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Abstract The real-time measurement of biomass has

been addressed since many years. The quantification of

biomass in the induction phase of a recombinant bioprocess

is not straight forward, since biological burden, caused by

protein expression, can have a significant impact on the cell

morphology and physiology. This variability potentially

leads to poor generalization of the biomass estimation,

hence is a very important issue in the dynamic field of

process development with frequently changing processes

and producer lines. We want to present a method to

quantify ‘‘biomass’’ in real-time which avoids off-line

sampling and the need for representative training data sets.

This generally applicable soft-sensor, based on first prin-

ciples, was used for the quantification of biomass in

induced recombinant fed-batch processes. Results were

compared with ‘‘state of the art’’ methods to estimate the

biomass concentration and the specific growth rate l. Gross

errors such as wrong stoichiometric assumptions or sensor

failure were detected automatically. This method allows

for variable model coefficients such as yields in contrast to

other process models, hence does not require prior exper-

iments. It can be easily adapted to a different growth

stoichiometry; hence the method provides good general-

ization, also for induced culture mode. This approach

estimates the biomass (or anabolic bioconversion) in

induced fed-batch cultures in real-time and provides this

key variable for process development for control purposes.

Keywords Recombinant protein production � Process

model � Soft sensor � Real-time biomass quantification �
Process analytical technology (PAT)

List of symbols

t Time (h)

S Total amount of substrate in the cultivation broth

(C-mol)
_S Substrate feed rate (C-mol/h)

r Conversion rate (C-mol/h)

q Specific rate (g/g/h)

Y Yield (C-mol/C-mol)

F Flow/feed rate (g/h) for liquid and (nL/min) for

gas

C Concentration (C-mol/l)

X Total amount of biomass in the cultivation broth

(C-mol) or (g)

y Mole fraction (–)

Vm Molar volume of gas at norm condition (0 �C and

1 atm) (nl/mol)

Rainert Inert gas ratio (–)

ywet O2 Conc. diluted by water content (without

bioreaction) (–)

N Total amount of ammonium in the cultivation

broth (mol)

O2 Total amount of oxygen in the cultivation broth

(mol)

Zi Elemental composition of component i in biomass

(–)

pi Elemental composition of component i in

substrate (–)

V Volume of the cultivation broth (l)

exH2O Water content in off-gas (–)

M Molecular weight (g/c-mol)
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qfeed Density of feed (g/L)

S0 Feed concentration (g/L)

c Degree of reduction (–)

m Coefficients e.g. m (–)

OD Optical density 600 nm (–)

k Specific growth rate if used for feed rate

calculations (h-1)

l Measured specific growth rate (h-1)

CER Carbon dioxide evolution rate (C-mol/h)

OUR Oxygen uptake rate (C-mol/h)

Indices

in Input

out Output

conv. Conversion

acc. Accumulation

s Substrate

f Feed

x Biomass

a Air

CO2 Carbon dioxide

O2 Oxygen

N Ammonium

b Base

O Oxygen

H Hydrogen

n Nitrogen

m Measured

c Estimated

i Item number i

j Item number j

t Time point t

0 Initial

Introduction

Motivation

One of the key tasks in process development is maximi-

zation of space–time yield of the product while maintaining

a previously defined product quality related attributes.

Even though recombinant protein production is not strictly

growth related as products of primary metabolism (e.g.

ethanol), it is usually tied to the physiological state of the

culture [1, 2]. Fed-batch process mode provides good

metabolic control over the cell metabolism, since the

availability of the limiting substrate is governed by the

feeding profile. Hence, it is an important goal of process

development to come up with a feeding strategy beneficial

for both product yield and product quality. Here, a key

variable is the biomass concentration which is required for

further calculation of variables describing the metabolic

state of the culture such as specific rates (e.g. the specific

growth rate) and yields. The reference method for biomass

is gravimetric determination of biomass dry weight, which

is typically defined as the insoluble fraction of the culture

broth after removal of water (e.g. by drying at 105 �C).

Conventionally, this is determined by off-line quantifica-

tion, which is time-consuming and also comes with high

operator dependent measurement error. Dry cell weight

determination accounts for the insoluble fraction of mass in

biomass, while it would physiologically more relevant to

quantify the cells actually taking part in the bioreaction [3].

Especially in induced cultures there is variation in cell

morphology [4], energy metabolism [5] and macroscopic

composition of the cells; hence quantification of ‘‘bio-

mass’’ or similar variables is not straight forward [6]. But

most importantly there has to be a clear link to product

quality or productivity, which is also process or product

dependant. Furthermore, the variable should become

available in real-time for control strategies and also to

speed up process development using parallel processing [7]

and automation of experiments [8, 9].

Differentiation from existing methods

Hard-type sensors

Various sensors for biomass using optical methods (tur-

bidity, near infrared, NADH) or radio impedance (capaci-

tance) are available for the in-line quantification of the

biomass concentration [6, 10–12]. Since determination of

biomass dry weight is not feasible directly (in situ) in the

bioreactor for obvious practical reasons, this variable has to

be quantified by relation to physical characteristics or

morphological properties of the cells (e.g. electrical

impedance or light scattering properties). However, chan-

ges in the physiological state of the culture are often

accompanied by physiochemical or morphological changes

in the cell population, potentially distorting established

correlations. Different calibrations can be necessary for

different process modes, media composition, and physio-

logical states of the culture and also for different strains.

Model maintenance or very good generalization (however,

this often comes at the cost of estimation accuracy) is

required to account for variability of the relation between

the probe response and the actual dry cell weight, since the

relation can vary, e.g., dependent on the media constituents

and other process characteristics [13, 14], especially in

process development with constantly changing process

environments, culture conditions, strains, etc. it can be

misleading to use these hard-type sensors as a sole quan-

tification of biomass in process development. On the other

hand this can be very useful to acquire interesting real-time

information on the physiological state of the culture [15];
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however, it is often not possible to determine the source of

variability (e.g. morphological change or increase in bio-

mass) from the real-time signal only. Thus, this should be

seen as an auxiliary tool together with complementary

methods (e.g. flow cytometry).

Soft-type sensors

Soft-type sensors make use of easily accessible items such

as carbon dioxide and oxygen concentrations in the off-gas

stream (using well established methods such as infrared for

CO2 or paramagnetic principle for O2, respectively) to

indirectly quantify less ‘‘easy’’ items such as the total

biomass concentration [16]. There are two main competing

approaches, empiric or data-driven methods and mecha-

nistic models based on fundamental knowledge.

One school of thought came up with data-driven methods

such as PCA, ANNs, PCR, PLSR [17–20]. No prior knowl-

edge is required, but representative training data sets for the

modeling problem to estimate model coefficients or to train

weights (ANNs) are an imperative. Hence, these methods are

useful if the process conditions do not vary too much (e.g. in

production) and they come with constrained generic appli-

cability as a soft sensor in process development [16].

A more direct approach to generate knowledge is using

mechanistic models, which try to describe the system in

question by fundamental principles (e.g. chemical or

physical) on the interaction between process variables [21,

22]. The advantage of mechanistic models is also a draw-

back; detailed knowledge on the mechanistic of the process

is not always available. In biological processes setting up

mechanistic models is especially challenging due the great

complexity of the living cell. Hence, one should avoid

extensive use of prior knowledge or frequent re-fitting of

parameters, as there would be no gain in the ease of use

compared to hard-type sensors.

Soft-type sensors based on first principles

First principles are generally valid (e.g. the law of con-

servation, or equations of state for vapor–liquid equilibri-

ums); hence, this is ideal for the dynamic field of process

development, since these can be easily adapted to a new

problem. For this reason first principles should be used

whenever possible and calibration/training should be

avoided. First principles require little prior knowledge,

mostly items which are quantified anyways, e.g. growth

stoichiometry and quantification of in-going and out-going

mass streams (substrate, oxygen, carbon dioxide, etc.).

Here, a minimalistic mechanistic model relying on first

principles rather than prior knowledge is suggested for

extraction of information, consistency check and estimation

of unknown items in physiologically variable cultures.

While the basic idea of this approach has been published

decades ago [21, 23, 24], these ideas are interesting in the

context of modern industrial recombinant bioprocesses, due

to their ease of use and general applicability. The model

approach is black box and unsegregated for sake of real-time

capability. For general applicability the model is biochem-

ically structured, based on macroscopic mass balances;

hence, extensive use of model parameters which have to be

experimentally determined was avoided. Ideally only natu-

ral constants, direct measurements and first principles

should be used. Using enough constraints such as elemental

balances, estimation of parameters such as yield coefficients

from previous experiments can be avoided. Furthermore,

redundancy should be applicable (the equation system is

over determined), so that the consistency of the estimation

can be verified. This is very useful to detect gross errors such

as wrong stoichiometric assumptions or sensor failure.

Context overview

Induction of recombinant protein can have significant

impact on the energy metabolism of cells, e.g. E. coli

cultures this can result in partial cell lysis [25, 26] and

unspecific release of proteins, carbohydrates and other

building blocks to the supernatant. Alterations in the

energy metabolism can also result in variations of yield

coefficients. For this reason, models making use of fixed

yields coefficients are wrong as soon as there is unac-

counted variations in these coefficients. Some authors [27]

came up with the idea of supplementing mechanistic

models with data-driven methods such as neural networks

to tackle that problem, but this does not eliminate the need

for representative training data sets in the first place.

Another approach to deal with model uncertainties such as

poor knowledge of model coefficients is Kalman filters.

Deviations of the process model can be mitigated by

incorporation of off-line samples [28], however this does

not eliminate off-line sampling and still requires prior

knowledge on model coefficients. We want to avoid off-

line sampling and the need for representative training data

sets at all, using an elemental balancing approach, which

relies on first principles only. While the basics for this

approach were already published [16, 29], this contribution

focuses on quantification of the biomass in the induction

phase of fed-batch processes in red biotechnology, which is

a key variable for process optimization as discussed above.

Figure 1 shows an overview on approaches to quantify

biomass in real-time discussed in the previous chapters.

Goals

• We demonstrate an approach for the estimation of

biomass concentration and specific growth rate for
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processes with variable cell metabolism and morphol-

ogy and evaluate its applicability. For instance, this can

be during induction phase of recombinant processes,

where the quantification of biomass is a challenge. The

method avoids off-line sampling and the need for rep-

resentative training data sets.

• Different methods to calculate the specific growth rate in

real-time, which is a key variable for process optimiza-

tion and is typically calculated from off-line biomass

concentrations, are compared, including a soft-sensor

approach based on cumulative elemental balancing, a

Luedeking–Piret-type (fixed yield) approach, based on

off-gas rates and a hard-type capacitance probe.

• The approach should be useful for control and be

available as a key variable for process development.

• Consistency check: gross errors such as wrong stoichi-

ometric assumptions or sensor failure should be

detected automatically.

Materials and methods

Culture

Pichia pastoris as eukaryotic microbial model system

The Pichia pastoris strain KM71H expresses the horse-

radish peroxidase isoenzyme C1A (HRP). The strain was

of MutS (methanol utilization slow) phenotype and HRP

was secreted into the fermentation broth. Media were

prepared according to [30]. After shaking flask preculture,

a batch cultivation was initiated, followed by a fed-

batch on glycerol to increase the biomass and induction

phase on methanol employing a feeding strategy according

to [28].

E. coli as prokaryotic microbial model system

A recombinant K12 E. coli strain with alkaline phosphatase

on a rhamnose inducible promoter was used for the veri-

fication runs with stoichiometrically defined media [25]. A

shaking flask preculture (100 ml for inoculation of 6 L

batch medium, in 1 L shaking flask with baffles) was

inoculated from frozen stocks and was used to inoculate the

bioreactor. Culture conditions were pH = 7, tempera-

ture = 35 �C and DO2 [ 20 %. After a batch phase, which

was detected by a drastic drop in the CO2 off-gas signal

and an increase in dissolved oxygen (DO2), an exponential

fed-batch with a specific growth rate of 0.15 (h-1) was

initiated. Equations (1) and (2) were used to calculate the

feed profile for the exponential fed-batch. The specific

growth rate before induction was set prior to the experi-

ment, while constants such as the feed concentration (S0),

density (qfeed), the initial volume (V0) and initial biomass

concentration X0 were measured. The biomass yield (Yx/s)

was determined in prior experiments. The molecular

weight of substrate and biomass (MS, MX) can be found in

Fig. 1 Overview on approaches to quantify biomass in real-time
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the literature or measured by a CHON analyzer in prior

experiments. The exponential phase was followed by an

induction phase with linear feeding, which was adjusted to

an initial specific growth rate of different percentages of

the exponential phase growth rate, 100, 70 and 40 % or

0.15, 0.1 or 0.06 (h-1), respectively.

Feedrate in exponential fedbatch

FðtÞ ¼ F0 � ek � t: ð1Þ

Initial feed rate in exponential fedbatch

F0 ¼
k � X0 �Ms � qfeed � V0

S0 � Yx=s �MX

: ð2Þ

Biomass

Biomass concentrations were quantified by gravimetric

measurement after drying for 72 h at 105 �C. Samples

were centrifuged (5,000 rpm, 10 min) and the pellet was

washed twice with distilled water to get rid of salts.

Substrate and small metabolites

Substrate and small metabolite concentrations were quan-

tified using an HPLC method (Supelcogel C-610, Sigma

Aldrich, flowrate: 0.5 ml/min, eluent: 0.1 % H3PO4/NaN3,

30 �C, RI detector).

Protein determination: BCA

Extracellular protein concentrations were measured using

the Bicinchoninic Acid Kit for Protein Determination

(Sigma, BCA1-1KT). Bovine Serum Albumin (BSA) was

used as a standard. The limit of quantification (blank ? 9

standard deviations) was determined to be 0.151 (g/l) with

a residual standard deviation of 0.008 (g/l).

Bioreactor setup and on-line analytics

Bioreactor

Two stainless steel bioreactors with working volumes of 10

and 20 L were used (Infors, Bottmingen, Switzerland). The

systems come with a controller unit, which was used to

adjust the process parameters: pH, temperature, aeration,

reactor pressure and stirrer speed. Dissolved oxygen (DO2)

was controlled [20 % using a step controlled with reactor

pressure, stirrer speed and air flow as manipulated variable.

The pH was controlled using an integrated digital peri-

staltic pump and NH4OH as a base. Air was filtered by a

membrane-type filter and dispensed by a ring sparger. The

culture vessel was sterilized at 121 �C for 20 min by in situ

steam sterilization prior to inoculation.

Off-gas analysis

CO2 and O2 in the off-gas were quantified by a gas analyzer

(Servomex, UK; M. Müller AG, Switzerland), using

infrared and paramagnetic principle, respectively. Air flow

was quantified by a mass flow controller (Vögtlin, Aesch,

Switzerland).

Capacitance probe

An annular-type probe (Aber Instruments, Aberystwyth,

Wales, UK) was used to measure capacitance during the

fermentation. Capacitance values are calculated in real-

time from the difference between two frequencies. At

1 MHz E. coli cells contribute to the capacitance while

10 MHz is the ‘‘background’’ depending on the medium,

according to definitions of the supplier. The difference in

capacitance relates to the viable cell concentration or more

directly to intact biovolume, as only intact cells act as a

capacitor [31].

Data management

For recording of process data the process information

management system Lucullus from Biospectra (Schlieren,

Switzerland) was used. This system was also used for

closed loop control (feed bottle on balance).

Setup of the soft sensor for estimation of biomass

concentration and specific growth rate with variable

growth stoichiometry

Conversion rates

Assuming oxidative metabolism, the bioreaction can be

described according to Eq. 3. Although there are many

different chemical reactions running in parallel in living

cells, the conversion rates in Eq. 3 represent the overall

summarized effect of all the different reactions.

Stoichiometric equations

rs CHpH OpO þ rO2
O2 þ rN NH3

! rx CHzH OzO NzN þ rCO2
CO2: ð3Þ

General material balance

Input� outputþ conversion = accumulation: ð4Þ

The conversion rates in Eq. (4) for the species substrate

(S), biomass (X), carbon dioxide (CO2), ammonia (N) as

well as oxygen (O2) can be derived from the general form

of the material balance [Eq. (4)].

In fed-batch mode the conversion rates can be calculated

as follows:
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Conversion rate for substrate

rs ¼
dðsÞ
dt
� _Sin þ _Sout ¼ �

Ff ;in

qfeed

S0: ð5Þ

In fed-batch mode, the outflow term _Sout is zero and the

accumulation term
d sð Þ
dt

can be neglected, as long l\ lmax;

hence, the conversion rate rs is only dependent on the

inflow term _Sin which is calculated from the feed rate.

Conversion rate for biomass

rx ¼
d Xð Þ

dt
� _Xin þ _Xout ¼

d Xð Þ
dt

: ð6Þ

Since there is no in- and outflow term, rx is equal to the

accumulation term
d Xð Þ

dt
.

Conversion rate for carbon dioxide (=CER)

rCO2
¼ CER ¼ dðCO2Þ

dt
� C _O2;in þ C _O2;out

¼ Fa;in

Vm

ðyCO2;outRainert � yCO2;inÞ � 60: ð7Þ

Conversion rate for oxygen (=OUR)

rO2
¼ OUR ¼ d O2ð Þ

dt
� _O2;in þ _O2;out

¼ Fa;in

Vm

yO2;out Rainert � yO2;in

� �
� 60: ð8Þ

Inert gas ratio

Rainert ¼
1� yO2;in � yCO2;in

1� yO2;out � yCO2;out � ywet

yO2 ;in

: ð9Þ

Due to the low solubility of O2 in the fermentation

broth,
d O2ð Þ

dt
can be neglected. The term

d O2ð Þ
dt

can be also

neglected, since the solubility of CO2 in the fermentation

broth is mainly a function of temperature and pH, which

are typically kept constant. Hence, the rates rCO2
and rO2

are dependent on the in- and outflow terms (Eqs. 7 and 8).

Fa;in; yCO2;out and yCO2;out are measured, while Rainert

(Eq. 9) depends on the dilution by water stripping

describes the ratio between the in- and outflow term. ywet

is the off-gas concentration of O2 without bioreaction and

relates to the dilution by water stripping [32].

Specific rates and yields

Conversion rates are the basis for the computation of yields

(Eq. 10). Specific rates are calculated according to

Eq. (11). Specific growth rates using off-line or soft-sensor

biomass concentrations were calculated according to

Eq. (12). The Luedeking–Piret-type Eq. (13) (as found in

the literature [33], assuming constant maintenance) can be

reformed to calculate specific growth rates from off-gas

rates only, since the yield can be eliminated from the

equation as long it is assumed to be constant (the

maintenance part does not vary). Specific growth rates

based on total carbon or total oxygen were computed

according to Eqs. (14) and (15). The total cumulated car-

bon dioxide tCER is equal to the carbon dioxide rate CER

integrated with Dt, plus an initial value tCERinitial. The

specific growth rate is subsequently calculated by the

fraction of CER by tCER. Similarly specific growth rates

based on the capacitance signal were calculated according

to Eq. (16) by the fraction of the capacitance rate by the

total capacitance.

Calculation of yields

Yi
j
¼ ri

rj

: ð10Þ

Calculation of specific rates

qi ¼
ri

X
: ð11Þ

Calculation of the specific growth rate from biomass

conversion rates

l ¼ rx

X
: ð12Þ

Luedeking–Piret-type equation, on the example of CO2

CER ¼ YCO2=X � l � X: ð13Þ

Calculation of total cumulated off-gas rates, on the

example of CO2

tCER ¼ CER � Dt þ tCERinitial: ð14Þ

Calculation of the specific growth rate from off-gas rates

on the example of CO2

ltCER ¼
rx � YCO2=X

X � YCO2=X

¼ CER

tCER
ð15Þ

Calculation of the specific growth rate from the

capacitance

lcap ¼
d Capaci tan ceð Þ

dt

1

Capaci tan ce
: ð16Þ

Constraints

General form of constraints with k elemental balances

Xk

i¼1

ri vi ¼ 0: ð17Þ

Using the law of conservation, elemental balances (=k)

can be imposed on every element of the bioreaction as

constraints (Eq. 17). In which r is the rate vector and v is

the vector of coefficients for each element. This is useful as

a consistency check of the data and to calculate non-

measured items. In this contribution two balances were

used, the carbon (C) balance and the degree of reduction

(DoR) balance. The degree of reduction balance can be set
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up with the following definition: cN = -3, cC = C = 4,

cO2
= O2 = -4, cH = 1. Other definitions would lead to

the same results [34].

Sensitivities and error propagation

The random measurement error of off-gas analysis and

gravimetric balances which are used as an input for this soft

sensor are typically very low (relative error = 0.01–0.1 %

propagated to the rates, using definitions according to

supplier), hence can therefore be neglected. However, sys-

tematic errors such as miscalibration, sensor drift or the

measurement error on the constants have to be considered.

One percent deviation in feed concentration or density

directly propagates as 1 % deviation of the substrate uptake

rate. One percent deviation on the off-gas dilution by water

(yO2_wet) propagates up to 3 % on the oxygen uptake rate,

depending on the measured oxygen concentration. Fur-

thermore, the off-gas rates can be prone to miscalibration

and sensor. As the soft sensor is directly based on these

rates, the error on the estimated accumulated biomass (the

difference between the current value and the start value) is

supposed to be in the magnitude of a linear combination of

these effects. Gross errors such as wrong stoichiometric

assumptions (e.g.: oxidoreductive instead of oxidative

growth) also contribute to these effects.

Consistency check

To evaluate the residuals on the rates when applying the

constraints in ‘‘Constraints’’ and compare them with the

expected residuals due to measurement error (‘‘Sensitivi-

ties and error propagation’’), a statistical test adapted from

the literature [35] was applied to get a quantitative measure

on the validity of the observed system. Equation (17) can

be written in matrix form (Eq. 18):

Matrix form of constraints

EW ¼ 0: ð18Þ

W is the vector of the measured volumetric rates r.

For noisy data a residue vector e is added (Eq. 19):

Matrix form of constraints with residue vector

E
0
W ¼ e: ð19Þ

For each rate an expected error (by default 3 % error on

each rate) is specified in the variance–covariance matrix W
of the rates and is assumed to be non-correlated (square

with the errors for each rate in the diagonal). The result of

the statistical test value h is calculated with U as the

variance–covariance matrix of the residuals Eqs. (20) and

(21). The hypothesis of not having any errors exceeding the

expected error specified in W is rejected if h is greater than

a certain threshold value. This threshold value can be read

from Chi-square distribution, which depends on the degree

of redundancy of the equation system (or also the degree of

freedom of the Chi-square distribution) and the

significance level a (by default 0.95). The default a
degree of redundancy of one (=estimation of one rate)

results in a threshold of 3.84 for the statistical test value,

which is exceeded if the current error is higher than the

expected error (e.g. when gross errors such as wrong

stoichiometric assumptions are present). The expected

error was assumed to be 3 % error on each rate. An error of

3 % on each rate results in a deviation of about 10 % on the

C- and DoR balance. The degree of redundancy of the

equation system is equal to the rank of E if no conversion

rates are estimated or to the rank of R if conversion rates

are estimated.

Variance–covariance matrix

U ¼ ET W E: ð20Þ

Statistical test value

h ¼ eT U�1 e: ð21Þ

Data reconciliation

A data reconciliation procedure according to [36] was

applied. In addition to estimation of non-measured con-

version rates, redundancy in the equation system can be

also used to adjust the conversion rates to simultaneously

close all elemental balances imposed in ‘‘Constraints’’. The

lumped residues of the equation system are distributed

along the rates according the expected error for each rate.

Using a least squares approach, the goal of reconciliation is

to find a measurement error vector d to calculate the rec-

onciled vector Wb (Eq. 22), hence the vector of the best

estimates of the volumetric reaction rates to fit all con-

straints. The solution (Eq. 23) to this problem is adapted

from the literature [37].

Calculation of the reconciled vector Eq. (22)

Wb ¼ W þ d: ð22Þ

Calculation of the measurement error vector Eq. (23)

d ¼ W ET U�1 e: ð23Þ

Estimation

For estimation of non-measured components the equation

system from ‘‘Consistency check’’ is split into measured

part Em Wmð Þ and a calculated part [Ec Wc; Eq. (24)].

Split of equations system

EW ¼ Em Wm þ Ec Wc ¼ 0: ð24Þ

The law of conservation can be also applied on

measured rates exclusively, but first the elemental matrix

has to be stripped of relations with the calculated items, the
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resulting matrix is called the redundancy matrix R (Eqs. 25

and 26). If R contains zero columns, there is no way to

express the measured rates independent from the non-

measured rates. The rank of R is equal to degree of

redundancy of the equation system.

Introduction of the redundancy matrix R

RWm ¼ 0: ð25Þ

Calculation of the redundancy matrix R

R ¼ Em � Ec E�1
c Em: ð26Þ

For further calculation of the h value and the

reconciliation procedure, R has to be stripped of rows

with zero singular values, otherwise the inverse of U might

not exist or be too close to singular, leading into unstable

results. The singular values can be read from the matrix R
acquired by singular value decomposition of R. The

number of non-zero singular values in R determines the

number of rows in conversion matrix Rconv; which has 1 in

the diagonal else 0 (Eqs. 27 and 28).

Singular value decomposition of R

R ¼ UR V: ð27Þ

Calculation of the reduced redundancy matrix R

Rred ¼ RconvRRTUT: ð28Þ

Now the h value can be calculated and the rates

reconciled as explained above by replacing E with Rred in

Eq. (20). Finally the vector for estimated rates can be

calculated according to Eq. (29), using the reconciled rates

instead of raw measured rates. Furthermore, the estimated

rates can be numerically integrated to estimate the

cumulated biomass in the time window Dt according to

Eq. (30), which is called cumulative elemental balancing

further on.

Calculation of the estimated rate vector

Wc ¼ E�1
c Em Wb: ð29Þ

Estimation of the biomass by numeric integration of the

items in the estimated rate vector Wc (stoichiometric

cumulation) Eq. (30)

X ¼ rX recon � Dt þ Xinitial: ð30Þ

Results

Correct assumption of growth stoichiometry is an important

prerequisite for the elemental balancing approach proposed

in this contribution. By proper application of elemental

balances products such as ethanol or acetate can be quan-

tified [16]. However, this has to be addressed beforehand,

by setting up the soft sensor accordingly. If the residuals on

the elemental balances are higher than the defined error

according to W, faulty definition of stoichiometric growth is

detected. This is evaluated by statistical test, which takes

measurement error according to the Chi-square distribution

into account. Hence, W has to be defined based on a realistic

assumption of the measurement error, as failure to do so

will result in potentially misleading results and/or statistical

test values (‘‘Consistency check’’).

There are processes which generally follow balanced

growth conditions, which means metabolic or morpholog-

ical variations due stress and fermentation conditions are

negligibly small and do not propagate to coefficients in

data-driven or mechanistic models. In that case the esti-

mation problem is much easier, since coefficients are

constant throughout the experiment and also for follow-up

experiments (see ‘‘Induced culture without significant

extracellular product’’). However, this is not true for any

kind of process (see ‘‘Induced culture with significant

extracellular product and variable yields’’); hence, poor

model generalization can become a major issue. Here, the

elemental balancing approach poses a valuable alternative.

Induced culture without significant extracellular

product

Data from an induced P. pastoris culture were used as an

example for a culture without significant product (volu-

metric rate of substrate uptake is of magnitudes higher than

the volumetric rate for extracellular product). Furthermore,

this culture exhibits balanced growth conditions with regard

to energy metabolism, since the yields are rather constant as

also shown below (\10 % variation). This can probably be

attributed to the careful adaption of the culture to the

methanol feed and moderate expression rates due to the

single-copy strain used in this process [30], which results in

a constant maintenance part in the yields. A soft sensor for

fed-batch with oxidative metabolism according to ‘‘Esti-

mation’’ was implemented to estimate the biomass con-

centration in real-time from signals which are available on-

line only. The input rates for this soft sensor were OUR, CER

(measured by Off-gas analysis), the substrate feed rate and

the reactor broth mass (by gravimetric principle, respec-

tively) as shown in Fig. 2a. The output of the soft sensor was

the biomass concentration (Fig. 2b) calculated using the

cumulated biomass (Eq. 30) and current volume together

with subsequently calculated variables such as the specific

growth rate according to ‘‘Specific rates and yields’’. Fig-

ure 2c shows the specific growth rate for calculated using

different sources for the biomass quantification:

• Off-line Smoothed and interpolated off-line values

according to Eq. (12) were used to calculate l off-

line (Fig. 2c). To check the quality of the off-line

values, elemental balances such as the C and DoR
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balance can be imposed. If the law of conservation is

satisfied the balance are close to 1, which is true here, if

they deviate gross errors such as incorrectly assumed

growth stoichiometry (e.g. oxidoreductive instead oxi-

dative) or substrate accumulation are present (Fig. 2d).

• tCER and tOUR Estimation by off-gas rates only

according to Eq. (15) was used to calculate l tCER and

tOUR. This method is only useful if the correlation of

off-gas rates to biomass conversion rate is constant, or

in other words the yields do not vary too much (only

\10 %), which can be assumed for this culture

(Fig. 2c). This can be probably attributed to the careful

adaption of the culture to methanol and moderate

foreign protein expression rates [28], which results in a

constant maintenance part in the yields. This approach

is comparable to similar methods without variable

yields.

• Soft sensor Estimation of l using cumulative elemental

balancing as described in ‘‘Estimation’’ (Fig. 2c). This

method allows flexible yields but the growth stoichi-

ometry (e.g. oxidative metabolism) has to be correctly

assumed beforehand. The h value is based on elemental

balances (‘‘Consistency check’’) and is used as a real-

time acceptance criterion. If the value is lower than the

threshold value of 3.84, no gross errors are present and

the growth stoichiometry was assumed correctly, which

holds true for this culture (Fig. 2d).

Since the off-gas yields were rather constant (Fig. 2c)

and the growth was purely oxidative, all methods give an

estimate of the specific growth rate in good agreement with

the values calculated from off-line biomass concentrations.

Between process time 5 and 10 h the h value and the

balances were off, probably due to consumption of sub-

strate, which was accumulated during the onset of the

methanol feeding.

Induced culture with significant extracellular product

and variable yields

The applicability of the soft-type sensor based on cumu-

lative elemental balancing was evaluated by estimation of

biomass and the specific growth rate in a culture with

significant extracellular product and variable yields.

Results were compared with a Luedeking–Piret-type

approach, a capacitance probe (‘‘Capacitance probe’’) and

conventional off-line sampling. Two different fed-batch

experiments were evaluated. In one experiment the initial

specific growth rate was adjusted from l = 0.15 (h-1) to a

linitial = 0.10 (h-1) (Fig. 3), while in the other experiment

the initial specific growth rate was adjusted from l = 0.15

(h-1) to a linitial = 0.06 (h-1) (Fig. 4).

Signals which are available on-line were used as input

signals for the soft sensor (Figs. 3, 4a). The estimated

biomass concentration deviates from the off-line biomass

Fig. 2 Induced P. Pastoris

fedbatch on methanol without

significant extracellular product

a inputs; b measured biomass

concentration and estimated

biomass concentration by soft

sensor based on cumulative

elemental balancing; c specific

growth rate calculated from

interpolated offline biomass

samples (l off-line), off-gas

rates (l tCER and l tOUR,

together with the respective

yields: Yco2/x and Yo2/x) and

based on cumulative elemental

balancing (l soft-sensor);

d elemental balances for off-line

biomass concentrations and

h value for soft sensor; between

process time 5 and 10 h the

h value and the balances were

off, probably due to

consumption of substrate

accumulated during the onset of

the methanol feeding
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Fig. 3 Induction phase of

E. coli culture with significant

product with linitial = 0.10

(h-1); a inputs for the soft

sensor based on elemental

balancing; b measured biomass

concentration and estimated

biomass concentration by soft

sensor based on elemental

balancing; c specific growth rate

calculated from interpolated

offline biomass samples (l off-

line), off-gas rates (l tCER and

l tOUR, together with the

respective yields: Yco2/x and

Yo2/x), capcaitance probe

(l Cap) and based on

cumulative elemental balancing

(l soft-sensor); d elemental

balances for off-line biomass

concentrations and h value for

soft sensor

Fig. 4 Induction phase of

E. coli culture with significant

product with linitial = 0.06

(h-1); a inputs for the soft

sensor based on elemental

balancing; b measured biomass

concentration and estimated

biomass concentration by soft

sensor based on elemental

balancing; c specific growth rate

calculated from interpolated

offline biomass samples (l off-

line), off-gas rates (l tCER),

capcaitance probe (l Cap) and

based on cumulative elemental

balancing (l soft-sensor)

d elemental balances for off-line

biomass concentrations and

h value for soft sensor
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concentration progressively with process time (Figs. 3, 4b).

If the extracellular soluble protein concentration is added to

the biomass, which is justifiable since the stoichiometry is

very similar, this deviation is smaller and the remainder

can probably be attributed to extracellular soluble non-

protein content. This is due to the fact that the elemental

balancing approach estimates overall bioconversion, bio-

mass and any other soluble building block material. By this

approach, it is not possible to distinguish between extra-

cellular products such as soluble protein and cellular bio-

mass since both have very similar stoichiometry (compared

to classical oxidoreductive products such as ethanol).

Capacitance is described as a powerful tool for recom-

binant E. coli processes in literature [38]. The probe

quantifies capacitance in (pF/cm), which typically has to be

converted to more common units such as biomass (g/L) or

optical density (–) for further use (by means of linear

regression). An important thing to note is that capacitance

relates to intact biovolume [31] and not necessarily to

biomass. Schwan’s model [31], which describes the rela-

tion between enclosed biovolume or capacitor volume and

the dielectric increment, also suggests Cm [plasma mem-

brane capacitance per unit of membrane area (F/m2)] as a

parameter, which relates to the ability of the plasma

membrane to store charge.

Schwan’s model Eq. (31)

DC � k

e0

¼ De
0 ¼ 9 � P � r � Cm

4 � e0

: ð31Þ

Figures 3 and 4c show the specific growth rate

calculated using different sources of the biomass

concentrations:

• Off-line Smoothed and interpolated off-line values

according to Eq. (12) were used to calculate l off-line.

To check the consistency of the off-line values, elemental

balances, namely a C- and a DoR balance were imposed.

Figures 3 and 4d show that both balances are\1, which

can be attributed to the extracellular soluble protein

unaccounted for in this balance.

• tCER and tOUR Estimation by off-gas rates only

according to Eq. (15) was used to calculate l tCER and

tOUR. Figure 3 and 4c show that the yields are

increasing for this culture (up to 70 % increase over

process time), hence the estimated specific growth rate

is artificially larger than the other growth rates. If this

method is used to estimate the specific growth without

verification by other methods and lacking a strategy to

account for the variable maintenance part of the yield in

real-time, results are misleading due to the variable

yield.

• Soft sensor Estimation using elemental balancing and

reconciliation as described in ‘‘Data reconciliation’’ and

‘‘Estimation’’. This method allows flexible yields but the

growth stoichiometry (e.g. oxidative metabolism) has to

be correctly assumed beforehand. The h value is based on

elemental balances (‘‘Consistency check’’) and is used as

a real-time acceptance criterion. If the value is lower than

the threshold value of 3.84 no gross errors are present and

the growth stoichiometry was assumed correctly. The

value is below the threshold value (Figs. 3, 4d). The

estimated specific growth rate is larger than the off-line

specific growth rate due to the fact that this growth rate is

based on the overall biomass conversion rate, including

extracellular soluble components.

• l capacitance The capacitance signal relates to biovo-

lume and not to biomass, hence the linear regression

model possibly also interferes with the parameter

membrane capacitance as discussed above. There

seems to be a dramatic decrease in biovolume due the

reduction of specific growth rate from l = 0.15 (h-1)

to linitial = 0.1 (h-1) or 0.06 (h-1) at the onset of

induction (Figs. 3, 4c). Such a decrease in volume due

to carbon depletion was also reported in literature [39].

The parameter Cm in Schwan’s model (Eq. 31), which

is in fact another morphological parameter, can also

interfere with quantification. For this reason the appar-

ent specific growth rate calculated from the capacitance

signal is low or even negative during the initial hours of

induction. This is even more pronounced in Fig. 4c,

obviously since the drop in feed rate is larger here.

Discussion

Different methods to estimate the biomass concentration

and also the specific growth rate l in real-time were

compared. These variables are typically determined by

time-consuming off-line sampling, which is also prone to

operator-dependent measurement error. The biomass con-

centration is estimated from signals which are available

on-line only. A real-time biomass concentration is required

for real-time calculation of specific rates and yields, which

in turn provide valuable information on the bioprocess.

Specific growth rates calculated using total carbon or

oxygen rates can only be used as long as the respective

yields are constant. This was true for the induced P. Pas-

toris culture (Sect. 3.1), but not for the E. coli culture (Sect.

3.2). Since the yields varied up to 70 %, estimated growth

rates are artificially too large by this factor. Without veri-

fication by other means to estimate the biomass or a

strategy to account for the variable maintenance part in the

yields, the results are potentially misleading.

The soft sensor cannot differentiate between biomass

and very similar soluble products such as protein in the
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supernatant, hence estimates an overall bioconversion rate

(anabolic conversion) of substrate, instead of conversion to

cells or protein. If the off-line extracellular protein is added

to the off-line biomass, the result is similar to the estima-

tion of the soft sensor. Potentially extracellular protein can

be quantified in real-time if required, e.g. by at-line spec-

troscopic or photometric methods.

Provided balanced growth conditions, the cell volume

and therefore the capacitance signal linearly correlates to

viable biomass dry weight. In induced systems the

assumption of balanced growth does not necessarily hold

true, as shown in this contribution. If this is not considered,

it can be misleading to use this as a sole method to quantify

biomass. Along with possible variability in the ratio bio-

volume per biomass, variations of the parameter Cm would

also interfere with linear regression models for the esti-

mation of biomass. While this can be interesting additional

information on the bioprocess, further off-line measure-

ments of morphological characteristics such E. coli size

distribution (e.g. by coulter principle) or radiofrequency

scanning, as shown by other authors [40], are required to

fully identify the source of variability. However, this was

not within the focus of this contribution.

The quantification of biomass in the induction phase is

not straight forward due to possibly variable cell metabo-

lism, morphology and variables describing the former such

as yields. There are multiple possible definitions for bio-

mass. Conventionally biomass is defined as the non-soluble

fraction of the culture broth after removal of water. It is not

possible to apply this method in situ in real-time for

obvious practical reasons. Furthermore, this definition

might not be the best one from a physiological point of

view, since there is more to biomass than just non-soluble

mass. Elemental balancing for example allows quantifying

an overall anabolic bioconversion, including soluble cell

components secreted to the supernatant, such as carbohy-

drates and proteins. Capacitance provides information on

the intact biovolume. If frequency scanning or additional

off-line measurements are used, also other interesting

morphological information can be revealed.

The biomass concentration, typically referred to as

biomass dry cell weight concentration, is considered to be a

key variable for the design of control strategies. This

contribution outlined that there are multiple variables

which describe (e.g.: biovolume, total bioconversion).

Hence, the question arises on what measurement basis a

control strategy, e.g. for the induction phase feed profile,

should be used. Accordingly other authors suggest that the

induced cell population is not homogeneous and segregated

models need to be applied to account for different sub-

populations [41]. In a control context, the question arises

how to make different subpopulations quantitatively

accessible by means of on-line and real-time sensors. This

is also a question of what is the link of the biomass defi-

nition to product quality or productivity. One sensor might

not suffice for this task, but combinations of different

analytical devices in combination with mechanistic mod-

els/soft sensors, might be able to unlock the current status

of the cell population.

Conclusion

• A real-time capable soft sensor based on elemental

balancing to quantify biomass concentration and spe-

cific growth rates was presented. Quantification of

biomass in the induction phase is particularly chal-

lenging, due to the morphological, physiological and

metabolic variations during induction. The presented

method works with variable yields, which makes this

approach especially interesting in the induced phase of

recombinant bioprocesses, compared to other approa-

ches with fixed yield or model coefficients as detailed

in ‘‘Discussion’’. As demonstrated, other approaches

with fixed yield or model coefficients, such as the Lu-

edeking–Piret-type approach and the linear regression

model for the capacitance probe, have issues in the

induction phase. Furthermore, it was shown that the

reference method, gravimetric biomass dry weight

determination, cannot quantitatively cover anabolic

bioconversion, due to secretion of soluble contents to

the supernatant.

• While the basic idea of elemental balancing, as a

method to estimate unknown items such as the biomass

concentration in a bioprocess, has been published

decades earlier, the methodology is not used in modern

bioprocess technology including recombinant biopro-

cesses so far. Furthermore, the approach is underrep-

resented in recent reviews [10, 42]. The ease of use and

the low requirements on prior knowledge, as also

requested by these reviews, make this method a

particularly valuable tool for industrial bioprocesses.

• The results were compared and discussed with other

state of the art approaches for real-time quantification

of biomass. The optimum approach depends on the

favored definition for ‘‘biomass’’ (conventional bio-

mass, anabolic bioconversion, biovolume, etc.). Depen-

dent on the process and/or product a definition with a

clear link to product quality or productivity should be

used.

• Since the results of this approach are obtained in real-

time, this can be used to estimate process variables for

control strategies. Specific rates such as the specific

growth rate are especially important process variables,

acting as a descriptor of the physiological state, with

impact on biomass production, product quantity, and
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product quality [43]. Furthermore, if a system is fully

quantified, a great deal of understanding is achieved

that can be easily communicated.

• This approach can be applied for platform approaches,

new trends toward platform manufacturing and

decreases time to market.
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