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Abstract
A distributed algorithm A solves the Point Convergence task if an arbitrarily large collection of entities, starting in an
arbitrary configuration, move under the control of A to eventually form and thereafter maintain configurations in which the
separation between all entities is arbitrarily small. This fundamental task in the standardOBLOT model of autonomousmobile
entities has been previously studied in a variety of settings, including full visibility, exact measurements (including distances
and angles), and synchronous activation of entities. Our study concerns the minimal assumptions under which entities,
moving asynchronously with limited and unknown visibility range and subject to limited imprecision in measurements,
can be guaranteed to converge in this way. We present an algorithm operating under these constraints that solves Point
Convergence, for entities moving in two or three dimensional space, with any bounded degree of asynchrony. We also
prove that under similar realistic constraints, but unbounded asynchrony, Point Convergence in the plane is not possible
in general, contingent on the natural assumption that algorithms maintain the (visible) connectivity among entities present
in the initial configuration. This variant, that we call Cohesive Convergence, serves to distinguish the power of bounded
and unbounded asynchrony in the control of autonomous mobile entities, settling a long-standing question whether in the
Euclidean plane synchronously scheduled entities are more powerful than asynchronously scheduled entities.
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1 Introduction

1.1 Framework and research question

The notion of distributed computational systems was ini-
tially restricted to systems of processing units interacting by
exchanging messages through a fixed communication net-
work. It has broadened over time to include not only other
forms of communication (e.g., via shared memory), but also
very different types of computational entities and operational
environments, from mobile agents to programmable parti-
cles, frommobile wireless ad-hoc networks to robot swarms.

The main theoretical questions in all these environments
are the same: what are the minimal operational conditions
that allow the entities to solve certain fundamental problems?
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What is the computational relationship between different
conditions?

In this paper, we address these questions for systems of
autonomous mobile entities, which we refer to as robots,
within the standard OBLOT model (see, e.g. [2] and ref-
erences therein). We focus on one fundamental task, called
convergence, that asks for robots to congregate in a region of
arbitrarily small diameter.

In theOBLOT model, identical robots are free tomove in
a featureless spatial universe, typically the two dimensional
Euclidean space. Very few papers deal with higher dimen-
sions like the three dimensional space approached in [3–6].

Robots operate under restrictions designed to elucidate
what is essential in solving certain robot coordination objec-
tives. Specifically, robots are viewed as points, and commu-
nicate only indirectly through their position which is visible
to other robots within some, possibly bounded and unknown,
visibility range. Robot motion is determined locally by a res-
ident algorithm that depends only on current perceptions of
the location of other robots, relative to some private coor-
dinate framework. The activation of robots and realization
of intended motions is governed by an adversarial, but fair,
scheduler.

Computations in the OBLOT model are very different
from those in other distributed systems (e.g., message-
passing networks): they are just continuous re-positionings
of robots, realized by loosely coordinated activity of the
individual robots. Computations start from some (typically
unconstrained) initial configuration, and move towards some
goal configuration. Permissible goal and intermediate con-
figurations are expressed in terms of temporal geometric
predicates.

A computational task simply specifies a subset of compu-
tations that fulfill the task, and an algorithm is said to solve
the task if, under its control, starting from any permissible
initial configuration, the robots produce a computation that
fulfills the task in all valid activation sequences. The validity
of activation sequences is determined by the level of synchro-
nization of the system; as in other distributed environments,
the primary distinction is between synchronous and asyn-
chronous scheduling models.

In the semi-synchronous model (SSync), time is divided
into discrete intervals, called rounds; in each round, the
scheduler specifies a subset of the robots that perform some
elementary activity in perfect synchronization. (The only
constraint is activation fairness: every robot is activated
within finite time and infinitely often.) When all robots
are activated in every round, the model is said to be fully-
synchronous.

In contrast, in the asynchronous model (Async), robots
are activated at arbitrary times (constrained again by acti-
vation fairness), independently of the other robots, and the

duration of individual activities, though finite, is unpre-
dictable.

There are many studies on the feasibility of tasks and
the complexity of algorithms in both the synchronous and
asynchronous settings; Sect. 2 provides an overview of the
most relevant related work. In spite of long and intensive
research efforts, a fundamental question has remained unset-
tled: Is there any difference in computational scope between
algorithms working within the scheduling models SSync
and Async? More precisely: Does the assumption of syn-
chronous scheduling of activity make possible the solution
of some task that is not solvable in the asynchronous setting?

In this paper, we provide an affirmative answer to the ques-
tion. In fact, our results, which apply to realistic robots that
operatewith imprecise sensing, demonstrate an even stronger
separation: between scheduling models with unbounded
asynchrony (Async) and bounded asynchrony (what we call
k-Async). In the latter the degree of asynchrony is bounded
by an arbitrarily large but fixed k, that is, while any one robot
is active, any other robot can be activated at most k times.

1.2 Robot gathering and convergence

Most of the research concerning the limits of computation
within the OBLOT model (see Sect. 2 for a more compre-
hensive overview) has concentrated on specific tasks that fit
under the general framework of pattern formation [5, 7–
11].1 Among these, the task of point formation, where all
robots are required to congregate (and remain) at the same
point (not fixed in advance), has attracted particular attention
due to its correspondence with the basic coordination task
in swarm robotics called Gathering (or Rendezvous) [4,
12–20]. The less stringent version of this task, called Point
Convergence (hereafter simply Convergence) [21–30],
requires the robots to move in such a way that, for all ε > 0,
a configuration in which the separation between all robots is
at most ε is eventually reached and maintained.

Previous investigations have examined Gathering and
Convergence, taking into account a variety of different
factors (e.g., synchronicity, shared knowledge of the envi-
ronment, and inaccuracies in measurement and motion)
assuming unlimited visibility. In brief, existing algorithms
have been shown to solveGathering assuming one or more
of the following: (i) fully synchronous (FSync) schedul-
ing, (ii) shared knowledge of a reference coordinate system,
(iii) absence of co-located robots in the initial configura-
tion, or (iv) the use of non-computable geometric predicates.
Under even slightly relaxed (SSync) scheduling assump-
tions, Gathering is known to be impossible in general,

1 Manyother tasks can be reduced to pattern formation ones (e.g., leader
election, gathering) or require pattern formation as an integral step (e.g.,
flocking).
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whereas Convergence is known to be solvable, provided
multiplicities (i.e. the co-location of robots) can be detected,
even with fully asynchronous (Async) scheduling.

Comparatively few investigations have focused on the lim-
ited visibility [1, 21, 27, 31–34]. It is typically assumed that
the visibility graph associated with the initial robot config-
uration is connected, and that the number of robots is not
known, even approximately, obviously not an issue in the
full visibility setting.

The design of successful algorithms for robots with lim-
ited visibility in theAsync schedulingmodel, has comewith
the assumption of additional robot capabilities. For instance
Gathering has been shown to be solvable if the local coor-
dinate systems of all robots agree on the direction of the axes.

In the SSync scheduling model, the pioneering work of
Ando et al. [21] (described in detail in Sect. 4.1) established
the feasibility of Convergence, under limited visibility.

In subsequent work [27], Katreniak introduced the k-
Async scheduling model.2, that permits bounded asyn-
chrony in robots’ activation, and presented a solution algo-
rithm for Convergence in the 1-Async model (a solution
under a more restricted version of the 1-Async scheduler
was presented earlier in [19]). The existence of an algorithm
to solve Convergence in the k-Async model, for k > 1,
was left as an open question.

It is worth pointing out that, like all known algorithms
that deal with limited visibility, the algorithms of Ando et
al. and Katreniak have the property that, if two robots are
initially within visibility range of each other, they remain
mutually visible thereafter. Thus they solve an apparently
more restricted variant ofConvergence, thatwe callCohe-
sive Convergence.

1.3 Main contributions

The focus of this paper, as in those of Ando et al. [21]
and Katreniak [27], concerns the Cohesive Convergence
task for identical autonomous robots with bounded visibil-
ity (where the visibility radius is possibly unknown to the
robots). This requires any collection of such robots, starting
from an arbitrary connected configuration, to move, under
the control of a possibly adversarial scheduler, in such a way
that, for all ε > 0, the robots are guaranteed to reach and
maintain a configuration in which all robots lie within a cir-
cle of radius at most ε. Furthermore, all robot pairs that are
mutually visible in the initial configuration remain so there-
after.

We prove that, considering algorithms that tolerate a very
modest amount of measurement imprecision, Cohesive-

2 In his paper, Katreniak named the model k-bound asynchrony We
shall call it k-Async, to conform to the naming convention of the other
models.

Convergence is solvable in the k-Async schedulingmodel,
for any fixed k, providing a strong positive answer to a ques-
tion left open in [27]. However, even under slightly weaker
assumptions, the same task is shown to be unsolvable in the
Async scheduling model. In this sense, Cohesive Con-
vergence provides a separation between schedulingmodels
with bounded and unbounded asynchrony, and ipso facto
between the SSync and Async scheduling models.

In particular, our primary contributions are threefold: (i) a
novel moderately error-tolerant algorithm that succeeds in
the scheduling model k-Async, for any fixed k, an envi-
ronment that permits scheduling of robot activity with an
arbitrarily large but bounded degree of asynchrony, (ii) an
analysis that allows us to gowell beyondwhat is possiblewith
previous techniques that depend on the assumption of a sig-
nificantly more restricted scheduling environment (SSync
or 1-Async), shedding new light on the power of bounded
asynchrony, and (iii) a family of robot configurations that
demonstrates the impossibility of solving Cohesive Con-
vergence in the fully asynchronous scheduling environment
Async, provided algorithms are required to tolerate a mod-
est amount of imprecision in perception (yet significantly less
than what can be tolerated by our k-Async algorithm). Fur-
thermore, our construction shows the impossibility of even
weaker forms ofCohesive Convergence, where visibility
edges are allowed to be broken as long as the whole robot
configuration remains connected. Our algorithm is described
in its basic form in Sect. 4, with extensions, including error-
tolerance, and three-dimensional generalization, outlined in
Sect. 7. Even in the same scheduling environment, our algo-
rithm is slightly simpler in formulation and provides a more
general solution than its predecessors developed in [19, 21,
27]. In particular, the intended destination point for a robot in
each step depends only on the directions to the pair of neigh-
bours, among those that are relatively distant, that define the
maximum angular range. Furthermore, distance and angle
measurements to neighbours are assumed to be accurate only
to within some limited imprecision, and robot motion is sub-
ject to some limited error in both distance and angle. Finally,
our algorithm exhibits a degree of uniformity not evident in
its predecessors: specifically, (a) dependence on the visibility
range V is not built into the algorithm, and (b) our algorithm
is simply formulated to work in an environment with a base
level of asynchrony; to function in an environment that per-
mits a higher degree of asynchrony, captured by a parameter
k, one can simply scale themotion function used by our algo-
rithm in its base formulation by a factor α that is at most 1/k.

As with the analysis of algorithms in [19, 21, 27], our
proof of cohesive convergence involves (i) an argument that
the edges of the initial visibility graph are preserved, and
(ii) an argument that congregation, i.e., convergence to an
arbitrarily small region, eventually takes place. Our analysis,
presented in Sect. 5, is complicated by the fact that, harnessed
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by an adversarial scheduler, even themost basic level of asyn-
chronymakes it impossible for a robotX to accurately discern
the influence of its own location on the motion of an active
neighbour Y. This is further compounded by the fact that, in
environments with a higher degree of asynchrony, neighbour
Ymight have seenXmany times during its currentmotion. In
order to help isolate themost salient features of our analysis in
asynchronous environments, we first introduce a restriction
on the k-Async environment, requiring intersecting activity
intervals to nest, one entirely within the other. By staging
our analysis in this way, we provide a clearer picture of the
extent to which the difficulties associated with asynchrony in
our setting arise from (possibly lengthy) chained, as opposed
to nested, activations. (The reader might find a glance at
Fig. 2 helpful in distinguishing between these models.) To
demonstrate the preservation of visibility under arbitrarily
long chains of activations we introduce a novel backward
reachability analysis that fully exploits the relative simplic-
ity of our algorithm’s motion function.

Our congregation argument is presented in Sect. 6. We
start by observing, as was the case in [19, 21, 27], that con-
vergence to a convex configuration with bounded diameter
follows directly from the fact that the convex hull of succes-
sive configurations are properly nested. Our argument that
the limiting diameter is zero differs from, and is arguably
simpler than, that used in these earlier works. The argument
exploits a kind of hereditary property that ensures that, after
some point in time, robot locations become relatively stable
in the sense that once a robot has vacated a small neighbour-
hood of an extreme point of the configuration it must remain
outside of that neighbourhood.

Demonstrating the impossibility of solving Cohesive
Convergence in any environment that assumes exact
measurement and control seems daunting, since, assuming
motion is rigid, such assumptionsmight open up the possibil-
ity of encoding information, perhaps history, in the locations
of robots. However, in Sect. 8, we show that algorithms that
controlmore realistic robots (operatingwith even averymod-
est amount of imprecision in measurements) cannot solve
Cohesive Convergence in a scheduling environment with
no bound on asynchrony (other than a fairness condition that
ensures that no robot is permanently locked out of activity).
This is demonstrated by a family of configurations with the
property that for any algorithm there is a configuration in the
family that can be forced to become disconnected into two
linearly separable components. Interestingly, the adversarial
scheduler that achieves this uses only nested activations (of
necessarily unbounded depth).

Our work raises several interesting questions, suitable for
future research. Several of these are highlighted in our con-
cluding section (Sect. 9).

1.4 Outline

The paper is organized as follows. In the next section, we
review some relevant literature on Point Convergence.
Section3 specifies the model under which we approach the
problem. Section4 contains the description of our new algo-
rithm. Section5 is devoted to the analysis of the proposed
algorithm concerning visibility properties. Section6, instead,
is devoted to prove the congregation property of the algo-
rithm. Section7 discusses some possible generalizations of
the proposed algorithm in terms of error-tolerance and three-
dimensional environment. Section8 is devoted to prove the
impossibility result for asynchronous robots. Finally, Sect. 9
provides conclusive remarks and challenging research direc-
tions for future work.

2 Related theoretical work

As mentioned in the introduction, most of the existing
research addressing the relative strength of different schedul-
ing models (in particular SSync and Async) has concen-
trated on the study of the tasks of forming or converging to
geometric patterns.

2.1 Pattern formation

Almost all studies on pattern formation have assumed unlim-
ited visibility, and that measurements and computations are
free of error. The first question studied has beenwhat patterns
can be formed froma given initial configuration [35]. Assum-
ing that robots share a common handedness (also called
chirality), a sequence of results has shown that the set of
formable patterns depends solely on the degree of symmetry
(a parameter called symmetricity) of the initial configuration
([9, 35, 36]; see also [37]). In other words, with chirality,
there is no distinction between the patterns formable from
an initial configuration in SSync and Async. No similar
general results are known without chirality.

The related question of determining from which initial
configurations it is possible to form any possible pattern,
called Arbitrary Pattern Formation, was posed and
studied [10] inAsync for robotswithout chirality; the answer
to this question has been provided in [8], where it has been
shown that the set of possible initial configurations coincides
with those from which it is possible to solve another basic
task, namely Leader Election.

For the converse question of which patterns can be formed
from every initial configuration, there are only two possible
candidate geometric patterns: point and uniform circle, and
the latter only if the robots initially occupy distinct locations.
The two tasks, Point Formation and Uniform Circle
Formation, have been intensively studied assuming that the
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robots initially occupy distinct locations. Remarkably, both
tasks have been shown to be solvable inAsync even without
chirality and with non-rigid movements3 [15, 38], assuming
multiplicity detection4 in the case of Point Formation.

Observe that Point Formation corresponds to a basic
coordination task in swarm robotics, called Gathering or
Rendezvous, where all robots are required to meet at a
common point (not fixed in advance). It is known that this
task, without agreement on the coordinate system, is unsolv-
able for n = 2 robots even in SSync [35]; expanding on
this result, it has been shown that, without any additional
capability of the robots (e.g., global coordinate system, mul-
tiplicity detection), it is unsolvable in SSync also for n > 2
[20]. Indeed Point Formation had been conjectured to be
unsolvable in Async even with multiplicity detection and
initially scattered robots (i.e., at distinct initial locations).

These basic impossibilities have further motivated the
investigation of a weaker version of Point Formation,
calledPoint Convergence (or simplyConvergence) dis-
cussed in the next section, which requires the robots to move
in such a way that, for all ε > 0, a configuration in which
the separation between all robots is at most ε is eventually
reached and maintained.

The presence of even limited inaccuracy of the measure-
ment of both distances and angles of the robots renders Point
Formation impossible in SSync even with a global coor-
dinate system and strong multiplicity detection [26]. On the
other hand, Point Formation has been shown to be solv-
able with chirality in SSync even in presence of a limited
tilt (less than π/4) of the local compasses [18]. Further, with
agreement on one axis, Point Formation is solvable in
Async even in presence of occlusions (a robot X looking at
a robot Y cannot see anything beyond Y along the ray from
X that passes through Y) and crash faults [39].

Related investigations onpattern formationwith unlimited
visibility include the study of: the impact of crash andByzan-
tine faults among the robots (e.g., [12, 13, 26, 39, 40]); the
Embedded Pattern Formation task, where the pattern
is given to the robots as visible points in the plane, solved
in Async by robots without chirality [41]; and the Pat-
tern Sequence task, where robots are required to form an
ordered sequence of patterns, shown to be solvable in SSync
by robots with chirality [42].

Very few investigations have focused on pattern formation
in the limited visibility setting. In this setting, it is assumed
that the visibility graph associated with the initial robot con-

3 i.e., when active, a robot is not guaranteed to reach its computed desti-
nation unless the distance toward the target is smaller than an unknown
but fixed threshold.
4 i.e., ability to detect whether more than one robot is at the same
location; it is said to be strong if the exact number of robots at the same
location can be detected.

figuration is connected. It is has been shown that limited
visibility drastically reduces the set of patterns that can be
formed by robots in Async [34]. On the other hand, Point
Formation is solvable inAsync from any initial configura-
tions if the robots are endowed with global consistency of the
local coordinate system [32]. We are not aware of any inves-
tigation on pattern formation in the limited visibility setting
that considers measurement inaccuracies.

2.2 Point convergence

The basic impossibilities of Point Formation have further
motivated the investigation of a weaker version of the task
called Point Convergence (or simply Convergence),
which requires the robots to move in such a way that, for
all ε > 0, a configuration in which the separation between
all robots is at most ε is eventually reached and maintained.
Observe that, by definition, any solution to Point Forma-
tion under some assumptions automatically solves Point
Convergence under the same assumptions.

2.2.1 Point Convergence with unlimited visibility

The result of [15] on Point Formation implies that, with
multiplicity detection, Point Convergence is solvable
in Async from any initial configuration where the robots
occupy distinct locations.

If the multiplicity detection is strong, Point Conver-
gence is solvable inAsync from any initial configuration by
means of the simple Centre_Of_Gravity (CoG) algo-
rithm, where robots move toward the center of gravity (a.k.a.
center ofmass, baricenter) of the configuration [25]; note that
the center of gravity may change as robots move. The con-
vergence rate of the Centre_Of_Gravity algorithmwas
subsequently improved using the Center_Of_Minbox
(GCM) strategy, where theminbox is theminimal axes aligned
box containing all current robots’ positions [24].

These feasibility results have led to the investigation
of Point Convergence under stronger adversarial con-
ditions, possibly with some additional robots capabilities.
In particular, studies have considered possible inaccura-
cies of measurements, in terms of distances or angles, of
the robots. A modification of the CoG algorithm, called
Restricted_CoG, has been shown [26] to allow the
robots to converge in SSync even if distances are measured
only within an multiplicative accuracy parameter ε < 1/2
known to the robots; interestingly, in R

1 (i.e., on the line),
this algorithm would allow convergence in Async. If the
imprecise measurements are uniform, i.e., there is a uniform
error ratio for all the distances and angles perceived during
an observation by a robot, then Point Convergence can
be solved in a significantly wider set of cases [30].
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The case has also been studied where robots cannot
measure the distance to other robots, but only detect their
proximity (i.e., whether or not another robot is closer than a
given constant distance δ) [29].

2.2.2 Point Convergence with limited visibility

The pioneering work on Point Convergence under lim-
ited visibility is by Ando et al. [21], in the SSync scheduling
model. The authors propose and analyze an algorithm that
leads to convergence, by means of cautious moves, start-
ing from any connected configuration of robots. In their
Centre_Of_SEC algorithm, each active robot takes a snap-
shot of its neighbourhood (up to a known limited visibility
range V ), computes the center of the Smallest Enclosing Cir-
cle (SEC) of the perceived robots,5 and then makes a move
toward the center of the SEC for a distance that guarantees to
preserve the visibility of these perceived robots, regardless of
the movements of other robots following the same protocol.
(Quite recently,Braun et al. [3] considered an extension of the
Centre_Of_SEC algorithm, applied in the three dimen-
sional Euclidean space, assuming a continuous time variant
of the scheduling model FSync.)

In subsequent work [27], Katreniak introduced the more
powerful schedulingmodel k-Async, that permits robot acti-
vations with bounded asynchrony, and presents a solution
algorithm for Point Convergence in the model 1-Async
(a solution under a more restricted version of the 1-Async
scheduler was presented earlier in [19]). The resolution of
Convergence in the model k-Async, for k > 1, was left as
an open problem.

Avariant ofPoint Convergence is theNear- Gathering
task, that requires the robots to converge without two (or
more) robots ever occupying the same point at the same time.
In [43], it is shown thatNear- Gathering canbe solvedwith
limited visibility in theAsyncmodel when all the robots are
assumed to have a compass (hence they agree on the “North”
direction), but they do not necessarily have the same hand-
edness (hence they may disagree on the “West”).

It is worth pointing out here that these, like all known
Point Convergence algorithms that deal with limited vis-
ibility, have the property that if two robots are initially within
visibility range of each other, they remain so in all subsequent
configurations, thereby guaranteeing Cohesive Conver-
gence.

5 The smallest circle that encloses all the robots perceived during the
Look phase at distance not greater than V .

3 Model

We consider the standard OBLOT model of distributed
systems ofmobile entities (e.g., see [44]). The system is com-
posed of a setR = {X1, . . . ,Xn} of n ≥ 1 autonomous com-
putational entities, called robots, that reside in d-dimensional
Euclidean spaceRd , d ≥ 1, within which they operate in dis-
crete Look-Compute-Move activity cycles.

3.1 Robots

We treat robots as dimensionless entities (points), free to
move in anydirectionwithinR2; a discussion of extensions of
our results to motion inR3 is left to Sect. 7. We use X , some-
times subscripted, to denote the generic location of robot X;
when needed X(t) is used to denote the location ofX at a spe-
cific time t . The multiset C(t) = {X(t) : X ∈ R} specifying
the locations of the robots at time t is called the configuration
of the system at time t .

Robots are equipped with sensors that allow them to
observe the positions of the other robots within a fixed,
but possibly unknown range V . More precisely, the visi-
ble region6 of robot X at time t is the closed point set7

Vis(X, t) = {P : |X(t)P| ≤ V }. We say that a robot Y is a
neighbour of robot X at time t if Y (t) belongs to Vis(X, t).
The associated visibility graph at time t is the undirected
graph G(t) = (R, E(t)), where (X,Y) ∈ E(t) if and only
if |X(t)Y (t)| ≤ V . A configuration of robots is said to be
connected when its associated visibility graph is connected.

Robots are provided with a persistent read-only memory
containing a control algorithmaswell as a local volatilemem-
ory for its computations, that are assumed to be error-free.

Robots are (i) autonomous: that is, they operate without a
central control or external supervision; (ii) identical: that is,
they are indistinguishable by their appearance, they do not
have distinct identities that can be used during the computa-
tion, and they all have and execute the same algorithm; and
(iii) silent: they have no means of direct communication of
information to other robots, so any communication occurs in
a totally implicit manner, by moving and by observing the
positions of the robots within visibility range.

3.2 Activity cycles and obliviousness

The behaviour of each robot can be described as the alter-
nation of finite length activity intervals with finite length
inactivity intervals. Each activity interval consists of a
sequence of three phases: Look, Compute, and Move,

6 Wewill argue in Sect. 7 that a sharp visibility threshold is not essential
for the correctness of our algorithm.
7 If P and Q are points in R

d , we denote by PQ the line segment
joining P and Q, and by |PQ| the length of this segment.
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called a Look-Compute-Move (LCM) activity cycle. The
operations performed by each robot X in each phase are as
follows.

1. Look At the start of an activity interval, the robot
observes theworldwithin its visibility range. The result is
an instantaneous snapshot of the positions8 occupied by
visible robots at that time; these positions are expressed
within a local (i.e., private) coordinate system. The pri-
vate coordinate systems of different robots at the same
time, or the same robot at different activation cycles, need
not be consistent; hence from a global point of view, the
robots are disoriented.

2. Compute Using the snapshot as an input, the robot exe-
cutes its built-in algorithm A, the same for all robots,
which determines an intended destination point in the
local coordinate system of the robot.

3. Move The robot moves toward the computed destination
along a straight trajectory. This phase (and with it, the
full activity cycle) might end before the robot reaches its
destination.

The duration of each Compute and Move phase is assumed
to be finite,9 while the Look phase is assumed to be instan-
taneous. During a Move phase a robot is said to be motile
(not necessarily moving, but capable of moving), otherwise
it is immotile.

Since the local memory of robots is volatile, it cannot
be assumed that memory contents persist between activity
cycles. Accordingly, the control algorithm is oblivious: the
Compute step is independent of past actions and computa-
tions.

3.3 Adversarial control and conditions

In the environment in which the robots operate, there are
several factors and conditions, in addition to the initial con-
figuration, that are beyond the control of their algorithm but
nevertheless impact their actions and, ultimately, their worst-
case behaviour. These factors, which are assumed to be under
adversarial control, are discussed in the following.

3.3.1 Activation and synchronization

The mapping of robot activities to time, including activa-
tion/deactivation times, as well as the duration of Compute
and Move phases within each activity cycle, and the rate of

8 If the robots are endowed with multiplicity detection, the snapshot
indicates also whether there are two or more robots co-located at a
point; otherwise such multiplicities are perceived as a single robot.
9 Note that also the Compute phase could be assumed to be instanta-
neous, without any loss of generality.

motion within each Move phase, is determined by a sched-
uler that is constrained only by the understood level (or
model) of system synchronization. In all models, the sched-
uler must respect activation fairness: for each robot X and
each time t , there exists a time t ′ > t where Xwill be active.

The main models are the synchronous and the asyn-
chronous ones (refer to Fig. 1):

• In the synchronous (also called semi-synchronous) model
(SSync) time is logically divided into a sequence of
rounds. In each round, whose duration is not necessar-
ily fixed, a subset of the robots is activated, and they
perform each phase of their LCM cycle simultaneously,10

terminating their activity interval by the end of the round.
The choice of which robots are activated in a round is
made by the scheduler. A special case of SSync is the
fully-synchronous model (FSync) where all robots are
activated in every round.

• In the asynchronous model (Async), each robot is acti-
vated at arbitrary times, independently of the others. In
each activity interval, the duration of each Compute and
Move phase is finite but unpredictable, and might be dif-
ferent in different cycles. The duration of the Compute
and Move phases of each cycle as well as the decision of
when to activate a robot is controlled by the scheduler.

The asynchronousmodel licenses an adversarial scheduler
to depart from the synchronous model in two ways: (i) activ-
ity intervals of different robots can overlap arbitrarily; and
(ii) one robot can be activated arbitrarily many times dur-
ing a single activation of another robot. To better understand
the impact of these as separate factors, we first define the
nested-activation model (NestA) that restricts the activity
intervals of all pairs of robots to be either disjoint or nested
(no activity interval contains exactly one endpoint of another
activity interval). We will focus more precisely on two nat-
ural restrictions of the models k-NestA and k-Async, that
lie between the models SSync and Async (see Fig. 2):

• k-Nested-Activations (k-NestA) Activity intervals of
any pair of robots are either disjoint or nested, and in
addition, at most k activity intervals of one robot can be
nested within a single activity interval of another.

• k-Asynchronous (k-Async) As in Async, robots are
activated independently and the duration of each activ-
ity interval is arbitrary (but finite). However, at most k
activations (i.e., the starts of the activation intervals) of
one robot can occur within a single activity interval of
another.

10 Hence the duration of each Compute and Move phase can be
thought to last always the same, for all activity intervals.
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Fig. 1 Illustration of activity intervals in the FSync, SSync, and Async scheduling models, emphasizing their differences

Fig. 2 Illustration of activity intervals in the 1-NestA and 1-Async scheduling models

3.3.2 Rigidity of motion

In the Move phase, there is a constant ξ ∈ (0, 1] (unknown
to the robots, and possibly related to the visibility range V )
such that robots are guaranteed to move at least fraction ξ

of the way toward their intended destination. The associated
motion is said to be ξ -rigid. (If ξ = 1, motion is simply said
to be rigid). Actually, in the literature, non-rigid motion is
usually qualified by an assumption that at least some non-
trivial distance is traversed. In our setting, where it makes
no sense for an algorithm to specify a motion of length that
significantly exceeds the visibility range, this assumption can
be subsumed by the ξ -rigid assumption, for suitable ξ . The
correctness of our algorithm depends only on the assumption
that motion is ξ -rigid for some (possibly unknown) ξ > 0.

It is also possible for the actual destination to deviate
from the trajectory to the intended destination. However,
if this deviation could exceed some absolute constant, then
Point Convergence is clearly not possible, even in the
fully synchronous model. Our algorithm is formulated with
the assumption that there is no trajectory deviation, but can

bemodified to workwith a deviation that is bounded by some
quadratic function of the motion length.

3.3.3 Measurement imprecision

In error-tolerant settings, the accuracy of the measurements
(distances and angles) made by a robot during its Compute
phase, as well as that of a robot’s ability to realize its intended
trajectory during its Move phase, are also considered to be
subject to adversarial control.

However, it should be clear that if some absolute error
is possible in distance measurements, then Point Con-
vergence is impossible, even with a benevolent scheduler.
Furthermore, if some absolute error in angle measurements
is possible then again Point Convergence is impossible,
even with a benevolent scheduler. This follows by observing
that the presence of such error would make it impossible to
distinguish some nearly co-linear triple of robots, separated
by distance V , with a co-linear such triple. Given this, any
algorithm would be forced to refrain from moving the mid-
dle of such a co-linear triple (at the risk of a catastrophic
separation). This in turn would lead to completely frozen

123



On the power of bounded asynchrony: convergence by autonomous robots with limited visibility

activity on a suitably large collection of robots configured
as a regular polygon with vertex separation V . Our algo-
rithm can be modified to succeed in the presence of a modest
amount of relative error in both distance and angle measure-
ments, provided the latter arises in a way that does not allow
a non-co-linear triple of robots to be confused with a nearby
co-linear triple.

3.4 Tasks and solutions

Since robots in the OBLOT model can only observe the
positions of others and then move, a task to be performed is
expressed in terms of a temporal geometric predicate. From
some point in time onward, the configurations formed by the
robots’ positions must satisfy this predicate.

Let R be an arbitrary collection of robots. The Point
Convergence task requires the robots in R, starting in
an arbitrary connected configuration11 where they are all
inactive, to become arbitrarily close. More precisely, Point
Convergence is the task defined by the temporal geometric
predicate:

Convergence ≡ ∀ε ∈ R
+, ∃t : ∀t ′ ≥ t,∀X,

Y ∈ R, |X(t ′)Y (t ′)| ≤ ε.

A more constrained version is the Cohesive Conver-
gence task that additionally requires that, at all times, the
visibility graph is a supergraph of the initial visibility graph.
In fact, it is defined by the temporal geometric predicate:

CohesiveConvergence

≡ Convergence ∧ (∀t ≥ 0, E(0) ⊆ E(t)).

An algorithm A is said to solve the Point Conver-
gence (or Cohesive Convergence) task if it satisfies
the corresponding predicate, starting from any valid ini-
tial configuration of robots (of arbitrary size), under any
(possibly adversarial) scheduler that respects the associated
synchronizationmodel. As previously observed, even though
Cohesive Convergence is strictly more constrained than
Point Convergence, all known algorithms for Point
Convergence also solve Cohesive Convergence.

4 A new algorithm for Cohesive
Convergence

This section introduces the KKNPS algorithm, a new algo-
rithm for solvingCohesive Convergence that succeeds in
the k-Async scheduling model. We begin with a review of

11 It is possible to define Convergence in a meaningful way that applies
to unconnected initial configurations as well. This is discussed further
in Sect. 7.

the algorithms of [21, 27], emphasizing the features common
to the KKNPS algorithm, and features on which the KKNPS
algorithm differs. This is followed by a detailed overview of
our new approach.

4.1 TheCohesive Convergence algorithms of
Ando et al. and Katreniak

The algorithm of Ando et al. [21] proceeds as follows: upon
activation, each robot X

• locates, according to its local coordinate system, all of
the other robots within its visibility range;

• computes a safe region for motion with respect to each
of its neighbours, and

• computes the center of a minimum enclosing ball of all
the robots within its visibility range, and moves as far as
possible towards this center while remaining inside all of
the individual safe regions.

The algorithm of Ando et al. is formulated in the SSync
scheduling model. It assumes:

• robots are points that execute their full planned motions
instantaneously, i.e., rigid collision-free motion12;

• knowledge of the common visibility radius V is built into
the algorithm13;

• there is no error in perception or in the realization of
planned motion.

The algorithm of Katreniak [27] has many similarities to that
of [21]: upon activation, each robot X

• locates, within its local coordinate system, all of the other
robots within its visibility range,

• computes a safe region for motion with respect to each
of its neighbours, and

• moves as far as possible from its current position, while
remaining inside a composite safe region that respects all
of the individual safe regions.

Katreniak’s algorithm is formulated in the 1-Async model.
It assumes:

• the common visibility radius V is not known; instead,
each robot Y works, in each Look step, with a lower
bound VY on V , determined by the distance to its furthest
neighbour;

12 The assumption of rigid motion, though standard at the time of [21],
could be relaxed without impacting the correctness of the algorithm.
13 Again, this assumption is stronger than necessary: it would suffice
to replace V by the distance to the furthest neighbour.
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Fig. 3 Basic safe region for motion of robot Y at location Y (with respect to visible robot X at location X ), as specified by Ando et al. (grey), by
Katreniak (blue), when |XY | > VY/2 (left) and |XY | ≤ VY/2 (right) (colour figure online)

• there is no error in perception;
• the planned motion might not be fully realized, subject to
a natural progress condition, that ensures eventual con-
vergence.

The most apparent difference between the algorithms of
Ando et al. and Katreniak lies in the specification of their
safe regions (see Fig. 3). For a robot Y located at point Y
viewing a robot X located at point X , Ando et al. specify a
safe region as a disk with radius V /2 centred at the midpoint
between X and Y . Katreniak’s safe region is formed by the
union of two disks, one with radius |XY |/4 centred at the
point (X + 3Y )/4, and the other with radius (VY − |XY |)/4
centred at Y .

The correctness of the algorithms for Point Conver-
gence in both [21, 27] rest on two observations: (i) visibility
preservation the choice of safe region guarantees that all
robot pairs that start or become mutually visible will remain
mutually visible thereafter, and (ii) incremental congrega-
tion the trajectories of robots following the algorithm exhibit
a notion of “progress” towards convergence (measured in
terms of the shrinking of the convex hull of the robot loca-
tions). In both cases, the argument is complicated by the need
to demonstrate that the limit of convergence is a single point.

Note that, even when k = 1, both the models k-NestA
and k-Async provide modest generalizations of the model
SSync. Specifically, by definition, any algorithm that guar-
antees convergence in the model 1-NestA (or 1-Async) will
do the same in the model SSync.

Observation 1 There exist configurations where the algo-
rithm of Ando et al. fails to maintain a connected visibility
graph in both the the 1-Async and 2-NestA models.

Proof Figure4 demonstrates such a configuration with just
five robots

In this example,A,B, andC are stationary throughout (i.e.
the scheduler does not activate these robots); and X and Y

are activated according to the two activation timelines shown
on the bottom of the figure. The horizontal axis represents
the time, grey arrows designate the snapshots, and the corre-
sponding observed positions of the robots X and Y are also
shown in grey. The red circle, centered at X2, is the smallest
enclosing circle of the points X0, Y0, B, and C . The black
circle is centered at X2 and has radius V . In both cases, robot
X moves from location X0 to location X1 and then to X2,
and robot Y moves from Y0 to Y1, leading to the distance
between the two robots being strictly greater than V .

(i) In general, the algorithm of Ando et al. (unmodified)
does not succeed in the model 1-Async, even if it can
be assumed that moves are rigid and instantaneous (so
the scheduler cannot pause or stop robots at intermediate
points in their planned trajectory)14; see the timeline in
Fig. 4a;

(ii) The same construction, with a slightly modified timeline
(Fig. 4b), shows that the algorithm ofAndo et al. (unmod-
ified) does not succeed in the 2-NestA model;

��

Remark Using a similar argument, it is not difficult to show
that Katreniak’s algorithm (unmodified) does not succeed in
the k-Async scheduling model, when k is sufficiently large.
This no doubt explains why the extension of Katreniak’s 1-
Async algorithm (for k > 1) was left as an open problem in
[27]. The reader might well suspect that the failings of the
algorithms of Ando et al. and Katreniak are due to overly

14 Note that Katreniak makes a similar observation, using an example
that exploits non-rigid motion.
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Fig. 4 An example where the (unmodified) Ando algorithm leads to separation in the a 1-async model and b 2-NestA model

aggressive implementations of the underlying strategy, and
that a more cautious approach would be more successful
in avoiding separation. It follows from results developed in
Sect. 8 that such modifications are nevertheless doomed to
failure in the Async scheduling model.

4.2 Overview of theKKNPS algorithm

TheLook,Compute, andMovephases of theKKNPS algo-
rithm take the following form:
Look In the KKNPS algorithm, as in earlier schemes, each
robotY starts an activity interval by locating, within its local
coordinate system, all of the other robots within its visibility
range, referred to as neighbours. It is not assumed that the vis-
ibility radius V is known. Instead, as in [27], in each activity
interval, robot Y computes a (tentative) lower bound VY on
V , provided by the distance to its current furthest neighbour.
Neighbours whose distance is greater than VY/4 are referred
to as distant neighbours of Y; others are close neighbours.
Note that the notions of close and distant are robot-specific
and configuration-dependent. In particular (i) Y, by defini-
tion, always has at least one distant neighbour; (ii) X could
be a close neighbour of Y while Y is a distant neighbour of
X; and (iii) a distant neighbour ofY could, without changing
its actual distance, become a close neighbour of Y (and vice
versa).
Compute Robot Y continues by determining a safe region
for motion with respect to each of its neighbours X. Safe
regions are designed to ensure that, despite the fact that V is
unknown, the connectivity of the initial robot configuration
will not be lost; in particular, if robots X and Y are mutually
visible in their initial configuration (i.e., |X(0)Y (0)| ≤ V ),

when both are assumed to be immotile, then, provided both
robots continue to confine their movement to the safe regions
for motion with respect to the other, their mutual visibility
will bemaintained thereafter. Even though acquired visibility
might be subsequently lost, unlike the schemes of [21, 27],
a form of acquired visibility preservation can be shown to
hold, which suffices to ensure that there is a point in time after
which if robots X and Y are even momentarily not mutually
visible, then X and Y remain separated by distance at least
V /2. The specification of safe regions, together with their
properties that are exploited in subsequent visibility preser-
vation and congregation arguments, is provided in the next
subsection; the details of our visibility preservation argu-
ments in models with bounded asynchrony, are developed in
Sect. 5.
Move Finally, Y plans a motion to a target destination con-
tained within the intersection of the safe regions associated
with all of its neighbours; the details are set out in Sect. 4.2.2.
The target destination in turn is designed to ensure that the
convex hull of the robot locations shrinks monotonically, and
converges to a point.
Algorithm KKNPS Summarizing, Algorithm KKNPS is
sketched in Algorithm 1 from the point of view of a robot
Y. It is worth noting that the input is represented by the
information acquired during the Look phase; the body of
the algorithm represents the Compute phase; whereas the
Move phase is simply realized by the movement toward the
computed target c.
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Fig. 5 The region SrY (X) (left) and SrY (XX ′) (right)

Algorithm 1: Algorithm KKNPS performed by any
robot Y.
Look phase:

1 Visible neighborhood of Y acquired

Compute phase:
2 Let X be the neighbor of Y at maximum distance, and VY be such
a distance;

3 Let distant_neighbours be the set of any neighbor of Y such that
its distance from Y is at least VY/4;

4 For each X ∈ distant_neighbors, compute SF(Y,X), i.e. the
safe region of Y with respect to X;

5 Safe_regionY =
⋂

X∈distant_neighbours SF(Y,X);
6 Let c be the center of Safe_regionY;

Move phase:
7 Move toward c;

4.2.1 Safe regions: specification and properties

Unlike the safe regions used in [21, 27], the safe regions used
in the KKNPS algorithm need only be defined with respect
to distant neighbours, and depend only on the direction of
such neighbours. Let SrY (X) denote the disk, with radius r ,
centered at the point at distance r frompointY in the direction
of point X . Then if Y is a robot located at Y and X is a robot
located at X , where |XY | > VY/4, we define the basic safe
region for motion of Y with respect to X, to be the region
SVY/8
Y (X) (cf. Fig. 5 (left)). It is straightforward to confirm

that, for any 0 < α ≤ 1, if point P lies within the region
SrY (X), then the point Pα at distance α|PY | from Y in the
direction of P , lies in Sαr

Y (X).

Observation 2 Safe regions have a very natural generaliza-
tion to three dimensions: SrY (X) is just the three dimensional
ball, with radius r , centered at the point at distance r from
point Y in the direction of point X.

In order to respect the basic safe region of any distant
neighbour, of which there must be at least one, a robot can
plan amotion of length at most VY/4. (In fact, as will become
clear, when the actual destination point, respecting the safe
regions of all neighbours, is specified, a robot will never plan

a motion of length greater than VY/8.) Consequently, if we
consider the basic safe region of a robot Y located at Y ,
with respect to any close neighbour, to be the disk of radius
VY/4 centred at Y , this provides no additional constraint on
the motion of Y. Furthermore, the joint planned motions of
close neighbours cannot possibly lead directly to a separation
exceeding V .

Note that, if a robot Y is located in the convex hull of its
distant neighbours then the intersection of its safe regions
with respect to the distant neighbours contains its current
location only, so to respect all of these safe regions it must
remain stationary.15

In the 1-NestA and 1-Asyncmodels, each robotY, when
activated, is constrained to choose a target location that lies
within the basic safe region with respect to each of its neigh-
bours. In the k-NestA and k-Asyncmodels, with k > 1, the
only change is to simply scale down the basic safe regions by
a factor of 1/k. In this way, robot Y is constrained to choose
a target location that lies within the 1/k-scaled safe region
SVY/8k
Y (X) with respect to each distant neighbour robot X,

what we refer to as a fractional move of reach VY/8k.
In general, when Y is activated at location Y , any one

of its neighbours, say X, might be in transition between two
locations, say X and X ′, so the set of possible target locations
for a single fractionalmove ofY of reach r is ∪

X∗∈XX ′
SrY (X∗),

which we denote by SrY (XX ′) (cf. Fig. 5 (right)).
The prospect of one robot, Y, at location Y , making up

to k successive fractional moves each of reach VY/8k while
another distant neighbour, X, is in the process of moving
from location X to location X ′, invites the question: how can
we characterize the set of points that can be reached by robot
Y in this situation? It is not hard to see that a sequence of
j > 1 fractional moves each of reach VY/8k can take robot
Y beyond S jVY/8k

Y (XX ′) but the exact description of this set

15 It is worth noting that the choice of VY/2 as the definition of “close”
is somewhat arbitrary. Similarly, the size of the safe region associated
with distant neighbours has been chosen to have radius VY/8mostly for
convenience. Anything less than this would certainly work as long as
it is at least some positive constant. (Furthermore, choosing a smaller
radius would allow us to choose a larger radius for “close”).
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Fig. 6 The region Rr
Y (XX ′), consisting of its core (blue) and bulge

green. This is shown to contain all points reachable by robot Y from
location Y in a sequence of fractional moves of total reach r when
distant neighbour X is seen somewhere on the segment XX ′ (colour
figure online)

is somewhat complicated, even when X = X ′. Fortunately,
a more simply described superset suffices for our purposes.

We define the region Rr
Y (XX ′) to be the coloured region

illustrated in Fig. 6. This figure specifies four sectors, induced
by the points X , X ′ and Y , together with Cr (the point at
distance r from Y in the direction of X ), C ′

r (the point at
distance r from Y in the direction of X ′), Yr (the reflection of
Y across the segment CrC ′

r ), Vr (the reflection of Yr across
Cr )V ′

r (the reflection ofYr acrossC
′
r ), Lr (the line throughVr

perpendicular toYr Vr ), L ′
r (the line through V

′
r perpendicular

to Yr V ′
r , and Wr (the point of intersection of Lr and L ′

r ) that
together provide a cover the plane that, like Rr

Y (XX ′), is
symmetric with respect to the line through Y and Yr :

sector I the acute wedge with apex Y and arms through
points X and X ′;

sector II the obtuse wedge with apex Cr and arms through
points X and Vr ;

sector III the obtuse wedge with apex C ′
r and arms through

points X ′ and V ′
r ; and

sector IV the acute wedge with apex Yr and arms through
points Vr and V ′

r .

The region Rr
Y (XX ′) consists of two parts:

the core : the region SrY (XX ′) (shown in blue); and
the bulge : points (shown in green) outside of the core in

sector IV that are on the same side as Yr of both
Lr and L ′

r .

Observation 3 Note that

(i) Rr
Y (XX ′) = SrY (X), if X ′ is co-linear with X and Y

(in particular, the bulge is empty in this case);
(ii) point Y has distance r(1 − cos θ) from both lines Lr

and L ′
r , where θ = � XY X ′; and

(iii) |pq| ≤ |pCr | + r for all points p ∈ X ′Y and q ∈
Rr
Y (XX ′).

As a warm up, we start with the case when robot X is
stationary at point X . In the next lemma we show that region
RV /8
Y (XX), expressed more simply as RV /8

Y (X), contains
all the points reachable by robot Y from position Y by k
fractional moves.

Lemma 1 (Circle expansion) Suppose that |Y X | ≥ V /2.
Then R jV /(8k)

Y (X) contains (strictly, when j > 1) the set
of all points that can be reached by robot Y at location Y ,
making 1 ≤ j ≤ k successive fractional moves, each of
reach at most V /(8k), while another distant neighbour, X,
remains stationary at location X.

Proof First, note that, since |Y X | ≥ V /2 by the lemma
assumption, and since each move of robot Y has length at
most V /(4k), robotX never becomes a close neighbour (dis-
tance less than VY/4) of Y. Thus the set of points reachable
by j successive fractional moves is exactly the union of the
sets SV /8

Y ∗ (X), taken over all Y ∗ reachable by j−1 successive
moves.

The proof proceeds by induction on j . The basis ( j = 1)
follows immediately from the fact that Rr

Y (X) contains (in
fact, coincides with) SrY (X).

For the inductive step, it suffices to demonstrate the more
general fact that Rr+s

Y (X) contains the union of SsY ∗(X)

over all Y ∗ ∈ Rr
Y (X), provided that r + s ≤ V /8 and

|XY | ≥ 2(r + s). This follows from a simple geometric
observation captured in Fig. 7. Suppose that point Y ∗ lies in
Rr
Y (X); consider point Cr+s at distance s from Cr in the

direction to X (see Fig. 7 (left)). Then the centre of the safe
region SsY ∗(X) has distance less than |Y ∗Cr | fromCr+s (with
distance r realized when |Y ∗Cr | = r and X = X∞, where
X∞ denotes the point at infinity in the direction of the ray
from Y to X .

It follows that all points in SsY ∗(X) have distance at most
r+s fromCr+s (seeFig. 7 (right)), and thus ∪

Y ∗∈SrY (X)
SsY ∗(X) ⊆

Sr+s
Y (X) = Rr+s

Y (X) if |XY | ≥ 2(r + s). As this condition
is always satisfied if |Y X | ≥ V /2, the lemma follows. ��

More generally, we can show that the region Rr
Y (XX ′)

can be used to characterize the set of points reachable from
Y by a sequence of moves, when robot X is in motion.

Lemma 2 (Base region extension) Suppose that |XX ′| ≤
V /4 and |Y X∗| ≥ V /2, for all X∗ ∈ XX ′. Then
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Fig. 7 Circle expansion lemma. Left: Points of SsY ∗ (X) lie within distance r + s from Cr+s . Right: S
r+s
Y (X) = ∪

Ŷ∈SrY (X)

Ss
Ŷ
(X∞)

R jV /(8k)
Y (XX ′) contains (strictly, when j ≥ 1) the set of

all points that can be reached by robotY at location Y , mak-
ing 1 ≤ j ≤ k successive fractional moves, each of reach
at most V /(8k), while another robot, X, is in the process of
moving from location X to location X ′.

Proof Note that, by assumptions of the lemma, the acute
angle θ = � XY X ′ is at most π/6. As in Lemma 1, it follows
that robot X never becomes a close neighbour (at distance
less than VY/4) of Y, since each move of robot Y has length
at most V /(4k). Thus the set of points reachable from Y by
j successive fractional moves is contained in the union of
the sets SV /(8k)

Y ∗ (XX ′), taken over all Y ∗ reachable by j − 1
successive moves.

The proof proceeds by induction on j . As in the pre-
ceding lemma, the basis follows immediately from the
fact that Rr

Y (XX ′) contains SrY (XX ′). Consider a region
Qr+s

Y (XX ′) of all the points reachable from Rr
Y (XX ′)

by a fractional move of reach s. That is, Qr+s
Y (XX ′) =

∪
Y ∗∈Rr

Y (XX ′)
SsY ∗(XX ′). For the induction step, it suffices to

demonstrate that, assuming s ≤ r and r + s ≤ V /8, the set
Rr+s
Y (XX ′) contains Qr+s

Y (XX ′).
To reduce the burden of notation, we refer to SsY ∗(XX ′) as

the s-reach of point Y ∗.We say that a point Y ∗ ∈ Rr
Y (XX ′) is

critical if the s-reach of Y ∗ contains a point on the boundary
of the convex hull of Qr+s

Y (XX ′). It is straightforward to
confirm that no point in the interior of Rr

Y (XX ′) is critical.
Thus, to show that Qr+s

Y (XX ′) ⊆ Rr+s
Y (XX ′), it suffices to

show that no point outside of Rr+s
Y (XX ′) is contained in the

s-reach of a point on the boundary of Rr
Y (XX ′).

Let R+
r be the Minkowski sum of Rr

Y (XX ′) and a disk
of radius 2s (see Fig. 8). Note that, since the diameter of
SsY ∗(XX ′) is 2s, no point outside of R+

r is contained in the s-
reach of a point on the boundary of Rr

Y (XX ′) (Property A).
Consider the geometric constructionof region Rr+s

Y (XX ′).
In the argument below,weuse the samenotation for the points
and lines introduced when defining the region Rr

Y (XX ′), but
replacing the corresponding subscripts by r + s (e.g., Cr+s ,
Vr+s , Lr+s , etc.). Let L̂r+s be a line parallel to Lr+s pass-
ing through the point Cr+s . As the distance between Lr+s

Fig. 8 Proof of Lemma 2. The region Rr
Y (XX ′) (outlined in blue)

togetherwith constraints on the s-reach of points on its boundary (colour
figure online)

and L̂r+s is r + s, no point beyond Lr+s is contained in the
s-reach of a point to the left of L̂r+s . (A completely sym-
metric argument shows that an s-reach of any point to the
left of L̂ ′

r+s , the line parallel to L ′
r+s throughC

′
r+s , does not

intersect line L ′
r+s .)

In fact, no point beyond either Lr+s or L ′
r+s , is contained

in the s-reach of a point on the boundary of Rr
Y (XX ′) (Prop-

erty B). To show this, it suffices to show that no point beyond
Lr+s is contained in the s-reach of a point on the boundary of
Rr
Y (XX ′), to the right of L̂r+s . The corresponding result for

L ′
r+s follows by symmetry across L∗, the bisector of � XY X ′.
We make essential use of the facts that

(i) for any point Y ∗ on the boundary of Rr
Y (XX ′), and any

point X∗ ∈ XX ′, all points of SsY ∗(X∗) are at most
s(1 − cosψ) closer than Y ∗ to Lr+s , where ψ denotes

the deviation of the ray
−−−→
Y ∗X∗ from the normal to Lr+s ,

(ii) the maximum deviation from the normal to Lr+s is real-

ized by either
−−→
Y ∗X or

−−→
Y ∗X ′,

(iii) the deviation of
−−→
Y ∗X from the normal to Lr+s is less than

θ , for all boundary points Y ∗ above LXY , the line through
X and Y , and to the right of L̂r+s , and
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Fig. 9 Proof of Lemma 2. The s-reach of a point Y ∗ on the boundary
of Rr

Y (XX ′) to the right of L̂r+s does not intersect Lr+s

(iv) the deviation from the normal to Lr+s realized by
−−→
Y ∗X ′ is

less than the deviation from the normal to Lr+s realized

by
−−→
Y ∗X , for all boundary points Y ∗ below LXY .

We consider four cases for the location of point Y ∗ on the
boundary of Rr

Y (XX ′) to the right of L̂r+s . First, defineU ′
r to

be the second point at distance r fromCr on the segment X ′Y ,
and Tr to be the reflection of U ′

r across Cr . Similarly, define
Ur to be the second point at distance r fromC ′

r on the segment
XY , and T ′

r to be the reflection of Ur across C ′
r (see Fig. 9).

Note that |X ′Y | > 2r > |U ′
rY | and |XY | > 2r > |UrY |.

If Y ∗ lies between L̂r+s and Tr (inclusive), then, since
|X ′Y | > |U ′

rY |, the centre of SY ∗(X ′) maximizes its dis-
tance from X ′ andminimizes � Y ∗X ′Y (and henceminimizes
its distance to Lr+s), when Y ∗ = Tr . Similarly, if Y ∗ lies
between L̂r+s and T ′

r , then, since |XY | > |UrY |, the cen-
tre of SY ∗(X) maximizes its distance from X and minimizes
� Y ∗XY (and hence minimizes its distance to Lr+s), when
Y ∗ = T ′

r .
Let Z be the intersection point of LXY , the line support-

ing XY , and the boundary of Rr
Y (XX ′), and specifically, the

segment WrV ′
r (see Fig. 9). If Y ∗ lies between Tr and the

point Z (inclusive), then, since |X ′Y | > |U ′
rY |, it follows

that � Y ∗X ′Y , the deviation of the ray
−−→
Y ∗X ′ from the normal

to Lr+s , satisfies � Y ∗X ′Y < � Y ∗U ′
rY ≤ θ . Thus, by facts

(i) and (iii) above, SY ∗(XX ′) never reaches beyond Lr by
more than s(1 − cos θ), i.e. never as far as Lr+s .

If Y ∗ lies between T ′
r and Z , then let ϕ denote the angle

between the line LXY and the line through X and Y ∗ (see
Fig. 10, and note that ϕ < θ ). By facts (ii) and (iv) it suffices
to show that SsY ∗(X) does not intersect Lr+s . Let Ŷ ∗ denote
the pointwhere the line through X andY ∗ intersects L ′

r . Since
the region Ss

Ŷ ∗(X) is at least as close to Lr+s as SsY ∗(X), it
suffices to show that Ss

Ŷ ∗(X) lies entirely to the left of Lr+s .

Note that |ZŶ ∗| = |X Z | tan ϕ.

Fig. 10 The third case of Lemma 2

Let A denote the normal projection of Ŷ ∗ onto the line
through X normal to Lr+s , and let B denote the normal
projection of the point of SsY ∗(X) closest to Lr+s onto this
same line. Observe that |AB| = s(1 − cos(θ + ϕ)) and
|X A| = |X Z | cos θ − |ZŶ ∗| sin θ . It follows that d|XB|

dϕ
=

s sin(θ + ϕ) − |X Z | sin θ
cos2 ϕ

< s sin 2θ − |X Z | sin θ <

(2 s − |X Z |) sin θ < 0. Hence, |XB| is maximized when
Ŷ ∗ = Y ∗ = Z , where, as we have already seen, SY ∗(X) lies
entirely to the left of Lr+s . Thus the s-reach of all points on
the boundary of Rr

Y (XX ′) lie to the left of Lr+s .
Consider the points reachable from Rr

Y (XX ′) in each of
the sectors associated with Rr+s

Y (XX ′) (see Fig. 11). It is
immediate from Property A that the points reachable from
Rr
Y (XX ′) in sector I form a subset of Rr+s

Y (XX ′). Simi-
larly, from Property B it follows that the points reachable
from Rr

Y (XX ′) in sector IV form a subset of Rr+s
Y (XX ′).

It remains to show that the same is true for sector II (the
argument for sector III follows by symmetry). To see this,
suppose that the region SsY ∗(X∗), for some X∗ ∈ XX ′, lies
inside the circle of radius 2(r + s) centred at Y and to the
left of Lr+s , but contains a point Z in sector II at distance
greater than r + s from Cr+s . Then the centre of SsY ∗(X∗)
must lie in sector II at distance greater than r from Cr+s .
But, as shown in the proof of Lemma 1, this means that Y ∗
must lie in the obtuse wedge with apex Cr and arms through
points X and Vr (i.e. sector II associated with Rr

Y (XX ′)), at
distance greater than r from Cr . Hence, Y ∗ /∈ Rr

Y (XX ′). ��

Observation 4 The characterization of the region of points
reachable by a sequence of safe moves given in Lemma 1
extends directly to three dimensions. The corresponding
result given in Lemma 2 does not admit such a simple exten-
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Fig. 11 The region Rr+s
Y (XX ′) (outlined in red) contains the set of

points reachable by robot Y in a single fractional move of reach s from
points in Rr

Y (XX ′) (blue), when distant neighbourX is seen somewhere
on the segment XX ′ (colour figure online)

sion. Fortunately, this is not needed for the extension of our
proof about visibility preservation to three dimensions.

4.2.2 Target destination: specification and properties

To this point, we have not specified the details of the destina-
tion function of an activated robot Y, other than that it must
be a point in the intersection of the safe regions with respect
to all of its distant neighbours (those neighbours whose dis-
tance is in the range (VY/2, VY], where VY is the distance to
the furthest neighbour of Y). We choose the center of this
intersection as the target destination.

In the event that the distant neighbours are not properly
contained in any halfspace with Y on its boundary, the inter-
section of the corresponding safe regions is just the current
location of Y, so the target destination is just this current
location (i.e., Y does not move). Other events consist of two
cases:

(i) Y has only one distant neighbour. In this case the target
destination is just the center point of the sole constraining
safe region.

(ii) Y has two or more distant neighbours. In this case the
intersection of the safe regions with respect to all of its
distant neighbours is determined by the safe regions asso-
ciated with the two distant neighbours that define the
largest sector containing all of the distant neighbours of
Y, and the target destination is the center point of the
intersection of these two safe regions (see Fig. 12). Note
that the target point is the middle point of the segment

connecting the centers of the safe regions corresponding
to these two extreme distant neighbours.

Note that, in all events, the distance to the target destina-
tion of an activated robot is at most V /8.

Observation 5 The “natural” generalization to three dimen-
sions specifies the target to be the closest point (to Y) in the
convex hull of the midpoints of the safe regions associated
with all distant neighbours of Y.

5 Visibility preservation by theKKNPS
algorithm, under bounded asynchrony

In this section we begin the analysis of the KKNPS algo-
rithm by demonstrating the fact that it guarantees that the
connectivity of the initial robot configuration is preserved in
both the k-NestA and k-Async scheduling models. This is
established by showing that all pairs of robots that are mutu-
ally visible in the initial configuration remain so thereafter.
In addition, we demonstrate a limited form of preservation of
acquired visibility (mutual visibility of robot pairs that arises
in subsequent configurations), critical to our congregation
argument.

5.1 Visibility preservation in the k-NESTAmodel

Though superficially similar, there is an important difference
between the SSync and 1-NestA models: in the latter, if an
activity interval of robotY is nestedwithin an activity interval
of robotX, it is possible that the Look phase ofY takes place
after the Move phase of X has begun. In this situation, even
if we assume that Y was seen by X when it last looked, X
could be viewed by Y anywhere on its chosen trajectory.

For the k-NestA model, with k > 1, demonstrating that
mutual visibility of a pair X,Y of robots is preserved is fur-
ther complicated by the fact that during repeated activations
of Y, nested within one activation of X, Y may observe X

at many different positions on its determined trajectory. Fur-
thermore, even if X is stationary at some location X , Y may
view it from up to k different locations (cf. Fig. 13). In fact,
(i) as illustrated by the bulge region, k nested activations ofY,
each moving within its 1/k-scaled safe region with respect to
X, while preserving mutual visibility, can take Y outside of
its basic (unscaled) safe region, and (ii) k nested activations
of Y, each moving within safe regions scaled by something
slightly larger than 1/k could lead to a break in visibility.

In asynchronous settings, it is certainly possible that a
pair of robots under the control of the KKNPS algorithm
could become mutually visible, only to have this visibility
be subsequently lost. However, a critical component of our
congregation argument relies on the fact that, if the separation
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Fig. 12 Visualization of the target destination x for Y, when Y admits two distant neighbours

Fig. 13 An example of a k-NestA timeline for two robots X and Y. Grey arrows designate the snapshots taken by the robots in the Look phase

of a robot pair becomes sufficiently small, visibility will be
preserved indefinitely. We say that robotX is strongly visible
from robot Y at time t if |X(t)Y (t)| ≤ V /2.

With this definition in hand we can state and prove what
we need in terms of visibility preservation for the k-NestA
scheduling model:

Lemma 3 Provided robots X and Y both continue to confine
their movement to the 1/k-scaled safe regions for motion
with respect to one another, then if (i) X is visible from Y

at time t = 0 (i.e., |X(0)Y (0)| ≤ V ), or (ii) X becomes
strongly visible from Y at some subsequent time t > 0, then
their mutual visibility will be maintained thereafter, under
arbitrary k-NestA scheduling.

Proof Recall that, in the k-NestA model, the schedule of
activations of any pair of robots X and Y decomposes into
a sequence of activation events each of which consists of a
single activity interval of one of the two robots within which
up to k activity intervals of the other are nested (cf. Fig. 13).
In fact, there is no loss of generality in restricting attention
to full activation events in which the activity interval of one
robot is completely partitioned by the activity intervals of
the other. The only exception is the initial activation event,
which may begin with an interval during which one robot is
active before the other becomes active (but mutual visibility
is sustained). Thus it will suffice to prove that (i) if X and
Y are mutually visible at the start of any activation event,
then they remain mutually visible throughout the event, and
(ii) if one of the robots becomes strongly visible from the
other during the course of the activation event, then they
will remain mutually visible thereafter. In fact, since every
fractional move has length at most V /(8k), the total length

of moves of X and Y in any activation event is at most V /4.
Thus one robot can become strongly visible from the other
during the course of an activation event only if the robots
are mutually visible at both the start and end of that event.
Hence, it suffices to prove property (i) alone, knowing that
at no intermediate point one of the robots becomes strongly
visible from the other.

Suppose that an activation event begins with the pair of
robots X and Y at locations X0 and Y0 respectively, with
separation at most V . Suppose further that this activation
event consists of a single activity interval of robot X and
some j ≤ k activity intervals of robot Y all of which are
nested within the activity interval of X (in particular, at both
the start and end of the activity interval of X, both X and Y

are immotile). Finally, suppose that (i) the activity interval of
robot X determines a target destination X1 that is confined
to the 1/k-scaled safe region SVX/(8k)

X0
(Y0), and (ii) the i th

activity intervals of robot Y determines a target destination
Yi that is confined to the 1/k-scaled safe region S

VY/(8k)
Yi−1

(X∗)
for some X∗ ∈ X0X1.

Now suppose, leading to a contradiction, that at the end
of the j th activity interval of robot X, robots X and Y are no
longer mutually visible. In this case, we can assume that we
are dealing with a counterexample with minimum j . Since,
by assumption, the robots are never closer than V /2, it fol-
lows from Lemma 2 that the set of points reachable by robot
Y from location Y0 is contained in R jV /(8k)

Y0
(X0X1)

But, by Observation 3, it follows that among points in
R jV /(8k)
Y0

(X0X1) the distance to X1 is at most |X1C0| +
jV /(8k), where C0 denotes the centre of S jV /(8k)

Y0
(X0).

Since |X1C0| ≤ |X0C0| < V − jV /(8k), it follows that
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|X1P| < V , for all points P ∈ R jV /(8k)
Y0

(X0X1), contra-
dicting our assumption that robots X and Y are no longer
mutually visible at the end of the current activity interval of
robot X. ��

5.2 Visibility preservation in the k-ASYNCmodel

Turning now to the more inclusive k-Async schedul-
ing model, we establish the following generalization of
Lemma 3, exploiting the structure common to the k-NestA
and k-Async models.

Lemma 4 Provided robots X and Y both continue to confine
their movement to the 1/k-scaled safe regions for motion
with respect to one another, then if (i) X is visible from Y

at time t = 0 (i.e., |X(0)Y (0)| ≤ V ), or (ii) X becomes
strongly visible from Y at some subsequent time t > 0, then
their mutual visibility will be maintained thereafter, under
arbitrary k-Async scheduling.

Proof As in our proof of Lemma 3, we start by showing
that initial visibilites are preserved. To this end suppose that
robots X and Y have separation at most V in their initial
configuration (when both are immotile). We need to show
that, from this point onward, provided robots X and Y both
continue to confine their movement to the 1/k-scaled safe
regions for motion with respect to the other, they will remain
mutually visible thereafter.

Note that the argument here seems to be intrinsically more
difficult than that used in the k-NestA model. In particular,
it does not suffice, as it did in the k-NestA model, to focus
attention on just one activity interval for one of the two robots
whose mutual visibility is being considered. Even in the 1-
Async model, the validity of each step depends on the full
history of transitions since the last time both robots were
simultaneously immotile.

We say that a pair of robotsX andY is engaged at time t if
at least one of them is active. Suppose that X and Y become
engaged at time t0, with |X(t0)Y (t0)| ≤ V . We proceed to
show that while X and Y remain engaged their separation
remains at most V . Suppose, leading ultimately to a con-
tradiction, that a sequence of activations of robots X and Y

exists that results in separation exceeding V . We consider a
minimal such separating sequence, one that minimizes the
total number of activations. Without loss of generality we
can assume:

1. At time t0, X is starting an activity interval and Y is
immotile, i.e., either idle or starting an activity interval,

2. We refer to the sequence of up to k activations of one robot
that take place during a single activity interval of the other
as an activation cluster. Throughout their engagement,
activation clusters ofX alternatewith those ofY. Accord-
ingly, we denote by X j,1, . . . , X j,s j , where s j ≤ k, the

positions of robot X at the start of the activity intervals
in its j th activation cluster, which occurs as robot Y is
executing the last activity interval of its ( j − 1)st acti-
vation cluster. Similarly, we denote by Y j,1, . . . ,Y j,t j ,
where t j ≤ k, the positions of robot Y at the start of
the activity intervals in its j th activation cluster, which
occurs as robotX is executing the last activity interval of
its j th activation cluster (see Fig. 14).

3. We refer to the locations at the start of the first activ-
ity interval in each activation clusters as activation
checkpoints. For example, X2,1 is a checkpoint of X cor-
responding to the start of the robot’s second activation
cluster. There is no loss of generality in assuming that
the first checkpoint at which a separation occurs is when
robot X is at location Xi,1, and that at this time Y has
reached Yi,1.

4. Each move ofX andY, the timing and extent of which is
determined by an adversarial scheduler, has a target des-
tination that respects the safe regions of X and Y alone
(and hence may form a strict superset of the realizable
destinations when other robots are taken into considera-
tion). Specifically, the following safety constraints hold,
for all j < i ,

(i) for 1 ≤ t < t j , the pointY j,t+1 lies in the 1/k-fraction
safe region associatedwithY at locationY j,t , viewing
X at some location between X j,s j and X j+1,1, and

(ii) the point Y j+1,1 lies in the 1/k-fraction safe region
associatedwithY at locationY j,t j , viewingX at some
location between X j,s j and X j+1,1.

Similarly,

(iii) for 1 ≤ s < s j , the point X j,s+1 lies in the 1/k-
fraction safe region associated with X at location
X j,s , viewing Y at some location between Y j−1,s j−1

and Y j,1, and
(iv) the point X j+1,1 lies in the 1/k-fraction safe region

associated with X at location X j,s j , viewing Y at
some location between Y j−1,s j−1 and Y j,1.

5. Thus, by Lemma 2, for all 1 ≤ j < i , the check-
point Y j+1,1 lies in the region R

V /8
Y j,1

(X j,1X j+1,1), and the

checkpoint X j+1,1 lies in the region RV /8
X j,1

(Y j−1,1Y j,1).

We analyse the sequence of checkpoints in reverse chrono-
logical order:

Yi,1, Xi,1, Yi−1,1, Xi−1,1, . . . , X2,1, Y1,1,

X1,1, Y0,1, X0,1, Y−1,1

associated with the minimal separating sequence for X and
Y. This essentially corresponds to a walk from the terminal
checkpoint back to the initial checkpoint, ultimately showing

123



On the power of bounded asynchrony: convergence by autonomous robots with limited visibility

Fig. 14 Without loss of generality, activity intervals for robots X and Y in any minimal separating sequence interleave, up to disconnection, with
at most k activations of one between activations of the other. Activation clusters are circled

that no such sequence exists that satisfies all of the specified
constraints, thereby demonstrating our contradiction.

For t ≥ 0, let et denote the t th edge on the chain formed
by successive checkpoints; i.e., et = Yi−t/2,1Xi−t/2,1, for
even t , and et = Xi−(t−1)/2,1Yi−1−(t−1)/2,1, for odd t . Let
θt denote the angle, in the range [0, π ], between et and et+1.
Note that θ2i = 0.

It is not hard to see that, in order to satisfy local safety
constraints, there is a kind of tradeoff between |et | and θt :
specifically, if |et | is increased then the safety constraint at
the common endpoint of et and et+1 can be satisfied with a
smaller angle θt . We make this tradeoff explicit in the fol-
lowing assertion, which we prove in Lemma 5 below:

|et | > V cos θt and cos θt ≥ √
35/36 ≈ 0.986, for all t ≥ 0.

Given this assertion, we reach the contradiction that the
edge e2i has length greater than V , since θ2i = 0, completing
the proof that the initial visibility between X and Y must be
preserved.

Furthermore, since (i) any checkpoint configuration of X
and Y leading to a checkpoint separation of at least V must
be preceded by checkpoint configurations of X and Y with
separation at least .986V , and (ii) between checkpoint con-
figurations the separation ofX andY cannot change by more
than V /4, it follows immediately that any acquired strong
visibility also results in mutual visibility being preserved
thereafter.

Thus, to complete the proof of Lemma 4 it only remains
to prove Lemma 5 ��
Lemma 5 |et | > V cos θt and cos θt ≥ √

35/36 ≈ 0.986,
for all t ≥ 0.

Proof The proof proceeds by induction on t . Since |e0|, the
length of edge Xi,1Yi,1, is at least V , it follows immediately
that |e0| ≥ V cos θ0. To complete the basis of our induction,
observe that in order to satisfy the safety constraint at Yi−1,1

it must be the case that Yi−1,1 is no further than V /8 from
Yi,1, and hence no further than V /8 from e0. It follows that
|e0| sin θ0 ≤ V /8, and thus sin θ0 ≤ 1/8,which holds exactly
when cos θ0 ≥ √

63/64 >
√
35/36.

Suppose now that |et | > V cos θt and cos θt ≥ √
35/36.

We will show that |et+1| > V cos θt+1 and cos θt+1 ≥√
35/36. For this induction step, consider four successive

Fig. 15 The point M is at distance V /2 from R, and is the center of the
circle cV /2(in red). The safe region RV /8

Q (PR)) is shown in green. The
point S must lie outside cV /2 for |SR| > V cosβ to hold (colour figure
online)

checkpoints (renamed P , Q, R, and S, for simplicity and to
reflect the commonality of the argument for even and odd
t), the associated edges PQ, QR and RS, and their inter-
vening angles (renamed ϕ and β) (see Fig. 15). We show
that assuming |SR| > V cosβ and cosβ ≥ √

35/36, then
|RQ| > V cosϕ and cosϕ ≥ √

35/36.
First observe that motion from P to R is the result of a

single move step, and the motion from Q to S is the result of
single activation cluster, consisting of at most k move steps.
As we have seen, this means that |PR| and |QS| are both at
most V /8. It follows then that since |RS| ≥ √

35/36V >

3V /4, |P∗Q∗| ≥ |RS| − V /4 > V /2 for all points P∗
on PR and all points Q∗ on the path traced by the robot
at location Q in its motion from location Q to location S.
Thus the robot at location Q sees the other robot as a distant
neighbour throughout its current activation cluster.

Consider a circle cV /2 of radius V /2 centered at a point
M lying on the segment RQ at distance V /2 from R (shown
in red in Fig. 15). Point S must be outside of cV /2, otherwise
|SR| ≤ V cosβ (due to the angle � RSQ′ ≥ π/2 where Q′
is an intersection of the extension of RQ with cV /2); hence
|MS| > V /2. Let I be the point on QP at distance V /8
from Q. By Observation 3, |MS| ≤ |MI | + V /8, and hence
|MI | > 3V /8.
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Consider the triangle �QIM . From the cosine theorem it
follows that

|MI |2 = |MQ|2 + |I Q|2 − 2|MQ||I Q| cosϕ.

Then, after dividing by V 2 and replacing |MQ|/V by x , the
equation above becomes

x2 − 2x
|I Q|
V

cosϕ +
( |I Q|

V

)2

−
( |MI |

V

)2

= 0.

Since x > 0, it follows that x = |I Q|
V cosϕ

+
√( |I Q|

V

)2
cos2 ϕ −

( |I Q|
V

)2 +
( |MI |

V

)2
. But since |I Q| =

V /8, |MI | > 3V /8, and cosϕ ≤ 1, we get

x >
cosϕ

8
+

√
cos2 ϕ

64
− 1

64
+ 9

64

≥ cosϕ

8
+

√
cos2 ϕ

64
+ cos2 ϕ

8
= cosϕ

2
.

Thus, |RQ|
V = 1

2 + |MQ|
V > 1

2 + cosϕ
2 ≥ cosϕ.

Now, as |PR| ≤ V /8 and the length of the perpendicular
dropped from R onto the line supporting PQ is at most |PR|,
we obtain that sin ϕ ≤ V

8|QR| < 1/6 or cosϕ >
√
35/36. ��

Observation 6 Lemma 4 extends to three dimensions. To
prove this it is not necessary to formulate a three dimensional
analogue of the region Rr

Y
(XX ′). Instead, more general

visibility preservation can be proved by reduction to the two-
dimensional result:we can show that if a separating sequence
for a pair of robots exists in three dimensions then one must
also exist in two dimensions, contrary to Lemma 4. The idea,
expanded in Sect.7.4.2, is that any three dimensional sepa-
rating sequence can be “flattened”while preserving all of the
associated safety constraints as well as all distances between
activation checkpoints.

6 Incremental congregation in the k-NESTA
and k-ASYNC models

As we have demonstrated, the KKNPS algorithm has the
property that it preserves all initial visibilities as well as all
visibilities that at some point fall below the V /2 threshold.
We say that a pair of robots are strong neighbours at some
point in time if one of these conditions holds. It follows that
the graph of the strong neighbour relation is both connected,
because it includes all initially visible pairs, and monotonic.
In particular, at any moment in time there is a path in this
graph joining any pair of robots. Furthermore there is a point
in time after which the graph no longer changes: thereafter

for any pair of robots, (i) their separation is continuously less
than or equal to V (i.e., they are mutually visible), or (ii) their
separation is continuously greater than V /2. This, combined
with the fact that our strategy is hull-diminishing, is used
to establish the following theorem, the first of our primary
results.

Theorem 1 The KKNPS algorithm solves the Cohesive
Convergence task for an arbitrary number of robots mov-
ing in the plane under the k-Async scheduling model,
starting from any connected configuration.

We begin with an informal overview of the argument.

• As with all hull-diminishing strategies, progress towards
convergence to a point can be measured in terms of the
shrinkage of the convex hull of the full set of robot
locations. Let CHt denote the convex hull of the robot
locations, including their planned but as yet unrealized
trajectories, at time t . Then incremental progress towards
convergence is captured by the following observation
(made previously in [27]):

CHt+ ⊆ CHt for all t+ > t . This follows from the
facts that (i) when a motion is planned it is towards a
point inside the current convex hull, and (ii) when the
motion completes, and the planned trajectory (or some
prefix) has been realized, replacing the trajectory by its
endpoint can only shrink the convex hull.

• Since convex hulls form a nested sequence, they either
converge to a single point (which is what we are trying to
establish), or not. Suppose that the convex hull sequence
does not converge in this way for some initial configura-
tion of n robots. Then both the length of the convex hull
perimeter and the hull radius (the radius of the smallest
ball enclosing the convex hull) must form monotonically
decreasing sequences that converge to somenon-zero val-
ues, � and ρ respectively. Thus, for any ε > 0 there is
a time tε after which the hull perimeter lies in the range
[�,�+ε) and the hull radius lies in the range [ρ, ρ+ε).

• Let t be any time after which the hull radius lies in the
range [ρ, 3ρ/2) and consider the convex hull H = CHt ,
with perimeter length �t , and its smallest bounding cir-
cle �, with center OH and radius rH , at that time (see
Fig. 16). We will argue that there is a λ > 0, dependent
on ρ, such that at some time t ′ > t the perimeter length
of CHt ′ becomes less than �t − λ. This leads to a con-
tradiction, if we choose ε < λ and t ≥ tε.

We know that � is determined by three critical points
(robot positions) AH , BH andCH (two of which might coin-
cide), all of which are at distance exactly rH from OH , and in
pairs bound sectors of � with span no more than π . We will
show that there is a δ > 0, dependent on rH , such that for at
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Fig. 16 Smallest bounding circle �

least one of these critical points, say AH , �δ(AH ), the set of
robots at distance at most δ from AH , is eventually empty.

Clearly, every robot Z has VZ ≤ 2rH . The more critical
observation is captured in a lemma that states that the motion
of any robot Zwith VZ > 0 cannot take Z to a point too close
to AH . From this, it follows immediately that if Z continues
to have at least one distant neighbour that is bounded away
from AH then Z must become and stay outside �δ(AH ).

Lemma 6 Suppose VZ ≥ ν · rH , where ν > 0. Then any
ξ -rigid motion of Z takes it to a point at distance at least
ν2ξ2

512 rH from AH .

Proof Refer to Fig. 17 (left). Suppose that VZ ≥ ν · rH .
Let d = ν2ξ2

512 rH , and consider a circle �d(AH ) of radius
d centered at AH . Let yd be the length of the chord Pd P ′

d
(shown in blue), tangent to �d(AH ) and perpendicular to
AH OH , and let Rd denote the portion of �, containing point
AH , between the arc Pd P ′

d and the chord Pd P ′
d . Note that

yd = 2
√
r2H − (rH − d)2 < 2

√
2rHd . Let T denote the

target destination of robot Z, and T ′ the point at distance
ξ |XT | from X in the direction of T . Suppose, leading to a
contradiction of our assumption that VZ ≥ ν · rH , that some
point on the segment T ′T has distance less than d from AH .
We consider two cases: (i) the point Z lies outside of Rd , and
(ii) the point Z lies inside of Rd .

In the first case, we can assume that T ∈ Rd ; otherwise
the entire segment ZT lies outside Rd and hence the entire
motion of Z remains at distance greater than d from AH .
Since T is the midpoint of safe region centers of two (or one)
distant neighbours of Z, the safe region centerCW associated
with at least one extreme distant neighbour W of Z, as well
as the location Z of Z, must also lie in Rd . Hence, |ZW | =
|ZCW | + |CWW | < VZ/8 + yd , and since W is a distant
neighbour of Z, VZ < 2|ZW | < 2(VZ/8 + yd). Thus VZ <

8/3yd .

In the second case, the centre CW of the safe region of at
least one of the distant neighbours W of Z must lie inside
the region Rd/ξ bounded by the chord Pd/ξ P ′

d/ξ Otherwise

the entire segment T ′T lies outside of Rd and so the ξ -rigid
motion of Z leaves it at distance at least d from AH . Since
|Pd/ξ P ′

d/ξ | ≤ yd/ξ , it follows that |ZCW | < yd/ξ and hence
VZ < 8yd/ξ .

In both cases, we have VZ < 8yd/ξ (since ξ < 1) and so
VZ < 16

√
2rHd/ξ < νrH , contradicting our assumption. ��

It follows directly from Lemma 6 that permanent separation
from AH is contagious:

Lemma 7 If robot Z has a neighbourXwhose distance from
AH remains at least ν · rH , assuming ξ -rigid motions, then

Z must itself become and remain at distance at least ν2ξ2

4608rH
from AH .

Proof ByLemma6,whileVZ ≥ (ν/3)rH , any ξ -rigidmotion

of Zmust leave it at distance at least ν2ξ2

4608rH from AH . On the
other hand, if VZ < (ν/3)rH then, since X is a neighbour of
Z, Zmust have distance at least (2ν/3)rH from AH . But any
movement of Z must leave it no further than (ν/3)rH from

its current position, and hence at least (ν/3)rH >
ν2ξ2

4608rH
from AH . ��
Observation 7 Lemmas 6 and 7 above hold without change
in three dimensions.

Suppose now that we have chosen a time t after which the
strong neighbour graph no longer changes and the hull radius

lies in the range [ρ, 3ρ/2). Let δ =
(

ξ2

64·512n2
)2

ξ2

4608rH and

consider robots in �δ(AH ). Consider some time t ′ > t after
which all robots that will eventually lie and remain outside of
�δ(AH ) have done so.We argue that�δ(AH ) is in fact empty
at time t ′. Supposing otherwise, let Z be one of the robots
in �δ(AH ) at time t ′. It will suffice to argue that, assuming
motion is ξ -rigid, Zmust move and remain outside �δ(AH ).

There are two cases to consider depending on the compo-
sition of the set of neighbours of Z.

(i) All other robots are neighbours of Z. In this case,
either (i) at some subsequent point in time, either one
of �δ(AH ), �δ(BH ) or �δ(CH ) contains no robots (in
which case nothing remains to be proved), or (ii) Zmust
continue to have a neighbour at distance at least rH −2δ,
that is VZ ≥ rH − 2δ > rH/2, since δ < rH/4. Hence,
by Lemma 6, Z must move to, and remain at, a position

at least ξ2

2048rH from AH .
(ii) There is at least one other robot that is not a neighbour

of Z. In this case, since the strong neighbour graph is
connected, there must be a strong neighbour X of Z that
has a strong neighbourY that is not a strong neighbour of
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Fig. 17 Left: the radius of the red circle is d, and the length of the chord Pd P ′
d (in blue) is yd . Right: The length of the chord QdQ′

d (in green) is

2zd , and the distance from AH to QdQ′
d is xd (colour figure online)

Z. SinceY and Z are not strong neighbours their separa-
tionmust continue to exceed V /4, and hence the distance
from at least one of them toXmust continue to be at least
V /8 which, by the connectivity of the strong neighbour
graph, is at least rH/(8n). Thus, VX > rH/(8n) and so,
by Lemma 6,X itself must move to, and remain at, a posi-

tion at least ξ2

64·512n2 rH from AH . It follows, by Lemma 7,
that Z too must move to, and remain at, a position at least
(

ξ2

64·512n2
)2

ξ2

4608rH from AH .

Hence, since δ =
(

ξ2

64·512n2
)2

ξ2

4608rH Z must eventu-

ally, and permanently, vacate �δ(AH ). This contradicts our
assumption that at time t ′ all robots that will permanently
vacate �δ(AH ) have done so. Thus, we can assume that at
time t ′, and thereafter, �δ(AH ) contains no robots.

Since CHt ′ , the convex hull of the robot positions at time
t ′, has no vertex closer than δ to AH , it follows that the
boundary length ofCHt ′ is less than�t , the boundary length
of CHt , by an amount that is independent of ε.

Lemma 8 If �d(AH ) is empty at time t ′, then the boundary

length of CHt ′ is at most �t − d3

(2rH )2
.

Proof Since AH lies on the boundary of CHt , and all robot
positions at time t ′ lie outside of �d(AH ), it follows that
the perimeter of CHt ′ is at least 2(d − zd) shorter than the
perimeter ofCHt , where 2zd is the length of the chord QdQ′

d

(seeFig. 17 (right)). Let xd be the distance from AH toQdQ′
d .

It is straightforward to confirm that d − zd = x2d/(d + zd) >

x2d/(2d) and (by similar triangles) xd = d2/(2rH ), and hence
2(d − zd) > d3/(2rH )2. ��

As previously noted, this leads to a contradiction (of our
assumption of non-convergence) if we choose ε < d3

(2rH )2
,

where d =
(

ξ2

64·512n2
)2

ξ2

4608rH , and t > tε. Therefore the

sequence of nested convex hulls must converge to a point,
completing the proof of Theorem 1

Observation 8 A result analogous to Lemma 8 holds for
robot configurations in three dimensional space as well.
In three-dimensions either (i) the surface area of CHt ′
decreases by an amount that is independent of ε, or (ii) the
radius of the smallest enclosing ball of CHt ′ decreases by an
amount that is independent of ε (see Sect.7.4.2 for details).
In either case, if we choose ε sufficiently small, it follows that
the sequence of nested convex hulls must converge to a point,
thereby showing that Theorem 1 holds for robots moving in
three-dimensional space as well.

7 Extensions/generalizations

7.1 The parameter k known only approximately

In certain settings, the parameter k (the bound on potential
asynchrony) may not be known precisely. One such scenario
is where the duration of all activity intervals is bounded from
above and (away fromzero) below.Nevertheless, theKKNPS
algorithmworks correctlywith any conservative upper bound
on k at the cost of slowing down convergence in a propor-
tional way.

7.2 Error tolerance

We have already observed that, in the absence of any global
information on the initial configuration, even an arbitrarily
small amount of absolute error in distance or angle measure-
ments, or in the actual destination relative to the trajectory to
the intended destination, cannot be tolerated by algorithms
that solve Point Convergence, even in fully synchronous
scheduling environments. Nevertheless, the KKNPS algo-
rithm can be modified to tolerate a modest amount of relative
error.
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• The only concern with error in distance measurements
is that it might lead VZ, the perceived distance to the
furthest neighbour of Z, to become an overestimate of
V . If the error is bounded by some small fraction δ of the
true distance, then this can be avoided by simply scaling
the perceived distance by a factor of 1/(1 + δ).

• The KKNPS algorithm can also be modified to tolerate a
modest amount of a kind of relative error in angle mea-
surements (that preserves sidedness with respect to lines
through neighbouring points).
To make this concrete, consider the error in angle mea-
surements that would arise from a small perturbation of a
robot’s local coordinate system: a symmetric distortion of
some reference coordinate system is a continuous bijec-
tion μ : [0, 2π ]) → [0, 2π) with μ(θ +π) = μ(θ)+π ,
for all θ ∈ [0, π). Such a distortion has skew bounded by
λ < 1 if (1 − λ)ξ ≤ μ(θ + ξ) − μ(θ) ≤ (1 + λ)ξ , for
all ξ ∈ (0, π/2).

Observe that a symmetric distortion with skew 0 is just
a rotation or reflection of the local coordinate system.
That a permissible distortion is a continuous bijection
seems natural; that it should also be symmetric is also
realistic in our context, since otherwise it is possible to
construct (as above) a configuration with robots located
at the vertices of a regular polygon with edge length V ,
that fails to converge.

The KKNPS algorithm can be modified to tolerate a
symmetric distortion of its local coordinate system with
small skew. The intuition here is to reduce the safe region
of robot Y with respect to a distant neighbour X by mak-
ing it instead the intersection of the safe regions that
would be associated with all possible true locations of
X.

• Even linear relative error (error that grows linearly with
the distance travelled), measured as the deviation of the
actual destination from the trajectory to the intended des-
tination, cannot be tolerated by any algorithm that solves
Point Convergence (see Fig. 18). even in the fully syn-
chronous model.

However, the KKNPS algorithm can be modified to
tolerate relative motion error that grows quadratically
(specifically error is O(d2/V ), where d is the distance
travelled). To see this, recall that the KKNPS algo-
rithm chooses as its destination point the midpoint of the
region formed by the intersection of the safe regions of a
robot’s extreme distant neighbours. If the angle formed
by these neighbours is bounded away from π then there
is fixed faction of the intended trajectory that, even when
followed with quadratic error, will remain within the
intersection of the safe regions.

Fig. 18 If the relative motion error is greater than tan ϕ then B can
move to the left of the normal to BC (red) and C can move to the right,
resulting in separation if |BC | = V (colour figure online)

• The KKNPS algorithm can clearly tolerate premature
stop failures, provided these do not accumulate in a way
that violates the activation fairness condition. In fact, a
single crash (or “fail-stop”) fault, where a robot crashes
and remains stationary thereafter, can also be tolerated.
In this case the remaining robots converge to the location
of the crashed robot.

7.3 Visibility

The KKNPS algorithm can be modified without difficulty to
work correctly even if the visibility radius V may differ for
different robots, provided that (i) the initial mutual visibility
graph is connected, and (ii) individual (unknown) visibility
radii could differ by at most some small (known) constant
factor.

Recall that the visibility region of robots was defined to
be a closed set. However, the KKNPS algorithm works cor-
rectly even if the visibility region is open (i.e., to be visible
a neighbouring robot must be at distance strictly less than
V ). To see this, it suffices to observe that in this case, VZ,
the perceived distance to the furthest neighbour, is always
strictly smaller than V .

Furthermore, we canmodify the notion of visibility region
to accommodate a more realistic soft visibility threshold.
With this modification, there are two thresholds V and V+;
robots at distance less than or equal to V are guaranteed to
be visible, those at distance greater than V+ are guaranteed
to be invisible, and those whose distance is between V and
V+ may or may not be visible. Since the KKNPS algorithm
works correctly using any lower bound on the threshold V ,
and the distance to a robot’s current furthest neighbour pro-
vides a lower bound on V+, it suffices to use that distance
scaled by V /V+ as a conservative bound on V .

Finally, we note that in the event that the visibility thresh-
old V exceeds the diameter of the initial configuration, it
follows from thehull-diminishingproperty that all robotswill
remain mutually visible throughout the computation. Since
our congregation argument continues to hold even under an
Async scheduler, we conclude that our 1-Async algorithm
will guarantee convergence in this case,without any need for
multiplicity detection.
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7.4 Further relaxations

7.4.1 More general initial conditions for guaranteeing
convergence

It is worth noting that if the initial configuration is not
connected the KKNPS algorithm guarantees that every con-
nected subset of robots will converge to a single point.
Moreover, noting that (i) all edges of the initial visibility
graph are preserved, and (ii) a robot X cannot cross a visi-
bility edge without becoming strongly connected to one of
robots positioned at that edge’s endpoints (and remaining
connected thereafter), it follows that robots in an interior
face of the initial visibility graph must ultimately converge
to the same point as the robots defining that face. Thus,
connectivity of the initial configuration is not a strictly neces-
sary condition for the KKNPS algorithm to solve Cohesive
Convergence.

In contrast, it is not hard to see that if a robot X is posi-
tioned in the exterior face of some componentC of the initial
visibility graph, then X is not guaranteed to converge with
the robots in C , even if X lies inside the convex hull of the
robots in C .

7.4.2 Motion in three dimensional space

As noted in Observation 2, the KKNPS algorithm admits
a very natural generalization for robots configured in three
dimensions. We have also noted in passing how the argu-
ments supporting the correctness of the KKNPS algorithm
for robotsmoving in two dimensions can be extended to three
dimensions. We revisit and expand on some of these argu-
ments here.

Recall that the correctness of the KKNPS algorithm was
proved, like that of its predecessors, by establishing twoprop-
erties: (i) visibility preservation: the choice of safe region
guarantees that all robot pairs that start or become (strongly)
visible will remain mutually visible thereafter, and (ii) incre-
mental congregation: the trajectories of robots following the
algorithm convergence monotonically (measured in terms of
the shrinking of the convex hull of the robot locations) to a
single point.

We pointed out in Observation 6 that the visibility preser-
vation property, established in Lemma 4, extends to three
dimensions using a “trajectory flattening” argument. This
argument involves showing that every engagement of a pair
of robots X and Y can be replaced by a new valid engage-
ment inwhich (i) all of the activation points in each activation
cluster of one robot are co-planar with the trajectory of
the other robot in its current active interval, and (ii) all
distances between successive activation checkpoints remain
unchanged.

Consider some engagement of robots X and Y, and let
X j,1, . . . , X j,s j , where s j ≤ k, denote the positions of robot
X at the start of the activity intervals in its j th activation
cluster, which occurs as robot Y is executing the last activ-
ity interval of its ( j − 1)st activation cluster (recall Fig. 14).
Suppose that points X j,1, . . . , X j,m are all co-planar with
points Y j−1,t j−1 , Y j,1 and X j,1, where 1 ≤ m < s j . and
consider the point X ′

j,m+1 formed by rotating the triangle
formed by Y j−1,t j−1 , Y j,1 and X j,m+1 about the line through
points Y j−1,t j−1 and Y j,1 until the triangle becomes co-planar
with points Y j−1,t j−1 , Y j,1 and X j,1. Since (i) |X ′

j,m+1Y | =
|X j,m+1Y | for all Y ∈ Y j−1,t j−1Y j,1 and (ii) X ′

j,m+1 is co-
planar with points Y j−1,t j−1 , Y j,1 and X j,1, it suffices to

observe that X ′
j,m+1 must lie closer to the centre of SVX/(8k)

X j,m

than X j,m+1 and hence X ′
j,m+1 ∈ SVX/(8k)

X j,m
.

As noted in Observation 8 the incremental congregation
property, established inLemma8, also extends to robotsmov-
ing in three dimensions. To see this note (building on the
proof of Lemma 8, where Figs. 16 and 17 should be inter-
preted as the projection of CHt ′ , the convex hull of the robot
positions at time t ′, onto a plane through AH and OH ) that
the pyramid with apex AH cut off from CHt ′ by the plane
with normal AHOH at distance xd from AH , has a surface
area that exceeds its base area by an amount that is at least
2(d−zd) times the perimeter of its base. Thus the surface area
of the convex hull after �δ(AH ) becomes empty is smaller
than that of CHt ′ by an amount that exceeds some constant
independent of ε, or the pyramid base has arbitrarily small
perimeter. In the latter case, CHt ′ is contained in a cone with
small solid angle at apex AH , from which it follows directly
that the radius of the convex hull after �δ(AH ) becomes
empty is at least some constant independent of ε less than
rH .

8 Impossibility of visibility preservation in
the ASYNC schedulingmodel, assuming
modest error in perception, but no error in
motion

Let A be any control algorithm for OBLOT robots. In this
sectionwewill show that ifA (i) is even slightly error-tolerant
and (ii) solves Point Convergence on all configurations
of robots that form a regular polygon (even if this requires
the aid of a benevolent scheduler), thenwe can associate with
A an initial connected configuration of robots, together with
an adversarial scheduler in the Async model (in fact, the
NestA model) that produces a robot configuration with two
or more linearly separable connected components in its asso-
ciated visibility graph. Specifically, we consider algorithms,
like the one developed in preceding sections, and like those
that we might reasonably expect to be used in practice, that
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tolerate the kind of error associated with realistic robots.
Such robots have a perceptual apparatus that is only accurate
up to (i) small relative error in distance measurements (the
perceived distance d̃ to any neighbour of a robot is accu-
rate only to within a constant δ > 0 times the true distance
d), and (ii) small relative errors in angle measurements of
the kind that arise from symmetric distortions of local coor-
dinate systems, with bounded skew (the perceived angle θ̃

formed any two neighbours is accurate only to within some
constant 0 < λ < 1 times min{θ, π − θ}, where θ ∈ [0, π ]
is the true angle). The control algorithm is free to assume a
fixed visibility threshold (assumed to be 1), and that motion
is rigid and free of error.

Assumption (i) allows us to specify an initial configuration
of robots so that the true distance of neighbouring robots, in
both this initial configuration and all subsequent configura-
tions (up to the point of disconnection of the visibility graph),
is sufficiently close to the visibility threshold that neighbours
could be perceived as always being exactly at that threshold.
Assumption (ii) allows us to conclude that, while the per-
ceived sidedness of the observing robot with respect to the
line joining any pair of its neighbours agrees with reality,
there is sufficient uncertainty to guarantee that robots that
are not yet co-linear with their neighbours must move. (Oth-
erwise, as we will show, it would be possible to construct
a local configuration that likewise has no associated forced
move, but which could be replicated into a global config-
uration that, for this reason, fails to converge, even with a
benevolent scheduler).

It follows that the Cohesive Convergence task is not
solvable in the Async or NestA model, for all arbitrarily
large collections of realistic robots. This in turn implies that
the Point Convergence task is not solvable for realistic
robots in theAsyncmodel, using any hull-diminishing algo-
rithm. In fact, even if an algorithm is onlyweakly cohesive (in
the sense that connectivity of the visibility graph is preserved
over time, even if mutual visibility between some robot pairs
might be broken) then it cannot guarantee convergence on all
initial configurations whose visibility graph is connected.

We conclude that the Point Convergence task illus-
trates a separation in the power of bounded vs. unbounded
asynchrony, for natural (hull-diminishing or even weakly
cohesive), modestly error-tolerant algorithms. Note that, it
seems unavoidable to insist on some measure of error toler-
ance in framing this result. In fact, a proof that something is
impossible for error-free algorithms with rigid motion seems
well out of reach.

Suppose then that algorithm A is error-tolerant, in the
sense described above, and that it solves Point Conver-
gence on all connected robot configurations that form a
regular polygon.

8.1 The initial configuration

We describe the initial configuration in terms of a parameter
ψ > 0 that we will subsequently set to be sufficiently small.
We take the visibility threshold V to be 1.

The initial robot configuration consists of three robots
XA, XC and XB , located at positions A = (0, 0), C =
(− 1√

2
,− 1√

2
) and B = (1, 0) respectively, and n − 3

additional robots, X1,X2, . . . ,Xn−3, positioned at points
P1, P2, . . . , Pn−3 spaced at distance 1 along a discrete spi-
ral tail starting with the edge AB. The turn angle between
the chord APi−1 and the segment Pi−1Pi , taking P0 = B,
is fixed at ψ , for all i ≥ 1. (Fig. 19 (left) illustrates such a
configuration ).

The total number of robots, n, is chosen to be sufficiently
large that the angle between the chords AP0 and APn−3 is
about 3π/8 (so the line through A and Pn bisects the angle
� (CAB)). Of course, we need to argue that such an n exists:
for this we observe that even though the angle γi between
successive chords APi−1 and APi decreases with i , the sum∑

i γi diverges. To see this, let di denote the length of the
chord APi . We know, from the cosine law, that d2i = d2i−1 +
1 − 2di−1 cos(π − ψ). Hence, when ψ > 0,

di − di−1 = 1 + 2di−1 − 2di−1(1 − cosψ)

di + di−1

>
1 + 2di−1 − 2di−1(1 − cosψ)

1 + 2di−1

= 1 − 2di−1(1 − cosψ)

1 + 2di−1
≥ 1 − 2di−1(ψ

2/2)

1 + 2di−1

> 1 − ψ2/2.

Since d0 = 1, and di − di−1 ≤ 1 (by the triangle inequal-
ity), it follows by induction on i that 1 + i(1 − ψ2/2) <

di ≤ 1+ i , for 0 ≤ i ≤ n− 3. Since the scheduler maintains
the distance from point A to the location of robot Xi close to
di , choosing ψ small enough guarantees that the separation
between successive robots remains close to 1. Hence each
robot on the chain remains visible only to its initial neigh-
bours.

It is easy to confirm that the perpendicular distance from
Pi to the line through A and Pi−1 equals both sinψ and
di sin γi . Hence γi ≥ sin γi = sinψ

di
≥ sinψ

i+1 . It follows that∑n−3
i=1 γi ≥ sinψ ln n−3

e . Thus itwill suffice to choosen large

enough that sinψ ln n−3
e ≥ 3π/8, i.e., n ≥ 3 + e

3π
8 sinψ

+1.

8.2 Adversarial scheduler strategy

The strategy of the adversarial scheduler is to first activate
the robot XA forcing it (as we will argue) to plan a move to
a point A′ some non-zero distance ζ away from A into the
sector CAB. By the symmetry of the local configuration, we
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Fig. 19 Left: initial robot configuration; Center: approximate trajectories to final configuration; Right: typical intermediate configuration

can assume that |A′C | ≤ |A′B|; for ease of description, we
will assume that these distances are equal.

Next, and before the robot XA actually begins its move,
the scheduler begins a long sequence of activations of the
robots X0, . . . ,Xn−3 (where X0 = XB), with the goal of
moving, for each i , 1 ≤ i ≤ n − 3, in succession, all of the
robots X0,X1, . . . ,Xi−1 onto (or close to) the chord APi ,
without changing their initial distance from A by more than
an amount that is �(ψ2). If successful in this task then, by
choosingψ to be sufficiently small, all robots will follow tra-
jectories that approximate circular arcs, centered at A, from
their initial position to their final position on the chord APn
(see Fig. 19 (center) and (right)). Furthermore, ifψ is chosen
to be sufficiently small relative to ζ , the scheduler will have
succeeded in breaking the visibility between the robots XA

and XB .
The argument that such an activation sequence exists

involves two things: (i) showing that specified robots must
move, when activated, and (ii) showing that the motion must
keep their distance from A the same, up to an additive factor
that accumulates to something that is O(ψ2).

The space between chords APi−1 and APi defines what
we call the i th sliver (see Fig. 20). The transitions of robots
from one chord to the next, flattening the associated sliver,
involves the (essential) collapse of a succession of thin tri-
angles, each of which involves the relocation of a robot to
become essentially co-linear with its neighbours at almost
distance one. By “essentially co-linear” we mean that the

Fig. 20 Initial sliver

angle formed by the neighbours is in (π − ϕ0, π ], where
angle ϕ0 is chosen to be sufficiently small (relative to ψ and
1/n2). This slight slack permits termination of each flatten-
ing step and ensures that when the flattening of the i th sliver
is complete the sum of all turn angles on the chain formed
by X0, . . . ,Xi is at most iϕ0 and hence all of the robots
lie within distance i2ϕ0/2 of the chord APi . Hence, when
all slivers have been flattened, robot XB lies within distance
n2ϕ0/2 of the chord APn−3.
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8.2.1 Forced motion

Imagine that a triple of robots is in a local configuration
like that illustrated in Fig. 21. Under what conditions can we
assume that the robot at position Q must move if activated
(which only happens if the perceived turn angle is at least
ϕ0)? Our assumption about error in distance perception is
such that if the distances between Q and its two neighbours
are both in the range (1 − δ, 1], then they could both be
perceived as being 1. Clearly, this would preclude algorithm
A from choosing not to move the robot at Q (when activated)
if in addition the angle ϕ could be perceived to be of the
form 2π/K , for some integer K ; otherwise the algorithm
would fail to converge if started from a configuration with
robots located at the vertices of a regular K -gon with unit
length sides, contradicting our assumption. Thus, if the error
in angle perception is such that the angleϕ could be perceived
to have this special form, some motion of the robot at Q is
forced.

Our assumption about error in angle perception is such that
the true turn angle ϕ could be perceived as anything in the
range [ϕ(1−λ), ϕ(1+λ)], for some positive constant λ < 1.
Since, as we will see, the turn angle in all configurations to
be collapsed, is at mostψ , it will suffice to chooseψ ≤ 2π

�1/λ�
to guarantee that an angle of special form exists in the range
[ϕ(1−λ), ϕ]. This follows because, when K ≥ �1/λ�, 2πK ≤
ϕ ≤ 2π

K−1 implies (1 − λ)ϕ ≤ 2π
K .

Observation 9 It is worth noting that if integer M is greater
than 4π

λϕ0
, then there must exist angles 2π i

M and 2π(i+1)
M both

in the range [ϕ(1 − λ), ϕ]. This means that if the algorithm
chooses not to move the robot at point Q (when activated)
when the turn angle is perceived to be 2π i

M then it must
move the robot at point Q (when activated) when the turn
angle is perceived to be 2π(i+1)

M . Otherwise, we could con-
struct another polygonal placement with 2M edges (forming
what we call a semi-regular polygon) that alternate a 2π(i+1)

M
counter-clockwise turnwith a 2π i

M clockwise turn, fromwhich
the algorithm would fail to move, and hence fail to converge.
Thus our assumption “(ii) ifA solves Point Convergence
on all configurations of robots that form a regular polygon
(even if this requires the aid of a benevolent scheduler)” can
be replaced by the much weaker assumption “(ii) ifA solves
Point Convergence on some sufficiently large configura-
tion of robots that forms a semi-regular polygon (even if this
requires the aid of a benevolent scheduler)”

8.2.2 Collapsing thin triangles

It is not enough to know that motion can be forced by
an adversary. We also need to demonstrate that (i) motion is
productive, in the sense that it eventually leads to essential

Fig. 21 Robot located at Q may be forced to move

co-linearity 16 with neighbours, and (ii)motion preserves dis-
tance to point A, up to some small additive error, proportional
to angle ϕ and the distance moved.

Here again, it helps to consider a triple of robots is in a con-
figuration like that illustrated in Fig. 21, where the distances
|RQ| and |QP| are both perceived as 1 by the robot at Q. We
know that the robot at location Q (when activated) is forced to
move, and its intended destination must lie within the green
lens; otherwise, such a move would result in a disconnected
visibility graph if this were the full initial configuration.

Any motion only leads to a configuration with smaller
turn angle ϕ. (This is true even if the motion takes Q beyond
the midpoint of the lens). Since the new turn angle ϕ′ could
continue to be perceived as being at least ϕ0 as long as ϕ′ >

ϕ0/(1 + λ), it follows that repeated activation of the same
robot will keep it inside the lens and eventually bring it to a
position Q′ of essential co-linearity with its neighbours (i.e
with a turn angle at most ϕ0), provided that the distances to
the neighbouring robots continues to be perceived at 1.

Any point Q′ of co-linearity within the lens has distance
� at most 2 sin(ϕ/4), which is at most ϕ/2, from Q. Fur-
thermore, the distance from Q′ to both of the normals NRQ

and NQP is at most � sin ϕ. From this it follows that the
distance from Q′ to any point D at or beyond R on the ray
from Q through R satisfies |DQ|−ϕ2/2 ≤ |DQ|−� sin ϕ <

|DQ′| < |DQ|. In particular, once the robot at Q has reached
a position of essential co-linearitywith its neighbours, its dis-
tance frompoint A, the base point of our global configuration,
has not changed by more than ϕ2/2.

16 To simplify the argument, we ignore the fact that “essential co-
linearity” is not exactly the same as co-linearity. This is justified by
the fact that, as we will demonstrate, robots can be moved to become
arbitrarily close to co-linear, and the extra work involved in carrying
insignificant error terms would not make the argument stronger or more
illuminating in any measurable way.
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Fig. 22 Recursive collapse of a sliver

8.2.3 Flattening slivers

A sliver (see Fig. 22a, for a generic example) is iteratively
flattened by first (i) moving the endpoint Q of the first chord
until it is (essentially) co-linear with its neighbours R and P ,
collapsing the associated triangle (see Fig. 22b), as described
in the preceding subsection, then (ii) recursively flattening
the newly created sliver ARQ′ (see Fig. 22c), and finally
(iii) continuing to flatten the semi-flattened sliver AQ′P (see
Fig. 22d).

It remains to argue that the change in the distance between
the location of robot X j and A, even though it may accumu-
late through a long sequence of triangle collapses, does not
sum to more than 4ψ2. To see this we observe that:

(i) all slivers formedby successive chords in the initial place-
ment have turn angle ψ ;

(ii) the successively narrower slivers (the green slivers in
Fig. 22a, d) that arise in flattening any initial sliver have
turn angles that decrease by at least a factor of two (since
(π − � AQ′P) < � Q′RQ = (π − � RQP)/2)

(iii) the sliver that arises after the first triangle collapse (the
blue sliver in Fig. 22c) has a turn angle (π −� ARQ′) that
is exactly one half of that its parent sliver (π − � RQP);
and more generally the slivers that arise in the t th level
of recursive sliver flattening have a turn angle that is a
fraction 1/2t of that of its parent sliver.

It follows that the change in distance from A associated with
the motion of robot X j in the course of moving it from its
location on chord APi to its location on chord APi+1 is at

most
∑

t≥0(
ψ

2i− j+t )
2/2 <

ψ2

2i− j . Hence the total deviation of

X j from its initial distance d j is at most
∑

i≥ j
ψ2

2i− j < 2ψ2.
In conclusion, we have established the following:

Theorem 2 The Point Convergence task is not solvable
in the Async or NestA scheduling models using natural
(hull diminishing) and modestly error-tolerant algorithms.

Together Theorems 1 and 2 show that:

Corollary 1 The Point Convergence task provides a sep-
aration in the power of bounded and unbounded asynchrony,
for realistic robots.

Observation 10 Building on Observation 9, it follows that
the impossibility result of this section holds even if the num-
ber of robots n is known to the algorithm, provided (i) n is
sufficiently large and (ii) there is a positive constant ζ0 such
that the distance ζ is at least ζ0, for all n.

9 Summary and conclusion

We have studied the well-known Point Convergence task
for autonomous mobile robots with bounded visibility. Con-
nectivity, realized through visibility, plays a fundamental role
in all known algorithms for Point Convergence in this
setting: it is typically assumed that the visibility graph of
the initial robot configuration is connected, and a central
algorithm design constraint is the preservation of visibility
between pairs of robots. Indeed all previous algorithms solve
the apparently more restricted task, which we call Cohesive
Convergence, that requires the visibility between all ini-
tiallymutually visible robot pairs to be preserved indefinitely.

We have presented a new algorithm (KKNPS) for Cohe-
sive Convergence designed for robots operating within
the k-Async scheduling model, for any constant k, a sig-
nificantly more inclusive scheduling environment than that
assumed by its predecessors. The KKNPS algorithm need
not have exact knowledge of k; an upper bound suffices. In
addition, the KKNPS algorithm makes comparatively weak
assumptions about robot capabilities, including non-rigid
movements and no knowledge of the visibility threshold V ,
which itself need not be sharp. Another significant distin-
guishing feature is the KKNPS algorithm’s tolerance for
limited imprecision in the distances and angles perceived
by the robots, and limited relative error in the realization of
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intended motions. Although formulated for robots moving
in two dimensions, the KKNPS algorithm has a very natural
extension to three dimensions, with somewhatmore involved
correctness proofs. As it happens, the KKNPS algorithm,
without modification, also solves Point Convergence in
the fully asynchronous (Async) scheduling model, when
visibility is unbounded, without depending on the ability to
detect multiplicities in robot locations.

We also establish a complementary result that Cohesive
Convergence cannot be solved in the fully asynchronous
(Async) scheduling environment, assuming that robots are
subject to very limited imprecision in measurements, even
assuming rigid motion and exact knowledge of a sharp
visibility threshold V . Hence, Cohesive Convergence
demonstrates a separation between the power of autonomous
robots operating in a scheduling models with arbitrarily
high but bounded asynchrony (k-Async), and those oper-
ating in the presence of unbounded asynchrony (Async).
As a special case, this also provides a positive answer to
a long-standing open question: whether robots operating in
a semi-synchronous (SSync) scheduling environment are
strictly more powerful than those operating in a fully asyn-
chronous (Async) scheduling environment.

Our results leave open several natural questions. Among
these we note:

1. Are there problems that serve to distinguish the power of
robots operating in the k-Async and SSync scheduling
environments?

2. Is (Cohesive) Point Convergence solvable in the
fully asynchronous (Async) scheduling environment if
there is no error in perception or motion, or if error is
restricted to some arbitrarily small relative quantity aris-
ing from motion alone?

3. From our investigation and from the literature, it turns
out to be natural to consider Cohesive Convergence
rather than simply Point Convergence. However, it is
not clear whether hull-diminishing or weakly cohesive
algorithms, as natural as they may be, can actually be
avoided. In general, understandingwhether the resolution
of Point Convergence necessarily solves Cohesive
Convergence as well remains an open question.

As future work, it would be interesting to extend our
results to consider robots with non-zero extent, as in the fat
robots studied in [16, 45, 46]. Other natural constraints worth
investigating include occlusion, as in [4, 7], and collision
avoidance, as in [43].
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