R2 Training 

– R2 Validation
Minimize

SSE fit = SSE 
Training – SSE 
Validation

Minimize

Fig. 1  a Creating ANN-DOE Hybrid 32 ANNs are created per DOE 
specifications. b: ANN-DOE Hybrid Output parameters are mod-
eled using standard least squares regression and the prediction pro-
filer to find the optimal ANN configuration, a single layer ANN with 

91-gaussian neurons. c: The Optimal ANN A new ANN is made 
using 91-gaussian activation functions Fig. 1 was created in JMP Pro 
14
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DOE-ANN model had the lowest R2 Delta value (R2 Delta 
0.01) of all ANN tested (Mean R2 Delta 0.06, SD 0.4). 
Reduction in our R2 Delta value suggests that our ANN has 
an improved ability to model true process relationships, 
rather than overfitting or underfitting our data. This opti-
mized R2 Delta value is more important than the R2 Train-
ing value because it is an indication of consistency between 
training and validation data sets.

SSE-Training represents the error in our training model 
calculated as the sum of squares for error. The DOE-ANN 
model (SSE-Training = 1.69) outperformed the mean (SSE-
Training = 5.24, SD 5.70) of the unoptimized models. The 
improvement of SSE-Training in our optimized model sug-
gests a reduced rate of error in our training dataset due to 
our DOE-ANN modeling approach.

SSE-Delta represents the difference between SSE values 
in our training and validation data sets. The optimized ANN-
DOE (SSE-Delta = 0.83) outperformed the mean SSE-Delta 
from the 32 models (Mean SSE-Delta = 4.37, SD 3.82). The 

improvement in R2 Training alongside the simultaneous 
reduction in SSE-Training,  R2 Delta, and SSE-Delta sug-
gests that we improved the ANN modeling capacity while 
simultaneously reducing error compared to 32 unoptimized 
models with a wide range of model architectures.

In addition to direct comparison of the ANN-DOE 
response functions, models were also compared using the 
model comparison dialog in JMP Pro v 14.0 (Fig. 3). Spe-
cifically, the doublings predicted by our training set versus 
the actual doublings observed in our validation set were 
compared for goodness of fit using the 33 ANNs (32 from 
the ANN-DOE, plus one optimized ANN) and an SLS 
regression model of the bioprocess dataset. There are three 
key model comparability results. First, compared to the 
SLS regression model (R2 = 0.95, AAE 0.39), some of the 
32 unoptimized ANNs created have lower R2 and higher 
error (R2 = 0.81, AAE = 0.76), whereas some have higher 
 R2 and lower errors (R2 = 0.98, AAE = 0.13). This underper-
formance by some but not all of the 32 unoptimized ANNs 

Fig. 2  ANN Models Quality Distribution A quantile box plot of the 
ANNs is shown. The optimized ANN is highlighted with diagonal 
hatches. The goal was to maximize R2 Training and minimize the 

other outputs. We can see that our optimized ANN performs in the 
highest category for each quality metric. Figure 2 was created in JMP 
Pro 14. Data available in online resource 3

Fig. 3  ANN versus Standard Least Squares Model Comparison. The 
models were compared using the model comparison dialog in JMP. 
This table shows the measure of fit of predicted doublings versus the 
actual doublings using the 24 runs from the historical dataset. Shown 
are the 7 neural nets with the highest Measure of Fit for Doublings R2 

of the 32 created, the 91-Gaussian neural net, and the standard least 
squares model. Median of root average squared error (RASE) and 
average absolute error (AAE) for each model are also shown. Fig-
ure 3 was created in JMP Pro 14
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shows that not every ANN is capable of improving SLS 
regression modeling capability. Second, the optimized ANN 
(R2 = 0.99, AAE of 0.10) had higher R2 and lower AAE than 
any of the 32 unoptimized models. This suggests that our 
ANN-DOE hybrid approach converged on a model with bet-
ter modeling power and reduced error more than was pos-
sible by chance using 32 ANN with a wide range of archi-
tecture. Third, the optimized ANN outperformed the SLS 
regression model in both R2 (0.04 improvement) and AAE 
values (0.29 improvement). Together, these three key results 
show that not all ANNs outperform SLS regression and that 
our ANN is optimized to fit the validation dataset with more 
power and lower error than any of the other models gener-
ated, making it an optimal model for our bioprocess.

In vitro model qualification

To test the real-world applicability of our in silico models, 
we tested the bioprocess set points in vitro. SLS regression 
and a 1-layer, 91 Gaussian ANN were each used to model 
the bioprocess DOE. When comparing the SLS regression 
optimized desirability set point versus the 91-Gaussian neu-
ral network optimized set point, the cell line and seeding 
density were calculated to be the same. However, the ANN 
determined that a larger percentage of the media supplement 
and a lower media exchange percentage could be beneficial 
when compared to the SLS regression optimum. The coded 
values for each condition are shown in Table 3 where −1 
represents the lower end of the investigated range, 1 repre-
sents the high end of the investigated range, and 0 represents 
the center point.

Flasks were grown in triplicate using the bioprocess DOE 
set points, historical set point, OFAT set point, Regression 
Setpoint, and 91-Gaussian Setpoint. After harvesting all 
flasks, doublings were calculated (Fig. 4a). Visually all cells 
exhibit the expected elongated fibroblast-like morphology 
(Fig. 4b). Flasks grown using the historical set point and 
ANN are the most confluent. However, as predicted, the his-
torical set point resulted in lower doublings.

The flasks grown using OFAT optimization performed 
significantly better (4.86 doublings, SD 0.15) than flasks 
grown at our historical set point (3.14 doublings, SD 0.18). 
However, many of the flasks grown during our DOE runs 

outperformed the OFAT optimization flasks. This outcome 
demonstrates that there are still significant gains to be made 
by looking at multiple variables in a DOE fashion.

The flasks grown using the SLS regression modeling 
(6.19 doublings, SD 0.49) significantly outperformed those 
optimized with OFAT experimentation. Further, of the three 
flasks grown using our SLS modeled set points, two outper-
formed all DOE runs. This performance shows that we found 
a true process relationship which allows us to significantly 
and reliably improve cell growth compared to our OFAT 
experimentation. However, the SLS model and ANN model 
did not agree on optimal set points.

All three flasks grown in ANN theorized optimum (6.91 
doublings, SD 0.21) outperform all 33 other conditions. 
This demonstrates that our optimized ANN modeled our 
bioprocess better than our SLS regression model. The per-
formance of the ANN suggests that a process optimum was 
found and modeled with fidelity which we were unable 
to be capture with a regression line. The ANN optimum 
also outperformed all DOE runs, some of which had more 
frequent media exchanges, and higher percentages of 
media supplement. Thus, using the ANN model allows for 
improved growth with reduction in media which will save 
on resources.

Finally, the 12 in vitro model qualification flasks were 
modeled with SLS regression and evaluated with post hoc 
tests. The regression model exhibited significance as meas-
ured by ANOVA (p < 0.01, R2 = 0.97) (Online Resource 
4). Comparisons of least squares mean show that the ANN 
set point increased doublings by 0.69, 2.05, and 3.77 over 
the SLS setpoint, OFAT setpoint, and historical setpoint, 
respectively. Further, there were statistically significant dif-
ferences between all four experimental groups as measured 
by Least Squares Means Differences Students Tukey at 
α = 0.05 (Fig. 4c). The statistically significant differences 
in doublings between all four groups show that the different 
models do grant different levels of process understanding, 
resulting in different abilities to optimize cell growth. The 
11.6% improvement in cell doublings between the ANN- and 
SLS-derived setpoints suggests that a process optimum was 
found and modeled with fidelity which we were unable to be 
capture with a regression line. The ANN also outperformed 
all DOE runs, some of which had more frequent media 

Table 3  Process Setpoints and 
Theorized Optimum by Model

Models: Cell Line Seeding Density Media Supplement 
Percentage

Media 
Exchange 
Percentage

SLS Regression Optimum L1 −1 −0.462 −0.402
91-Gaussiun Optimum L1 −1 0.358 −1
OFAT Setpoint L1 −0.5 0 0
Historical Setpoint L1 1 0 0
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exchanges, and higher percentages of media supplement. 
Thus, using the ANN model allowed for improved growth 
with reduction in media which will save on resources.

Discussion

Improvement of process understanding without the need 
for laboratory experiments is inherently attractive to the 
bioprocess professional. In silico, our optimized ANN 
performed well for our quality outputs R2 Training, SSE 
Training, R2 Fit and SSE Fit. These high-quality outputs 
indicate that our DOE approach found an improved ANN 
configuration compared to 32 unoptimized ANN. Further, 
our ANN demonstrated better fit for doublings with lower 
error than all 32 non-optimized ANN and the SLS model. 
This improvement in model fit suggests that our ANN-DOE 
approach models true process relationships that were not 
previously captured with SLS regression or unoptimized 
ANN models.

In vitro, we exhibited differences between each method 
of bioprocess development. The ANN-DOE showed 11.2% 
improvement in doublings over SLS regression, and 42.2% 
improvement over OFAT experimentation. The compari-
son of development pathways shows how a DOE dataset 

can significantly improve a process compared to OFAT 
experimentation regardless of whether ANN or SLS 
regression is used to model the data set. However, using 
the ANN-DOE, we found a process set point which sig-
nificantly improved bioprocess outcomes compared to the 
already capable linear regression model.

This manuscript describes four tiers of bioprocess 
development efficiency, tests them rigorously with in silico 
and in vivo methodologies, and demonstrates statistically 
significant differences between each process outcome. 
Between the improved modeling capability in silico and 
significant increase in process doublings in vitro, we can 
conclude that our ANN-DOE hybrid approach to process 
development efficiently leveraged ANN to improve bio-
process outputs beyond the capabilities of an SLS regres-
sion model. The improvement of 0.69 doublings over SLS 
regression, and improvement of 2.05 doublings over OFAT 
experimentation indicates that the approach should be 
tested on other bioprocess operations.

The value of the ANN-DOE approach, beyond achiev-
ing an improved process model, is that it bypasses the 
complex training and validation exercises generally used 
in machine learning in favor of evaluating at the network 
architecture using DOE techniques already familiar to 
many bioprocess professionals. Modeling of an established 

Fig. 4  a: Doublings of all Flasks by Condition Doublings from the 
24 DOE runs used to create the bioprocess design space and the 12 
flasks grown for model comparison are graphed. The flasks grown 
under historical and OFAT conditions underperform many of the 
DOE runs. Two out of three replicates grown under regression 
derived setpoints outperform all cells grown under DOE conditions. 
All three replicates grown under ANN-derived conditions outperform 

all 33 other flasks. b: Cell Morphology by Condition Visually all 
cells exhibit standard “fibroblast-like” morphology. However, differ-
ences in cell density are observable between conditions. c: LSMeans 
Differences Student’s T Each condition is compared to every other 
condition with a t test at a = 0.050. We see that all four experimen-
tal setpoints resulted in significantly different doublings. Figure 4a, b 
were created in Microsoft Office Suite. Figure. 4c was created in JMP
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bioprocess dataset in this manner is relatively quick and 
inexpensive to conduct.

Using DOE to evaluate machine learning models, a 
single scientist can use a laptop to improve the process 
set points using only a few hours of work and somewhere 
between a day to a week of computing power, depending 
on the complexity of the model and power of the computer. 
It is likely that the greatest value of ANN modeling will 
come not from evaluation of development studies but from 
modeling perturbations of established bioprocess manu-
facturing operations. However, given that ANNs are noto-
riously unreliable [5], we recommend always verifying 
manufacturing set points using a small-scale model before 
making drastic changes in the manufacturing process.

Despite its preliminary success, the combination of 
DOE with ANN could be improved upon in several ways. 
Increasing the size of the bioprocess dataset or augmenting 
our ANN-DOE hybrid model using standard DOE aug-
mentation techniques would result in higher fidelity mod-
els. Only 3 neuron types are discussed here, but the DOE 
principals herein should be applicable for any neuron type 
and for many deep learning problems. Although either a 
traditionally boosted ANN or a DOE derived ANN is suf-
ficient to model a process, further investigation into the 
harmonization of the two approaches would be beneficial.

With the immense value derived from process improve-
ments for pharmaceuticals, and the rapid turnaround time 
of the ANN-DOE Hybrid approach, ANNs can provide an 
incredible investment to reward ratio. Beyond its appli-
cation in the bioprocess field, we believe the principals 
herein may offer a robust and thoughtful way to explore 
the creation of ANN architecture across disciplines.
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