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Abstract
How to efficiently and reliably spread information in a system is one of the most fundamental problems in distributed
computing. Recently, inspired by biological scenarios, several works focused on identifying the minimal communication
resources necessary to spread information under faulty conditions. Here we study the self-stabilizing bit-dissemination
problem, introduced by Boczkowski, Korman, and Natale in [SODA 2017]. The problem considers a fully-connected network
of n agents, with a binary world of opinions, one of which is called correct. At any given time, each agent holds an opinion
bit as its public output. The population contains a source agent which knows which opinion is correct. This agent adopts the
correct opinion and remains with it throughout the execution.We consider the basicPULLmodel of communication, in which
each agent observes relatively few randomly chosen agents in each round. The goal of the non-source agents is to quickly
converge on the correct opinion, despite having an arbitrary initial configuration, i.e., in a self-stabilizing manner. Once the
population converges on the correct opinion, it should remain with it forever. Motivated by biological scenarios in which
animals observe and react to the behavior of others, we focus on the extremely constrained model of passive communication,
which assumes that when observing another agent the only information that can be extracted is the opinion bit of that agent.
We prove that this problem can be solved in a poly-logarithmic in n number of rounds with high probability, while sampling
a logarithmic number of agents at each round. Previous works solved this problem faster and using fewer samples, but they
did that by decoupling the messages sent by agents from their output opinion, and hence do not fit the framework of passive
communication. Moreover, these works use complex recursive algorithms with refined clocks that are unlikely to be used by
biological entities. In contrast, our proposed algorithm has a natural appeal as it is based on letting agents estimate the current
tendency direction of the dynamics, and then adapt to the emerging trend.

1 Introduction

1.1 Background andmotivation

Disseminating information from one or several sources to
the whole population is a fundamental building block in a
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myriad of distributed systems [16, 18, 21, 32, 34], including
in multiple natural systems [28, 38, 39]. This task becomes
particularly challenging when the system is prone to faults
[15, 25, 29, 30], or when the agents or their interactions are
constrained [5, 14]. Among others, these issues find rele-
vance in insect populations [38], chemical reaction networks
[17], and mobile sensor networks [41]. In particular, in many
biological systems, the internal computational abilities of
individuals are impressively diverse, whereas the commu-
nication capacity is highly limited [10, 28, 38]. An extreme
situation, often referred to as passive communication [40],
is when information is gained by observing the behavior of
other animals, which, in some cases, may not even intend to
communicate [19, 33]. Such public information can reflect
on the quality of possible behavioral options, hence allowing
to improve fitness when used properly [20].

Consider, for example, the following scenario that serves
as an inspiration for our model. A group of n animals is scat-
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tered around an area searching for food. Assume that one side
of the area, say, either the eastern side or the western side, is
preferable (e.g., because it containsmore food or because it is
less likely to attract predators). However, only a few animals
knowwhich side is preferable. These knowledgeable animals
will therefore spend most of their time in the preferable side
of the area. Other animals would like to exploit the knowl-
edge held by the knowledgeable animals, but they are unable
to distinguish them from others. Instead, what they can do,
is to scan the area in order to roughly estimate how many
animals are on each side, and, if they wish, move between
the two sides. Can the group of non-knowledgeable animals
manage to locate themselves on the preferable side relatively
fast, despite initially being spread in an arbitrary way while
being completely uncorrelated?

The scenario above illustrates the notion of passive com-
munication. The decision that an animal must make at any
given time is to specify on which side of the area it should
forage. This choice would be visible by others, and would
in fact be the only information that an animal could reveal.
Moreover, it cannot avoid revealing it. Knowledgeable ani-
mals have a clear incentive to remain on the preferable side,
promoting this choice passively. On the other hand, unin-
formed animals may choose a side solely for communication
purposes, regardless of which they think is best. However,
such communication has to be limited in time, since all ani-
mals need to eventually converge towards the desirable side.

1.2 Informal description of the problem

This paper studies the self-stabilizing bit-disseminationprob-
lem, introduced by Boczkowski, Korman, and Natale in [14],
with the aim of solving it using passive communication. The
problem considers a fully-connected network of n agents,
and a binary world of opinions, say {0, 1} (in the motivating
example above, the opinion corresponds to being either on
the eastern side of an area, or the western side). One of these
opinions is called correct and the other is called wrong. Exe-
cution proceeds in synchronous rounds (though agents do
not have knowledge about the round number). At any given
round t , each agent i holds an opinion bit ∈ {0, 1} (viewed as
its output variable). The population contains one source agent
which knows which opinion is correct. This agent adopts the
correct opinion and remains with it throughout the execution.
The goal of the remaining agents, i.e., the non-source agents,
is to converge on the opinion held by the source. Because
the source does not change its opinion, it may be thought
of as representing the environment and thus, not participat-
ing in the protocol. Instead, the protocol is executed by the
non-source agents.

We study the basic PULL model of communication [15,
21, 34], in which in each round, each agent sees the infor-
mation held by � other agents, chosen uniformly at random,

where � is small compared to n. Although the sampling is
done by non-source agents, the � random agents are chosen
from the whole population of agents (including the source).
Importantly, however, agents are unable to distinguish the
case of sampling the source from the case of sampling a
non-source agent. Specifically, we consider the passive com-
munication model which assumes that the only information
that can be obtained by sampling an agent is its opinion bit.

The convergence time of the protocol corresponds to the
first round that the configuration of opinions reached a con-
sensus on the correct opinion, and remained unchanged
forever after.

We consider the self-stabilization framework [4, 24] to
model the lack of global organization inherent to biological
systems. We assume that the source has pertinent knowledge
about which opinion is correct. Conversely, all other agents
cannot be sure of their opinion, hence, we assume that their
opinion may be corrupt, and even set by an adversary. In the
self-stabilizing setting, the goal of the non-source agents is
to quickly converge on the correct opinion, despite having an
arbitrary initial configuration, set by an adversary.

Our framework and proofs could be extended to allow for
a constant number of sources, however, in this case it must
be guaranteed that all source agents agree on which opinion
is the correct one. Indeed, as mentioned in Sect. 1.4, when
there are conflicts between sources, the problem cannot be
solved efficiently in the passive communication model, even
if significantly more agents support one opinion.

1.3 Previous works

The self-stabilizing bit-dissemination problem was intro-
duced in [14], with the aim of minimizing the message size.
As mentioned therein, if all agents share the same notion of
global time, then convergence can be achieved in O(log n)

time w.h.p. even under passive communication. The idea is
that agents divide the time horizon into phases of length
T = 4 log n. In the first half of each phase, if a non-source
agent observes an opinion 0, then it copies it as its new opin-
ion, but if it sees 1 it ignores it. In the second half, it does the
opposite, namely, it adopts the output bit 1 if and only if it
sees an opinion 1. Now, consider the first phase. If the source
supports opinion 0 then at the end of the first half, every out-
put bit would be 0w.h.p., and the configurationwould remain
that way forever. Otherwise, if the source supports 1, then at
the end of the second half all output bits would be 1 w.h.p.,
and remain 1 forever.

The aforementioned protocol indicates that the self-
stabilizing bit-dissemination problem could be solved effi-
ciently by running a self-stabilizing clock-syncronization
protocol in parallel to the previous example protocol. This
parallel execution amounts to adding one bit to the mes-
sage size of the clock synchronization protocol. The main
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technical contribution of [14], as well as the focus of the
subsequent work [11], was solving the self-stabilizing clock-
synchronization using as few as possible bits per message.
In fact, the authors in [11] managed to do so using 1-bit
messages. This construction thus implies a solution to the
self-stabilizing bit-dissemination problem using 2 bits per
message. A recursive procedure, similar to the one estab-
lished in [14], then allowed to further compress the 2 bits
into 1-bit messages.

Importantly, however, the protocols in [11, 14] do not fit
the framework of passive communication. Indeed, in the cor-
responding protocols the message revealed by an agent is not
necessarily the same as its opinion bit, which is kept in the
protocols of [11, 14] as an internal variable. Moreover, these
works use complex recursive algorithms with refined clocks
that are unlikely to be used by biological entities. Instead,
we are interested in identifying algorithms that have a more
natural appeal.

1.4 On the difficulties resulting from using passive
communication

At first glance, to adhere to the passive communication
model, onemay suggest that agents simply choose their opin-
ion to be the 1-bit messages used in [11], just for the purpose
of communication, until a consensus is reached, and then
switch their opinions to be the correct bit, once it is identified.
There are, however, two difficulties to consider regarding
this approach. First, in our setting, the source agent does
not change its opinion (which, in the case of [11], may pre-
vent the protocol from reaching a consensus at all). Second,
even assuming that the protocol functions properly despite
the source having a stable opinion, it is not clear how to tran-
sition from the “communication” phase (where agents use
their opinion to operate the protocol, e.g., for synchronizing
clocks) to the “consensus” phase (where all opinions must
be equal to the correct bit at every round). For instance, the
first agents to make the transition may disrupt other agents
still in the first phase.

To further illustrate the difficulty of self-stabilizing infor-
mation spread under passive communication, let us consider
a more general problem called majority bit-dissemination.
As explained in [14], this problem could be solved effi-
ciently when separating the messages from the opinions but,
as shown below, could not be solved efficiently under pas-
sive communication. In this problem, the population contains
k ≥ 1 source agents which may not necessarily agree on
which opinion is correct. Specifically, in addition to its opin-
ion, each source-agent stores a preference bit ∈ {0, 1}. Let ki
be thenumber of source agentswhosepreference is i .Assume
that sufficiently more source agents share a preference i
over 1− i (e.g., at least twice as many), and call i the correct
bit. Then, w.h.p., all agents (including the sources that might

have the opposite preference) should converge their opinions
on the correct bit in poly-logarithmic time, and remain with
that opinion for polynomial time. The authors of [14] showed
that the self-stabilizing majority bit-dissemination problem
could be solved in logarithmic time, using messages of size
3 bits, and the authors of [11] showed how to reduce the
message size to 1. As mentioned, the messages in these pro-
tocols do not necessarily coincide with the opinions, which
were stored as internal variables, and hence the protocols in
[11, 14] are not based on passive communication. In fact, the
following simple argument implies that this problem could
not be solved in poly-logarithmic time under the model of
passive communication, even if the sample size is n (i.e., all
agents are being observed in each round)!

Assume by contradiction that there exists a self-stabilizing
algorithm that efficiently solves themajority bit-dissemination
problem using passive communication. Let us run this algo-
rithm on a scenario with k1 = n/2 and k0 = n/4. Since
k1 � k0, then after a poly-logarithmic time, w.h.p., all agents
would have opinion 1, and would remain with that opinion
for polynomial time. Denote by t0 the first time after con-
vergence, and let s denote the internal state of one of the
n/4 non-source agents at time t0. Similarly, let s′ denote the
internal state at time t0 of one of the n/4 source agents with
preference 0.Nowconsider a second scenario,wherewehave
k0 = n/4 and k1 = 0. An adversary sets the internal states
of agents (including their opinions) as follows. The internal
states of the k0 source agents (with preference 0) are all set to
be s′. Moreover, their opinions (that these sources must pub-
licly declare on) are all 1. Next, the adversary sets the internal
states of all non-source agents to be s, and their opinions to
be 1. We now compare the execution of the algorithm in the
first scenario (starting at time t0) with the execution in the
second scenario (starting at time 0, i.e., after the adversary
manipulated the states). Note that both scenarios start with all
opinions being 1. Hence, since we consider the passive com-
munication model, all observations in the first round of the
corresponding executions, would be unanimously 1. More-
over, as long as no agent changes its opinion in both scenarios,
all observations would continue to be unanimously 1. Fur-
thermore, it is given that from time t0, w.h.p., all agents in the
first scenario remain with opinion 1 for a polynomially long
period. Therefore, using a union bound argument, it is easy to
see that also in the second scenario, w.h.p., all agents would
remain with opinion 1 for polynomial time. This contradicts
the fact that in the second scenario, w.h.p., the agents should
converge on the opinion 0 in poly-logarithmic time.

Note that the aforementioned impossibility result does not
preclude the possibility of solving the self-stabilizing bit-
dissemination problem in the passive communication model,
which does not involve a conflict between sources.
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1.5 Problem definition

Let Y = {0, 1} be the opinion space. The population con-
tains n agents, for some n ∈ N, with one specific agent, called
source, and n−1 non-source agents. The source agent holds
an opinion z ∈ Y which is called the correct opinion. Infor-
mally, the source agent may be observed by other agents but
does not actively participate in the protocol. In particular, its
opinion, which is assumed to be set by an adversary, remains
fixed throughout the execution. Instead, the protocol is run
by the set I = {1, . . . , n − 1} of non-source agents.

Execution proceeds in discrete, synchronous rounds t =
0, 1, . . .. Each non-source agent is seen as a state machine
over Y × �, where � depends on the protocol. We
write γ

(i)
t = (Y (i)

t , σ
(i)
t ) ∈ Y × � to denote the state of

Agent i in round t . Specifically, we refer to Y (i)
t ∈ Y as

the opinion of Agent i in round t , and to σ
(i)
t as its inter-

nal memory state. A configuration C ∈ Y × (Y × �)I of
the system consists of the correct opinion, together with the
state of every non-source agent. We write Ct to denote the
configuration of the system in round t .

Non-source agents do not “communicate” in the classical
sense. Instead, in every round t , they consecutively perform
the two following operations. Note that both operations occur
within a single round. Hence, since we are interested in the
measure of the number of rounds, we assume that these oper-
ations occur instantaneously.

1. Sampling. Every agent i receives an opinion sample
S(i)
t ∈ Y�, where � is a parameter called sample size.

Every element in S(i)
t is equal to the correct opinion z with

probability 1/n, and is equal to the opinionof a non-source
agent chosen uniformly at random (u.a.r) in I otherwise.
This is equivalent to assuming that in each sample the
opinion of an agent is sampled uniformly at random,
where we consider all agents, including the source, as
having equal probability of being sampled. We assume
that all elements in S(i)

t are drawn independently and that

the opinion samples
{
S(i)
t

}
i∈I are also independent of

each other.
2. Computation. Every agent i adopts a new state γ

(i)
t+1,

based on its previous state γ
(i)
t and the opinion sam-

ple S(i)
t , according to a transition function

f : (Y × �) × Y� �→ (Y × �),

which depends on the protocol. The transition function
might be randomized.

An execution of a protocol on an initial configuration C0 is a
random sequence of configurations {Ct }t∈N, where every Ct

is obtained from Ct−1 by applying the two aforementioned
steps simultaneously on all (non-source) agents in parallel.

Using the terminology from [24], an execution is consid-
ered legal if, for every round t and every non-source agent i ,
the opinion of Agent i in round t is equal to the correct opin-
ion, i.e.,Y (i)

t = z. A configurationC is safe if every execution
starting from C is legal. We say that an event happens with
high probability (w.h.p.) if it happenswith probability at least
1 − 1/n2 as long as n is large enough. A protocol is said to
solve the self-stabilizing bit-dissemination problem in time T
if, for any initial configuration C0, the T ’th configuration in
an execution, namelyCT , is safew.h.p., where the probability
is taken over the possible executions.
Important comments. Although our model is now already
well-defined, let us make a few remarks to clarify it further.

• The indices are used for analysis purposes, and it should
be clear that a non-source agent is neither aware of its
index, nor of the roundnumber.Moreover, upon receiving
an opinion sample St , it is not aware ofwhere the opinions
in the sample come from (andwhether they are observing
the correct opinion directly).

• Note that we do not require agents to irrevocably commit
to their final opinion, but rather that they eventually con-
verge on the correct opinion without necessarily being
aware that convergence has happened.

• As mentioned, we consider the source as an agent that
holds the correct opinion z throughout the execution.
Despite the word “agent”, the source does not have an
internalmemory state, and does not run the protocol. This
is justified by the fact that in our interpretation, the source
represents an informed individual, unwilling to cooper-
ate, and incentivized to always keep the correct opinion.
Alternatively, the source can be thought of as represent-
ing the environment, and hence, sampling the source is
equivalent to sampling the environment. Importantly, as
made clear in our problem definition, self-stabilization
is defined only with respect to the non-source agents. In
other words, at the beginning of an execution, an adver-
sary may choose the opinion Y (i)

0 and internal memory

state σ
(i)
0 of every non-source agent, as well as the cor-

rect opinion z; Hence, since in our protocols the internal
memory state of non-source agents does not include the
possibility of indicating that the agent is a source, the
adversary cannot “trick” non-source agents into believ-
ing that they are the source. The source itself should be
seen as a part of the environment that the non-source
agents are facing.

• Onemay consider a systemwhere non-source agents suf-
fer from transient faults that corrupt their internal states.
As is common in self-stabilization contexts, we think of
the initial configuration C0 as the last configuration for
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which a transient fault has occurred. In this respect, the
convergence time corresponds to the time until the system
fully recovers from the last transient fault.

• Our model is closely related to the message-passing set-
ting, where the communication topology would be the
complete graph over all agents (including the source).
However, agents do not choose whether and where to
send messages. Instead, following the PULL model of
communication, (non-source) agents observe � neigh-
bors chosen uniformly at random. Note that, following
the passive communication assumption, the only infor-
mation that is revealed upon observing an agent is its
opinion.

• Since all opinion samples are random by definition (and
not chosen by an adversary), there is no need for any
fairness assumption. Instead, our results will typically
hold w.h.p.

Additional notations. For any k ∈ N and p ∈ [0, 1], we
write B(p) (resp. Bk(p)) to denote the Bernoulli (resp.
Binomial) distributionwith parameter p (resp. (k, p)).More-
over, we write P(Bk(p) > Bk(q)) to represent P(X > Y )

where X ∼ Bk(p),Y ∼ Bk(q), and X and Y are indepen-
dent. Finally, we write

xt := z + #{i ∈ I ,Y (i)
t = 1}

n

to denote the proportion of agents with opinion 1 in round t
among all agents (including the source agent).

1.6 Our results

We propose a simple algorithm that efficiently solves the
self-stabilizing bit-dissemination problem in the passive
communication model. The algorithm has a natural appeal
as it is based on letting agents estimate the current tendency
direction of the dynamics, and then adapt to the emerging
trend. More precisely (but still, informally), each non-source
agent counts the number of agents with opinion 1 it observes
in the current round and compares it to the number observed
in the previous round. If more 1’s are observed now, then
the agent adopts the opinion 1, and similarly, if more 0’s
are observed now, then it adopts the opinion 0 (if the same
number of 1’s is observed in both rounds then the agent does
not change its opinion). Intuitively, on the global level, this
behavior creates a persistent movement of the average opin-
ion of the non-source agents towards either 0 or 1, which
“bounces” back when hitting the wrong opinion.

More formally, the protocol uses � = c log n samples, for
a sufficiently large constant c. The internal state space is� =
{0, . . . , �}. For any opinion sample A ∈ Y�, let COUNT(A)

denote the number of 1-opinions in A. The transition function
is as follows:

Input : Yt ∈ Y, σt ∈ � = {0, . . . , �}, St ∈ Y�

1 σt+1 ← COUNT(St ) ;
2 if σt+1 > σt then Yt+1 ← 1 else if σt+1 < σt then Yt+1 ← 0

else Yt+1 ← Yt Output :
(
Yt+1, σt+1

)

As it turns out, one feature of the aforementioned protocol
will make the analysis difficult – that is, that Yt and Yt+1

are dependent, even when conditioning on (xt−1, xt ). This is
because σt is used to compute both Yt and Yt+1. For example,
if the sample St−1 at round t − 1 happens to contain more
1’s, then σt is larger. In this case, Yt has a higher chance
of being 1, and Yt+1 has a higher chance of being 0. For
this reason we introduce a modified version of the protocol
that solves this dependence issue. The idea is to divide the
sample of round t into 2 samples of equal size. One sample
will be used to compare with one sample of round t − 1, and
the other sample will be used to compare with one sample
of round t + 1. Note that this implies that the sample size
is twice as big, however, since we are interested in the case
� = O(log n), this does not cause a problem. This modified
protocol, called Follow the Emerging Trend (FET), is the one
we shall actually analyze. Its transition function is specified
below (Protocol 1).

Protocol 1: Follow the Emerging Trend (FET) at
round t + 1
Input : Yt ∈ Y, σt ∈ � = {0, . . . , �}, St ∈ Y2�

1 Divide St into two vectors S′
t , S

′′
t ∈ Y� of equal size ;

2 σt+1 ← COUNT(S′
t ) ; tmpt+1 ← COUNT(S′′

t ) ;
3 if tmpt+1 > σt then Yt+1 ← 1 else if tmpt+1 < σt then

Yt+1 ← 0 else Yt+1 ← Yt Output :
(
Yt+1, σt+1

)

Note that, although we used time indices for clarity, the
protocol does not require the agents to know t . The following
theorem consists of the main result in the paper. Its proof is
deferred to Sects. 2, 3, 5 and 6.

Theorem 1 Algorithm FET solves the self-stabilizing bit-
dissemination problem in the passive communication model.
It converges in O(log5/2 n) rounds on the correct opinion,
with high probability, while relying on � = �(log n) sam-
ples in each round, and using �(log �) bits of memory per
agent.

The task of discovering and analyzing an algorithm using
less than a logarithmic number of samples (e.g., a constant)
appears challenging and is, therefore, left for future work.
We note, however, that on a practical level, we believe that
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demonstrating the existence of algorithms utilizing logarith-
mic and constant sample sizes offers similar insights into the
capacity of biological systems to efficiently spread informa-
tion reliably.

Provided that � = �(log n), it is worth noting that all
algorithms require �(log n/ log log n) rounds to solve the
bit-dissemination problem (even with active communica-
tions). This is because this is the time needed for merely
spreading information from the source to the whole popula-
tion. More precisely, with fewer rounds, the configurations
in which the source has opinion 0 and 1 are perfectly indis-
tinguishable for a non-empty subset of the agents. Therefore,
although our upper bound on the convergence time of Proto-
col 1 may not be tight, one can only hope to decrease it by
approximately a factor of log3/2 n.

Finally, we consider the more general case with k opin-
ions, for an arbitrary k ∈ N. Importantly, however, we restrict
attention to the case that the agents agree on a labeling of
the opinions. That is, we assume that the set of opinions
is Y = {0, . . . , k − 1}. The case in which there may be con-
flicts in the way agents view the labeling of opinions remains
for future work, see Sect. 8. The following theorem is proved
in Sect. 7.

Theorem 2 Let k be a positive integer and let m = 
log2 k�.
When Y = {0, . . . , k − 1}, there exists a protocol that solves
the bit-dissemination problem in O(log5/2 n) rounds with
high probability, while relying on � = �(log n) samples in
each round and using �(m log �) bits of memory.

Our analysis involves partitioning the configuration space
and subsequently studying the dynamics’ behavior in each
subset, using classical concentration and anti-concentration
results. This approach required us to identify a proper par-
titioning for which the dynamics are analytically tractable
both on each part of the partitioning and in between parts.
While we find this approach interesting and challenging at
times, it is not novel [23]. Moreover, it is anticipated that, in
a specific setting, the method may necessitate customization,
presenting challenges for its reuse in other related problems.

1.7 Other related works

In recent years, the study of population protocols has
attracted significant attention in the distributed computing
community [1–3, 6, 8]. These models often consider agents
that interact under random meeting patterns while being
restricted in both their memory and communication capaci-
ties. While these model are inspired by biological scenarios,
in many cases, the algorithms used appear unlikely to be
employed by biological ensembles. By now, we understand
the computational power of such systems rather well, but
apart from a few exceptions [7], this understanding is lim-
ited to non-faulty scenarios.

The framework of opinion dynamics corresponds to set-
tings of multiple agents, where in each round, each agent
samples one or more agents at random, extracts their opin-
ions, and employs a certain rule for updating its opinion.
The study of opinion dynamics crosses disciplines, and is
highly active in physics and computer science, see review
e.g., in [12]. Many of the models of opinion dynamics can
be considered as following passive communication, since the
information an agent reveals coincides with its opinion. Gen-
erally speaking, however, the typical scientific approach in
opinion dynamics is to start with some simple update rule,
and analyze the resulting dynamics, rather than tailoring an
updating rule to solve a given distributed problem. For exam-
ple, perhaps the most famous dynamics in the context of
interacting particles systems concerns the voter model [36].
In theoretical computer science, extensive research has been
devoted to analyzing the time to reach consensus, follow-
ing different updating rules including the 3-majority [23],
Undecided-State Dynamics [6], and others. In these works,
consensus should be reached either on an arbitrary value, or
on the majority (or plurality) opinion, as evident in the initial
configuration.

In contrast, in many natural settings the group must con-
verge on a particular consensus value that is a function of
the environment. Moreover, agents have different levels of
knowledge regarding the desired value, and the system must
utilize the information held by the more knowledgeable indi-
viduals [9, 35, 37, 39]. As explained in more detail below,
when communication is restricted, and the system is prone
to faults, this task can become challenging.

Propagating information from one or more sources to the
rest of the population has been the focus of amyriad of works
in distributed computing. This dissemination problem has
been studied under various models taking different names,
including rumor spreading, information spreading, gossip,
broadcast, and others, see e.g., [16, 18, 21, 31, 32, 34]. A
classical algorithm in the PULL model spreads the opinion
of the source to all others in�(log n) roundsw.h.p., by letting
each uninformed agent copy the opinion of an informed agent
whenever seeing one for the first time, as observed in, e.g.,
[34]. Unfortunately, this elegant algorithm does not suit all
realistic scenarios, since its soundness crucially relies on the
absence of misleading information. To address such issues,
rumor spreading has been studied under different models of
faults. One line of research investigates the case that mes-
sages may be corrupted with some fixed probability [13,
27]. Another model of faults is self-stabilization [22], where
the system must eventually converge on the opinion of the
source regardless of the initial configuration of states [22].
For example, the algorithm in [34] fails in this setting, since
non-source agents may be initialized to “think” that they
have already been informed by the correct opinion, while
they actually hold the wrong opinion. For an introduction to
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self-stabilizing algorithms, see, e.g., [4, 24], and see [26] for
another work solving self-stabilizing problems using weak
communications.

Finally, it is worth noting that the term “bio-inspired”,
often used in the literature, typically refers to research
focused on applications in artificial intelligence or swarm
robotics. In contrast, our aim is to employ algorithmic tools
to comprehend the behavior of biological ensembles. Con-
sequently, many articles labeled as bio-inspired may be
irrelevant to our context.

2 Proof of Theorem 1: an overview

The goal of this section is to prove Theorem 1. The O(log �)

bits upper bound on the memory complexity clearly follows
from the fact that the internal state space � = {0, . . . , �}
of the FET algorithm (Protocol 1) is only of size � + 1, as
required to memorize the number of 1’s in a sample.

Since the protocol is symmetricwith respect to the opinion
of the source, we may assume without loss of generality that
the source has opinion 1. The closure property is easy to
verify. Indeed, if there exists a round t such that the system
has reached consensus in round t , then all future samples
will be equal to the correct opinion, and by construction of
Protocol 1, this implies that every agent will keep the correct
opinion.

Our goal would therefore be to show that the FET algo-
rithm converges to 1 fast, w.h.p., regardless of the initial
configuration of non-source agents. Note that in order to
achieve running time of O(T ) w.h.p guarantee, is it suffi-
cient to show that the algorithm stabilizes in T rounds with
probability at least 1−1/nε , for some ε > 0. Indeed, because
of the self-stabilizing property of the algorithm, the probabil-
ity that the algorithm does not stabilize within 2T /ε rounds
is at most (1/nε)2/ε = 1/n2.

Recall that xt denotes the fraction of agents with opin-
ion 1 at round t among the whole population (including the
source). We shall extensively use the two dimensional grid
G := {0, 1

n , . . . , n−1
n , 1}2. When analyzing what happens at

round t+2, the x-axis ofG would represent xt , and the y-axis
would represent xt+1.

Observation 1 For any t, conditioning on (xt , xt+1) =
(xt, xt+1), a non-source agent i has opinion 1 on round t +2
w.p.

P

⎛
⎝Y (i)

t+2 = 1

∣∣∣∣∣∣

xt = xt
xt+1 = xt+1

Y (i)
t+1 = Y(i)

t+1

⎞
⎠

= P (B� (xt+1) > B� (xt)) + 1{Y(i)
t+1=1}

·P (B� (xt+1) = B� (xt)) . (1)

Moreover, there are independent binary random variables1

X1, . . . , Xn such that xt+2 is distributed as 1
n

∑
Xi . Even-

tually,

E

(
xt+2

∣∣∣∣
xt = xt

xt+1 = xt+1

)
= P (B� (xt+1) > B� (xt))

+xt+1 · P (B� (xt+1) = B� (xt))

+1

n
(1 − P (B� (xt+1) ≥ B� (xt))). (2)

The proof of Observation 1 is deferred to Sect. 4. A conse-
quenceofObservation1, is that the executionof the algorithm
induces aMarkov chain onG. ThisMarkov chain has a unique
absorbing state, (1, 1), since we assumed the source to have
opinion 1. To prove Theorem 1 we therefore only need to
bound the time needed to reach (1, 1).

2.1 Partitioning the grid into domains

Let us fix δ > 0 (δ should be though of as a very small
constant) and λn = 1

log1/2+δ n
. We partition G into domains as

follows (see illustration on Fig. 1a).

Green1 =
{
(xt , xt+1) xt+1 ≥ xt + δ

}
,

Purple1 =
{
(xt , xt+1)

1/ log n ≤ xt < 1/2 − 3δ, and
(1 − λn) · xt ≤ xt+1 < xt + δ

}
,

Red1 =
{
(xt , xt+1)

1/ log n ≤ xt+1, and
xt < 1/2 − 3δ, and
xt − δ ≤ xt+1 < (1 − λn) · xt

}
,

Cyan1 =
{
(xt , xt+1)

0 ≤ min(xt , xt+1) < 1/ log n, and
xt − δ < xt+1 < xt + δ

}
,

Yellow =
{
(xt , xt+1)

1/2 − 3δ ≤ xt < 1/2 + 3δ, and
1/2 − 4δ ≤ xt+1 ≤ 1/2 + 4δ, and
|xt+1 − xt | < δ

}
.

Similarly, for the former 4 domains, we define Green0,
Purple0, Red0 and Cyan0 to be their symmetric equiva-
lents (w.r.t the point ( 12 ,

1
2 )), and finally define: Green =

Green0 ∪Green1, Purple = Purple0 ∪ Purple1, Red =
Red0 ∪Red1, and Cyan = Cyan0 ∪Cyan1. We shall ana-
lyze each area separately, conditioning on the Markov chain
to be at any point in that area, and focusing on the number of
rounds required to escape the area, and the probability that
this escape is made to a particular other area. Figure1b rep-
resents a sketch of the proof of Theorem 1, which may help
to navigate the intermediate results.

1 In fact, in general, Y (i)
t+2, i ∈ I are not independent conditioned on

(xt , xt+1). This is not a problem since we mainly care about their sum,
but it forces us to introducevariables X1, . . . , Xn in order to use classical
concentration results on their sum.
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Fig. 1 a Partitioning the state
space into domains. The x-axis
(resp., y-axis) represents the
proportion of agents with
opinion 1 in round t
(resp., t + 1). The thick dashed
line at the frontier
between Purple1 and Red1 is
defined by xt+1 = (1 − λn)xt . b
Sketch of the proof of
Theorem 1. All transitions w.p.
at least 1 − 1/n�(1). The
process stays in a domain for as
many rounds as indicated on the
corresponding self-loop w.p. at
least 1 − 1/n�(1), and at most a
constant number of rounds when
no self-loop is represented. The
source is assumed to have
opinion 1

As it happens, the dynamics starting from a point
(xt , xt+1) highly depends on the difference between xt
and xt+1. Roughly speaking, the larger |xt+1−xt | is the faster
is the convergence. For this reason, we refer to |xt+1 − xt | as
the speed of the point (xt , xt+1). (This could also be viewed
as the process’ “derivative” at time t .)

2.2 Dynamics at different domains

Let us now give an overview of the intermediate results. First
we consider Green, in which the speed of points is large. In
Lemma 1 we show that from points in that domain, non-
source agents reach a consensus in just one round w.h.p. In
particular, if the Markov chain is at some point in Green1,
then the consensus will be on 1, and we are done. If, on
the other hand, the Markov chain is in Green0, then the
consensus of non-source agents would be on 0. As we show
later, in that case the Markov chain would reach Cyan1 in
one round w.h.p.

Lemma 1 (Green area) Assume that c is sufficiently large.
If (xt , xt+1) ∈ Green1, then w.h.p., for every non-source
agent i , Y (i)

t+2 = 1. Similarly, if (xt , xt+1) ∈ Green0, then

w.h.p., for every non-source agent i , Y (i)
t+2 = 0.

The proof of Lemma 1 follows from a simple applica-
tion of Hœffding’s inequality, and is deferred to Sect. 6.1.
Next, we consider the area Purple, and show that the popu-
lation goes from Purple to Green in just one round, w.h.p.
In Purple, the speed is relatively low, and xt and xt+1 are
quite far from 1/2. On the next round, we expect xt+2 to
be close to 1/2, thus gaining enough speed in the process
to join Green. The proof of the following lemma is rather
straightforward, and is deferred to Sect. 6.2.

Lemma 2 (Purple area) Assume that c is sufficiently large.
If (xt , xt+1) ∈ Purple1, then (xt+1, xt+2) ∈ Green1 w.h.p.

Similarly, if (xt , xt+1) ∈ Purple0, then (xt+1, xt+2) ∈
Green0 w.h.p.

Next, we bound the time that can be spent in Red, by
using the fact that as long as the process is in Red1 (resp.,
Red0), xt (resp., (1 − xt )) decreases (deterministically) by
at least a multiplicative factor of (1 − λn) at each round.
After a poly-logarithmic number of rounds, theMarkov chain
must leave Red and in this case, we can show that it cannot
reach Yellow right away. The proof of the following lemma
is again relatively simple, and is deferred to Sect. 6.3.

Lemma 3 (Red area) Consider the case that (xt0 , xt0+1) ∈
Red for some round t0, and let t1 = min{t ≥ t0, (xt , xt+1)

/∈ Red}. Then t1 < t0 + log1/2+2δ n, and (xt1 , xt1+1) /∈
Yellow ∪ Red.

Next, we bound the time that can be spent in Cyan1. (A
similar result holds for Cyan0.) Roughly speaking, this area
corresponds to the situation in which, over the last two con-
secutive rounds, the population is in an almost-consensus
over the wrong opinion. In this case, many agents (a constant
fraction) see only 0 in their corresponding samples in the lat-
ter round. As a consequence, everyone of them who will see
at least one opinion 1 in the next round, will adopt opinion
1. We can expect this number to be of order � = O(log n).
This means that, as long as the Markov chain is in Cyan1,
the value of xt would grow by a logarithmic factor in each
round. This implies that within log(n)/ log(log n) rounds,
the Markov chain will leave the Cyan1 area and go to
Green1 ∪ Purple1. Informally, this phenomenon can be
viewed as a form of “bouncing” — the population of non-
sources reaches an almost consensus on the wrong opinion,
and “bounces back”, by gradually increasing the fraction of
agents with the correct opinion, up to an extent that is suffi-
cient to enter Green1∪Purple1. The proof of the following
lemma is given in Sect. 6.4.
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Lemma 4 (Cyan area) Consider the case that (xt0 , xt0+1) ∈
Cyan1 for some round t0, and let t1 = min{t ≥ t0, (xt , xt+1)

/∈ Cyan1}. Thenwith probability at least 1−1/n�(1) wehave
(1) t1 < t0 + O(log(n)/ log(log n)), and (2) (xt1 , xt1+1) ∈
Green1∪Purple1. Moreover, the same holds symmetrically
for Cyan0.

Eventually,we consider the central area, namely,Yellow,
where the speed is very low, and bound the time that can be
spent there. The proof of the following lemma is more com-
plex than the previous ones, and it appears in Sect. 5.

Lemma 5 (Yellowarea) Consider the case that (xt0 , xt0+1) ∈
Yellow. Then, w.h.p.,

min{t > t0 s.t. (xt , xt+1) /∈ Yellow} < t0 + O(log5/2 n).

2.3 Assembling the lemmas

Given the aforementioned lemmas, we have everything we
need to prove our main result.

Proof of Theorem 1 Recall that without loss of generality, we
assumed the source to have opinion 1, and that we already
checked the closure property. The reader is strongly encour-
aged to refer to Fig. 1b to follow the ensuing arguments more
easily.

• Let t1 = min{t ≥ 0, (xt , xt+1) /∈ Yellow}. If (x0, x1) ∈
Yellow, we apply Lemma 5 to get that

{
t1 < O(log5/2 n) w.h.p., and

(xt1 , xt1+1) ∈ Red ∪ Cyan ∪ Purple ∪ Green.
(3)

Else, (x0, x1) /∈ Yellow so t1 = 0, and Eq. (3) also
holds.

• Let t2 = min{t ≥ t1, (xt , xt+1) /∈ Red}. If (xt1 , xt1+1)

∈ Red, we apply Lemma 3 to get that

{
t2 < t1 + log1/2+2δ n w.h.p., and

(xt2 , xt2+1) ∈ Cyan ∪ Purple ∪ Green.
(4)

Else, (xt1 , xt1+1) /∈ Red so t1 = t2, and by Eq. (3), it
implies that Eq. (4) also holds.

• Let t3 = min{t ≥ t2, (xt , xt+1) /∈ Cyan}. If (xt2 , xt2+1)
∈ Cyan, we apply Lemma 4 to get that{
t3 < t2 + log(n)/ log(log n), and

(xt3 , xt3+1) ∈ Purple ∪ Green w.p. ≥ 1 − 1/n�(1).
(5)

Else, (xt2 , xt2+1) /∈ Cyan so t2 = t3, and by Eq. (4), it
implies that Eq. (5) also holds.

• Let t4 = min{t ≥ t3, (xt , xt+1) ∈ Green}. By Lemma 2,
and by Eq. (5), we have that t4 = t3 or t4 = t3 + 1 w.h.p.

If (xt4 , xt4+1) ∈ Green1, then by Lemma 1 the consensus is
reached on round t4+1. Otherwise, if (xt4 , xt4+1) ∈ Green0,
by Lemma 1, we obtain that xt4+2 = 1/n w.h.p. (meaning
that all agents have opinion 0 except the source). Therefore, in
this case, either (xt4+1, xt4+2) ∈ Green0 or (xt4+1, xt4+2) ∈
Cyan1 (because for a point (xt , xt+1) to be in any other
area, it must be the case that xt+1 ≥ 1/ log(n), by defini-
tion). In the former case, we apply Lemma 1 again to get
that xt4+3 = 1/n w.h.p., which implies that (xt4+2, xt4+3) =
(1/n, 1/n) ∈ Cyan1. As we did before, we apply Lemma 4,
2 and 1 to show that, with probability at least 1 − 1/n�(1),
the system goes successively to Purple1 ∪ Green1, then to
Green1, and eventually reaches the absorbing state (1, 1) in
less than log(n)/ log(log n) + 2 rounds.

Altogether, the convergence time is dominated by t1, and
is hence O(log n)5/2 with probability at least 1 − 1/nε , for
some ε > 0. As mentioned, this implies that for any given
c > 1, the algorithm reaches consensus in O(log n)5/2 time
with probability at least 1 − 1/nc. In other words, there
exists T = O(log5/2 n) such that w.h.p., the configura-
tion CT of the system in round T is safe, which concludes
the proof of Theorem 1. ��

3 Probabilistic tools–competition between
coins

Consider two coins such that one coin has a greater proba-
bility of yielding “heads”, and toss them k times each.

3.1 Lower bounds on the probability that the best
coin wins

In Lemmas 6 and 7 we aim to lower bound the probability
that the more likely coin yields more “heads”, or in other
words, we lower bound the probability that the favorite coin
wins. Lemma 6 is particularly effective when the difference
between p and q is sufficiently large. Its proof is based on a
simple application of Hœffding’s inequality.

Lemma 6 For every p, q ∈ [0, 1] s.t. p < q and every inte-
ger k, we have

P (Bk (p) < Bk (q)) ≥ 1 − exp

(
−1

2
k(q − p)2

)
.

Proof Let Yi , i ∈ {1, . . . , k} be i.i.d. random variables with

Yi =

⎧⎪⎨
⎪⎩

1 w.p. p(1 − q),

0 w.p. pq + (1 − p)(1 − q),

−1 w.p. (1 − p)q.
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Then

P (Bk (p) ≥ Bk (q)) = P

(
k∑

i=1

Yi ≥ 0

)

= P

(
1

k

k∑
i=1

(Yi − (p − q)) ≥ (q − p)

)
.

Since each Yi is bounded, andE(Yi ) = (p−q), we can apply
Hœffding’s inequality (Theorem 5) to get

P (Bk (p) ≥ Bk (q)) ≤ exp

(
−2k2(q − p)2

4k

)

= exp

(
−1

2
k(q − p)2

)
.

��
Lemma 6 is not particularly effective when p and q are

close to each other. For such cases, we shall use the following
lemma.

Lemma 7 Let λ > 0. There exist ε = ε(λ) and K = K (λ),
s.t. for every p, q ∈ [1/2 − ε, 1/2 + ε] with p < q, and
every k > K,

P (Bk (p) < Bk (q)) >
1

2
+ λ · (q − p)

−1

2
P (Bk(p) = Bk(q)) .

Proof For every p, q ∈ [0, 1], we have

P (Bk (q) < Bk (p))

=
k∑

d=1

P (Bk(q) = Bk(p) − d)

=
k∑

d=1

P (|Bk(q) − Bk(p)| = d)

· P (Bk(q) = Bk(p) − d)

P (|Bk(q) − Bk(p)| = d)

=
k∑

d=1

P (|Bk(q) − Bk(p)| = d)

· P (Bk(q) = Bk(p) − d)

P (Bk(q) = Bk(p) − d) + P (Bk(p) = Bk(q) − d)
,

so

P (Bk (p) < Bk (q)) − P (Bk (q) < Bk (p))

=
k∑

d=1

P (|Bk(q) − Bk(p)| = d)

·P (Bk(p) = Bk(q) − d) − P (Bk(q) = Bk(p) − d)

P (Bk(p) = Bk(q) − d) + P (Bk(q) = Bk(p) − d)
. (6)

Let us compute P (Bk(q) = Bk(p) − d):

P (Bk(q) = Bk(p) − d)

=
k−d∑
i=0

P (Bk(q) = i) · P (Bk(p) = i + d)

=
k−d∑
i=0

(
k

i

)(
k

i + d

)
qi (1 − q)k−i pi+d (1 − p)k−i−d

= (p(1 − q))d
k−d∑
i=0

(
k

i

)(
k

i + d

)
(qp)i ((1 − q)(1 − p))k−i−d

:= (p(1 − q))d Ak,d,p,q ,

where

Ak,d,p,q :=
k−d∑
i=0

(
k

i

)(
k

i + d

)
(qp)i ((1 − q)(1 − p))k−i−d .

Since Ak,d,p,q is symmetric w.r.t. p, q, i.e., Ak,d,p,q =
Ak,d,q,p, we can simplify Eq. (6) as

P (Bk(p) < Bk(q)) − P (Bk(q) < Bk(p))

=
k∑

d=1

P (|Bk(q) − Bk(p)| = d)

· (q(1 − p))d − (p(1 − q))d

(q(1 − p))d + (p(1 − q))d
. (7)

Intuitively, the quantity

(q(1 − p))d − (p(1 − q))d

(q(1 − p))d + (p(1 − q))d

can be seen as the “advantage” given by playing with the bet-
ter coin (q) in a k-coin-tossing contest, knowing that one coin
hit “head” d times more than the other. Before we continue,
we need the following simple claim. ��
Claim 1 For every a, b ∈ [0, 1] with a > b, the sequence

(
an − bn

an + bn

)
, n ∈ N

is increasing in n.

Proof Rewrite

an − bn

an + bn
= 2an

an + bn
− 1 = 2 · 1

1 + (b/a)n
− 1,

and notice that, since a > b, ((b/a)n), n ∈ N is a decreasing
sequence. ��
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Claim 2 Let 0 < γ < 1 and d ∈ N. There exists ε = ε(γ, d),
such that for every p, q ∈ [1/2 − ε, 1/2 + ε] with p < q,

(q(1 − p))d − (p(1 − q))d

(q(1 − p))d + (p(1 − q))d
> (q − p) · 2dγ.

Proof First, by a telescopic argument:

(q(1 − p))d − (p(1 − q))d

= (q(1 − p) − p(1 − q))

d−1∑
i=0

(q(1 − p))d−1−i · (p(1 − q))i

= (q − p)
d−1∑
i=0

(q(1 − p))d−1−i · (p(1 − q))i .

Note that

lim
p,q→1/2

d−1∑
i=0

(q(1 − p))d−1−i · (p(1 − q))i

=
d−1∑
i=0

(
1

4

)d−1−i
·
(
1

4

)i
=

d−1∑
i=0

(
1

2

)2d−2
= d ·
(
1

2

)2d−2
,

and that

lim
p,q→1/2

(q(1 − p))d + (p(1 − q))d

=
(
1

4

)d
+
(
1

4

)d
=
(
1

2

)2d−1

.

Hence, since γ < 1, and provided that p, q are close enough
to 1/2, we obtain

(q(1 − p))d − (p(1 − q))d

(q(1 − p))d + (p(1 − q))d
> (q − p) · 2dγ,

which completes the proof of Claim 2. ��

Next, let λ > 0 as in the Lemma’s statement, and let λ′ =
λ + 1. Denote D = 
λ′� + 1 > λ′ and γ = λ′/D < 1. By
Claim 2, there exists ε = ε(γ, D) = ε(λ), s.t. for p, q ∈
[1/2 − ε, 1/2 + ε],

(q(1 − p))D − (p(1 − q))D

(q(1 − p))D + (p(1 − q))D
> (q − p) · 2λ′. (8)

Now we derive a lower bound on Eq. (7):

P (Bk(p) < Bk(q)) − P (Bk(q) < Bk(p))

=
k∑

d=1

P (|Bk(q) − Bk(p)| = d)

· (q(1 − p))d − (p(1 − q))d

(q(1 − p))d + (p(1 − q))d
(Eq. (7))

≥
k∑

d=D

P (|Bk(q) − Bk(p)| = d)

· (q(1 − p))d − (p(1 − q))d

(q(1 − p))d + (p(1 − q))d

≥
k∑

d=D

P (|Bk(q) − Bk(p)| = d)

· (q(1 − p))D − (p(1 − q))D

(q(1 − p))D + (p(1 − q))D
(by Claim 1)

> (q − p)

· 2λ′
k∑

d=D

P (|Bk(q) − Bk(p)| = d) (by Eq. (8) )

= (q − p) · 2λ′

· (1 − P (|Bk(q) − Bk(p)| < D)) .

Since λ′ > λ, and since P (|Bk(q) − Bk(p)| < D) tends to 0
as k tends to +∞, there exists K = K (λ) s.t. for all k > K ,

P (Bk(p) < Bk(q)) − P (Bk(q) < Bk(p)) > (q − p) · 2λ.

(9)

Eventually, we write

P (Bk(p) < Bk(q))

= 1 − P (Bk(q) < Bk(p)) − P (Bk(p) = Bk(q))

> 1 − P (Bk(p) < Bk(q))

+ 2λ(q − p) − P (Bk(p) = Bk(q)) . (by Eq.(9) )

Hence,

P (Bk(p) < Bk(q)) >
1

2
+ λ(q − p) − 1

2
P (Bk(p) = Bk(q)) ,

which concludes the proof of Lemma 7.
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3.2 Lower bounds on the probability that the worse
coin wins

We now deal with the opposite problem, that is, to lower
bound the probability that the underdog coin wins. Formally,

Lemma 8 For every p, q ∈ [0, 1] s.t. p < q and every inte-
ger k, we have

P (Bk(p) > Bk(q)) ≥ 1 − �

(√
k(q − p)

σ

)
− C

σ
√
k
,

where C = 0.4748 and σ = √
p(1 − p) + q(1 − q).

Proof Let Yi , i ∈ {1, . . . , k} be i.i.d. random variables with

Yi =

⎧⎪⎨
⎪⎩

1 w.p. p(1 − q),

0 w.p. pq + (1 − p)(1 − q),

−1 w.p. (1 − p)q.

Let μ = E(Y1), σ 2 = Var(Y1), and ρ = E(|Y1 − μ|3).
Writing the definitions and simplifying, we obtain

μ = p − q, σ 2 = p(1 − p) + q(1 − q),

ρ = (2p3 − 3p2 + p) − (2q3 − 3q2 + q). (10)

We have

P (Bk(p) > Bk(q)) = P

(
k∑

i=1

Yi > 0

)

= P

(
1√
k

k∑
i=1

(Yi − (p − q)) >
√
k(q − p)

)

= P

(
1

σ
√
k

k∑
i=1

(Yi − (p − q)) >

√
k(q − p)

σ

)

= P

(
Z >

√
k(q − p)

σ

)
,

where

Z = 1

σ
√
k

k∑
i=1

(Yi − (p − q)) .

By the Berry-Esseen theorem (Theorem 7),

∣∣∣∣∣P
(
Z ≤

√
k(q − p)

σ

)
− �

(√
k(q − p)

σ

)∣∣∣∣∣ <
Cρ

σ 3
√
k
,

implying that

∣∣∣∣∣

(
1 − �

(√
k(q − p)

σ

))
− P

(
Z >

√
k(q − p)

σ

)∣∣∣∣∣ <
Cρ

σ 3
√
k
,

and so

P

(
Z >

√
k(q − p)

σ

)
> 1 − �

(√
k(q − p)

σ

)
− Cρ

σ 3
√
k
,

where, e.g., C = 0.4748. ��
Claim 3 We have that ρ < σ 2.

Proof Let f (p) = 2p3 − p/2 and g(p) = 1/4 − p2. We
start by proving that for every p ∈ [−1/2, 1/2], | f (p)| ≤
g(p). Since f is anti-symmetric, | f | is symmetric, and g is
symmetric, we can restrict the analysis to [0, 1/2]. On this
interval, | f (p)| = p/2 − 2p3, and

g(p) − | f (p)| = 1

4
− p

2
− p2 + 2p3 = 1

4
(1 − 2p)2(1 + 2p) ≥ 0.

We can rewrite Eq. (10) as

σ 2 = g(p + 1
2 ) + g(q + 1

2 ) and ρ = f (p + 1
2 ) + f (q + 1

2 ).

Therefore,

|ρ| ≤ | f (p + 1
2 )| + | f (q + 1

2 )| ≤ g(p + 1
2 ) + g(q + 1

2 ) = σ 2,

which concludes the proof of Claim 3. ��
By Claim 3, we end up with

P (Bk(p) > Bk(q)) ≥ 1 − �

(√
k(q − p)

σ

)
− C

σ
√
k
,

which concludes the proof of Lemma 8. ��
Just as Lemma 7 was a version of Lemma 6 optimized

for cases where p and q are close to each other, Lemma 9
complements Lemma 8 in such situations.

Lemma 9 There exists a constant α > 1, s.t. for every inte-
ger k, every p, q ∈ [1/3, 2/3]with p < q andq−p ≤ 1/

√
k,

we have

P (Bk(p) < Bk(q)) <
1

2
+ α(q − p)

√
k − 1

2
P (Bk(p) = Bk(q)) .

Proof Recall that (see Eq. (7) in the proof of Lemma 7):

P (Bk(p) < Bk(q)) − P (Bk(q) < Bk(p))

=
k∑

d=1

P (|Bk(q) − Bk(p)| = d) · (q(1 − p))d − (p(1 − q))d

(q(1 − p))d + (p(1 − q))d
.

(11)
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Early adapting to trends: self-stabilizing information spread using passive communication

The following claim is analogous to Claim 2, but this time
we are looking for an upper bound (instead of a lower bound)
on the same quantity. ��
Claim 4 There exists a constantα > 1, s.t. for every integer k,
every p, q ∈ [1/3, 2/3] with p < q, and all d ∈ N,

(q(1 − p))d − (p(1 − q))d

(q(1 − p))d + (p(1 − q))d
< αd · (q − p).

As in the proof of Claim 2, we have

(q(1 − p))d − (p(1 − q))d = (q(1 − p) − p(1 − q))

d−1∑
i=0

(q(1 − p))d−1−i · (p(1 − q))i

= (q − p)
d−1∑
i=0

(q(1 − p))d−1−i · (p(1 − q))i

≤ d · (q − p) (q(1 − p))d−1

≤ αd · (q − p) (q(1 − p))d ,

where α is any upper bound on 1/(q(1 − p)), e.g., α = 9.
Hence,

(q(1 − p))d − (p(1 − q))d

(q(1 − p))d + (p(1 − q))d
≤ αd · (q − p)

· (q(1 − p))d

(q(1 − p))d + (p(1 − q))d
≤ αd · (q − p),

which concludes the proof of Claim 4.
Using Claim 4 on Eq. (11), we obtain

P (Bk(p) < Bk(q)) − P (Bk(q) < Bk(p)) ≤ α

·(q − p)
k∑

d=1

d · P (|Bk(q) − Bk(p)| = d) . (12)

Claim 5 For every p, q ∈ [1/3, 2/3] with p < q, and every
integer k,

E (|Bk(p) − Bk(q)|) ≤ √2kq(1 − q) + k · (q − p).

Proof For i ∈ {1, . . . , k}, let X (1)
i , X (2)

i ∼ B(q) and Yi ∼
B(1 − p/q) be independent random variables. Let

X (1) =
k∑

i=1

X (1)
i , X (2) =

k∑
i=1

X (2)
i , Z =

k∑
i=1

X (2)
i · Yi ,

and X̃ (2) =
k∑

i=1

X (2)
i · (1 − Yi ) = X (2) − Z .

Clearly, X (1) ∼ Bk(q) and X (2) ∼ Bk(q). Since for every i ,

X (2)
i · (1 − Yi ) =

{
1 if X (2)

i = 1 and Yi = 0,

0 otherwise,

we obtain that X̃ (2) ∼ Bk(q · (1 − (1 − p/q))) = Bk(p).
Similarly, for every i ,

X (2)
i · Yi =

{
1 if X (2)

i = 1 and Yi = 1,

0 otherwise,

hence, we obtain that Z ∼ Bk(q · (1 − p/q)) = Bk(q −
p). We notice that (X (1), X (2)) are independent, as well
as (X (1), X̃ (2)). Hence

E (|Bk(q) − Bk(p)|) = E

(
|X (1) − X̃ (2)|

)

= E

(
|X (1) − X (2) + Z |

)

≤ E

(
|X (1) − X (2)| + Z

)

= E

(
|X (1) − X (2)|

)
+ E(Z).

We have E(Z) = k(q − p), and

E

(
|X (1) − X (2)|

)
= E

(√(
X (1) − X (2)

)2)

≤
√
E

((
X (1) − X (2)

)2) (Jensen inequality, x �→ √
x

being concave)

=
√
Var
(
X (1) − X (2)

)
(since E

(
X (1) − X (2)

)
= 0)

= √2kq(1 − q), (X (1), X (2) ∼ Bk(q)and are independent).

which concludes the proof of Claim 5. ��
We note that

k∑
d=1

d · P (|Bk(q) − Bk(p)| = d) = E (|Bk(q) − Bk(p)|)

≤ √2kq(1 − q) + k · (q − p)(by Claim 5)

≤ √2kq(1 − q) + √
k(since q − p ≤ 1/

√
k )

≤ 2
√
k.

Eventually, Eq. (12) becomes

P (Bk(p) < Bk(q)) − P (Bk(q) < Bk(p)) ≤ 2α · (q − p)
√
k.

(13)
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To conclude, we write

P (Bk(p) < Bk(q)) = 1 − P (Bk(q) < Bk(p))−
P (Bk(p) = Bk(q))

< 1 − P (Bk(p) < Bk(q)) + 2α · (q − p)
√
k−

P (Bk(p) = Bk(q)) . (by Eq. (13))

Hence,

P (Bk(p)< Bk(q))<
1

2
+ α · (q − p)

√
k − 1

2
P (Bk(p) = Bk(q)) ,

which concludes the proof of Lemma 9.

4 Preliminaries

Remark 1 At various times throughout our analysis, we
would like to calculate different statistical properties of the
system at round t + 2, conditioning on (xt, xt+1) ∈ G, as
was done in e.g., Observation 1. For the sake of clarity of
presentation, in all subsequent cases, we shall omit the con-
ditioning notation. The reader should therefore keep in mind,
that whenever such properties are calculated, they are actu-
ally done while conditioning on xt = xt and xt+1 = xt+1,
where the point (xt, xt+1) would always be clear from the
context.

Proof of Observation 1 Let I be the set of agents (including
the source). Let I 1t ⊂ I be the set of all non-source agents
with opinion 1 at round t . Recall that we condition on xt = xt
and xt+1 = xt+1 (although we avoid writing this condi-
tioning). In addition, the proof will proceed by conditioning
on I 1t+1 = I1t+1. Since we shall show that the statements are
true for every I1t+1, the lemma will hold without this latter
conditioning.

Bydefinition of the protocol, and because it operates under
thePULLmodel, tmp(i) and σ (i) are obtained by sampling �

agents uniformly at random in the population (with replace-
ment) and counting how many have opinion 1. Therefore,
conditioning on (xt , xt+1) and I 1t+1,

(i) variables (tmpt+2
(i))i∈I and (σt+1

(i))i∈I are mutu-

ally independent, thus variables (Y (i)
t+2)i∈I are mutually

independent.
(ii) for every i ∈ I , tmpt+2

(i) ∼ B�(xt+1), and σt+1
(i) ∼

B�(xt ), so we can write for every non-source agent i ∈
I 1t+1,

P

(
Y (i)
t+2 = 1

)
= P (B� (xt+1) ≥ B� (xt )) ,

and for every non-source agent i /∈ I 1t+1,

P

(
Y (i)
t+2 = 1

)
= P (B� (xt+1) > B� (xt )) .

This establishes Eq. (1). Now, let us define independent
binary random variables (X j )1≤ j≤n , taking values in {0, 1},
as follows;

• X1 = 1,
• for every j s.t. 1 < j ≤ n · xt+1, P

(
X j = 1

) =
P (B� (xt+1) ≥ B� (xt )),

• for every j s.t. n · xt+1 < j ≤ n, P
(
X j = 1

) =
P (B� (xt+1) > B� (xt )).

We assumed the source to have opinion 1, so there are
nxt − 1 non-source agents with opinion 1 and n(1 − xt )
non-source agents with opinion 0. Therefore, by (i) and (ii)
and by construction of the (X j )1≤ j≤n , xt+2 = 1

n

∑
i∈I Y

(i)
t+2

is distributed as 1
n

∑n
j=1 X j , which establishes the second

statement in Observation 1. Computing the expectation (still
conditioning on xt , xt+1) is straightforward and does not
depend on I 1t+1:

E (xt+2) =
(
xt+1 − 1

n

)

· P (B� (xt+1) ≥ B� (xt )) + (1 − xt+1)

· P (B� (xt+1) > B� (xt )) + 1

n
= xt+1

· P (B� (xt+1) ≥ B� (xt )) + (1 − xt+1)

· P (B� (xt+1) > B� (xt ))

+ 1

n
(1 − P (B� (xt+1) ≥ B� (xt )))

= P (B� (xt+1) > B� (xt )) + xt+1 · P (B� (xt+1) = B� (xt ))

+ 1

n
(1 − P (B� (xt+1) ≥ B� (xt ))).

This establishes Eq. (2), and concludes the proof of Obser-
vation 1. ��

Remark 2 From Observation 1, we obtain the following
straightforward bounds: for every non-source agent i ,

P (B� (xt+1) > B� (xt ))

≤ P

(
Y (i)
t+2 = 1

)
≤ P (B� (xt+1) ≥ B� (xt )) , (14)

and

P (B� (xt+1) > B� (xt )) − 1

n

≤ E (xt+2) ≤ P (B� (xt+1) ≥ B� (xt )) + 1

n
. (15)
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Because the source has opinion 1, the left-hand side in
Eq. (15) is loose (specifically, −1/n is not necessary). Nev-
ertheless, we will use this equation in the proofs, because it
has a symmetric equivalent (w.r.t. to the center of G, ( 12 , 1

2 ))
which will allow our statements about xt+2 to hold symmet-
rically for 1 − xt+2, despite the asymmetry induced by the
source.

Remark 3 Eq. (2) inObservation 1 implies the following con-
venient bounds:

P
(
B�

(
xt+1
)

> B� (xt )
)+ xt+1 · P (B�

(
xt+1
) = B� (xt )

)− 1

n
< E

(
xt+2
)

<

P
(
B�

(
xt+1
)

> B� (xt )
)+ xt+1 · P (B�

(
xt+1
) = B� (xt )

)+ 1

n
.

(16)

5 Escaping the yellow area

The goal of this section is to prove Lemma 5. It might be
easier for the reader to think of the Yellow area as a square.
Formally, let us define Yellow′ as the following square
bounding box around Yellow:

Yellow′ =
{
(xt , xt+1) s.t. 1/2 − 4δ ≤ xt , xt+1 ≤ 1/2 + 4δ

}
.

Obviously, Yellow ⊂ Yellow′, so in order to prove
Lemma 5 it suffices to prove Lemma 10 below.

Lemma 10 Consider that (xt0 , xt0+1) ∈ Yellow′. Then,
w.h.p., min{t > t0 s.t. (xt , xt+1) /∈ Yellow′} < t0 +
O(log5/2 n).

5.1 Effects of noise

We will need the following result to break ties.

Lemma 11 There exists a constant β > 0 s.t. for n large
enough, and if E(xt+2) ∈ [1/3, 2/3], then

P
(
xt+2 ≤ E(xt+2) − 1/

√
n
)
,P
(
xt+2 ≥ E(xt+2) + 1/

√
n
) ≥ β.

Proof Consider X1, . . . , Xn from the statement of Observa-
tion 1. We have (see the proof of Observation 1)

• X1 = 1,
• for every j s.t. 1 < j ≤ n · xt+1, P

(
X j = 1

) =
P (B� (xt+1) ≥ B� (xt )),

• for every j s.t. n · xt+1 < j ≤ n, P
(
X j = 1

) =
P (B� (xt+1) > B� (xt )).

Let p = P (B� (xt+1) ≥ B� (xt )) and q =
P (B� (xt+1) > B� (xt )). By Observation 1,

E(xt+2) = E

(
1

n

n∑
i=1

Xi

)
= xt+1

·p + (1 − xt+1) · q + 1

n
(1 − p) .

By assumption on E(xt+2), this implies that

xt+1 · p + (1 − xt+1) · q ∈
[
1

3
− 1

n
,
2

3

]
.

Moreover, p − q = P (B�(xt+1) = B�(xt )) which tends
to 0 as n tends to infinity, i.e., p and q are arbitrarily
close. Hence, for n large enough, the last equation implies
that p ∈ [1/4, 3/4] andq ∈ [1/4, 3/4]. LetYp =∑n·xt+1

i=2 Xi

and Yq =∑n
i=n·xt+1+1 Xi . These two variables follow bino-

mial distributions, and since p, q ∈ [1/4, 3/4], there is a
constant probability that Yp ≥ E(Yp), and there is a constant
probability that Yq ≥ E(Yq) as well. Without loss of gener-
ality, we assume that xt+1 ≥ 1/2 and focus on Yp (if xt+1 <

1/2, then we could consider Yq instead). Letm = n ·xt+1−1
be the number of samples of Yp. In this case, m ≥ n/2 − 1
tends to +∞ as n tends to +∞. Let σp = √

p(1 − p). By
the central limit theorem (Theorem 6), the random variable

√
m

σp

(
1

m
Yp − p

)
= Yp − E(Yp)

σp
√
m

converges in distribution to N (0, 1). Moreover, Var(Yp) =
mσ 2

p = (n · xt+1 − 1)p(1 − p) ≥ (n/2 − 1)p(1 − p) ≥
np(1 − p)/3, so for any ε > 0 and n large enough,

P
(
Yp ≥ E

(
Yp
)+ √

n
) = P

(
Yp − E

(
Yp
)

σp
√
m

≥
√
n

σp
√
m

)

≥ P

(
Yp − E

(
Yp
)

σp
√
m

≥
√

3

p(1 − p)

)

≥ 1 − �

(√
3

p(1 − p)

)
− ε.

By taking a small enough ε, and because p is bounded, we
conclude the proof of Lemma 11 (the other inequality can be
obtained symmetrically). ��

We can use the previous result to show that the Markov
process (xt , xt+1) is sufficiently noisy so that it is never too
likely to be at any given point (x, y).

Lemma 12 There is a constant c1 = c1(c) > 0 (recall that
the sample size is � = c · log n), such that for any a ∈ [1/2−
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4δ, 1/2 + 4δ], and any round t s.t. (xt , xt+1) ∈ Yellow′,
we have either

P

(
|xt+2 − a| >

1√
n

)
> c1,

or (xt+1, xt+2) /∈ Yellow′ w.h.p.

Proof IfE(xt+2) /∈ [1/3, 2/3], then (xt+1, xt+2) /∈ Yellow′
w.h.p. Otherwise, let a ∈ [1/2 − 4δ, 1/2 + 4δ]. If a >

E(xt+2), then by Lemma 11,

P

(
|xt+2 − a| >

1√
n

)
≥ P

(
xt+2 ≤ E(xt+2) − 1√

n

)
≥ β.

Similarly, if a ≤ E(xt+2), Lemma 11 gives

P

(
|xt+2 − a| >

1√
n

)
≥ P

(
xt+2 ≥ E(xt+2) + 1√

n

)
≥ β,

which concludes the proof of Lemma 12. ��

5.2 General structure of the proof

In order to prove Lemma 10, we first partition Yellow′, as
follows (for an illustration, see Fig. 2):

A1 =
{
(xt , xt+1)s.t.

∣∣∣∣
(i) xt+1 ≥ 1/2, and
(ii) xt+1 − xt ≥ xt − 1/2.

}
∩ Yellow′

,

B1 =
{
(xt , xt+1)s.t.

∣∣∣∣
(i) xt+1 ≥ xt , and
(ii) xt+1 − xt < xt − 1/2.

}
∩ Yellow′

,

C1 =
{
(xt , xt+1)s.t.

∣∣∣∣
(i) xt+1 < 1/2, and
(ii) xt+1 ≥ xt .

}
∩ Yellow′

.

Similarly, we define A0,B0,C0 their symmetric equivalents
(w.r.t the point ( 12 ,

1
2 )), and A = A0 ∪ A1, B = B0 ∪ B1,

and C = C0 ∪ C1.
In the next lemma, we study the distribution of the future

location of any point (xt , xt+1) ∈ A. This area happens to
be ideal to escape Yellow′, because it allows the Markov
chain to quickly build up “speed”. Item (a) in the next lemma
says that, with some probability that depends on the current
speed the following occur: (1) the speed in the following
round increases by a factor of two, and (2) the process in the
next round either remains inA, or goes outside of Yellow′.
Note that when the current speed is not too low, that is, when
xt+1 − xt > 1/

√
n, this combined event happens with con-

stant probability. Item (b) says that with constant probability,
(1) the speed in the next round would not be too low, and (2)
the process either remains inA, or goes outside of Yellow′.

Lemma 13 If (xt , xt+1) ∈ A, and provided that δ is small
enough and n is large enough,

Fig. 2 Partitioning the Yellow′ domain

(a) P
(
(xt+1, xt+2) /∈ Yellow′\A∩ |xt+2 − xt+1| >

)
2|xt+1 − xt | > 1 − exp

(−3n · (xt+1 − xt )2
)
.

(b) There exists a constant c2 = c2(c) > 0 s.t. P ((xt+1, )

xspst+2) /∈ Yellow′\A∩ |xt+2 − xt+1| > 1/
√
n >

c2.

Proof Without loss of generality,we assume that (xt , xt+1) ∈
A1 (the same arguments apply to A0 symmetrically). We
have, provided that δ is small enough and n is large enough,

E(xt+2) > P (B� (xt+1) > B� (xt )) + xt+1

· P (B� (xt+1) = B� (xt )) − 1

n
(by Remark 3)

>
1

2
+ 6(xt+1 − xt ) +

(
xt+1 − 1

2

)

· P (B� (xt+1) = B� (xt )) (by Lemma 7, taking λ > 6)

>
1

2
+ 6(xt+1 − xt ). (by the definition of A1)

More precisely, in the second inequality, the term −1/n dis-
appears within the 6(xt+1 − xt ) lower bound. Indeed, we can
take λ � 6 (from Lemma 7) for this purpose. Moreover, we
can assume xt+1 − xt ≥ 1/n, by definition of A1, and ruling
out the case xt = xt+1 by Lemma 12.

Hence,

E(xt+2) − xt+1 >
1

2
− xt + 5(xt+1 − xt )

= (xt+1 − (2xt − 1

2
)) + 4(xt+1 − xt ),

and by definition of A1, (xt+1 − (2xt − 1/2)) ≥ 0 and so

E(xt+2) > 4(xt+1 − xt ) + xt+1. (17)
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By Observation 1, we can apply Chernoff’s inequality (The-
orem 4). Taking ε = 2(xt+1 − xt )/(4(xt+1 − xt )+ xt+1), we
have

P (xt+2 − xt+1 ≤ 2(xt+1 − xt ))

= P (xt+2 ≤ (1 − ε) (4(xt+1 − xt ) + xt+1))

≤ P (nxt+2 ≤ (1 − ε)E(nxt+2)) (by Eq. (17))

≤ exp

(
−ε2

2
E(nxt+2)

)
(by Theorem 4)

≤ exp

(
− 2xt+1

(4(xt+1 − xt ) + xt+1)
2 (xt+1 − xt )

2n

)
.

(by Eq. (17) and definition of ε)

Since xt and xt+1 are close to 1/2,we have for δ small enough

P (xt+2 − xt+1 > 2(xt+1 − xt ))

≥ 1 − exp
(
−3(xt+1 − xt )

2n
)

. (18)

Now, we show that the event “xt+2 − xt+1 > 2(xt+1 − xt )”
suffices for (xt+1, xt+2) to remain in A1 or leave Yellow

′.
��

Claim 6 If (xt , xt+1) ∈ A1 and xt+2 − xt+1 > 2(xt+1 − xt ),
then (xt+1, xt+2) ∈ A1 or (xt+1, xt+2) /∈ Yellow′.

Proof If (xt+1, xt+2) /∈ Yellow′, the result holds. Oth-
erwise, (xt+1, xt+2) ∈ Yellow′ and we have to prove
that (xt+1, xt+2) satisfies A1.(i) and A1.(ii). First we prove
that (xt+1, xt+2) satisfies A1.(i):

xt+2 > xt+1 + 2(xt+1 − xt ) (by assumption in the claim)

≥ xt+1 (because (xt , xt+1) ∈ A1 ⇒ xt+1 ≥ xt )

≥ 1/2. (because (xt , xt+1) ∈ A1and byA1.(i))

Then we prove that (xt+1, xt+2) satisfies A1.(ii):

xt+2 − xt+1 > 2(xt+1 − xt ) (by assumption in the claim)

> (xt+1 − xt ) + (xt − 1/2)

(because (xt , xt+1) ∈ A1 and by A1.(i i))

= xt+1 − 1/2,

which concludes the proof of Claim 6. ��

Next,we applyClaim6 toEq. (18) to establish (a). Finally,
xt+2 > xt+1 + 4(xt+1 − xt ) + 1/

√
n implies xt+2 − xt+1 >

2(xt+1 − xt ) so we can use Claim 6,

P
(
(xt+1, xt+2) /∈ Yellow′ \ A1 ∩ xt+2

> xt+1 + 4(xt+1 − xt ) + 1/
√
n
)

= P
(
xt+2 > xt+1 + 4(xt+1 − xt ) + 1/

√
n
)

(by Claim6)

> P
(
xt+2 > E (xt+2) + 1/

√
n
)

(by Eq.(17))

> c2 > 0,

where the existence of c2 is guaranteed by Lemma 11. This
establishes (b).

Now, we can iteratively use the previous result to prove
that any state inAhas a reasonable chance to escapeYellow′.

Lemma 14 There is a constant c3 = c3(c) s.t. if (xt0 , xt0+1) ∈
A, then

P
(∃t1 < t0 + log n, (xt1 , xt1+1) /∈ Yellow′)

> c3.

Proof Without loss of generality,we assume that (xt , xt+1) ∈
A1 (the same arguments apply to A0 symmetrically). Let us
define event Ht0+1, that the system is either in A1 or out
of Yellow′ in round t0+1, and that the “gap” (xt0+2−xt0+1)

is not too small. Formally,

Ht0+1 : (xt0+1, xt0+2)

/∈ Yellow′ \ A1 ∩ xt0+2 − xt0+1 > 1/
√
n.

For t > t0 + 1, we define event Ht , that the system is either
in A1 or out of Yellow

′ in round t , and that the gap (xt+1 −
xt ) doubles. Formally,

Ht : (xt , xt+1) /∈ Yellow′ \ A1 ∩ xt+1 − xt

> 2(xt − xt−1).

We start with the following observation, which results
directly from the definition of Ht for t ≥ t0 + 1:

t−1⋂
s=t0+1

Hs ⇒ (xt − xt−1) > 2(t−t0−2)(xt0+2 − xt0+1)

⇒ (xt − xt−1) > 2(t−t0−2)/
√
n. (19)

For every t > t0 + 1 such that (xt , xt+1) ∈ A1,

P

⎛
⎝Ht

∣∣∣∣∣∣
t−1⋂

s=t0+1

Hs

⎞
⎠

> 1 − exp
(
−3n · (xt − xt−1)

2
)

(By Lemma 13)

> 1 − exp

(
−3

4
· 4(t−t0−1)

)
. (by Eq. (19))
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By Lemma 13 (b), (xt0+1, xt0+2) ∈ A1 and xt0+2 − xt0+1 >

1/
√
n w.p. c2 > 0. Together with the last equation and using

the union bound, we get

P

⎛
⎝

t1⋂
t=t0+1

Ht

⎞
⎠ > c2 ·

⎛
⎝1 −

t1∑
t=t0+2

exp

(
−3

4
· 4(t−t0−1)

)⎞
⎠ .

We have the following very rough upper bounds

t1∑
t=t0+2

exp

(
−3

4
· 4(t−t0−1)

)

<

t1∑
t=t0+2

exp

(
−3

4
· 4 · (t − t0 − 1)

)
< 2 · e−3.

Hence, we have proved that for every t1 > t0 + 1 such
that (xt1 , xt1+1) ∈ A1,

P

⎛
⎝

t1⋂
t=t0+1

Ht

⎞
⎠ > c2 ·

(
1 − 2 · e−3

)
:= c3 > 0.

By Eq. (19), it implies that for every t1 > t0 + 1 such
that (xt1 , xt1+1) ∈ A1,

P

(
(xt1 − xt1−1) > 2(t1−t0−2)/

√
n
)

> c3.

For t1 large enough (e.g., t1 = t0 + log n), this implies
that (xt1−1, xt1) /∈ Yellow′, otherwise the gap (xt1 − xt1−1)

would be greater than 8δ which is the diameter of Yellow′.
This concludes the proof of Lemma 14. ��

We are left with proving that the system cannot be stuck
in B or C for too long. We start with B. The analysis of
this area is relatively complex, because it is difficult to rule
out the possibility that the Markov chain remains there at a
low speed. We prove that any state in B must either make a
step towards escaping Yellow′, or have a good chance of
leaving B. The proof of the following lemma is rather long
and is deferred to Sect. 5.3.

Lemma 15 There are constants c4, c5 > 0 such that
if (xt , xt+1) ∈ B, then either

(a) |xt+1 − 1/2| >
(
1 + c4/

√
�
)

|xt − 1/2|, or
(b) P ((xt+1, xt+2) /∈ B) > c5.

Now, we can iteratively use the previous result to prove
that any state in B either leaves B or escapes Yellow’ in a
reasonable amount of time.

Lemma 16 If (xt0 , xt0+1) ∈ B, then, w.h.p., min{t ≥
t0, (xt , xt+1) /∈ B} < t0 +

√
c

c4
· log3/2 n.

Proof Without loss of generality,we assume that (xt , xt+1) ∈
B1 (the same arguments apply to B0 symmetrically). For
any round t , let Ht the event that (xt , xt+1) ∈ B and (a) of
Lemma15 holds. Let tmax = t0+(

√
c/c4)·log3/2 n, and let X

be the number of rounds between t0 and tmax for which Ht

does not happen. Each time (a) in Lemma 15 doesn’t hold,
(b) of Lemma 15 holds so there is a constant probability to
leave B, so

P (( for every t such that t0 ≤ t ≤ tmax,

(xt , xt+1) ∈ B) ∩ X = x
) ≤ (1 − c5)

x. (20)

Note that

(1 − c5)
(tmax−t0)/4 = exp

(
log(1 − c5) ·

√
c

4c4
· log3/2 n

)
.

This, together with Eq. (20), implies that either (i) X <

(tmax − t0)/4, or w.h.p. (ii) there is a time t0 ≤ t ≤ tmax

such that (xt , xt+1) /∈ B (in which case Lemma 16 holds).
Now, consider case (i). Let ut = xt −1/2. By Lemma 12,

after O(log n) rounds, we’ll have ut > 1/
√
n w.h.p., so

up to waiting a logarithmic number of rounds, we assume
that ut0 > 1/

√
n.

Note that whenever (xt , xt+1) ∈ B1, by definition xt+1 ≥
xt > 1/2 and so (xt+1, xt+2) cannot be in B0. This implies
that the system must remain in B1 until it leaves B. Also by
definition of B1, if (xt , xt+1) ∈ B1 then xt ≤ xt+1, and so

ut ≤ ut+1. (21)

Moreover, by the fact that we are in case (i), we have that the
number of rounds t0 ≤ t ≤ tmax such that Ht happens is at
least

k := 3(tmax − t0)

4
= 3

√
c

4c4
· log3/2 n.

Note that at each such round, by definition of Ht and (a) in
Lemma 15,

ut+1 > ut ·
(
1 + c4√

�

)
.

Hence, by Eq. (21),

utmax > ut0 ·
(
1 + c4√

�

)k

= ut0 · exp
(
k log

(
1 + c4√

�

))

> ut0 · exp
(
4

5
· k · c4√

�

)
(for n large enough)

= ut0 · exp
(
4

5
· 3
4
log n

)
(by definition of k and � )
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= ut0 · n3/5
> n1/10. (since we assumed ut0 > 1/

√
n)

When n is large, this quantity is larger than 1, hence (i) is
impossible unless (xt , xt+1) /∈ B. This concludes the proof
of Lemma 16. ��

We are left with proving that the system cannot stay in C
for too long. Fortunately, from this area, the Markov chain is
naturally pushed towards A, which makes the analysis sim-
ple.

Lemma 17 There is a constant c6 > 0 such that if (xt , xt+1) ∈
C, then

max

{
P
(
(xt+1, xt+2) /∈ Yellow′ \ A) ,

P
(
(xt+2, xt+3) /∈ Yellow′ \ A)

}
> c6.

Proof Without loss of generality,we assume that (xt , xt+1) ∈
C1 (the same arguments apply to C0 symmetrically). By
Observation 1, we have

E(xt+2) ≥ P (B� (xt+1) > B� (xt ))

+xt+1 · P (B� (xt+1) = B� (xt )) .

By Lemma 7 (taking λ > 2), this becomes

E(xt+2) >
1

2
+ 2 · (xt+1 − xt ) −

(
1

2
− xt+1

)

·P (B� (xt+1) = B� (xt )) . (22)

Case 1. If (xt+1− xt ) > 1/2− xt+1, then Eq. (22) implies

E(xt+2) >
1

2
+ 2 · (xt+1 − xt ) −

(
1

2
− xt+1

)

>
1

2
+ (xt+1 − xt ) >

1

2
,

sowith constant probability xt+2 > 1/2 and thus (xt+1, xt+2)

∈ A1 or is not in Yellow
′.

Case 2.Else, if (xt+1−xt ) ≤ 1/2−xt+1, Eq. (22) rewrites

E(xt+2) >
1

2

(
1

2
+ xt+1

)
+ 1

2(
1

2
+ 4 · (xt+1 − xt ) − 2

(
1

2
− xt+1

)

·P (B� (xt+1) = B� (xt )) − xt+1)

= 1

2

(
1

2
+ xt+1

)
+ 1

2(
4 · (xt+1 − xt ) +

(
1

2
− xt+1

)

(1 − 2 · P (B� (xt+1) = B� (xt ))))

Since (xt , xt+1) ∈ C1, we have xt+1 ≥ xt and 1/2 > xt+1.
Moreover, for� large enough, 1−2·P (B�(xt+1) = B�(xt )) >

0. Hence,

E(xt+2) >
1

2

(
1

2
+ xt+1

)
.

If E(xt+2) /∈ [1/3, 2/3], then (xt+1, xt+2) /∈ A1 w.h.p.
Otherwise, we can apply Lemma 11: with constant probabil-
ity xt+2 > (1/2
+ xt+1)/2, i.e., xt+2 − xt+1 > 1/2 − xt+2. If so, Case 1
applies and with constant probability, (xt+2, xt+3) ∈ A1 or
is not in Yellow′. This concludes the proof of Lemma 17.

��
Eventually, we have all the necessary results to conclude

the proof regarding the Yellow area.

Proof of Lemma 10 By Lemma 14, if (xt0 , xt0+1) ∈ A, then

P
(∃t1 < t0 + log n, (xt1 , xt1+1) /∈ Yellow′)

> c3 > 0.

By Lemma 17, this implies that if (xt0 , xt0+1) ∈ A ∪ C,

P
(∃t1 < t0 + log n + 2, (xt1 , xt1+1) /∈ Yellow′)

> min(c3, c3 · c6) = c3 · c6 > 0. (23)

ByLemma16,w.h.p.,whenever the process is atB, it does not
spendmore than (

√
c/c4) · log3/2 n consecutive rounds there.

This means, that for any constant c′ > 0, during c′ log5/2 n
consecutive rounds, w.h.p., we must either leave Yellow′ or
be at A ∪ C on at least c′ log5/2 n

(
√
c/c4)·log3/2 n = c′c4√

c
· log n distinct

rounds. By Eq. (23), the probability that the system fails to
escapeYellow′ in each of these occasions is at most (1−c3 ·
c6)(c

′c4/
√
c)·log n . Taking c′ to be sufficiently large concludes

the proof of Lemma 10. ��

5.3 Proof of Lemma 15—regarding Area B

The goal of this section is to prove Lemma 15, which con-
cerns Area B inside the Yellow′ domain. Without loss of
generality, we may assume that (xt , xt+1) ∈ B1 (the same
arguments apply to B0 symmetrically). Let us define

g(x, y) = P (B� (y) > B� (x)) + y · P (B� (y) = B� (x))

+1

n
(1 − P (B� (y) ≥ B� (x))) , (24)

so that, conditioning on (xt , xt+1),E(xt+2) = g(xt , xt+1) by
Observation 1. Informally, our plan is the following. For all
points (xt , xt+1) such that E(xt+2) = g(xt , xt+1) is “small”
compared to xt+1, then the processwill lose speed and get out
ofB, corresponding to item (b) in the statement of Lemma15.
Otherwise, E(xt+2) = g(xt , xt+1) is sufficiently “large”
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compared to xt+1, and the process makes a significant step
towards escaping Yellow, corresponding to item (a).

We will proceed in two steps: first, we analyze function g,
and only then, we prove Lemma 15.

Analysis of g

Westartwith the following claim,whichwill be used to prove
the subsequent claim.

Claim 7 Let x0 ∈ [1/3, 2/3]. On the interval [x0, x0+1/
√

�],
and for � large enough, y �→ g(x0, y)−y is a strictly increas-
ing function of y.

Proof The key observation is that the derivative, w.r.t. x ,
of P (Bk (x) > Bk (p)) in the neighborhood of p is relatively
high. The following claim formalizes this idea. ��
Claim 8 There exists a constant β ′ > 0 such that for every k
large enough, and every p, x ∈ [1/3, 2/3] satisfying p ≤
x ≤ p + 1/

√
k,

d

dx
P (Bk (x) > Bk (p)) ≥ β ′ · √

k.

Proof Let h > 0. We will proceed by using a coupling
argument. Let Xi , i ∈ {1, . . . , k}, be i.i.d. random vari-
ables uniformly distributed over the interval [0, 1]. Let Y1 =
|{i s.t. Xi ≤ x}| and Y2 = |{i s.t. Xi ≤ x + h}|. By
construction, Y1 ∼ Bk(x) and Y2 ∼ Bk(x + h). Next,
let H = |{i s.t. x < Xi ≤ x + h}|. By construction,
Y2 = Y1 + H ≥ Y1. Let Z ∼ Bk(p) be a binomially dis-
tributed random variable, independent from Y1 and Y2. Now,
we have:

P (Bk (x + h) > Bk (p)) − P (Bk (x) > Bk (p))

= P (Y2 > Z) − P (Y1 > Z) (by definition ofY1,Y2 andZ )

= P
(
Y1 ≤ Z ∩ Y2 > Z

)
(because Y1 > Z ⇒ Y2 > Z )

=
k∑
j=0

P (Z = j) · P (Y1 ≤ j ∩ Y2 > j
)
.

Let J = { j ∈ N s.t. kp ≤ j ≤ kp+√
k}. We can rewrite the

last equation as

P (Bk (x + h) > Bk (p)) − P (Bk (x) > Bk (p))

≥
∑
j∈J

P (Z = j) · P (Y1 ≤ j ∩ Y2 > j
)
. (25)

The following result is a well-known fact. ��
Observation 2 There exists a constant β > 0 such that for
every k large enough, every p ∈ [1/3, 2/3], and every i
satisfying |i − kp| ≤ √

k, we have P (Bk(p) = i) ≥ β√
k
.

Proof By the DeMoivre-Laplace theorem, for any i in {kp−√
k, . . . , kp + √

k},

P (Bk(p) = i) =
(
k

i

)
pi (1 − p)k−i

≈ 1√
2kp(1 − p)

exp

(
− (i − kp)2

2kp(1 − p)

)
, (26)

where we used ≈ in the sense that the ratio between the left-
hand side and the right-hand side tends to 1 as k tends to
infinity. Since |i − kp| ≤ √

k,

1√
2kp(1 − p)

exp

(
− (i − kp)2

2kp(1 − p)

)

≥ 1√
2kp(1 − p)

exp

(
− 1

2p(1 − p)

)
:= f (p)√

k
.

ByEq. (26), we can conclude the proof of Observation 2 for k
large enough by taking, e.g.,

β = 1

2
· min
p∈[1/3,2/3] f (p).

��

For j ∈ J , by Observation 2, P (Z = j) ≥ β/
√
k, for

some constant β > 0. Moreover,

P
(
Y1 ≤ j ∩ Y2 > j

)

≥ P
(
Y1 = j ∩ Y2 > j

)

= P
(
Y1 = j ∩ H ≥ 1

)
(because Y2 = Y1 + H )

= P (Y1 = j) · P (H ≥ 1 | Y1 = j) .

By the assumption in the lemma, p ≤ x ≤ p + 1/
√
k, and

so kp ≤ kx ≤ kp + √
k. Therefore, for j ∈ J , | j − kx | ≤√

k, and by Observation 2, we get that P (Y1 = j) ≥ β/
√
k.

Hence, we can rewrite Eq. (25) as

P (Bk (x + h) > Bk (p)) − P (Bk (x) > Bk (p))

≥ β2

k

∑
j∈J

P (H ≥ 1 | Y1 = j) . (27)

Now, let us find a lower bound on P (H ≥ 1 | Y1 = j),
for j ∈ J . Note that, by definition, Y1 = j if and only
if |{i s.t. Xi > x}| = k− j . Since Xi , 1 ≤ i ≤ k, is uniformly
distributed over [0, 1],

P (x < Xi ≤ x + h | Xi > x) = h

1 − x
.
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Therefore, for every j ∈ J

P (H = 0 | Y1 = j) =
(
1 − h

1 − x

)k− j

≤
(
1 − h

1 − x

)k−kp−√
k

.

This implies that

∑
j∈J

P (H ≥ 1 | Y1 = j)

≥ √
k ·
(
1 −
(
1 − h

1 − x

)k−kp−√
k
)

.

We have

lim
h→0

1

h
·
∑
j∈J

P (H ≥ 1 | Y1 = j)

≥ lim
h→0

√
k

h
·
(
1 −
(
1 − h

1 − x

)k−kp−√
k
)

=
√
k
(
k − kp − √

k
)

1 − x
.

Eventually, we get from Eq. (27)

d

dx
P (Bk (x) > Bk (p)) ≥ β2(1 − p)

1 − x
· √

k + o
k→∞

(√
k
)

.

We can conclude the proof of Claim 8 for k large enough by

taking, e.g., β ′ = β2(1−p)
2(1−x) .

Now, we are ready to conclude the proof of Claim 7. We
can rewrite Eq. (24) as

g(x0, y) =
(
y − 1

n

)
P (B� (y) ≥ B� (x0)) + (1 − y)

·P (B� (y) > B� (x0)) + 1

n
.

Hence,

d

dy
g(x0, y)

=
[
P (B� (y) ≥ B� (x0)) − P (B� (y) > B� (x0))

]

+
(
y − 1

n

)
· d

dy
P (B� (y) ≥ B� (x0)) + (1 − y)

· d
dy

P (B� (y) > B� (x0)) . (28)

The first term in Eq. (28) is equal to P (B� (y) = B� (x0)),
which is positive. Moreover, P (B� (y) ≥ B� (x0)) is obvi-

ously increasing in y, so the second term is also non-negative.
By Claim 8, the third term in Eq. (28) satisfies

(1 − y) · d

dy
P (B� (y) > B� (x0))

≥ (1 − y) · β ′ · √
� ≥ β ′

4
· √

�,

where the last inequality comes from the fact that x0 ∈
[1/3, 2/3] and y ∈ [x0, x0 + 1/

√
�] ⊆ [1/4, 3/4]. For �

large enough, this implies that

d

dy
g(x0, y) ≥ β ′

4
· √

� > 1,

which concludes the proof of Claim 7.

Finishing the proof

The next claim concerns the fixed points of g(x, y) as a func-
tion of y.

Claim 9 For any given x ∈ [1/2 + 4/n, 1/2 + 4δ], as a
function of y, the equation y = g(x, y) has at most one
solution on the interval [x, x +1/

√
�]. Moreover, in the case

that it has no solution, then g(x, x + 1/
√

�) < x + 1/
√

�.

Proof First, we claim that g(x, x) < x . Let p = P(B�(x) >

B�(x)) and q = P(B�(x) = B�(x)). We rearrange the def-
inition of g slightly to obtain g(x, x) = p + x · q + p

n .
Moreover, x = x ·(2p+q) ≥ (1 + 8/n)· p+x ·q > g(x, x),
where the first inequality is because x ≥ 1/2 + 4/n. Next,
let h(y) = g(x, y) − y. Function h is continuous, and what
we just showed implies h(x) < 0. Moreover, by Claim 7,
we know that h is strictly increasing on [x, x + 1/

√
�].

Therefore, either h(x + 1/
√

�) ≥ 0, in which case there
is a unique y� ∈ [x, x + 1/

√
�] such that h(y�) = 0;

or h(x + 1/
√

�) < 0, i.e., g(x, x + 1/
√

�) < x + 1/
√

�,
in which case the equation y = g(x, y) has no solution on
the interval. ��

For every x ∈ [1/2 + 4/n, 1/2 + 4δ], let f (x) be the
solution of the equation y = g(x, y) in the interval [x, x +
1/

√
�] if it exists, and f (x) = x + 1/

√
� otherwise. Note

that by Claim 9, with this definition we always have

g(x, f (x)) ≤ f (x). (29)

Claim 10 For any x ∈ [1/2 + 4/n, 1/2 + 4δ], it holds that

f (x) − x >
1

4α
√

�

(
x − 1

2

)
,

where α > 1 is the constant stated in Lemma 9, stated in
Sect.3.
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Proof If f (x) is not a solution to y = g(x, y), then by defi-
nition f (x) = x + 1/

√
�, i.e.,

f (x) − x = 1√
�

>
1

2α
√

�

(
x − 1

2

)
,

and so the statement holds. Otherwise, then f (x) =
g(x, f (x)) and belongs to [x, x+1/

√
�]. By Lemma 9, there

exists α > 0 s.t.

P (B� ( f (x)) > B� (x)) <
1

2
+ α( f (x) − x)

√
�

−1

2
P (B� ( f (x)) = B� (x)) .

This can be plugged into the definition of f (Eq. (24)) to give

f (x) <
1

2
+ α( f (x) − x)

√
�

+
(
f (x) − 1

2

)
P (B� ( f (x)) = B� (x)) + 1

n

which we can rewrite,

(1 − P (B� ( f (x)) = B� (x)))

(
f (x) − 1

2

)

< α( f (x) − x)
√

� + 1

n
.

This gives

f (x) − x >
1 − P (B� ( f (x)) = B� (x))

α
√

�(
f (x) − 1

2

)
− 1

α · n√
�

>
1

2α
√

�

(
x − 1

2
− 2

n

)
,

where the last inequality comes fromP (B�( f (x)) = B�(x)) <

1/2 (which is true when � is large enough), and from the fact
that f (x) > x . Since (x − 1/2) ≥ 4/n, this implies

f (x) − x >
1

4α
√

�

(
x − 1

2

)
,

as desired. This completes the proof of Claim 10. ��
Next, rewriting f (x)−x = ( f (x) − 1/2)−(x − 1/2), we

get from Claim 10 that for every x ∈ [1/2+ 4/n, 1/2+ 4δ],
(
f (x) − 1

2

)
>

(
1 + 1

4α
√

�

)
·
(
x − 1

2

)
. (30)

We are now ready to conclude the proof of Lemma 15.
Let c4 = 1/4α. We will use the fact that, within the Yellow

area, xt+2 ≤ E(xt+2) − 1/
√
n and xt+2 ≥ E(xt+2) + 1/

√
n

both happen with constant probability (Lemma 11) or the
system leaves the area.

• If xt ∈ [1/2, 1/2+ 4/n], then by definition of B, xt+1 ∈
[1/2, 1/2 + 8/n]. For the same reason, for (xt+1, xt+2)

to be in B, it is necessary that xt+2 ∈ [1/2, 1/2+ 16/n].
There is a constant probability that it is not the case, and
so (b) (in the statement of the lemma) holds.

• Otherwise, if xt ∈ [1/2 + 4/n, 1/2 + 4δ] and xt+1 >

f (xt ), then by Eq. (30),

xt+1 − 1

2
> f (xt ) − 1

2
>

(
1 + c4√

�

)(
xt − 1

2

)
,

and so (a) holds.
• Else, f (xt ) ≥ xt+1. Moreover, by the definitions of f

and B1, we have the following relation:

xt + 1/
√

� ≥ f (xt ) ≥ xt+1 ≥ xt . (31)

By Eq. (29), g(xt , f (xt )) ≤ f (xt ), i.e., g(xt , f (xt )) −
f (xt ) ≤ 0. By Claim 7, for � large enough, function
y �→ g(xt , y)−y is strictly increasing on [xt , xt+1/

√
�].

Equation (31) ensures that xt+1 and f (xt ) are within this
interval, so g(xt , xt+1)− xt+1 ≤ g(xt , f (xt ))− f (xt ) ≤
0, i.e., g(xt , xt+1) ≤ xt+1. Recall that E(xt+2) =
g(xt , xt+1) – therefore, E(xt+2) ≤ xt+1.
Hence, there is a constant probability c5 that xt+2 < xt+1.
If this the case, since xt+1 > 1/2 and by the definition
of B, we get that (xt+1, xt+2) /∈ B and (b) holds.

This concludes the proof of Lemma 15. ��

6 Other areas

6.1 Proof of Lemma 1—Green area

The goal of this section is to prove Lemma 1, which
concerns Area Green. Let us prove the first part and
assume (xt , xt+1) ∈ Green1 (the proof of the second part
is analogous). By Eq. (14) in Remark 2, we have for every
agent i

P

(
Y (t+2)
i = 0

)
≤ P (B� (xt+1) ≤ B� (xt )) .

By Lemma 6, we have

P (B� (xt+1) ≤ B� (xt )) ≤ exp

(
−1

2
�(xt+1 − xt )

2
)

≤

exp

(
−1

2
�δ2
)

= exp

(
−cδ2

2
log n

)
.
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Then, by the union bound,

P

⎛
⎝ ⋃

i∈I\{source}

(
Y (t+2)
i = 0

)⎞⎠

≤ (n − 1) · exp
(

−cδ2

2
log n

)
,

which is o(n−ε) for some ε > 0 provided that c > 2/δ2. ��

6.2 Proof of Lemma 2—Purple area

The goal of this section is to prove Lemma 2, which
concerns Area Purple. Let us prove the first part and
assume (xt , xt+1) ∈ Purple1 (the proof of the second part
is analogous). By Eq. (15) in Remark 2,

E (xt+2) ≥ P (B� (xt+1) > B� (xt )) − 1

n
.

Since (xt , xt+1) ∈ Purple1, and since in this area xt+1 ≥
(1 − λn)xt , we have

P (B� (xt+1) > B� (xt )) ≥ P (B� ((1 − λn)xt ) > B� (xt )) .

Let

σ = √xt (1 − xt ) + (1 − λn)xt (1 − (1 − λn)xt )

>
√
xt (1 − xt ) >

√
xt
2

, (32)

where the last inequality is by the fact that xt < 1/2 which
follows from the definition of Purple1. By Lemma 8,

P (B� ((1 − λn)xt ) > B� (xt )) > 1

−�

(√
�λnxt
σ

)
− C

σ
√

�
.

We have (Eq. (32) and definition of Purple1)

σ >

√
xt
2

>

√
1

2 log n

so

C

σ
√

�
<

√
2C√
c

.

If c is large enough (specifically, if c > 32C2/δ2), we obtain

P (B� ((1 − λn)xt ) > B� (xt )) > 1 − �

(√
�λnxt
σ

)
− δ

4
.

We have

0 ≤
√

�λnxt
σ

≤ √
�λn
√
2xt ≤ √

�λn =
√
c

logδ n
−→

n→+∞ 0.

where the second inequality is by Eq. (32), and the third is
because xt < 1/2. So, for n large enough

1 − �

(√
�λn

σ

)
− δ

4
> 1 − �(0) − δ

2
= 1 − δ

2
.

Overall, we have proved that if n is large enough, then
E (xt+2) > (1−δ)/2. By Observation 1, we can apply Cher-
noff’s inequality (Theorem 4) to get that xt+2 > 1/2 − δ

w.h.p. Since by definition of Purple1 we have 1/2 − δ >

xt+1+δ, we obtain xt+2 > xt+1+δ w.h.p., which concludes
the proof of the lemma. ��

6.3 Proof of Lemma 3—Red area

The goal of this section is to prove Lemma 3, which concerns
Area Red. Without loss of generality, we assume that t0 =
0. We assume that (x0, x1) ∈ Red1 (the proof in the case
that (x0, x1) ∈ Red0 is the same). First we note that for every
round t , by definition, if (xt , xt+1) ∈ Red1 then xt+1 < (1−
λn)xt . So, we can prove by induction on t that for every 1 ≤
t ≤ t1,

xt < x0(1 − λn)
t .

In particular, we have that xt1 < xt0 < 1/2 − 3δ, and
so (xt1 , xt1+1) /∈ Yellow by definition of Yellow.

Also by definition, x0 < 1/2 and xt > 1/ log(n) for
every 0 ≤ t ≤ t1, hence, we obtain from the last equation
that

1

log n
<

1

2
(1 − λn)

t .

Taking the logarithm and rearranging, we get

log

(
1

2

)
+ log(log n) > t · log

(
1

1 − λn

)
.

Weknow that log(1−λn) < −λn and thus t ·log (1/(1 − λn)) >

tλn . Together with the above equation, this gives

t <
1

λn

(
log

(
1

2

)
+ log(log n)

)
= o
(
log1/2+2δ n

)
,

which concludes the proof. ��
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6.4 Proof of Lemma 4—Cyan area

The goal of this section is to prove Lemma 4, which concerns
AreaCyan.We only prove the result forCyan1, but the same
arguments apply to Cyan0 symmetrically. We distinguish
between two cases.

Case 1. xt0 ≥ 1/ log(n). In this case, by definition
of Cyan1, we must have xt0+1 < 1/ log(n). Note that in
this case, for n large enough, xt0+1 − δ < 1/ log(n)− δ < 0.
Then,

• either xt0+2 < xt0+1 + δ. In this case, xt0+1 − δ < 0 <

xt0+2 < xt0+1 + δ, and so (xt0+1, xt0+2) ∈ Cyan1 (but
this time Case 2 applies).

• or xt0+2 ≥ xt0+1 + δ, and so (xt0+1, xt0+2) ∈ Green1,
• (We can’t have xt0+2 = 0 because the source is assumed

to have opinion 1.)

Case 2. xt0 < 1/ log(n). Let γ = γ (c) = (1 − 1/e) ·
exp(−2c)/2 and let K = K (c) = c · exp (−2c) /2. We will
study separately three ranges of value for xt+1. Claim 11
below concerns small values of xt+1, Claim 12 concerns
intermediate values of xt+1, and Claim 13 concerns large
values of xt+1.

Claim 11 If xt < 1/ log(n), and if 0 < xt+1 ≤ 1/�, then

P

(
xt+2 >

K

2
xt+1 log n

)
> 1 − exp

(
−K

8
log n

)
.

Proof Wenote that, since xt < 1/ log(n), the probability that
an agent does not see a 1 in round t is

P (B� (xt ) = 0) = (1 − xt )
� >

(
1 − 1

log n

)�

= exp

(
c log(n) log

(
1 − 1

log n

))
> e−2c,

for n large enough. Moreover,

(1 − xt+1)
� < 1 − �xt+1 + 1

2
�2x2t+1,

so the probability that an agent sees at least one1 in round t+1
is

P(B�(xt+1) ≥ 1) = 1 − (1 − xt+1)
�

> �xt+1

(
1 − 1

2
�xt+1

)
>

1

2
�xt+1,

where the last inequality comes from the assumption that xt+1

≤ 1/�. Eventually, we can write

P (B� (xt+1) > B� (xt )) ≥ P (B�(xt ) = 0)

·P (B�(xt+1) ≥ 1) ≥ c

2
·e−2c · xt+1 log n = Kxt+1 log n.

Hence, by Eq. (15) in Remark 2, E (xt+2) ≥ Kxt+1 log n −
1/n. By Observation 1, we can apply Chernoff’s inequality
(Theorem 4) to conclude the proof of Claim 11. ��
Claim 12 If xt < 1/ log(n), and if 1/� < xt+1 ≤ γ , then

P (xt+2 > γ ) > 1 − exp
(
−γ n

8

)
> 1 − exp

(
−K

8
log n

)
.

Proof The proof follows along similar lines as the proof of
Claim 11. We note that, since xt < 1/ log(n), the probability
that an agent does not see a 1 in round t is

P (B� (xt ) = 0) = (1 − xt )
� >

(
1 − 1

log n

)�

= exp

(
c log n log

(
1 − 1

log n

))
> e−2c,

for n large enough. Moreover, the probability that an agent
sees at least a 1 in round t + 1 is

P(B�(xt+1) ≥ 1) = 1 − (1 − xt+1)
�

≥ 1 −
(
1 − 1

�

)�

> 1 − 1

e
.

Eventually, we can write

P (B� (xt+1) > B� (xt )) ≥ P (B�(xt+1) ≥ 1)

·P (B�(xt ) = 0) ≥ e−2c

·
(
1 − 1

e

)
= 2γ.

Hence, by Eq. (15) in Remark 2, E (xt+2) ≥ 2γ − 1/n. By
Observation 1, we can apply Chernoff’s inequality (Theo-
rem 4) to conclude the proof of Claim 12. ��
Claim 13 If xt < 1/ log(n), and if xt+1 > γ , then

P

(
xt+2 >

1

2

)
> 1 − exp

(
− n

18

)
> 1 − exp

(
−K

8
log n

)
.

Proof By assumption, xt+1 − xt ≥ γ − 1/ log(n), and so by
Lemma 6

P (B� (xt+1) > B� (xt ))

≥ 1 − exp

(
−1

2
�

(
γ − 1

log n

)2)
>

3

4
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forn large enough.Hence, byEq. (15) inRemark2,E (xt+2) ≥
3/4 − 1/n. By Observation 1, we can apply Chernoff’s
inequality (Theorem 4) to conclude the proof of Claim 13. ��

We say that a round t is successful if (xt , xt+1) ∈ Cyan1,
and the event of either Claim 11, 12 or 13 happens. Let X
be the number of successful rounds starting from t0. This
definition implies that necessarily,

X <
log(n/�)

log(K · log n/2)
+ 2 := Xmax.

Indeed, since xt0+1 > 1/n (by definition of Cyan1),
log(n/�)/ log(K · log(n)/2) rounds are always enough to
get xt+1 > 1/�; one more round is enough to get xt+1 > γ ;
and one more round is enough to get xt+1 > 1/2, in
which case (xt , xt+1) /∈ Cyan1. Therefore, by Claims 11,
12 and 13, the probability that, starting from t0, all rounds
are successful until the system is out of Cyan1 is at least(
1 − exp

(− K
8 log n

))Xmax ≥ 1 − Xmax · exp (− K
8 log n

) =
1 − 1/n�(1). Moreover, for any successful round t , xt+2 >

xt+1 (by definition of a successful round) and xt+1 <

δ + 1/ log(n) (this is a straightforward consequence of the
definition of Cyan1). Thus, by construction of the partition,
we must have (xt+1, xt+2) ∈ Cyan1 ∪ Green1 ∪ Purple1.
This implies that (xt1 , xt1+1) ∈ Green1 ∪ Purple1, which
concludes the proof of Lemma 4. ��

7 Extension tomore than two opinions

In this section, we consider the more general case with k
opinions, for an arbitrary k ∈ N, and we prove Theorem 2.
We assume that agents can agree on a labeling of the opin-
ions beforehand, and hence, on a total order over the opinion
space. Therefore, without loss of generality, we may assume
that the set of opinions is Y = {0, . . . , k − 1}.2 Investigating
settings where agents are denied this common knowledge is
left for future work.

Let m = 
log2 k� ∈ N. Given an opinion y ∈ Y , we iden-
tify y with its binary representation (as an m-bit string). We
write y[ j] to denote the j th bit of y, with the convention that
y[1] is the most significant bit, and y[m] the least significant.
A solution to the bit-dissemination problem in this setting is
to let the agents execute Protocol 1 independently and simul-
taneously on each bit of the opinions. The analysis can then
be reduced to the one of Protocol 1.

However, before it reaches a consensus on every bit of the
correct opinion, the protocol might face the following issue.
Whenever the most significant bit is set to 1, the resulting

2 Indeed, whenever an agent sees the i’th opinion in the total order
over Y , he can treat it as if it is opinion i in the set {0, . . . , k − 1}.

integer may be too large, i.e., may belong to {k, . . . , 2m −1},
and therefore not correspond to any opinion in Y . Thus, to
ensure that agents only output valid opinions, we need to set
the most significant bit to 0 whenever it is necessary; that is,
whenever the opinion’s value exceeds k.3 We will show that
this modification does not prevent the protocol from solving
the bit-dissemination problem.

The internal state space of our algorithm is � =
{0, . . . , �}m . In the state σ

(i)
t = (σ

(i)
t [1], . . . , σ (i)

t [m]) of
Agent i in round t , σ (i)

t [ j] ∈ {0, . . . , �} represents the num-
ber of samples received in the previous round, for which the
j th bit is equal to 1. Our protocol is described in details by
Protocol 2 below.

Protocol 2: FET bit by bit
Input : Yt ∈ Y = {0, . . . , k − 1}, σt ∈ � =

{0, . . . , �}m , St ∈ Y2�

1 for j ∈ {1, . . . ,m} do
2 Let St [ j] ∈ {0, 1}2� be a vector containing the j th bit of all

elements in St ;
3 Yt+1[ j], σt+1[ j] ← Protocol 1 (Yt [ j], σt [ j], St [ j]) ;
4 end
5 if Yt+1 /∈ Y then
6 Yt+1[1] ← 0 ;
7 end
Output :

(
Yt+1, σt+1

)

Theorem 2 is a corollary of the following result.

Theorem 3 Let k be a positive integer and let m = 
log2 k�.
When Y = {0, . . . , k − 1}, Protocol 2 solves the bit-
dissemination problem in O(log5/2 n) rounds with high
probability, while relying on � = �(log n) samples in each
round and using �(m log �) bits of memory.

Proof We start by making the following simple observation.
��
Claim 14 Any m-bit string a with a[1] = 0 corresponds to a
valid opinion in Y .

Proof Since themost significant bit of a is equal to 0,we have
a ≤ 2m−1 − 1. Moreover, m = 
log2 k� < 1 + log2 k, so
2m−1−1 < 2log2 k −1 = k−1. Hence, a ∈ {0, . . . , k−2} ⊂
Y . ��

By Claim 14, and because of the “if” statement in line 5,
Protocol 2 only outputs valid opinions.

Now, let z ∈ Y be the opinion of the source. By construc-
tion, Protocol 2 behaves exactly as Protocol 1 with respect to
every bit j , for j ∈ {2, . . . ,m}. Therefore, byTheorem1, and

3 We would like to thank one of the anonymous reviewers for suggest-
ing this implementation which is more elegant than our original idea,
although closely related.
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since k is fixed w.r.t. n, w.h.p. there exists t0 = O(log5/2 n),
such that:

for every t ≥ t0, every j ∈ {2, . . . ,m},
and every i ∈ I , Y (i)

t [ j] = z[ j]. (33)

Now, consider integers z0, z1, given by their binary repre-
sentations: z0 = (0, z[2], . . . , z[m]), and z1 = (1, z[2],
. . . , z[m]). By definition, either z = z0 or z = z1. By
Claim 14, z0 ∈ Y .

• If z1 /∈ Y , then necessarily the opinion of the source is z0.
Moreover, by the “if” statement on line 5 of Protocol 2,
each agent adopts opinion z0 from round t0 + 1 onward.

• Otherwise, if z1 ∈ Y , then from round t0 and by con-
struction, Protocol 2 behaves exactly as Protocol 1 with
respect to the most significant bit.Therefore, there exists
a round t1 = t0 + O(log5/2 n) such that all agents agree
on the most significant bit. Together with Eq. (33), this
implies that from round t1 onward, all agents adopt opin-
ion z.

In both cases, Protocol 2 converges in O(log5/2 n) rounds
w.h.p. Finally, we note that the O(m log �) bits upper bound
on the memory complexity follows from the fact that the
internal state space� = {0, . . . , �}m is only of size (�+1)m ,
which concludes the proof of Theorem 3.

8 Discussion and future work

This paper considers a natural problem of information
spreading in a self-stabilizing context, where it is assumed
that a source agent has useful knowledge about the environ-
ment, and others would like to learn this information without
being able to distinguish the source from non-source agents.
Motivated by biological scenarios, our focus is on solutions
that utilize passive communication.We identify an extremely
simple algorithm, called FET (Protocol 1), which has a natu-
ral appeal: In each round, each (non-source) agent estimates
the current tendency direction of the dynamics, and then
adapts to the emerging trend. The correct operation of the
algorithm does not require that the source actively cooper-
ates with the algorithm, and instead, only assumes that it
maintains its correct option throughout the execution.

Different performance parameters may be further opti-
mized in future work. For example, our analysis uses
�(log n) samples per round, and itwould be interesting to see
whether the problem can be solved in poly-logarithmic time
w.h.p, by using only a constant number of samples per round.
Also, we do not exclude the possibility that a tighter analysis
of Algorithm FET would reduce our bound on the running

time. In addition, our framework assumes the presence of
a single source agent, but as mentioned, it can also allow
for a constant number of sources, as long as it is guaranteed
that all sources agree on the correct opinion. No attempt has
been made to consider a larger regime of sources (beyond a
constant), although we believe that such a framework is also
manageable.

In Sect. 7 we study the case of multiple opinions. We
showed how to handle this case assuming that the agents
agree on the ordering of the opinions. As mentioned, the
case when there is a possible conflict in the ordering of the
opinions remains for future work.

Finally, as amore philosophical remark, we note that early
adapting to emerging trends is a common strategy in humans,
which is, in some sense, encouraged by modern economic
systems. For example, investing in a successful company can
yield large revenues, especially if such an investment is made
before others notice its high potential. On a global scale, the
collective benefits of this strategy are typically associated
with economic growth. This paper shows that such a strategy
can also have a collective benefit that traces back to basic
aspects of collective decision-making, suggesting the possi-
bility that it may have evolved via group-selection. With this
in mind, it would be interesting to empirically check whether
such a strategy exists also in other animal groups, e.g., fish
schools [39] or ants [37].
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Appendix

A Probabilistic tools–Somewell-known
theorems

Theorem 4 [Multiplicative Chernoff’s Bound] Let X1, . . . ,

Xn be independent binary random variables, let X =∑n
i=1 Xi and μ = E(X). Then it holds for all δ > 0 that

P (X ≥ (1 + δ)μ) ≤ exp
(
−min{δ, δ2} · μ

3

)
,

and for all 0 < ε < 1,

P (X ≤ (1 − ε)μ) ≤ exp
(
−ε2 · μ

2

)
.

Theorem 5 [Hœffding’s bound] Let X1, . . . , Xn be indepen-
dent random variables such that for every 1 ≤ i ≤ n, ai ≤
Xi ≤ bi almost surely. Let X = ∑n

i=1 Xi and μ = E(X).
Then it holds for all δ > 0 that

P (X − μ ≥ δ) ≤ exp

(
− 2δ2∑n

i=1(bi − ai )2

)
.

Theorem 6 [Central Limit] Let X1, . . . , Xn be i.i.d. random
variables with E(X1) = μ and Var(X1) = σ 2 < +∞. Then
as n tends to infinity, the random variables

√
n
( 1
n

∑n
i=1 Xi

− μ
)
converges in distribution to N (0, σ 2).

Let � be the cumulative distribution function (c.d.f.) of
the standard normal distribution:

�(x) = 1√
2π

∫ x

−∞
e−t2/2dt .

Theorem 7 [Berry-Esseen] Let X1, . . . , Xn be i.i.d. random
variables, with E(X1) = 0, Var(X1) = E(X2

1) = σ 2 > 0,
and E(|X1|3) = ρ < +∞. Let X =∑n

i=1 Xi and F be the
c.d.f. of X/(σ

√
n). Then it holds that

|F(x) − �(x)| ≤ Cρ

σ 3
√
n
,

where, e.g., C = 0.4748.
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