Skip to main content
Log in

A novel separation and enrichment method of 17β-estradiol using aptamer-anchored microbeads

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

The estrogenic compound 17β-estradiol (E2) is widely studied for its potential endocrine disruption effects. Due to the low level of E2 present in the environment, it is highly desirable to develop a sensitive and efficient separation and enrichment method for E2 analysis. In this paper, we proposed a novel E2 preconcentration method using anti-E2 aptamer-anchored isothiocyanate-modified beads (NCS beads). The glass beads are chemically modified with primary amino group, and then treated with phenylene diisothiocyanate (PDITC) to generate an isothiocyanate group, which is reactive towards the amine group. The amino-modified anti-E2 aptamer can be easily covalently immobilized onto the as-prepared NCS beads. The experimental results demonstrated that the aptamer affinity microbeads could selectively retain and separate E2 compound. The effects of the operation parameters on retention of E2, including washing condition, eluting condition, the number of beads, and the incubation time were investigated. Moreover, high-performance liquid chromatography with preconcentration of E2 on the aptamer affinity microbeads was applied to detect the E2 in the spiked water samples and obtained a good recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ternes TA, Stumpf M, Mueller J, Haberer K, Wilken RD, Servos M (1999) Behavior and occurrence of estrogens in municipal sewage treatment plants-I. Investigations in Germany, Canada and Brazil. Sci Total Environ 225(1–2):81–90

    Article  CAS  Google Scholar 

  2. Cargouet M, Perdiz D, Mouatassim-Souali A, Tamisier-Karolak S, Levi Y (2004) Assessment of river contamination by estrogenic compounds in Paris area (France). Sci Total Environ 324(1–3):55–66

    CAS  Google Scholar 

  3. Servos MR, Bennie DT, Burnison BK, Jurkovic A, McInnis R, Neheli T, Schnell A, Seto P, Smyth SA, Ternes TA (2005) Distribution of estrogens, 17beta-estradiol and estrone, in Canadian municipal wastewater treatment plants. Sci Total Environ 336(1–3):155–170

    CAS  Google Scholar 

  4. Fernández-Alvarez P, Noir ML, Guieysse B (2009) Removal and destruction of endocrine disrupting contaminants by adsorption with molecularly imprinted polymers followed by simultaneous extraction and phototreatment. J Hazard Mater 163(2–3):1107–1112

    Article  Google Scholar 

  5. Bravo JC, Garcinuno RM, Fernandez P, Durand JS (2007) A new molecularly imprinted polymer for the on-column solid-phase extraction of diethylstilbestrol from aqueous samples. Anal Bioanal Chem 388(5–6):1039–1045

    Article  CAS  Google Scholar 

  6. Noppe H, Le Bizec B, Verheyden K, De Brabander HF (2008) Novel analytical methods for the determination of steroid hormones in edible matrices. Anal Chim Acta 611(1):1–16

    Article  CAS  Google Scholar 

  7. Wei H-B, Lin J-M, Wu D-N, Zhao L-X, Li Z-J, Ying X-T (2007) Detection of 17[beta]-Estradiol in River Water and Human Urine by Highly Sensitive Chemiluminescence Enzyme Immunoassay. Chin J Anal Chem 35(3):319–324

    Article  Google Scholar 

  8. Mishra A, Joy KP (2006) HPLC-electrochemical detection of ovarian estradiol-17beta and catecholestrogens in the catfish Heteropneustes fossilis: seasonal and periovulatory changes. Gen Comp Endocrinol 145(1):84–91

    Article  CAS  Google Scholar 

  9. Wang L, Cai YQ, He B, Yuan CG, Shen DZ, Shao J, Jiang GB (2006) Determination of estrogens in water by HPLC-UV using cloud point extraction. Talanta 70(1):47–51

    Article  CAS  Google Scholar 

  10. Wozei E, Hermanowicz SW, Holman HY (2006) Developing a biosensor for estrogens in water samples: study of the real-time response of live cells of the estrogen-sensitive yeast strain RMY/ER-ERE using fluorescence microscopy. Biosens Bioelectron 21(8):1654–1658

    Article  CAS  Google Scholar 

  11. Hahn T, Tag K, Riedel K, Uhlig S, Baronian K, Gellissen G, Kunze G (2006) A novel estrogen sensor based on recombinant Arxula adeninivorans cells. Biosens Bioelectron 21(11):2078–2085

    CAS  Google Scholar 

  12. Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346(6287):818–822

    Article  CAS  Google Scholar 

  13. Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249(4968):505–510

    Article  CAS  Google Scholar 

  14. Ellington AD, Szostak JW (1992) Selection in vitro of single-stranded DNA molecules that fold into specific ligand-binding structures. Nature 355(6363):850–852

    Article  CAS  Google Scholar 

  15. Liu J, Cao Z, Lu Y (2009) Functional nucleic acid sensors. Chem Rev 109(5):1948–1998

    Article  CAS  Google Scholar 

  16. Haes AJ, Giordano BC, Collins GE (2006) Aptamer-based detection and quantitative analysis of ricin using affinity probe capillary electrophoresis. Anal Chem 78(11):3758–3764

    Article  CAS  Google Scholar 

  17. Clark SL, Remcho VT (2002) Aptamers as analytical reagents. Electrophoresis 23(9):1335–1340

    Article  CAS  Google Scholar 

  18. Yamamoto-Fujita R, Kumar PK (2005) Aptamer-derived nucleic acid oligos: applications to develop nucleic acid chips to analyze proteins and small ligands. Anal Chem 77(17):5460–5466

    Article  CAS  Google Scholar 

  19. Stadtherr K, Wolf H, Lindner P (2005) An aptamer-based protein biochip. Anal Chem 77(11):3437–3443

    Article  CAS  Google Scholar 

  20. Jenison RD, Gill SC, Pardi A, Polisky B (1994) High-resolution molecular discrimination by RNA. Science 263(5152):1425–1429

    Article  CAS  Google Scholar 

  21. Kato T, Takemura T, Yano K, Ikebukuro K, Karube I (2000) In vitro selection of DNA aptamers which bind to cholic acid. Biochim Biophys Acta 1493(1–2):12–18

    CAS  Google Scholar 

  22. Kim YS, Jung HS, Matsuura T, Lee HY, Kawai T, Gu MB (2007) Electrochemical detection of 17beta-estradiol using DNA aptamer immobilized gold electrode chip. Biosens Bioelectron 22(11):2525–2531

    Article  CAS  Google Scholar 

  23. Sheng H, Ye BC (2009) Different strategies of covalent attachment of oligonucleotide probe onto glass beads and the hybridization properties. Appl Biochem Biotechnol 152(1):54–65

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Shanghai project (09JC1404100), the National Special Fund for SKLBE (2060204), NCET-07-0287, and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bang-Ce Ye.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dong Huy, G., Jin, N., Yin, BC. et al. A novel separation and enrichment method of 17β-estradiol using aptamer-anchored microbeads. Bioprocess Biosyst Eng 34, 189–195 (2011). https://doi.org/10.1007/s00449-010-0460-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-010-0460-4

Keywords

Navigation