
Distributed Computing (2024) 37:35–64
https://doi.org/10.1007/s00446-024-00461-9

Component stability in low-space massively parallel computation

Artur Czumaj1 · Peter Davies-Peck2 ·Merav Parter3

Received: 31 May 2023 / Accepted: 11 January 2024 / Published online: 8 February 2024
© The Author(s) 2024

Abstract
In this paper, we study the power and limitations of component-stable algorithms in the low-space model of massively
parallel computation (MPC). Recently Ghaffari, Kuhn and Uitto (FOCS 2019) introduced the class of component-stable
low-space MPC algorithms, which are, informally, those algorithms for which the outputs reported by the nodes in different
connected components are required to be independent. This very natural notion was introduced to capture most (if not all)
of the known efficient MPC algorithms to date, and it was the first general class of MPC algorithms for which one can show
non-trivial conditional lower bounds. In this paper we enhance the framework of component-stable algorithms and investigate
its effect on the complexity of randomized and deterministic low-space MPC. Our key contributions include: 1. We revise
and formalize the lifting approach of Ghaffari, Kuhn and Uitto. This requires a very delicate amendment of the notion of
component stability, which allows us to fill in gaps in the earlier arguments. 2. We also extend the framework to obtain
conditional lower bounds for deterministic algorithms and fine-grained lower bounds that depend on the maximum degree
�. 3. We demonstrate a collection of natural graph problems for which deterministic component-unstable algorithms break
the conditional lower bound obtained for component-stable algorithms. This implies that, in the context of deterministic
algorithms, component-stable algorithms are conditionally weaker than the component-unstable ones. 4. We also show that
the restriction to component-stable algorithms has an impact in the randomized setting. We present a natural problem which
can be solved in O(1) rounds by a component-unstableMPC algorithm, but requires�(log log∗ n) rounds for any component-
stable algorithm, conditioned on the connectivity conjecture. Altogether our results imply that component-stability might limit
the computational power of the low-spaceMPCmodel, at least in certain contexts, paving the way for improved upper bounds
that escape the conditional lower bound setting of Ghaffari, Kuhn, and Uitto.

Keywords Component stability · Massively parallel computation · Lower bounds

A preliminary version of the paper in the form of an extended abstract
appeared in the proceedings of the 40th ACM SIGACT-SIGOPS
Symposium on Principles of Distributed Computing (PODC 2021).

B Artur Czumaj
a.czumaj@warwick.ac.uk

B Peter Davies-Peck
peter.w.davies@durham.ac.uk

B Merav Parter
merav.parter@weizmann.ac.il

1 Computer Science and Centre for Discrete Mathematics and
its Applications (DIMAP), University of Warwick, Coventry
CV4 7AL, UK

2 Computer Science, Durham University, Durham DH1 3LE,
UK

3 Computer Science, Weizmann Institute, Rehovot 7610001,
Israel

1 Introduction

The central goal of this paper is to advance our understand-
ing of the computational power of low-space algorithms
in the massively parallel computation (MPC) model. Our
main focus is on the notion of component-stable low-space
MPC algorithms introduced recently by Ghaffari, Kuhn and
Uitto [26] as the first general class of MPC algorithms for
which non-trivial conditional lower bounds can be obtained.
Roughly speaking, in this class of algorithms the output of
nodes in different connected components are required to be
independent. While this definition has been introduced to
capture most (if not all) of the known MPC algorithms to
date, and the notion of component-stable algorithms seems
quite natural and unlimited, we demonstrate its effect on the
complexity of randomized and deterministic low-spaceMPC.
Our first finding is that the notion of component-stability

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00446-024-00461-9&domain=pdf

36 A. Czumaj et al.

as defined in [26] is rather fragile and needs to be stud-
ied with care, leading us to a revision of this framework to
make it robust.Our amended frameworkof component-stable
algorithms allows us to fill in gaps in the earlier argu-
ments and make it more applicable. In particular, the revised
setup enables us to extend the framework of (conditional)
lower bounds from [26] for component-stable randomized
algorithms relating LOCAL algorithms and low-space MPC
algorithms: we demonstrate that it can be parameterized
with respect to the maximum graph degree � and holds also
for deterministic algorithms, thereby making the framework
more broadly applicable and proving for the first time a host
of conditional lower bounds for a number of deterministic
low-space component-stable MPC algorithms.

Next, we will show that for some natural problems
there are low-space component-unstable MPC algorithms
(both randomized and deterministic) that are significantly
more powerful than their component-stable counterparts. So,
rather than being a technical triviality, component-stability is
in fact a significant restriction on the power of the low-space
MPC model.

1.1 Background

The rapid growth of massively parallel computation frame-
works, such as MapReduce [18], Hadoop [47], Dryad [30],
or Spark [49] resulted in the need of active research for
understanding the computational power of such systems.
Themassively parallel computation (MPC)model, first intro-
duced by Karloff et al. [31] (and later refined in [2, 7, 29])
has become the standard theoretical model of algorithmic
study, as it provides a clean abstraction of these frameworks.
Over the past years, this model has been receiving a major
amount of interest by several independent communities in
theory and beyond. In comparison to the classical PRAM
model, the MPC model allows for a lot of local computation
(in principle, unbounded) and enabled it to capture a more
“coarse–grained” and meaningful aspect of parallelism (see,
e.g., [3, 8, 17, 23, 28]).

In the MPC model, there are M machines and each of
them has S words of local space at its disposal. Initially, each
machine receives its share of the input.

In the context of graph problems where the input is a col-
lection V of nodes and E of edges, |V | = n, |E | = m, the
input is arbitrarily distributed among the machines (and so
S · M ≥ n + m). In this model, the computation proceeds
in synchronous rounds in which each machine processes its
local data and performs an arbitrary local computation on its
data. At the end of each round,machines exchangemessages.
Each message is sent only to a single machine specified by
the machine that is sending the message. All messages sent
and received by each machine in each round, as well as the
output have to fit into the machine’s local space S.

Our focus in this paper is on the low-space setting where
the local space of each machine is strongly sublinear in the
number of nodes, i.e., S = nφ for some φ ∈ (0, 1). Our lower
bounds will be against algorithms with any polynomial num-
ber of machines (i.e., M = poly(n)), while our upper bounds
(with the exception of the non-uniform general derandom-
ization of Lemma 32) will use at most O(m + n1+φ) global
space (i.e., M = O(m

nφ + n)).
The low-space regime is particularly challenging due to

the fact that a node’s edges cannot necessarily be stored
on a single machine, but rather are scattered over several
machines. Nevertheless, for many classical graph problems,
poly(log n)-round algorithms can be obtained, and recently
we have also seen even sublogarithmic solutions. Ghaffari
and Uitto [28] (see also [41]) presented a randomized graph
sparsification technique resulting in O(

√
log� log log� +

log log log n)-round algorithms for maximal matching and
maxinmal independent set (MIS), where � is the maximum
degree. This should be compared, for example, with maxi-
malmatching algorithmswith significantlymore local space:
Lattanzi et al. [36] presented an O(1/ε)-round randomized
algorithm using O(n1+ε) local space and Behnezhad et al.
[8] gave an O(log log n)-round randomized algorithm using
O(n) local space (see also [4, 17, 23]). For the problem of
(�+ 1)-vertex coloring Chang et al. [10] showed a random-
ized low-spaceMPC algorithm that works in O(log log log n)

rounds, when combined with the network decomposition
result of Rohzoň and Ghaffari [45].

While we have seen some major advances in the design
of low-space MPC algorithms, no (unconditional) hardness
results are known for any of the above problems in the low-
space MPC setting. A seminal work by Roughgarden et al.
[44] provides an explanation for the lack of such lower bound
results. They showed that obtaining any unconditional lower
bound in the low-space MPC (for algorithms with an arbi-
trarily polynomial number of machines) setting ultimately
leads to a breakthrough result in circuit complexity, namely
that NC1 � P. This work has opened up a new avenue
towards proving conditional hardness results that are based
on the widely believed connectivity conjecture. This conjec-
ture (extensively used in our current paper) states that there
is no o(log n)-round (randomized) low-spaceMPC algorithm
(even using any polynomial global space) for distinguishing
between the input graph G being an n-length cycle and two
n
2 -length cycles. Several global

1 problems were shown to be
hard in low-space MPC under the conjecture [39, 48], but its
relation to local problems was less clear.

1 By global problemswemean those that require communication across
entire connected components to solve, and so have �(n) worst-case
LOCAL complexity, as opposed to local problems that have o(n) LOCAL
complexity.

123

Component stability in low-space massively parallel computation 37

The first conditional lower bounds for local problems
in the low-space MPC setting were presented by a recent
insightful paper of Ghaffari et al. [26]. This work provides a
collection of conditional hardness results for classical local
problems by drawing a new connection between the round
complexity of a given problem in the LOCAL model [37],
and its corresponding complexity in the low-space MPC
model. Unlike the low-space MPC setting, for the LOCAL
model, arguably one of the most extensively studied model
in distributed computing, there is a rich collection of (uncon-
ditional) lower bound results. To enjoy these LOCAL lower
bound results in our context, [26] presented a quite gen-
eral technique that for many graph problems translates an
�(r)-round LOCAL lower bound (with an additional require-
ment of using shared randomness) into an �(log r)-round
lower bound in the low-space MPC model conditioned on
the connectivity conjecture. This beautiful lifting argument
is surprisingly quite general, capturing the classical lower
bounds for problems like MIS, maximal matching [34], LLL
(Lovász Local Lemma), and sinkless orientation [9]. For
example, one very strong implication of their technique is
that conditioned on the connectivity conjecture, it shows that
there is no randomized low-space MPC algorithm for (even
approximate) maximal matching or MIS using o(log log n)

rounds.
The framework of Ghaffari et al. [26] has onemain caveat,

which at first glance appears to be quite negligible, a mere
technicality. Their conditional lower bounds do not hold
for any algorithms but rather only for the special class of
component-stableMPC algorithms. The key property of these
algorithms is that the output of the nodes in one connected
component is independent of other components. More for-
mally, in component-stable algorithms, the output of each
node v is allowed to depend (deterministically) only on the
node v itself, the initial distribution, the ID assignment of the
connected component of v, and on the shared randomness.
The class of component-stable algorithms is indeed quite nat-
ural, and at least by the time of publication of [26], it appeared
to capture most, if not all, of the existingMPC algorithms, as
explicitly noted by the authors:

[26] To the best of our knowledge, all known
algorithms in the literature are component-stable
or can easily be made component-stable with no
asymptotic increase in the round complexity.

In this view, it appeared that the restriction to component-
stable algorithms is no more than a minor technicality rather
than an actual limitation on the low-space MPC model.

The first indication that component-stability might actu-
ally matter was provided by recent works [14, 16], which
present deterministic low-space component-unstable MPC
algorithms for several classic graph problems, even though
the validity of solutions to these problems depends only on

local information. Specifically, by derandomizing a basic
graph sparsification technique, one can obtain O(log� +
log log n)-rounddeterministic low-space component-unstable
MPC algorithms for MIS, maximal matching, and (� + 1)-
coloring. Czumaj et al. [15] later provided amore specialized
derandomized algorithm improving the running time for
(� + 1)-coloring to O(log log log n). A key ingredient of
these algorithms is a global agreement on a logarithmic
length seed, to be used by all nodes in order to simulate their
randomized decisions. This global seed selection involves
coordination between all the nodes, regardless of their com-
ponents, thus yielding component-unstable algorithms. The
component-instability here seems to be quite inherent to the
derandomization technique, and it is unclear whether any
component-stable method could perform equally well.

1.2 Our aims

In this paper we thoroughly investigate the concept of
component-stability and its impact on randomized and deter-
ministic low-space MPC algorithms.

Upon examining the notion of component-stability in
detail and after attempts to broaden its applications, it
becomes apparent that the concept is highly sensitive to the
exact definition used, and that one must be very careful in
specifyingwhat information the outputs of component-stable
algorithms may depend on. For example, we must precisely
specify whether we allow component-stable algorithms’ out-
puts to depend on the input size n, and we find that either
choice here holds problematic implications for the current
lower bounds and for the analysis due to Ghaffari et al. [26].

This raises the first main question of our work:

Question 1 Can we revise the lifting framework and
amend the definition of component-stability which both
captures a wide array of algorithms, and also allows us
to prove robust lower bounds?

Having fixed such a definition, we ask to what extent
component-stability restricts MPC algorithms, and whether
the concept is indeed a technicality or actually a significant
limitation. The lifting arguments of [26] are designed for
randomized algorithms, which raises the following question:

Question 2 Does component-instability help for obtain-
ing improved randomized low-space MPC algorithms
for graph problems? Is there any separation between
randomized component-stable and component-unstable
MPC algorithms?

We then turn to consider the impact of component-stability
on deterministic low-spaceMPC algorithms. Since the recent
derandomization technique of [14, 16] leads to inherently
component-unstable algorithms, we ask:

123

38 A. Czumaj et al.

Question 3 Does component-instability help for obtain-
ing improved deterministic low-space MPC algorithms
for graph problems? Is there any separation between
deterministic component-stable andcomponent-unstable
MPC algorithms?

Understanding the gap between randomized and deter-
ministic solutions is one of the most fundamental and
long-standing questions in graph algorithms. In a very related
context, the last few years provided a sequences of major
breakthrough results which almost tightly characterize the
gap between the deterministic and randomized complexities
for distributed computation (in the LOCAL model). Rohzoň
and Ghaffari [45] settled a several-decades-old open prob-
lems by presenting a deterministic polylogarithmic algorithm
for network decomposition. Their result implies that any
polylogarithmic-time randomized algorithm for LCL prob-
lems [12, 40] can be derandomized to a polylogarithmic-time
deterministic algorithm. In other words, randomization does
not help in the polylogarithmic-time regime. On the other
hand, Chang et al. [12] showed that in the sub-logarithmic-
time regime, randomization might provide an exponential
benefit. For example, for �-coloring of trees of maximum
degree � there are �(log� log n) randomized-round algo-
rithms and a deterministic lower bound of�(log� n) rounds.
Balliu et al. [5] recently showed that maximal matching
and maximal independent sets cannot be found by o(� +
log log n/ log log log n)-round randomized algorithms, and
deterministically in o(� + log n) rounds, thus providing
an exponential gap in the lower bound for bounded-degree
graphs. Finally, Chang et al. [11] presented additional sep-
aration results for edge-coloring: (2� − 2)-edge-coloring
requires �(log� log n) randomized rounds, and �(log� n)

deterministic rounds. In view of these separation results, we
therefore ask in the context of related MPC computation:

Question 4 Is there a gap between component-stable
randomizedalgorithms vs. component-stabledetermin-
istic algorithms?

In this paper, we answer all four questions in the affirma-
tive.

1.3 Our contributions

In this paper, we study the power and limitations of
component-stable algorithms in the low-space MPC model.
This class of algorithms is to this date the only class for
which conditional lower bound for local graph problems can
be obtained. Our main contribution is in demonstrating the
impact of this property on the complexity of randomized and
deterministic local graph problems. Towards that goal, we
informally define the following four complexity classes:

• DetMPC deterministic low-space component-unstable
MPC algorithms,

• S-DetMPC deterministic low-space component-stableMPC
algorithms,

• RandMPC randomized low-space component-unstable
MPC algorithms,

• S-RandMPC randomized low-space component-stable
MPC algorithms.

We refer to Sect. 2.5 for the precise definitions.

1.3.1 A robust lifting framework

We rectify the framework of low-space component-stable
MPC algorithms due to Ghaffari et al. [26]. We study the
framework in detail and demonstrate that in order to be
broadly applicable, many aspects of the original setting are
highly sensitive to the exact definition used, and require
amendments to carefully specify what information the out-
puts of component-stable algorithms may depend on. We
present a modified framework, reaching a revised definition
of component-stability (see Definition 5) which both encom-
passes many existing MPC algorithms, and for which robust
conditional lower bounds can be shown. This answers Ques-
tion 1.

1.3.2 Extensions to deterministic and degree-dependent
lower bounds

Our revised framework not only recovers all main results
from the framework of Ghaffari et al. [26], but also extends
the arguments to include conditional lower bounds for
deterministic algorithms and fine-grained lower bounds that
depend on �. While our main theorem (Theorem 5) lifting
LOCAL lower bounds to component-stable MPC algorithms
has several subtle assumptions, the main, informal claim is
that for many graph problems P , if P has a T (n,�)-round
(randomized or deterministic) lower bound in the LOCAL
model, then assuming the connectivity conjecture, any low-
space component-stable (respectively, randomized or deter-
ministic)MPC algorithm solvingP requires�(log T (n,�))

rounds.

1.3.3 Instability helps randomizedMPC algorithms

To address Question 2, we consider the problem of finding
a large (specifically, of size �(n/�)) independent set. This
problem has been recently studied by Kawarabayashi et al.
[32], who provided a randomized LOCAL lower bound of
�(log∗ n) rounds (for a specific range of �). We show that
their lower bound can be adapted to our revised lower-bound
lifting framework of Theorem 5, obtaining a conditional
lower bound of �(log log∗ n) rounds for component-stable

123

Component stability in low-space massively parallel computation 39

MPC algorithms.2 In contrast, we present a very simple
O(1)-round component-unstable randomized algorithm for
the problem. In fact, this algorithm can further be derandom-
ized within O(1) rounds (see Theorem 30), demonstrating
an instance in which deterministic component-unstable algo-
rithms are more powerful even than randomized component-
stable algorithms (i.e., DetMPC � S-RandMPC).

Theorem 1 Conditioned on the connectivity conjecture, any
component-stable low-space MPC algorithm for computing
an independent set of size �(n/�) on n-node graphs (for
the full range of � ∈ [1, n)) and succeeding with prob-
ability at least 1 − 1

n , requires �(log log∗ n) rounds. This
problem admits a simple O(1)-round randomized low-space
MPC algorithm which is component-unstable; additionally,
the algorithm can be derandomized within O(1) rounds.

Stated in complexity language, Theorem 1 provides a
separation between the class of RandMPC and S-RandMPC
(conditioned on the connectivity conjecture, see Theorem 7).
The basic observation providing this separation is the fact that
one can easily compute in O(1) rounds (even in the LOCAL
model) an independent set of �(n/�) nodes in expectation.
In the LOCAL model, we need provably longer to achieve a
high-probability success guarantee of 1− 1

n . In the low-space
MPCmodel, however, we can perform the process of success
probabiliy amplification: we run �(log n) parallel repeti-
tions of the basic algorithm, and choose a successful one
if such exists, amplifying the success probability to 1 − 1

n
without any slow-down. This powerful process, though, is
inherently component-unstable, since it relies on globally
agreeing on one of the repetitions to use.3

1.3.4 Instability helps deterministicMPC algorithms

We then turn to consider the effect of component-stability on
deterministic MPC algorithms. While the original setup of
Ghaffari et al. [26] had been designed only for randomized
algorithms, the revised framework developed in our paper
in Sect. 2.4.6 extends naturally to the deterministic setting,
providing a robust deterministic lifting analog in Theorem
5. Theorem 5 provides a general framework lifting uncondi-
tional deterministic lower bounds for the LOCAL model for
many natural graph problems to conditional lower bounds
for low-space component-stableMPC algorithms in the same
way as the randomized framework in [26].

2 The original lifting arguments of [26] only hold for LOCAL lower
bounds that hold under exact knowledge of n; the lower bound of [32]
does not, but holds only under knowing a polynomial estimate of n,
which is allowed for in our framework.
3 Indeed, this causes an issue with the proof of Lemma III.1 of [26],
where success probability amplification is used in an algorithm AMPC
that is later (in Lemma IV.2 in [26]) assumed to be component-stable.

We then turn to show that with component-instability one
can in fact surpass these conditional lower bounds andpresent
several results showing a separation between DetMPC and
S-DetMPC (conditioned on the connectivity conjecture) and
positively answering Question 3. In Sect. 4.2, we show that
for several problems closely related to LLL, including sin-
kless orientation and some variants of edge-coloring and
vertex-coloring, component-instability helps for determinis-
tic algorithms. Finally, in Sect. 4.3, we demonstrate a similar
result for the class of all LOCAL extendable algorithms by
combining the lifting of deterministic LOCAL lower bounds
in Theorem 5 with a derandomization technique using pseu-
dorandom generators. To demonstrate the applicability of
this derandomization recipe, we show how it can be used
to improve the deterministic running times of two corner-
stone problems in low-space MPC: maximal independent
set and maximal matching. And so, on one hand we prove
(Theorem 26) that conditioned on the connectivity conjec-
ture, there is no deterministic low-space component-stable
MPC algorithm that computes a maximal matching or maxi-
mal independent set, even in forests, in o(log� + log log n)

rounds, and on the other hand, we give a deterministic low-
space component-unstableMPC algorithm for these problem
running in O(log log� + log log log n) rounds (when � =
2log

o(1) n , Theorem 25). (The resulting MPC algorithm must
either perform heavy local computations, or alternatively, the
underlying PRGs can be hard-coded in theMPCmachines for
a non-uniform but computationally-efficient algorithm.)

1.3.5 Relations between randomized and deterministic
MPC algorithms

Finally, we consider the interesting gap between randomized
and deterministic algorithms in the low-space MPC setting.
As observed by [12, 25] (and see Lemma 31), randomized
algorithms that succeed with probability of 1 − 1/2n

2
can

be turned into non-uniform deterministic algorithms. This
result can also be extended to the low-space MPC setting,
with some caveat. In contrast to the LOCAL model where
the space of the nodes is unlimited, in the low-space MPC
setting, the transformation implied by [12, 25] yields a
non-explicit algorithm (see Lemma 31). By using success
probability amplification with poly(n) machines, one can
boost the success guarantee of any randomized MPC algo-
rithm from1−1/ poly(n) to 1−1/2n

2
without any slowdown

in the round complexity. From the complexity perspective,
restricting to non-uniform and non-explicit computation, one
therefore finds that DetMPC = RandMPC, see Theorem 9.
For some specific problems, we can perform more careful
derandomization methods that do not cause the resulting
deterministic algorithms to be non-uniform, non-explicit, or

123

40 A. Czumaj et al.

to use excessive global space, demonstrating that component-
stability restricts power even without these allowances.

Turning our focus to low-space component-stable MPC
algorithms, here we can provide a conditional separation
between randomized and deterministic algorithms (Theorem
13), positively answering Question 4. This separation fol-
lows by combining (i) the conditional lifting for randomized
component-stable algorithms and deterministic component-
stable algorithm with (ii) local problems for which there is
provable gap in their randomized and deterministic LOCAL
complexity.

1.3.6 Complexity summary

Let us summarize the complexity results, assuming the
connectivity conjecture, and allowing non-uniform MPC
algorithms. Our study demonstrates that in low-space MPC,
component-unstable algorithms are provably stronger than
their component-stable counterparts, both for determinis-
tic and randomized algorithms (Theorems 6, 7). Further,
for component-stable algorithms, randomized algorithms
are provably stronger than their deterministic counterparts
(Theorem 8). However, for arbitrary (possibly component-
unstable) algorithms this is not the case: any randomized
algorithm can be efficiently simulated by a deterministic one
(Lemma 32 and Theorem 9).

2 Revised framework of component stability

In this section we suggest an array of changes that may be
made to the framework of component-stable algorithms due
to Ghaffari et al. [26], in order to reach a revised definition
of component-stability (Definition 5) which both encom-
passes many existing randomized MPC algorithms, and for
which robust conditional lower bounds can be shown. These
changes also allow us to extend the original setting to both
deterministic algorithms and those that have running-time
dependency on maximum degree �.

2.1 Discussion of definitions of component stability

Let us first present the description of component stability
from [26, Section II]:

Formally, assume that for a graph G, DG denotes the ini-
tial distribution of the edges of G among the M machines
and the assignment of unique IDs to the nodes of G. For a
subgraph H of G letDH be defined asDG restricted to the
nodes and edges of H. Let Hv be the connected component
of node v. AnMPC algorithmA is called component-stable
if for each node v ∈ V , the output of v depends (determin-
istically) on the node v itself, the initial distribution and
ID assignment DHv of the connected component Hv of v,
and on the shared randomness SM.

We informally sketch the line of argument of [26] that
leverages this definition to lift LOCAL lower bounds toMPC:
first, it is shown that if there is a LOCAL lower bound for a
problem P , and an MPC algorithm AMPC is able to solve
P faster than the log of the LOCAL lower bound, there there
must exist two graphs G and G ′, which are locally indistin-
guishable but on which AMPC ’s output must differ (at least
with some sufficiently large probability). In the terminology
of [26], AMPC must be ‘farsighted’: able to somehow make
use of information from far-away nodes.

These graphs G and G ′, and the assumed algorithm
AMPC , are then ingeniously used to construct an algorithm
Bst−conn that solves a connectivity problem conjectured to
be hard. Specifically, Bst−conn constructs a pair of simulation
graphs based on its input to the connectivity problem. These
simulation graphs consist of many disjoint copies of induced
subgraphs ofG andG ′ respectively. The construction ismade
in such a way that a full copy of G and G ′ only appears if
two particular nodes (designated s and t) are connected in
the input graph for the connectivity problem.

Bst−conn simulates AMPC on this pair of simulation
graphs. If s and t are connected, then full copies of G and
G ′ are present as connected components in the simulation
graphs, and AMPC should return different outputs on them
with sufficiently high probability. Otherwise, there are no
full copies of G and G ′, and AMPC returns the same out-
puts on both simulation graphs. This difference in behavior
is exploited to allow Bst−conn to determine whether s and t
are connected, and solve the connectivity problem faster than
is conjectured to be possible.

The property of component-stability is crucial in this last
step: we require that AMPC behaves the same on G and G ′
when they are connected components of the (much larger)
simulation graphs as it does when they are the entire input
(as was the case when showing that AMPC was farsighted).
Otherwise, we could not say anything about AMPC ’s output
on the simulation graphs. It transpires that this argument is
quite fragile, and highly sensitive to the precise definition
of component-stability used. We discuss some of the issues
below.

2.1.1 Randomized component-stable algorithmsmust be
allowed dependency on n

The first major point of consideration is that, as defined in
[26], the output of a node v under a component-stable algo-
rithm must depend only on shared randomness, the IDs of
v and its component, and the input distribution of edges to
machines. In particular, no provision is made for dependency
on the number of nodes n in the input graph, and indeed,

123

Component stability in low-space massively parallel computation 41

the arguments of [26] seem to forbid it,4 This is somewhat
counter-intuitive for MPC algorithms: while a LOCAL algo-
rithm can never determine n unless it is given as input (and
therefore it is commonly assumed that we provide the algo-
rithm with at least a polynomial estimate of n), an MPC
algorithm can easily do so in O(1) rounds, by simply sum-
ming counts of the number of nodes held on each machine.5

We can therefore assume any such algorithm has knowledge
of the exact value of n, and natural algorithmic approaches
would generally make use of this knowledge.

Furthermore, the success probability of correct random-
ized algorithms is defined to be at least 1− 1

n , in accordance
with the standard definition of with high probability cor-
rectness. This causes a contradiction for algorithms with no
output dependency on n:

Consider a correct component-stableMPC algorithm A for
a problem in which the validity of a node’s output can be ver-
ified by seeing its connected component (we will formalize
this notion later), running on a n-node graph. This algorithm
must produce a valid output for each node in the graph with
probability at least 1 − 1

n .
We now add η disconnected nodes to the input graph. If

A’s output does not have any dependency on n, then itmust be
unchanged at each of the original nodes, since they are in an
unchanged connected component. However, Amust succeed
on the new graph with probability at least 1 − 1

n+η
. Since A

is component-stable, the probability that it succeeds on all
of the nodes of the original graph is at least as high as the
probability that it succeeds on the whole graph, i.e., 1− 1

n+η
.

So, A must succeed on the original graph with probability at
least 1 − 1

n+η
, and since we can set η arbitrarily high, must

therefore succeed with certainty.
In short, a definition of component-stability which does

not allow any dependency on n essentially rules out all ran-
domized algorithms with probabilistic success guarantees
(though does still permit Las Vegas randomized algorithms),
and so does not capture most of the problems to which the
framework was originally applied.

4 Specifically in proof of [26, Lemma IV.2] where algorithm AMPC is
simulated on large simulation graphs containing smaller componentsG
and G ′, as discussed above, its behavior on G and G ′ as components is
only identical to when run on them as sole input if no dependency on n
is permitted.
5 This sum is calculated by specifying a constant-depth, nε-ary tree
over the machines, for some sufficiently small constant ε, and then
aggregating from the leaves to the root of the tree, summing at every
step. For more details on basic MPC operations such as searching and
sorting, see e.g. [29].

2.1.2 If we allow dependency on n, we must restrict the
class of problems in order to obtainMPC lower
bounds

Wehave seen that, to give results which apply to probabilistic
algorithms, we must allow dependency on n. However, we
cannot then hope to obtain a result akin to Theorem I.4 of
[26] for all graph problems.

As an example, consider the following problem: each node
must outputYES if the entire graph is a simple pathwith con-
secutive node IDs, and NO otherwise. Note that there is only
one possible correct output for each node v, and that this out-
put is a deterministic function of its component and the value
of n (since v’s output should be YES iff its component is an
n-node path with consecutive IDs). Furthermore, there is an
O(1)-round MPC algorithm for the problem: it is straight-
forward to check whether there are two nodes of degree 1,
n − 2 nodes of degree 2, and that each node’s 1-hop neigh-
borhood is consistent with being in a path of consecutive IDs.
So, if component-stability is defined to allow dependency on
n, an O(1)-round deterministic component-stable algorithm
for the problem exists.

However, the problem has a trivial n − 1-round (random-
ized) LOCAL lower bound, since a YES instance can be
changed to a NO instance by only altering the ID of one
endpoint of the path, and the other endpoint requires n − 1
rounds to detect this change.Hence,we cannot hope for a uni-
versal method of lifting LOCAL lower bounds to non-trivial
component-stableMPC lower bounds if component-stability
allows dependency on n.

We will see, though, that such counterexamples are nec-
essarily quite contrived, and that we can prove such a result
for a class that includes most problems of interest (such as,
e.g., all locally-checkable (LCL) problems, see Sect. 2.3).

2.1.3 Uniqueness of identifiers

It is common in both LOCAL and MPC to assume that nodes
of the input graph are equipped with identifiers (IDs) that
are unique throughout the entire graph. This assumption,
however, is somewhat at oddswith the concept of component-
stability: if, for example, a disconnected node is added to a
valid graph, sharing an ID with an existing node, then the
input becomes invalid. So, outputs for the original nodes are
now allowed to change arbitrarily, even though their compo-
nents have not altered.

We could instead require that IDs are only component-
unique (i.e., they are allowed to be shared by disconnected
nodes, but not by connected ones). This is a weaker assump-
tion which aligns well with component-stability, and is still
sufficient for LOCAL algorithms (in which nodes have no
interaction with or dependency on disconnected nodes).

123

42 A. Czumaj et al.

This approach, though, presents a problem inMPC. Unlike
in LOCAL, where nodes are inherently separate computa-
tional entities which only need IDs for symmetry-breaking
(particularly for deterministic or shared randomness algo-
rithms), in MPC an input graph node essentially is its ID.
The input is given only as a binary encoding of the IDs of
nodes and edges, and so any two nodes with the same ID will
be contracted to a single node when this input is interpreted
as a graph. As a consequence, MPC algorithms cannot work
with graphs in which IDs are only component-unique.

Our solution to this problem is to separate the two func-
tions of IDs. We will assume that IDs are only component-
unique, and that component-stable MPC algorithms can
depend on these. However, we also provide MPC algorithms
with fully-unique names for nodes, whose purpose is only to
allow the algorithm to distinguish the input graph’s nodes as
separate objects. Accordingly, we do not allow the output of
component-stable algorithms to depend on the names.6

2.1.4 Initial distribution of input

The definition of [26] allows MPC algorithms’ outputs to
depend on the initial distribution of the input to themachines.
While this is natural to do, we observe that under our defini-
tion it is not necessary: given a component-stable algorithm
AMPC whose output depends on this distribution, we can
always create a new component-stable BMPC which does
not.

Specifically, since the nodes have unique poly(n) names
(and we can also give edges unique poly(n) names based
on their endpoints), and we are allowed any poly(n) number
of machines, algorithm BMPC can first (in one round) redis-
tribute each node and edge of the input to its own dedicated
machine, with the same name as the corresponding node or
edge. Then, it simulates AMPC , and reaches a valid output,
which is now independent of the initial distribution. Since
AMPC ’s output is component-stable, BMPC ’s is also.7

Therefore, a lower bound for component-stable algo-
rithms that depend on input distribution implies a lower
bound for those that do not. So, we can disallow this depen-
dency from the definition without weakening our results.

6 Note that, unlike the changes regarding dependency on n and prob-
lem class, this change is not necessary to show a general framework
for conditional MPC lower bounds—the same results could be proven
assuming fully-unique IDs (at least for randomized algorithms) using
techniques from [26]. However, we feel that this definition better cap-
tures the ‘spirit’ of component-stability.
7 We will define component-stable outputs to not depend on the names
of machines—this is not a major restriction, since we are not aware of
anyMPC algorithms which are not independent of renaming machines.
However, it is an important point here, since BMPC ’s machine names
now depend on node names, upon which BMPC ’s output must not
depend.

2.2 Graph families

In this section, we make some definitions concerning the
input graphs onwhichMPC algorithms run. Firstly, to address
the problem concerning uniqueness of identifiers, we define
legal graphs to be those with separate unique node names
and component-unique node IDs as discussed:

Definition 1 A graph G is called legal if it is equipped with
functions ID,name : V (G) → [poly(n)] providing nodes
with IDs and names, such that all names are fully unique and
all IDs are unique in every connected component.

Throughout the paper, we will always assume that input
graphs for MPC are legal (and we will ensure it when
constructing inputs ourselves). For component-stable algo-
rithms, this is to allow a weaker dependency on the IDs and
not the names, as discussed above. For component-unstable
algorithms, it is no different from the standard (fully-unique
IDs) requirement, since their outputs are allowed to depend
on the names, and so we can simply use the names as IDs.

Next, we make a definition which will allow us to show
MPC lower bounds on specific families of graphs. LOCAL
lower bounds are often proven using graphs from some spe-
cific family H as the “hard instances”: in particular, many
such bounds are proven on trees. Lower bounds on restricted
families of graphs are stronger than those on the class of
all graphs, and can also provide more meaningful hardness
results for problems which are only possible on restricted
families (such as�-vertex coloring, see Theorem 22). When
lifting LOCAL lower bounds on restricted graph families to
MPC, we therefore wish to preserve the family on which the
lower bound holds.

As discussed in Sect. 2.1, the lines of argument made both
by [26] and this work involve construction of a simulation
graph H as the “hard instance” in MPC. These simulation
graphs (from the proof of Lemma IV.2 of [26] and Lemma 11
here) are constructed differently, but both consist of disjoint
unions of induced subgraphs of some hard instance G for the
LOCAL lower bound.

The simulation graph H is not necessarily inH, ifH is an
arbitrary graph family, and is not therefore a valid input for an
MPC algorithm defined to run on H. This is not necessarily
a problem for [26], since one could require that their defi-
nition of component-stability should hold even if algorithms
are given an invalid input. Under this definition, the output
of a component-stable MPC algorithm AMPC on H must be
the disjoint union of AMPC ’s outputs on its connected com-
ponents (which, in this case, are in H) separately, and this
circumvents the need for H itself to be inH.

However, as we notice in Sect. 2.1, to incorporate non-
trivial randomized algorithms, any suitable definition of
component-stable algorithms must allow dependency on n.
Then, the output of AMPC of H need not be the union of that

123

Component stability in low-space massively parallel computation 43

on H ’s connected components, since the inputs have differ-
ing values of n. This necessitates several changes from the
proofs of [26], one of which is that we do require H ∈ H.

To ensure that this is the case, we prove our lower-bound
lifting argument only for the following families of graphs:

Definition 2 (Normal families of graphs)A class of graphsH
is called normal if it is hereditary (i.e., closed under removal
of nodes) and closed under disjoint union.

The set of all graphs is a normal family, and can always be
used in the worst case. Further, observe that the class of all
trees is not a normal family of graphs; however, the family
of all forests is normal. Therefore, for example, Theorem 5
implies that LOCAL lower bounds on trees can be lifted to
conditional MPC lower bounds on forests (but not trees).

2.3 Types of graph problems and replicability

Wenext define the types of problemswewill encompass with
this work. We will focus on graph problems, and let G be the
collection of all legal input graph instances.

We consider only graph problems where each node of the
input graph must output some label from a finite set �. For
example, for the vertex coloring problem the label of a node
corresponds to its color, and for the independent set problem,
the label corresponds to the indicator variable whether the
node is in the independent set returned.

As in [26], we do not explicitly output labels for edges.
However, to apply our results to problems in which only
edges are given output labels (such as matching, edge col-
oring, or sinkless orientation), we can simply redefine the
problem as vertex-labeling on the line graph (where the ver-
tices represent edges of the input graph, with IDs and names
given by Cartesian products of the IDs and names of their
endpoints). For any normal graph classH, the family of LH
of line graphs of graphs from H is also normal. Working on
the line graph increases number of nodes n at most quadrati-
cally and maximum degree � at most by a factor of 2, and in
LOCAL requires only 1 extra round.Wewill see that perform-
ing this conversion to the line graph will allow us to obtain
results for edge-labeling problems without any asymptotic
change in bounds. We can then convert back to recover a
solution to the problem on the original graph.

A graph problem is then defined by a collection of valid
outputs for each possible pair (topology, IDs) of a legal input
graph. Importantly, we do not allow validity to be depen-
dent on the names of graph nodes (though these names are
part of any legal input). That is, given a particular input
graph topology and set of IDs, the collection of valid out-
puts must be consistent regardless of node names. This
is because component-stable outputs are not allowed to
depend on names, so most problems which allowed solution-
dependency on names would be trivially unsolvable by

component-stable algorithms. In any case, names were intro-
duced solely to allow MPC algorithms to distinguish nodes
as objects, and should not be considered part of problems.

The goal of any algorithm for the problem is then to pro-
vide a valid output for the specific legal input it was given.
For many problems it is useful to have a concept of the output
of a particular node being valid. The overall output is then
valid if all nodes’ outputs are valid. To capture this concept,
we define the following sub-class of problems:

Definition 3 For r ∈ N, an r -radius checkable problem is
defined by a collection of valid outputs for each r -radius
centered graph equipped with unique IDs.8 The output of
a node v in input graph G is deemed valid if the centered
graph given by its r -radius ball, and the outputs thereof, is
a member of this valid collection. An overall output on G is
valid if all nodes’ outputs are valid.

An r-radius centered graph here is simply a connected
graph with a designated center node, from which all other
nodes are of distance at most r .

One can see that r -radius checkable problems are pre-
cisely those whose solutions can be verified in r rounds of
LOCAL. Note that the majority of graph problems of inter-
est are r -radius-checkable for some r ≤ n: for example,
the vertex coloring problem requires that each node outputs
a color distinct from the colors output by its neighboring
nodes, and thus is easily 1-radius-checkable. Similarly, all
LCL (locally-checkable labeling, see, e.g., [12, 40]) problems,
a commonly studied class particularly from a lower-bounds
perspective, are O(1)-radius checkable. Still, some natural
problems are not n-radius checkable problems: most notably,
approximation problems are not, since there is no notion
of a node’s validity, and nor can nodes determine overall
validity by seeing their n-radius ball (i.e., their entire con-
nected component). So, while some of our results concern
r -radius checkable problems (such as those in Sect. 4.3), our
main lower bounds results will use a more general class
of problems, see below, in order to incorporate approxima-
tion problems.

2.3.1 Replicable graph problems

We have seen, from Sect. 2.1, that to transfer LOCAL lower
bounds toMPC, under a definition of component-stability that
includes randomized algorithms (and so allows dependency
on n), one must restrict the class of problems, since some
(contrived) problems have�(n)-round LOCAL lower bounds
and O(1)-round MPC algorithms. Our goal in this section
is to make the minimal restriction needed to facilitate such
lower-bound lifting arguments.

8 r -radius graphs are, by definition, connected, so component-unique
IDs are unique IDs.

123

44 A. Czumaj et al.

During proof of Theorem 5 (our main lower-bound lifting
theorem), we will consider multiple disjoint copies of the
input graph enhanced by isolated nodes. To facilitate this
concept in our analysis, we introduce the notion of replicable
graph problems.

Definition 4 A graph problem is R-replicable if it satisfies
the following property. For any

• graph G ∈ G with |V (G)| ≥ 2,
• output labeling L : V (G) → �,
• individual output label 	 ∈ �, and
• graph
G which is a disjoint union of at least |V (G)|R

disjoint copies of G (with the same IDs as G) and fewer
than |V (G)| isolated nodes (with the same ID as each
other),

let output labeling L ′ on
G be given by L on each copy of
G, and 	 on each isolated node. Then, if L ′ is valid on
G ,
L must be valid on G.

Note that replicability is monotonic in R, i.e., if P is R-
replicable then P is also (R + 1)-replicable, since any
G

satisfying the construction of (R + 1)-replicability also sat-
isfies the construction for R-replicability.

The definition of replicability may seem unnatural: it is
designed to alignwith a specific construction needed in proof
ofLemma10 (andultimatelyTheorem5).However,we argue
that the vast majority of natural graph problems are replica-
ble. We first show all that r -radius-checkable problems (and
hence all LCL problems [12, 40]) are replicable;

Lemma 2 Any r-radius-checkable problem is 0-replicable.

Proof For any r -radius-checkable problem, the validity of the
output of a connected component depends only on the IDs
and topology of the connected component.Any
G satisfying
the construction of 0-replicability contains at least one copy
of G as a connected component. So, for the output on L ′ on

G to be valid, the output L must be valid on G. 	

Further, a major strength of our framework is that most
approximation problems are also replicable. As an example,
we show replicability for the problem of finding an indepen-
dent set of size�(n/�) (which is an�(1/�)-approximation
of the maximum independent set), a problem for which we
will later (in Sect. 5) show a separation between component-
stable and component-unstable algorithms.

Lemma 3 The problem of finding an independent set of size
�(n/�) (on graphs with � ≥ 1) is 2-replicable.

Proof Let c > 0 be some fixed constant. Consider a graph
G on n nodes, with maximum degree �, and a graph
G

consisting of k ≥ n2 copies of G and fewer than n isolated

nodes. Note that
G has at least kn nodes. Assume we have
some output valid labeling L ′ on
G , which corresponds to
an independent set of size at least ckn/�, and in which each
copy of G is labeled identically, as is each isolated node.
More than ckn/� − n of the nodes in the independent set
must be in copies ofG (since there are fewer than n nodes not
in copies of G). Since each copy of G is labeled identically,
each must contain more than

ckn/� − n

k
≥ cn

�
− 1

n
≥ cn

2�

nodes in the independent set (for n ≥ 2/c), and therefore the
output on G is a valid �(n/�)-independent set. 	

Similarly, we have a related lemma for approximate
matching, one of the central problems demonstrating the
power of our framework summarized in Theorem 5 (which
will yield also the conditional hardness of the approximate
maximum matching problem onMPC). The same arguments
can also straightforwardly show that �(1)-approximation of
maximum matching and minimum vertex cover are O(1)-
replicable.

Lemma 4 The problem of finding an �(1)-approximation of
maximum matching is 2-replicable.

Proof To fit maximal matching into our vertex-labeling def-
inition for problems, we characterize it as maximal indepen-
dent set on the (normal) family of line graphs, as discussed
above. An �(1)-approximation of maximum matching on
an input graph corresponds to an �(1)-approximate maxi-
mal independent set on its line graph. Let G be such a line
graph, on n nodes, and let c > 0 be some fixed constant. We
consider a graph
G consisting of k ≥ n2 copies of G and
fewer than n isolated nodes. Again,
G has at least kn nodes,
and we note that (denoting�(H) to be the size of the MIS of
a graph H) �(
G) ≥ k�(G). Assume we have some output
valid labeling L ′ on
G , which corresponds to an indepen-
dent set of size at least c�(
G), and in which each copy of
G is labeled identically, as is each isolated node. More than
c�(
G) − n of the nodes in the independent set must be in
copies of G (since there are fewer than n nodes not in copies
of G). Since each of the k copies of G is labeled identically,
each must contain more than

c�(
G) − n

k
≥ ck�(G)

k
− 1

n
≥ c�(G)

2

nodes in the independent set (for n ≥ 2/c), and therefore the
output on G is a valid �(1)-approximate MIS, correspond-
ing to an �(1)-approximate maximal matching in the input
graph. 	

123

Component stability in low-space massively parallel computation 45

2.4 Algorithm definitions, and revised definition of
component-stability

Once we have defined problems, as considered in our paper,
we may define LOCAL and MPC algorithms that solve them,
and in particular, give a formal, amended definition of
component-stable algorithms used in this paper, taking into
account the discussion above.

2.4.1 LOCAL algorithms

Our formal definition of algorithms in the LOCALmodel used
in this paper is as follows:
Input.
LOCAL algorithms receive as input an n-node graph G, with
component-unique IDs for each node. Randomized algo-
rithms also provide each node with access to a shared,
unbounded, random seed S. Algorithms are provided with
the exact value of the maximum degree �, and an input size
estimate N of n such that n ≤ N ≤ poly(n).9

The nodes of the input graph are the computational enti-
ties, and each initially has knowledge of its adjacent edges
in G (i.e., the IDs of their other endpoints). The computation
proceeds in synchronous rounds, and in each round, a node
may send an arbitrary message along each of its adjacent
edges. At the termination of the algorithm, each node must
give an output label from �.

2.4.2 Output

Correct deterministic algorithmsmust always provide a valid
overall output labeling for the problem, on every input;
randomized algorithms must give a valid labeling with prob-
ability at least 1 − 1

N , over the distribution of the random
seed S, for any input.

2.4.3 Shared randomness

Given that MPC algorithms naturally allow shared random-
ness, it is important for our study of randomized LOCAL
algorithms to allow the nodes to have access to shared ran-
domness too. The use of shared randomness is non-standard
in the LOCAL model, where one typically assumes only pri-
vate randomness. However, as shown by Ghaffari et al. [26,
Section V], many of the existing LOCAL lower bounds can
be extended (and without any asymptotic loss in their LOCAL
round complexity) to hold also if the nodes have access to

9 The reason we assume that only a polynomial estimate N of n is
known here is that some LOCAL lower bounds to which we wish to
apply our lifting result only hold without exact knowledge of n (e.g.,
that of [32]). Most LOCAL lower bounds, however, do hold under exact
knowledge, and in these cases we can simply set N = n.

shared randomness. (Notice that the notion of shared random-
ness is only relevant to randomized algorithms, and hence, for
deterministic complexity one can use the existing determin-
istic LOCAL lower bounds without any constraints, as black
box results.)

2.4.4 MPC algorithms

We use the standard definition of MPC algorithms (see, e.g.,
[3, 8, 17, 23, 28, 31]) amended to fit the framework of low-
space MPCs used in the paper.
Input.
MPC algorithms receive as input a legal n-node graph G,
distributed arbitrarily over poly(n)machines, eachwith local
space O(nφ) for some φ < 1. Randomized algorithms also
provide each node with access to a shared, random seed S of
poly(n) bits (again distributed arbitrarily among machines).
We do not assume that� or n are given explicitly as input, but
MPC algorithms can determine them easily in O(1) rounds,
so we may assume knowledge thereof.

Computation proceeds in synchronous rounds, and in each
round, a machine first perform an arbitrary local computa-
tions on its local data and then may send and receive a total
of O(nφ) information, divided between any other machines
as desired. At the termination of the algorithm, each machine
must give an output label from � for each node it received
in the initial distribution.
Output.
Correct deterministic algorithmsmust always provide a valid
overall output labeling for the problem, on every output;
randomized algorithms must give a valid labeling with prob-
ability at least 1− 1

n , over the distribution of the random seed
S, for any input.

2.4.5 Computation inMPC algorithms

While we are mainly using the most standard setup of MPC
algorithms, closely following, e.g., [3, 8, 17, 23, 28, 31],
occasionally we will use some features which (while often
standard) are less commonly used.

The standard MPC model assumes that in each syn-
chronous rounds, each machine performs arbitrary local
computations on its data (fitting its local memory of size
S = O(nφ)) and then themachines simultaneously exchange
messages, in a way that each machine is sender and receiver
of up to O(S) messages. While some papers also consider
the sequential running time of any single MPC machine in
every round, the main focus of our study is primarily on
the information theoretic aspects of understanding the round
complexity inMPC algorithms. (Notice that unbounded local
computation assumption is standard in the classical dis-
tributed models as LOCAL, CONGEST, and CONGESTED
CLIQUE.) As the result, while many of our algorithms per-

123

46 A. Czumaj et al.

form only poly(n)-time computations, occasionally we will
allow MPC machines to perform heavy local computations,
up to 2O(S) local computations in a round; still, the space
used on a single machine remains S = O(nφ). Our results
show that allowing such heavy computations might provide
advantageous in the context of deterministic algorithms and
derandomization, however they are not necessary to find
examples of component-unstable deterministic algorithms
which surpass component-stable conditional lower bounds.

Furthermore, while typically one is concerned with the
design of uniform MPC algorithms, as it has been observed
by Fish et al. [20], the original setup of MPC (e.g., [31]) leads
naturally to the non-uniform model of computation. Most of
the MPC algorithms presented in our paper are uniform, but
occasionally we use non-uniform algorithms. In our setting,
this means that the MPC algorithm, on each single machine
initially knows the number of nodes n (or its estimation), and
possibly different algorithms are used for different values of
n. This can be also seen as having some non-uniform advice
hardwired in the algorithms on individualMPCmachines (or
as Boolean circuits; for more details, see, e.g., Section 7.1.1
in [46]).

Finally, some of the non-uniform MPC algorithms we use
are also non-explicit. That is, we will be showing that there is
a low-spaceMPC algorithm for a specific task, but wewill not
be able to provide a procedure to explicitly design it (there
is generally a brute-force procedure obvious from the proof,
but one that requires at least exponential computation, and
possibly also too much space to perform in low-spaceMPC).
In this paper, non-uniform and non-explicit MPC algorithms
will be occasionally used in the context of derandomization.

2.4.6 Component-stableMPC algorithms

Now, after our discussion in Sects. 2.1 to 2.3, we are ready
to provide a new definition of component-stable MPC algo-
rithms used in this paper.

Definition 5 (Component-stable MPC algorithms) A ran-
domized MPC algorithm AMPC is component-stable if its
output at any node v is entirely, deterministically, depen-
dent on the topology and IDs (but independent of names) of
v’s connected component (which we will denote CC(v)), v
itself, the exact number of nodes n andmaximumdegree� in
the entire input graph, and the input random seed S. That is,
the output of AMPC at v can be expressed as a deterministic
function AMPC (CC(v), v, n,�,S).

A deterministic MPC algorithm AMPC is component-
stable under the same definition, but omitting dependency
on the random seed S.

Finally, let us state the main technical result demonstrat-
ing the power of our revised framework of component-stable
MPC algorithms, lifting unconditional lower bounds from

the LOCALmodel to conditional lower bounds for low-space
component-stable MPC algorithms. The following theorem
extends the main result in the component-stable algorithms
framework due to Ghaffari et al. [26, Theorem I.4] to our
framework and enhances it to include lower bounds against
deterministic algorithms, and lower boundswith dependency
on maximum input degree �. Informally, similarly to [26,
Theorem I.4], Theorem 5 below states that, conditioned on
the connectivity conjecture, for O(1)-replicable graph prob-
lems, any T (N ,�)-round lower bound in the LOCAL model
yields a �(log T (N ,�))-round lower bound for any low-
space component-stableMPC algorithmAMPC. Furthermore,
the claim holds for both randomized and deterministic algo-
rithms (deterministic algorithms were not studied in [26]).

The proof of Theorem 5 is given in Sect. 3 (the notion of
constrained functions is defined in Definition 12).

Theorem 5 (Lifting LOCAL lower bounds to component-
stable MPC algorithms) Let P be a O(1)-replicable graph
problem that has a T (N ,�)-round lower bound in the
randomized LOCAL model with shared randomness, for con-
strained function T , on graphs with input estimate N and
maximum degree �, from some normal family G. Suppose
that there is a randomized o(log T (n,�))-round low-space
component-stable MPC algorithm AMPC for solving P on
legal n-node graphs with maximum degree � from G, suc-
ceeding with probability at least 1 − 1

n . Then, there exists
a low-space randomized MPC algorithm A∗ that can distin-
guish one n-node cycle from two n

2 -node cycles in o(log n)

rounds, succeeding with probability at least 1 − 1
n .

The same holds if the LOCAL lower bound and algorithm
AMPC are both deterministic (but the obtained algorithmA∗
remains randomized).

2.5 Landscape ofMPC complexity classes and
component-stability

In this section we define MPC complexity classes consid-
ered in this paper. We study the MPC model introduced in
Sect. 1 and described in details Sect. 2.4, focusing on low-
space MPCs.

Let us begin with reminding the reader a fundamental
obstacle to fully understand the computational complexity
of problems in the low-spaceMPC setting: a seminal work of
Roughgarden et al. [44] showed that obtaining any uncondi-
tional lower bound in the low-space MPC setting ultimately
leads to breakthrough results in circuit complexity. In view
of that, we will take a more modest approach and will rely
on conditional hardness results based on the widely believed
connectivity conjecture. The core hardness result considered
in this paper is a revised framework lifting unconditional
lower bounds from the LOCAL model to conditional lower
bounds for low-space component-stableMPC algorithms (see

123

Component stability in low-space massively parallel computation 47

Sects. 2, 3, which amend the framework developed earlier in
[26]). In particular, this framework can be used to obtain a
number of deterministic and randomized lower bounds for
low-space component-stable MPC algorithms (these bounds
are conditioned on the connectivity conjecture). Therefore,
providing low-space component-unstable MPC algorithms
that beat these bounds will demonstrate the conditional
complexity gap between low-space component-stable and
component-unstableMPC algorithms—which is the ultimate
goal of this section.

We focus on upper bound round complexity, local space,
global space, and success probability which depend only
on the number n of the graph’s nodes in the input instance
from G. Since our main focus is to study the low-spaceMPC
regime, we consider the following definitions for MPC algo-
rithms andMPC component-stable algorithms (see Sect. 2.4).

Definition 6 (DetMPC) We will denote by DetMPC(T (n))

the class of all graph problems for which there is a (possibly
non-uniform and non-explicit) deterministic low-spaceMPC
algorithmA, such that for somepositive constant c, algorithm
A has round complexity at most c · T (n).

Definition 7 (S-DetMPC)Wewill denote byS-DetMPC(T (n))

the subclass obtained by restricting DetMPC(T (n)) to
component-stable algorithms. That is, S-DetMPC(T (n)) is
the class of all graph problems for which there is a (possi-
bly non-uniform and non-explicit) deterministic low-space
component-stableMPC algorithmA, such that for some pos-
itive constant c, algorithm A has round complexity at most
c · T (n).

Definition 8 (RandMPC)Wewill denote byRandMPC(T (n))

the class of all graph problems P for which there is a ran-
domized low-space MPC algorithm A, such that for some
positive constant c, algorithm A solves P with probability
1 − 1

n and has round complexity at most c · T (n).

Definition 9 (S-RandMPC) S-RandMPC(T (n)) is the sub-
class obtained by restricting RandMPC(T (n)) to component-
stable algorithms. That is, S-RandMPC(T (n)) is the class
of all graph problems P for which there is a randomized
low-space component-stableMPC algorithmA, such that for
some positive constant c, algorithm A solves P with proba-
bility 1 − 1

n and has round complexity at most c · T (n).

Clearly, observe that for any function T (n), we have both
S-DetMPC(T (n)) ⊆ DetMPC(T (n)) and S-RandMPC(T (n))

⊆ RandMPC(T (n)). However, as mentioned in Introduction,
it has been informally argued (for example, by Ghaffari et
al. [26]) that most, if not all, MPC algorithms are or can be
easily made component-stable. Thus one could imagine that
the pairs of sets S-DetMPC(T (n)) and DetMPC(T (n)), and
S-RandMPC(T (n)) and RandMPC(T (n)) are in fact identi-
cal, especially in the regime of small T (n). However, we

will demonstrate that (assuming the connectivity conjecture)
this is not the case, and that some low-space general MPC
algorithms can do better than their component-stable coun-
terparts.

We begin with the study of deterministic complexity. Our
first lemma shows that, informally, S-DetMPC �= DetMPC
(when omitting functions T (n) during complexity class
comparisons, we mean that there exists some T (n) for
which the comparison holds, when both classes are param-
eterized by T (n)). In Sect. 4.2.2 we consider a sinkless
orientation problem for which, on one hand, (assuming the
connectivity conjecture) there is no deterministic low-space
component-stable MPC algorithm running in o(log log� n)

rounds (Theorem 18) and, on the other hand, which can be
solved by a low-space deterministic MPC algorithm running
in poly(�)+O(log log log n) rounds (Theorem19), surpass-
ing the component-stable lower bound for� = logo(1) log n.
In fact, these results hold even for forests. Similar results are
also shown for some variants of edge-coloring (Theorems 20,
21) and vertex-coloring (Theorems 22, 23). Further,while the
main deterministic upper bounds here use heavy local com-
putation, for bounded degree graphs their local computation
is poly(n), demonstrating that component-instability helps
for deterministic algorithms even using polynomial compu-
tation. (In Sect. 4.3, we demonstrate a similar result for the
class of LOCAL extendable algorithms, showing that instabil-
ity also helps in deterministic algorithms for two cornerstone
problems in low-space MPC: maximal independent set and
maximal matching.) This gives the following.

Theorem 6 There is some function T (n) such that, condi-
tioned on the connectivity conjecture,

S-DetMPC(T (n)) � DetMPC(T (n)) .

Next, we move to the study of randomized algorithms
and show that, informally, S-RandMPC �= RandMPC. This
result follows directly from our Theorem 1, which shows that
some variant of the independent set problem has a determin-
istic low-space non-stable constant-round MPC algorithm
and conditioned on the connectivity conjecture, there is no
o(log log∗ n)-round low-space component-stable MPC algo-
rithm that succeeds with probability at least 1 − 1

n .

Theorem 7 There is some function T (n) such that, condi-
tioned on the connectivity conjecture,

S-RandMPC(T (n)) � RandMPC(T (n)) .

Next, we provide a conditional separation between ran-
domized and deterministic algorithms (Theorem 13). This
separation follows by combining (i) the conditional lifting for
randomized component-stable algorithms and deterministic

123

48 A. Czumaj et al.

component-stable algorithm using the framework in Theo-
rem 5 with (ii) local problems for which there is provable
gap in their randomized and deterministic LOCAL complex-
ity (e.g., [5, 11, 12]). This yields the following.

Theorem 8 There is some function T (n) such that, condi-
tioned on the connectivity conjecture,

S-DetMPC(T (n)) � S-RandMPC(T (n)) .

Further, in Sect. 6, we study the power of determinis-
tic low-space component-unstableMPC algorithms and their
relationship to the randomized ones. In Lemma 32 we prove
that if there is a randomized MPC algorithm that solves a
graph problem P on n-node graphs with maximum degree
� in T (n,�) rounds, then one can derandomized such algo-
rithm to solve the same problem in O(T (n,�)) rounds.
The resulting deterministic MPC algorithm is component-
unstable, non-uniform, and non-explicit, and it has the same
local space as that of the randomized MPC algorithm, and
uses an O(n2)-factor more machines. This yields the follow-
ing.

Theorem 9 DetMPC(T (n)) = RandMPC(T (n)).

Let us summarize the results in this section, assuming
the connectivity conjecture, and allowing non-uniform MPC
algorithms.Our study demonstrates that for low-spaceMPCs,
component-unstable algorithms are provably stronger than
their component-stable counterparts, both for determinis-
tic and randomized algorithms (Theorems 6, 7). Further,
we see that for component-stable algorithms, randomized
algorithms are provably stronger than their deterministic
counterparts (Theorem 8), however, for arbitrary (possibly
component-unstable) algorithms this is not the case: any
randomized algorithm can be efficiently simulated by a deter-
ministic one (Lemma 32 and Theorem 9).

3 Conditional MPC lower bounds from
LOCAL

In this section, we present a framework lifting unconditional
lower bounds from the LOCAL model to conditional lower
bounds for low-space component-stable MPC algorithms,
extending and revising the analysis of Ghaffari et al. [26]
to prove Theorem 5.

While on a high level, our analysis follows closely the
approach from [26], our arguments diverge in several sub-
tle but crucial places. On a technical level, we rely on the
central but also quite subtle notions of replicable graph
problems, normal graph families, (D, ε, n,�)-sensitiveMPC
algorithms, and a revised definition of component stabil-
ity (see Definition 5). The two major reasons behind these
changes are:

• to make the arguments robust against the issues we have
identified concerning component-stability, and incorpo-
rate the definitional changes that these issues necessi-
tated, and

• to extend the arguments to include lower bounds against
deterministic algorithms, and lower bounds with depen-
dency on maximum input degree �.

After introducing some useful notation in Sect. 3.1, we
show in Sect. 3.2 that in our setting, for R-replicable graph
problems for normal graph families, lower bounds for LOCAL
algorithms imply the existence of some graphs which can be
distinguished by component-stable MPC algorithms only by
relying on non-local information. Then, in Sect. 3.3,we apply
this non-locality to provide a conditional MPC lower bound
for component-stable MPC algorithms for O(1)-replicable
graph problems in our setting (for normal graph families).
In particular, conditioned on the connectivity conjecture, our
main result (Theorem 5) states, informally, that for O(1)-
replicable graph problems, any T (N ,�)-round lower bound
in the LOCAL model yields a �(log T (N ,�))-round lower
bound for any low-space component-stable MPC algorithm
AMPC. Furthermore, the claim holds for both randomized and
deterministic algorithms.

3.1 Basic definitions: normal graph families and
sensitiveMPC algorithms

Definition 10 Two connected graphs G = (V , E) and G ′ =
(V ′, E ′), with center nodes v ∈ V and v′ ∈ V ′ respectively,
are D-radius-identical if the topologies and node IDs (but
not necessarily names) of the D-radius balls around v and v′
are identical.

Our next definition (related to [26, Definition III.1],
though set up in our framework), formalizes the notion of
MPC algorithms depending on non-local information in the
graph.

Definition 11 ((D, ε, n,�)-sensitive MPC algorithms) For
integers D, n,� ≥ 0 and some ε ∈ [0, 1], a component-
stable MPC algorithm A for some graph problem is called
(D, ε, n,�)-sensitivewith respect to two D-radius-identical
centered graphs G = (V , E) and G ′ = (V ′, E ′), with cen-
ters v ∈ V and v′ ∈ V ′, if the probability (over choice of seed
S) that A(G, v, n,�,S) �= A(G ′, v′, n,�,S) is at least ε.

Wecan apply this definition also to deterministic component-
stable algorithms. Since these do not depend on the random
seed, any (D, ε, n,�)-sensitive deterministic component-
stable MPC algorithm with ε > 0 is (D, 1, n,�)-sensitive.

As onefinal point of notation, in this section our arguments
will often involve several different graphs. For clarity, for any
graph G we will denote by nG its number of nodes.

123

Component stability in low-space massively parallel computation 49

3.2 LOCAL hardness yields indistinguishability of
graphs locally

Our next lemma (cf. [26, Lemma III.1]) shows that for any
R-replicable graph problem, a lower bound for a normal
graph family for any LOCAL algorithm implies some useful
property for any component-stable MPC algorithm for that
problem: to distinguish some graphs from that normal fam-
ily one needs to rely on non-local information, in the sense
of Definition 11.

Lemma 10 For any N ,�, R ∈ N, let P be an R-replicable
graph problem for which there is no T (N ,�)-round LOCAL
algorithm (with shared randomness) that solvesP on graphs
from some normal family G of maximum degree�, with input
size estimate N (i.e., satisfying nH ≤ N ≤ poly(nH)), and
with probability at least 1 − 1

N .
Suppose there is a component-stableMPC algorithmAMPC

that solves P on all graphs G ∈ G, with probability
at least 1 − 1

nG
. Then, there are two T (N ,�)-radius-

identical centered graphs G,G ′ ∈ G with at most N
nodes and maximum degree (exactly) �, such that AMPC is
(T (N ,�), 1

4N2 , N
R+2,�)-sensitive with respect to G,G ′.

The same claim holds if the LOCAL lower bound and algo-
rithm AMPC are both deterministic.

Proof The proof is by contradiction. Denote D = T (N ,�)

and ε = 1
4N2 . Let us assume that there are no two D-radius-

identical centered graphs G,G ′ ∈ G with at most N nodes
and maximum degree � such that the given MPC algorithm
AMPC is (D, ε, N R+2,�)-sensitive with respect to G and
G ′. We use this fact to construct a D-round randomized
LOCAL algorithm ALOCAL to solve P on graphs with valid
size estimate N with probability at least 1 − 1

N , which is a
contradiction to the assumption of the lemma.
Design of the LOCAL algorithm.
The input for ALOCAL is an unbounded random seed S, a
graph H ∈ G, integers N , �, and the assignment of the IDs
to the nodes of H , such that:

• N is the input size estimate, that is, nH ≤ N ≤
poly(nH),

• � is the maximum degree of H ,
• all IDs are in [poly(N)] and are component-unique.

For a fixed H , let us take an arbitrary node v and describe
how to determine v’s output under ALOCAL, on a particular
input I = 〈H ,S〉. Node v first collects its D-radius ball
BD(v) in H . It then considers the familyHv of all graphswith
at most N nodes, centered at v, with component-unique IDs
from [poly(N)], and maximum degree � that are D-radius-
identical to BD(v), i.e., the set of possible inputs to ALOCAL

for which v would see BD(v) as its D-radius ball. For each

G ∈ Hv , v creates a simulation graph
G (see Definition 4)
as follows:
G consists of � N R+2

nG
� ≥ nR

G disjoint copies ofG.
One of these copies is arbitrarily designated the “true” copy,
and its nodes use the IDs ofG as their own IDs and names.All
other copies use the same IDs, but as names they use arbitrary
unique values in [poly(N)]. We also add enough isolated
nodes to raise the number of nodes to exactly N R+2 (i.e.,

N R+2 − nG� N R+2

nG
� < nG isolated nodes), sharing the same

arbitrary ID, and with arbitrary unique names, in [poly(N)].
Note that this construction corresponds closely to Definition
4 of problem replicability, and is the reason we chose such a
definition.

In order to determine the output of ALOCAL at v, we will
be runningAMPC on the simulation graph
G . For the supply
of randomness, denote S ′ to be S curtailed to the length
required by AMPC, i.e., the first poly(N) bits. Since AMPC is
component-stable, its output at v on
G , using seed S ′, is
AMPC(G, v, N R+2,�,S ′).

Then, we set ALOCAL(H , v,S) to be

argmax
x

|{G ∈ Hv : AMPC(G, v, N R+2,�,S ′) = x}| ,

i.e., v’s output label output byALOCAL is that returned by the
most AMPC simulations.
Correctness of the LOCAL algorithm
We use our assumption that there are no two D-radius-
identical centered graphs G,G ′ ∈ G with at most N nodes
andmaximumdegree� forwhichAMPC is (D, ε, N R+2,�)-
sensitive with respect to G and G ′. Hence, for any G,G ′ ∈
Hv , with probability at least 1 − ε over choice of S,
AMPC(G, v, N R+2,�,S ′) = AMPC(G ′, v, N R+2,�,S ′).
In particular, since the actual input graph H is certainly in
Hv ,

ES

⎡
⎣ |

{
G ∈ Hv : AMPC(G,v,N R+2,�,S ′)

�=AMPC(H ,v,N R+2,�,S ′)

}
|

|Hv|

⎤
⎦ ≤ ε .

Then, for the random seed S, the probability that

|
{
G ∈ Hv : AMPC(G,v,N R+2,�,S ′)

�=AMPC(H ,v,N R+2,�,S ′)

}
|

|Hv| ≥ 1

2
.

is at most 2ε by Markov’s inequality. We therefore have

Pr
[
ALOCAL(H , v,S) = AMPC(H , v, N R+2,�,S ′)

]

≥ 1 − 2ε .

123

50 A. Czumaj et al.

Taking a union bound over all nodes v ∈ V (H), we have
that

Pr
[
for all v ∈ V (H) : ALOCAL(H ,v,S)=

AMPC(H ,v,N R+2,�,S ′)

]

≥ 1 − 2Nε .

In this case, the overall output of ALOCAL(H ,S) is equal
to the output of AMPC on the true copy of H when run on

H with seed S′. Since
H ∈ G (as it is a disjoint union of
members of G, see Definition 2),AMPC returns a valid output
on
H with probability 1−1/n
H = 1−N−(R+2). Note that

H is a disjoint union of at least nR

H copies of H and fewer
thannH extra isolated nodes. This satisfies the construction in
the definition of R-replicability.10 SinceAMPC is component-
stable, it must return the same output labeling in all copies of
H in
H (since they share the same topology and IDs), and
likewise must return the same output label on all isolated
nodes. So, the output labeling given on
H is of the form
required in the replicability definition, and so AMPC returns
a valid output on the true copy (and, indeed, on all copies) of
H in
H .

Then, by a union bound, ALOCAL’s output is correct with
probability at least 1 − 2Nε − N−(R+2) ≥ 1 − 1

N , reaching
a contradiction to our assumption of a LOCAL lower bound.
This proves the randomized part of the lemma.

To prove the deterministic analogue, we perform exactly
the same construction, except that ALOCAL does not have the
random seed S, and does not pass it toAMPC. Since our algo-
rithmALOCAL is now deterministic, we haveALOCAL(H , v) =
AMPC(H , v, N R+2,�)with certainty for all v, i.e.,ALOCAL’s
output is identical to AMPC’s output on an N R+2-node
graph containing H as a connected component. Since
AMPC is also deterministic, this is a valid output on H
with certainty. We have then constructed a determinis-
tic LOCAL algorithm solving P , contradicting our ini-
tial assumption. So, we must instead have that AMPC is
(T (N ,�), 1, N R+2,�)-sensitive, and therefore, since it is
deterministic, (T (N ,�), 1, N R+2,�)-sensitive. 	

3.3 ConditionalMPC lower bounds from LOCAL
(proving Theorem 5)

In this section we apply Lemma 10 to obtain conditional
lower bounds for component-stable MPC algorithms for
O(1)-replicable graph problems through their hardness in
the LOCAL model. Our main result, Theorem 5, can be seen
as a revision and extension of the main arguments due to
Ghaffari et al. [26] in their Theorem I.4, applied to low-space
component-stableMPC algorithms forO(1)-replicable graph
problems and for normal graph families.

10 When nH ≥ 2; for nH ≤ 1 Lemma 10 is trivial since there can be
no LOCAL lower bounds on such graphs.

Since the complexity of our algorithms depends on two
parameters, input size estimate N and maximum degree �,
we define the type of functions for which wewill study lower
bounds:

Definition 12 We call a function T : N × N → N con-
strained if T (N ,�) = O(logγ N) for all � ≤ N and
γ ∈ (0, 1), and T (Nc,�) ≤ c · T (N ,�) for any c ≥ 1.

This is similar to the corresponding requirement T (N) =
O(logγ N) in [26], but allowing for dependency on �. The
definition of constrained functions further incorporates a
‘smoothness’ condition, which is also implicitly required
by [26] (there, it is used that when T (N) = O(logγ N),
T (poly(N)) = O(T (N)); while this is true for smooth func-
tions, it is not technically true in general).11

With the notion of constrained functions at hand, we can
leverage Lemma 10 to relate the complexity of LOCAL algo-
rithms for R-replicable graph problems in normal graph
families to the connectivity conjecture. In particular, given
the conjectured hardness of this problem in the MPC model,
this will imply (see Theorem 5 for a precise statement) a
lower bound of �(log T (n,�)) rounds for any low-space
component-stable MPC algorithm for any O(1)-replicable
graph problem in normal graph families with no T (N ,�)-
round LOCAL algorithm.

We begin with an auxiliary lemma that relates Lemma
10 to the complexity of low-space MPC algorithms for the
D-diameter s-t connectivity problem. The D-diameter s-t
connectivity problem is formally defined in [26, Defini-
tion IV.1] as follows: Given two special nodes s and t in
the graph, the goal is to determine whether s and t are con-
nected or not, in a way that provides the following guarantee:
If s and t are in the same connected component and that
component is a path of length at most D with s and t at its
two endpoints, then the algorithm should output YES, with
probability 1 − 1

poly(n)
. If s and t are in different connected

components, the algorithm should output NO, with proba-
bility 1 − 1

poly(n)
. In other cases, the output can be arbitrary.

Lemma 11 Let P be a O(1)-replicable graph problem that
has a T (N ,�)-round lower bound in the randomized LOCAL
model with shared randomness, for constrained function T ,
on graphs with input size estimate N and maximum degree
�, from some normal family G. Suppose that there is a ran-
domized o(log T (n,�))-round low-space component-stable
MPC algorithm AMPC for solving P on legal n-node graphs
with maximum degree� from G, succeeding with probability
at least 1− 1

n . Then, there exists a low-space randomizedMPC
algorithm Bst-conn with round complexity o(log T (n,�)) for

11 As a counterexample, let T (N) be a tower of 2 s of height log∗ N−3.
Then, T (N) = O(log log N), but lim sup

N→∞
T (N+1)
T (N)

= ∞.

123

Component stability in low-space massively parallel computation 51

T (n,�)-diameter s-t connectivity on graphs with n nodes,
succeeding with probability at least 1 − 1

n .
The same holds if the LOCAL lower bound and algorithm

AMPC are both deterministic (but the obtainedMPCalgorithm
Bst-conn is still randomized).

One point of note in the theorem statement is that we do
not make any constraint on the maximum degree of the s-t
connectivity instance; indeed, for that problem any node of
degree over 2 can be immediately discarded, so maximum
degree is largely irrelevant. � appears only in the expression
for the diameter D.

Proof Let c be a sufficiently large constant. We will require
that P is c

φ
-replicable; since replicability is monotone, this

will be the case when c is sufficiently large. We then con-
struct our randomized MPC algorithm for T (n,�)-diameter
s-t connectivity Bst-conn as follows:

We are given an n-node input graph H , and poly(n)-bit
randomseedS, forT (n,�)-diameter s-t connectivity.We set
N = nφ/2, denote D := T (N ,�), and apply Lemma 10 to
obtain12 two D-radius-identical centered graphs G,G ′ ∈ G
with at most N nodes and maximum degree �, such that
AMPC is (D, 1

4N2 , n
c/φ+2,�)-sensitivewith respect toG,G ′.

Our algorithm Bst-conn will work by combining the results
of several parallel simulations, run on disjoint groups of
machines. We first divide the seed S equally among these
simulations; by choosing our input poly(n) seed length suf-
ficiently high, we can guarantee that each simulation is
given sufficient randomness. In each simulation, each node
in v ∈ V (H) uses part of the random seed assigned to the
simulation to independently, uniformly randomly, choose a
value h(v) ∈ [D].

For each simulation we now construct a pair of graphsGH

and G ′
H on which to run AMPC. In each case we begin with

the graph H , and discard all nodes of degree higher than 2.
Then, for each remaining node in H we collect its radius-1
neighborhood onto a machine (this takes O(1) rounds and
does not increase asymptotic space usage). Each node of H
then drops out if its radius-1 neighborhood is not consistent
with being part of an s− t path with consecutively increasing
values of h along the path (other than the value of h(t), which
we make no requirements for). In particular:

• Nodes s and t in H must have degree 1 (and otherwise we
terminate the simulation immediately and output NO).

12 Lemma 10 shows the existence of such graphs, but a uniform MPC
algorithm must also be able to find them (a non-uniform algorithm can
simply have them ‘hard-coded’ in). To do so, we can run a brute-force
search on each machine; O(nφ) space is required to identify each of the
2O(nφ) pairs of graphs and check the sensitivity property. However, we
require 2O(nφ) local computation (which is also implicitly the case in
[26]). For specific lower bounds there may be efficient constructions,
but this must be determined on a case-by-case basis.

• Other nodes must have degree 2, and the values of h in
their radius-1 neighborhood must be a consecutive triplet
(other than h(t)).

Now, every remaining node (i.e., satisfying these condi-
tions) in H is assigned (copies of) nodes in G and G ′ as
follows:

• Node s in H is assigned all nodes of distance at most
h(s) from v in G and G ′.

• Node t in H is assigned all nodes of distance more than
D from v in G and G ′.

• Other nodes u in H are assigned the nodes of distance
exactly h(u) from v in G and G ′.

We can nowdefine the newgraphsGH andG ′
H as follows:

The node sets of GH and G ′
H consist of every assigned

copy of nodes in G and G ′ respectively. We also add to
GH and G ′

H an extra, full, copy of G, disconnected from
the rest of the graph, whose sole purpose is to ensure that
the maximum degree of GH and G ′

H is exactly �, and
enough isolated nodes to raise the number of nodes (currently
O(nN) = O(n1+φ/2)) to exactly nc/φ+2 (which is larger for
sufficiently large constant c). Let wu in GH denote a copy of
w in G, assigned to node u in H . We place an edge between
wu and ŵû in GH iff w ∼G ŵ and u ∼H û (or u = û).
As IDs, for a simulated node wu , we use the original ID of
w. We will show that these IDs remain component-unique
in GH and G ′

H . As names, we use (name(u), name(w));
these names are guaranteed to be fully unique. We arbitrar-
ily choose fully unique names and IDs for the extra isolated
nodes and copy of G.

The graphsGH andG ′
H can easily be constructed in O(1)

rounds of MPC, using O(nφ) local space, since machines
each need only store G, G ′, and O(nφ) edges of H . We
construct G ′

H from G ′ analogously.
We see that the connected components of GH and G ′

H
are isomorphic to induced subgraphs of G and G ′ respec-
tively. Furthermore, the IDs of nodes in these components
are identical to the relevant subgraphs of G and G ′, and are
therefore component-unique (as they were in G and G ′). In
particular, we consider the topology and IDs of the connected
components CC(vs) and CC ′(vs) containing vs in GH and
G ′

H respectively:

1. If s and t are endpoints of a path of p ≤ D+1 nodes (and
therefore of length at most D) in H , h(s) = p − D, and
h(ud) = p − D + d for each ud �= t which is the node at
distance d along the path from s, then CC(vs) = G and
CC ′(vs) = G ′;

2. otherwise, CC(vs) = CC ′(vs).

123

52 A. Czumaj et al.

In the first case, this is because the nodes on the s − t
path are together assigned precisely one copy of each on the
nodes in G and G ′, in such away that every two adjacent
nodes in G and G ′ are assigned to adjacent nodes on this
path. In the second case, the only nodes that differ in G and
G ′ are assigned only to t , and no outputs of h can cause these
to be connected to vs . Therefore the graphs of nodes that are
connected to vs are identical.

WenowsimulateAMPC onGH andG ′
H using a sufficiently

large poly(n)-length part of S allocated to this simulation as
the random seed (the same seed for both GH and G ′

H). Since
GH and G ′

H are in the normal family G (they are disjoint
unions of induced subgraphs of G,G ′ ∈ G), these are valid
inputs for AMPC.

If s and t are endpoints of a path of length at most D
in H , then the probability that all nodes v on this path
choose the ‘correct’ value h(v) (i.e., as specified in point
1 above) is at least D−D = N−o(1). In this case, we have
CC(vs) = G ∈ G and CC ′(vs) = G ′ ∈ G. Since AMPC is
component-stable, its output for vs in each case is equal to
AMPC(G, v, nc/φ+2,�,S) and AMPC(G ′, v, nc/φ+2,�,S)

respectively, and by sensitivity, with probability at least 1
4N2 ,

these are different. If this occurs, the simulation output, and
the overall output, is correctly YES.

If s and t are not endpoints of a path of length at most D in
H , then in all simulationswe haveCC(vs) = CC ′(vs). Since
AMPC is component-stable, its output depends (determinis-
tically) on these connected components (as well as equal
values of �, random seed S, and nGH = nG ′

H
= nc/φ+2),

and is therefore the same in both cases. The output of all
simulations is then correctly NO.

The final output for Bst-conn is as follows: after run-
ning poly(n)-many concurrent simulations, we return YES
if any simulation returned YES, and NO otherwise. We have
already shown that if s and t are not endpoints of a path
of length at most D in H , all simulations will return NO,
so Bst-conn will correctly output NO. It remains to show
that Bst-conn is also correct with high probability on YES
instances.

Each simulation has a D−D = N−o(1) probability of the
nodes in the s-t path choosing the correct values of h(v), and
a 1

4N2 probability of returning different outputs on GH and

G ′
H . Therefore, there is at least a

1
4N3 probability of the sim-

ulation returning YES. Since simulations use independent
randomness, and we can run sufficiently large poly(n) many
of them in parallel, we can amplify the total probability of
success to 1 − 1

n as required.
The round complexity of Bst-conn is dominated by simu-

latingAMPC on graphs with O(nc/φ+2) nodes and maximum
degree �, which, using that T is a constrained function, is
O(T (nc/φ+2,�)) = O(T (n,�)). 	

While Lemma 11 already provides a strong conditional
lower bound for O(1)-replicable graph problems in our set-
ting, the lower bound is conditioned on the complexity of
solving D-diameter s-t connectivity. However, we can apply
the framework [26] to extend the analysis to condition on
the more standard connectivity conjecture—to conclude our
analysis with the result stated in Theorem 5.

Proof of Theorem 5 This reduction from Lemma 11 is taken
directly from Section V in [26]. First, we notice that [26,
Lemma IV.1] applies to any MPC algorithm, i.e., is not
affected by our changes to the definition of component-
stability. Therefore, assuming that any low-spaceMPC algo-
rithms distinguishing one n-node cycle from two n

2 -node
cycles requires �(log n) rounds, we obtain that any low-
spaceMPC algorithm that solves D-diameter s-t connectivity
for D ≤ logγ n for a constant γ ∈ (0, 1) requires �(log D)

rounds. By setting D = T (n,�), we can combine this fact
with Lemma 11 to conclude the proof of the theorem. 	

3.4 Applications of Theorem 5: conditionalMPC
lower bounds

Similarly as was been demonstrated by Ghaffari et al. [26],
the lifting arguments in Theorem 5, when combined with
the known lower bounds for LOCAL algorithms, lead to a
host of conditional lower bounds for low-space component-
stable MPC algorithms for many natural graph problems. In
particular, we can recover the main applications of Ghaffari
et al. [26] (see Theorems I.1, I.2, and I.3 there):

Theorem 12 Assuming the connectivity conjecture (that no
low-space randomizedMPC algorithm can distinguish one n-
node cycle from two n

2 -node cycles in o(log n) rounds, with
failure probability at most 1

n), the following lower bounds
hold for randomized low-space component-stableMPC algo-
rithms:

• �(log log n) rounds for a constant approximation of
maximum matching (even on forests), a constant approx-
imation of vertex cover, a maximal independent set;

• �(log log log n) rounds for (� + 1)-coloring, unless the
deterministic complexity of (�+1)-coloring in the LOCAL
model is 2log

o(1) log n;
• �(log log log n) rounds for the Lovász Local Lemma
problem, or even for the special case of sinkless orien-
tation where we should orient the edges of a d-regular
graph, where d ≥ 4, such that each node has at least one
outgoing edge.

Proof First, we notice that Ghaffari et al. [26] proved the
following lower bounds for the randomized LOCAL model
with shared randomness:

123

Component stability in low-space massively parallel computation 53

• �(
√
log n/ log log n) rounds for a polylog(n)-approximate

solution for theminimumvertex cover, maximummatch-
ing, or minimum dominating set problem, and for finding
a maximal matching (even on trees) or a maximal inde-
pendent set (Theorem V.1 and Corollary V.2 in [26]);

• �(
√
log log n) rounds for (� + 1)-coloring unless the

deterministic complexity of (� + 1)-coloring in the
LOCAL model is o(log n) (indirectly in Corollary V.4 in
[26]);

• �(log log n) rounds for the Lovász Local Lemma prob-
lem, or even for the special instance known as sinkless
orientation where we should orient the edges of a d-
regular graph, where d ≥ 4, such that each node has
at least one outgoing edge [26, Corollary V.5].

The proof of Theorem 12 now follows immediately by
combining these LOCAL lower bound toTheorem5, by taking
each time G to be the set of all graphs, and by noticing that all
the problems considered are O(1)-replicable (see Sect. 2.3.1,
and for example, Lemma2 for LCLs andLemma4 for approx-
imatemaximummatching). The only issueworthmentioning
is that since the class of trees is not normal (see Definition
2), the lifting of the LOCAL lower bound for finding a max-
imal matching on trees extends only to forests, that is, that
any randomized low-space component-stableMPC algorithm
that returns a constant approximation of maximummatching
on forests has �(log log n) rounds complexity. 	

Comparing the results claimedbyGhaffari et al. [26] (The-
orems I.1, I.2, and I.3)with those proven inTheorem12, there
are only two differences: firstly, our lower bound for match-
ing holds only for forests, while [26] claimed it for trees (for
discussion of the reason for this difference, see Sect. 2.2), and
secondly, our result for (� + 1)-coloring is updated to hold
on a weaker conjecture of no 2log

o(1) log n-round deterministic
LOCAL algorithm for (� + 1)-coloring (since the origi-
nal result in [26] conditioned on the 2o(

√
log n)-deterministic

hardness, which was recently disproved in [45]).

3.4.1 Deterministic conditionalMPC lower bounds

Finally, observe that Theorem 5 can be directly combined
with existing deterministic LOCAL lower bounds to obtain
deterministic lower bounds for low-space deterministicMPC
algorithms. (Note that unlike in the case of randomized
MPC algorithms above, one can directly apply determinis-
tic LOCAL lower bounds as black-box in Theorem 5, since
the issue of shared randomness is of no importance for deter-
ministic algorithms.) For example, we apply it in Theorem26
to give �(log� + log log n)-round lower bounds for deter-
ministic low-space component-stable MPC algorithms for
maximal matching or maximal independent set (conditioned
on the connectivity conjecture). Similarly, we present deter-

ministic conditional lower bounds of �(log log� n) rounds
for low-space component-stableMPC algorithms for sinkless
orientation, (2� − 2)-edge coloring, and �-vertex coloring,
holding even in forests (Theorems 18, 20, 22). For somemore
lower bounds to which the framework is applicable, see, e.g.,
the recent deterministic LOCAL lower bounds for ruling sets
in [6].

4 Separation between stable and unstable
deterministic MPC

We start by presenting a general statement characterizing
local problems for which component-unstable MPC algo-
rithms provably help. Specifically, this includes problems
for which there is a provable exponential gap between their
LOCAL deterministic and randomized complexities (e.g., as
shown in [5, 11, 12]). The theorem is restricted to graphs
of bounded (i.e., O(1)) degree, but this is still sufficient to
demonstrate an exponential gap for many problems, since
many LOCAL lower bounds are proven on bounded-degree
graphs.

Theorem 13 Let P be a O(1)-replicable graph problem.
Let Tr (N) and Td(N) be the randomized and deterministic,
respectively, LOCAL round complexity of P on bounded-
degree graphs with n nodes, with an input size estimate N
and exact knowledge of �. If Tr (N) < logγ N for some con-
stant γ ∈ (0, 1), and if there is a provable exponential gap
between Tr (N) and Td(N), then, assuming the connectivity
conjecture, there is an exponential gap between component-
stable and component-unstable deterministic low-spaceMPC
complexities for solving P .

Proof Since Tr (N) < logγ N for some constant γ ∈
(0, 1) (see Definition 12), by Theorem 5, conditioning on
the connectivity conjecture, any deterministic low-space
component-stableMPC algorithm forP requires�(log(Td(n)))

rounds. We will show that there exists a deterministic low-
space component-unstable MPC algorithm for P running in
O(log(Tr (n))) rounds using an n2 factor more machines (the
algorithm is possibly non-uniform and non-explicit).

We use Lemma 31, which says that it is sufficient to show
a randomized low-space MPC algorithm for P that runs in
O(log(Tr (n))) rounds and succeeds with probability at least
1 − 2−n2 . The algorithm employs n2 parallel repetitions of
procedure B, each uses a disjoint set of machines and a dis-
tinct random coins determined by a shared random string of
length poly(n). The final output is determined by picking
the most successful repetition (i.e., with the maximal num-
ber of legal node outputs). Procedure B simply collects the
2Tr (n) ball of each node u ∈ V (G), which can be done in
O(log(Tr (n))) rounds. The machines then simulate the ran-

123

54 A. Czumaj et al.

domized LOCAL algorithm on balls using the shared seed.
This completes the description of the simulation.

Wefirst show that this algorithm succeedswith probability
1 − 2−n2 . By the properties of the LOCAL algorithm, a sin-
gle repetition succeeds with probability at least 1 − 1

n (over
the randomness of the shared seed). Thus, by employing n2

independent repetitions, we get the probability that all these
repetitions fail is less than 2−n2 .

Notice that since Tr (n) = o(log n) and the input graph
is bounded-degree, the 2Tr (n)-ball of each node indeed fits
the local space of each machine, and thus theMPC algorithm
can be implemented with no(1) local space, and hence is low-
space. Finally, let us observe that the obtained algorithm is
component-unstable, since it relies on globally agreeing on
the outcome of all repetitions. 	

Notice that Theorem 13 implies Theorem 6, that is,
demonstrates that, assuming the connectivity conjecture,
there are some graph problems for which there are deter-
ministic low-space component-unstableMPC algorithms that
are provably faster than their component-stable counter-
parts. However, the weakness of Theorem 13 is that the
obtained deterministic low-space component-unstable MPC
algorithms are non-uniform. In the rest of this section wewill
address this issue and show that a similar claim holds also
for uniform deterministic MPC algorithms, and those which
use almost-optimal global space.

4.1 Derandomization tools

In this section we present some basic derandomization tools
used in our analysis.

4.1.1 Strongly (�, k)-wise independent hash functions

We will use the notion of strongly (ε, k)-wise independent
hash functions which are defined as follows:

Definition 13 Let A and B be two sets and let ε ≥ 0.A family
H of functions A → B is strongly (ε, k)-wise independent
if, when h ∈ H is chosen uniformly at random, for any t ≤ k
and for any t distinct x1, . . . , xt ∈ A and any (not necessarily
distinct) y1, . . . , yt ∈ B, we have

∣∣∣∣Pr [h(xi) = yi , 1 ≤ i ≤ t] − 1

|B|t
∣∣∣∣ ≤ ε .

That is, the probability of any particular t ≤ k outputs of a
random function fromH differs fromwhat one would expect
under uniform full randomness only by ε. In our applications,
we will choose ε = n−c for sufficiently large constant c,
and we can then assume that these outputs are indeed fully
independent (since the statistical difference is far below the
failure probability of our algorithms).

Kurosawa et al. [35] presented the following result show-
ing the existence of strongly (ε, k)-wise independent families
of size (and therefore requiring few bits to specify):

Theorem 14 [35] For any sets A, B, positive integer k, and
positive real ε, there exists a strongly (ε, k)-wise independent
familyH of size

2O(log log |A|+k log |B|+log 1
ε
) .

Furthermore, each h ∈ H can be specified and evaluated on
any input in polylog(|A|, |B|, 2k, 1

ε
) time and space.

Proof As noted in the proof of Theorem 2.9 of [35], by
applying propositions 1.2 and 2.3 of [35] an (ε, k)-wise inde-
pendent family of the desired size can be constructed from
the independent sample spaces of Alon et al. [1]. 	

4.1.2 Pseudorandom generators

A Pseudorandom Generator (PRG) is a function that gets a
short random seed and expands it to a long one which look
random, in the sense that it is indistinguishable froma random
seed of the same length for such a formula.

Definition 14 (Computational indistinguishability, Defini-
tion 7.1 in [46]) Random variables X and Y taking values
in {0, 1}m are (t, ε) indistinguishable if for every non-
uniform algorithm T running in time at most t , we have
|Pr[T (X) = 1] − Pr[T (Y) = 1]| ≤ ε.

Definition 15 (PRG, Definition 7.3 in [46]) A deterministic
function G : {0, 1}d → {0, 1}m is an (t, ε) pseudorandom
generator (PRG) if (1) d < m, and (2) G(Ud) and Um are
(t, ε) indistinguishable.

The following proposition uses the probabilistic method
to show the existence of good PGRs.

Proposition 15 (Proposition 7.8 in [46]) For all m ∈ N
and ε > 0, there exists a (non-explicit) (m, ε) pseudoran-
dom generator G : {0, 1}d → {0, 1}m with seed length
d = �(logm + log(1/ε)).

We next notice that (m, ε) PRGs of Proposition 15 can be
computed by exhaustive search.

Lemma 16 (Timeand space complexity of perfect PRGs)For
all m ∈ N and ε > 0, there exists an algorithm for computing
the (m, ε)PRGofProposition 15 in time exp(poly(m/ε))and
space poly(m/ε).

Proof Our goal is to find an (m, ε) PRG from {0, 1}d to
{0, 1}m with seed length d = �(logm + log 1/ε), and the
existence of one such PRG follows from Proposition 15.

123

Component stability in low-space massively parallel computation 55

The procedure for computing the PRG iterates over all
different functions G : {0, 1}d → {0, 1}m according to some
fixed order. For each fixed function G : {0, 1}d → {0, 1}m ,
it iterates over all non-uniform algorithmsA running in time
m according to some fixed order, as well. To examine if
G ε-fools A (in the sense of Definition 15), it is required
to compare the output distribution of A run on a random
m-bit string to the m-bit pseudo-random string obtained by
evaluating the function G on a random d-bit vector. This is
done by computing the output of algorithm A under each
G(x) for every x ∈ {0, 1}d , as well as evaluating the algo-
rithm A under each y ∈ {0, 1}m . The procedure picks the
PRG function G∗ : {0, 1}d → {0, 1}m that ε-fools all m-
time algorithms; the existence of one such G∗ follows from
Proposition 15.

We next bound the time and space complexity of this
procedure. There are (2m)2

d = 2O(m2d) different functions
G mapping d bits into m bits, and there are 2O(m logm)

non-uniform algorithms running in time m (i.e., Boolean
circuits of size m). The time complexity is bounded by
2O(m2d) · 2O(m logm) · 2d · 2d = 2poly(m/ε).

We next bound the space complexity. To iterate over all
the possible PRG candidates G : {0, 1}d → {0, 1}m , one
needs to store the index of the current candidate function
and its representation, which uses O(m · 2d) bits. To iterate
over all them-time algorithms according to some fixed order,
one needs to store the index of the current A, and its repre-
sentation which can be done with O(m logm) bits. Fixing
the candidate PRG function to G and the given m-algorithm
to A, the evaluation of the algorithm A under each G(x)
for every x ∈ {0, 1}d can be done using O(m · 2d) space.
Finally, in order to evaluate A under each y ∈ {0, 1}m , it is
sufficient to store the current index of the vector y consid-
ered. Altogether, the space requirements is O(m · 2d); since
d = �(logm + log(1/ε)), this is poly(m/ε). 	

4.2 Problems related to the Lovász local Lemma

We first demonstrate a deterministic complexity separation
between component-stable and component-unstable algo-
rithms for a group of problems related to the distributed
Lovász Local Lemma: sinkless orientation, (�+o(�))-edge
coloring, and o(�)-coloring triangle-free graphs.

These problems are known to be hard in the LOCALmodel
via proofs based on the round elimination technique [11].We
show that by derandomizing an algorithm for the constructive
Lovász Local Lemma and plugging this result into known
algorithms for the problems, we can surpass the component-
stable lower bounds we obtain when lifting the LOCAL lower
bounds to low-space MPC.

4.2.1 Algorithmic Lovász local lemma

We first present a deterministic low-space component-
unstableMPC algorithm for the Lovász Local Lemma which
uses heavy local computations to obtain a small num-
ber of MPC rounds (though for bounded-degree graphs,
computation is still polynomial in n). Later we will demon-
strate that this algorithm can be applied to obtain similar
MPC algorithms for sinkless orientation, edge-coloring, and
vertex-coloring.

The algorithmic Lovász Local Lemma (LLL) is defined as
follows:

Definition 16 Consider a set V of independent random vari-
ables, and a family X of n (bad) events on these variables.
Each event A ∈ X depends on some subset V(A) ⊆ V of
variables. Define the dependency graphGX = (X , {(A, B) |
V(A)∩V(B) �= ∅}) that connects any two eventswhich share
at least one variable. Let d be the maximum degree in this
graph, i.e., each event A ∈ X shares variables with at most
d other events B ∈ X . Finally, define p = maxA∈X Pr [A].

The Lovász Local Lemma shows that Pr
[∩A∈X Ā

]
> 0

(i.e., there is some assignment of variables that does not
satisfy any of the bad events) under the LLL criterion that
epd ≤ 1. Our algorithmic goal is to find such an assignment
of the variables (possibly under a stronger criterion).

We give the following deterministic low-spaceMPC algo-
rithm.

Lemma 17 Any LLL instance with d = logo(1) n and p ≤
1
C d

−C (for sufficiently high constant C), in which each
bad event has poly(d) dependent variables, and these vari-
ables are independent fair random bits, can be solved in
poly(d)+O(log log log n) rounds in deterministic low-space
MPC, using n1+o(1) global space and npoly(d) local compu-
tation.

Proof We derandomize the LOCAL algorithm of Fischer
and Ghaffari [19]. The algorithm consists of an Õ(d) +
log∗ n initial deterministic coloring procedure from [21],
an O(d2)-round randomized pre-shattering part, and then
a polyloglog(n)-round deterministic post-shattering part
(which follows from plugging the network decomposition
result of [45] into the derandomization framework of [24]
applied to the LLL algorithm of [13]; see [45] for details).
Wefirst collect the O(d2+polyloglog(n))-radius ball around
each event onto a single machine; these balls are of size
dO(d2+polyloglog(n)) = no(1), and each event’s dependence
on its variables can be specified in 2poly(d) = no(1) bits, so
the balls fit on single machines. This collection process can
be performed in O(log d + log log log n) rounds by graph
exponentiation.

We can now directly and immediately simulate the ini-
tial coloring, and we will also be able to directly simulate the

123

56 A. Czumaj et al.

deterministic post-shattering part, so it remains to derandom-
ize the pre-shattering part. We do so using hash functions.
First, note that the proof of the Shattering Lemma [19,
Lemma 6], giving the crucial shattering property of the
randomized part, requires independence only between the
dependent variables of groups of O(poly(d) log n) events at
a time (the O(1)-radius neighborhoods of groups of O(log n)

events). So, it requires variables to be sampled from their dis-
tributions with only (poly(d) · log n)-wise independence.

By Theorem 14, for any constant c ∈ N, there exists a
strongly (n−c, poly(d) log n)-wise independent familyH of
functions [poly(n)] → {0, 1} of size 2poly(d) log n , i.e., requir-
ing poly(d) log n bits to specify each function.We use such a
function to generate the values taken by all variables. By tak-
ing c to be sufficiently high, we can ensure that the statistical
error of the hash functions in negligible. Since the algorithm
of [19] succeedswith high probability in nwhen variables are
sampled independently at random, we have that using a uni-
formly random function from H to provide variable values
also causes the algorithm to succeed w.h.p.

We can therefore perform a distributed implementation of
the method of conditional expectations to deterministically
fix a function which causes the algorithm to succeed. Czumaj
et al. [14, 16] show how to implement this method, in low-
space MPC, in such a way that �(log n) bits specifying the
function can be fixed in a single round, provided success at
any node, under any function fromH, can be checked locally
on a machine. Here, we can check success locally by simply
running the algorithm of [19] to completion using the given
function, since we have already collected sufficiently large
local neighborhoods onto single machines.

We therefore require poly(d) MPC rounds to perform the
method of conditional expectations and derandomize the
LLL algorithm. So, the total round complexity is poly(d) +
O(log log log n). The global space usage is dominated by the
storage of an O(d2+polyloglog(n))-radius ball around each
node, i.e., ndO(d2+polyloglog(n)) = n1+o(1) global space. The
local computation is dominated by the method of conditional
expectations, which requires evaluating all functions fromH,
taking npoly(d) computation. 	

4.2.2 Sinkless orientation

In this section, we combine the lifting of the LOCAL lower
bounds to deterministic low-space component-stable MPC
algorithms (Theorem 5) with derandomization of the con-
structive Lovász Local Lemma (Lemma 17) to show that
conditioned on the connectivity conjecture, deterministic
low-space component-unstable MPC algorithms for sinkless
orientation are provably faster than their component-stable
counterparts.

We define sinkless orientation to be the problem of ori-
enting the edges of a graph, such that each node of minimum
degree at least 3 has at least one outgoing edge (thisminimum
degree criterion is necessary, since otherwise the problem is
not possible, e.g., on a path).

A lower bound for sinkless orientation in the LOCALmodel
was first proven by [9], and extended to a stronger bound
for deterministic algorithms by [12]. When combined with
Theorem 5, we obtain the following theorem.

Theorem 18 Assuming the connectivity conjecture, there is
nodeterministic component-stable low-spaceMPCalgorithm
that computes a sinkless orientation in o(log log� n) rounds,
even in forests.

Proof By [9, 12], there is an �(log� N) lower bound for
deterministic sinkless orientiation even in �-regular forests,
and this holds even if nodes have unique O(log N)-bit
IDs and know the exact values of n and �. Since sink-
less orientation is an edge-labeling problem, we must work
on the line graph of the input graph in order to meet
our vertex-labeling framework. We therefore let G be the
(normal) class of all line graphs of forests, and, setting
T (N ,�) := log1/3� N (which is a constrained function) we
have an T (N ,�)-round LOCAL lower bound for the vertex-
labeling version on line graphs. By Theorem 5, we obtain an
�(log(T (N ,�))) = �(log log� n)-round lower bound for
deterministic low-spaceMPC algorithms, conditioned on the
connectivity conjecture. Converting back from the line graph
formulation to the original input graphs, this lower bound is
on the family of forests. 	

Theorem 18 is complemented by the following result
providing a deterministic low-space component-unstable
MPC algorithm for sinkless orientation that surpasses the
component-stable lower bound for low-space MPC.

Theorem 19 There is a deterministic low-space MPC algo-
rithm that computes a sinkless orientation, in any graph
of � = logo(1) log n maximum degree, in poly(�) +
O(log log log n) = o(log log� n) rounds, using n1+o(1)

global space. The algorithm is component-unstable, and uses
npoly(�) local computations.

Proof We concentrate on the algorithm for the case of d-
regular graphs with d > 500; Ghaffari and Su [27] show
how extend to irregular graphs with minimum degree at least
3 using O(log∗ n) rounds of deterministic pre-processing
and O(1) rounds of deterministic post-processing in LOCAL,
which we can simulate directly in low-space MPC.

In this case, sinkless orientation can be solved by a single
application of the distributed LLL (see e.g. [9]), with d = �

and p = 2−� (setting d > 500 is more than sufficient to
make this instance satisfy the LLL criterion of Fischer and

123

Component stability in low-space massively parallel computation 57

Ghaffari’s algorithm), and the underlying variables are sim-
ple uniformly randomchoices of orientation for each edge (so
can be represented with a single fair random bit). Applying
Lemma 17, we obtain a poly(�) + O(log log log n)-round
deterministic low-space MPC algorithm using npoly(�) local
computation. 	

We also remark that, for � ≤ no(1/ log log n), an O(log log
log n)-round component-stable randomized algorithm exists
for the problem, by simply collecting �(log log n)-radius
balls onto machines via graph exponentiation, and then sim-
ulating the randomized LOCAL algorithm of [27]. Sinkless
orientiation is therefore an example of a problemwith a (con-
ditional) separation between randomized and deterministic
algorithms, proving Theorem 8.

4.2.3 Edge-coloring

Similarly to the sinkless orientation problem, the frame-
work combining the lifting of the LOCAL lower bounds
to deterministic low-space component-stable MPC algo-
rithms (Theorem 5)with derandomization of the constructive
Lovász Local Lemma (Lemma 17) can be used to show
that assuming the connectivity conjecture, for the classical
edge-coloring there are deterministic low-space component-
unstable MPC algorithms that are provably faster than their
component-stable counterparts. We begin with the following
application of Theorem 5.

Theorem 20 Assuming the connectivity conjecture, there is
nodeterministic component-stable low-spaceMPCalgorithm
that computes a (2� − 2)-edge coloring, even in forests, in
o(log log� n) rounds.

Proof Chang et al. [11] give a deterministic LOCAL lower
bound of �(log� N) for (2� − 2)-edge coloring, even in
forests. To fit (2�−2)-edge coloring into our framework (in
which problem outputs are labels on nodes) wemust define it
as vertex-coloring on the line graph. In LOCAL, operations on
the line graph can be simulated in the original graph and vice
versa with only one round additive overhead. So, we have an
�(log� N)-round deterministic lower bound for ‘(2� − 2)-
coloring the line graphs of forests with maximum degree�’.

The family of line graphs of forests is both hereditary
(deleting a node in the line graph corresponds to deleting
an edge in the original graph, and forests are closed under
edge deletion) and closed under disjoint union (which cor-
responds to disjoint union in the original graph), so it is
normal under Definition 2. We set T (N ,�) := log1/3� N ,
a constrained function. Then, by Theorem 5, we obtain
a conditional �(log log� n) deterministic lower bound for
(2� − 2)-edge coloring forests with n nodes and maximum
degree �. 	

Theorem 21 There is a deterministic low-space MPC algo-
rithm that computes a (� + √

� log3 �)-edge coloring,
in any graph of maximum degree � = logo(1) log n, in
O(poly(�) + log� log log log n) = o(log log� n) rounds,
using n1+o(1) global space. The algorithm is component-
unstable and uses npoly(�) local computation.

Proof We apply the algorithm of [11]. Setting ε = log3 �√
�

in Theorem 4 of [11] gives a running time dominated by
O(log�) applications of LLL, with d = poly(�) and p =
�−ω(1). Furthermore, the variables in the LLL instances are
uniformly random choices of colors from each edge’s palette
(of some current palette size P). These can be generated from
poly(d) fair random bits in such a way that the probability
of choosing any particular color differs from 1/P by at most
2− poly(d); the probability of each bad event therefore also
incurs error of 2− poly(d), and so remains �−ω(1).

Applying Lemma 17, we can perform all applications of
LLL in O(poly(�)+log� log log log n) rounds in determin-
istic low-spaceMPCwithn1+o(1) global space. The algorithm
of [11] then applies a final 5�′-edge coloring algorithm to
finish off the remaining graph (where �′ is the maximum
degree of this graph); we can do this in O(log∗ n) rounds
by simulating Linial’s (deterministic) vertex-coloring algo-
rithm [37] on the line graph. The total round complexity is
O(poly(�)+log� log log log n), the global space is n1+o(1),
and the local computation is npoly(�). 	

4.2.4 Vertex-coloring triangle-free graphs

A combination of Theorem 5 and Lemma 17 can be used
to show a similar complexity gap between deterministic
component-stable and component-unstable MPC algorithms
for vertex coloring.

Theorem 22 Assuming the connectivity conjecture, there is
no deterministic component-stable low-space MPC algo-
rithm that computes a �-vertex coloring, even in forests,
in o(log log� n) rounds.

Proof Chang et al. [12] give an �(log� N)-round determin-
istic lower bound for�-coloring trees (and therefore also the
normal class of forests) of maximum degree � (for � ≥ 3).
Setting T (N ,�) := log1/3� N (a constrained function), by
Theorem 5, we obtain a conditional �(log log� n) deter-
ministic lower bound for �-coloring forests with n nodes
and maximum degree �. 	

Theorem 23 There is a deterministic low-space MPC algo-
rithm that computes a O(�

log�
)-vertex coloring, in any

triangle-free graph of� = logo(1) log n maximum degree, in
poly(�) + O(log� log log log n) = o(log log� n) rounds,
using n1+o(1) global space. The algorithm is component-
unstable and uses npoly(�) local computations.

123

58 A. Czumaj et al.

Proof We plug in our LLL algorithm into the algorithm
of [43]. When � = o(log n), this algorithm consists of
O(k + log∗ n) applications of LLL in order to O(�

k)-color
the graph, where k ≤ (14 −o(1)) ln�. We choose some such
k = �(log�).

Similarly to the proof of Theorem 21, the LLL instances
required have d = poly(�) and p = �−ω(1), and the
variables are uniformly random color choices, which we
can generate from poly(d) fair coins while only increas-
ing the probability of any bad event by 2− poly(d). So, we
can apple Lemma 17, and obtain a deterministic low-space
MPC algorithm for O(�

log�
)-coloring triangle-free graphs

in O(poly(�) + log� log log log n) rounds, using n1+o(1)

global space, with npoly(�) local computation. 	

For all the problems above, sinkless orientation, edge-

coloring, and vertex-coloring, we have obtained component-
unstable algorithms which surpass the conditional lower
bounds for component-stable algorithms when � = logo(1)

log n. Furthermore, though in general these algorithms use
heavy local computation, for bounded degree (� = O(1))
graphs their local computation is poly(n). Since we still sur-
pass the lower bounds for sufficiently large constant �, this
demonstrates that component-instability helps for determin-
istic algorithms even using polynomial computation.

4.3 Extendable algorithms

Wenext describe an explicit derandomization recipe for a par-
ticular class of LOCAL algorithms. This recipe allows one to
derandomize r -round local algorithms within O(log r) low-
space MPC rounds, provided that the r -radius ball of each
node in the graph G fits the local space of the machines. As
a consequence, we show component-unstable algorithms for
maximal independent set andmaximal matching that surpass
the lower bounds for component-stable algorithms.

Wecall the class of LOCAL algorithmswe consider extend-
able. Roughly speaking, these algorithms can extend any
partial legal solution (e.g., a collection of legally colored
nodes) into a complete solution (similar to the notion of
greedy algorithms). In addition, the local computation per-
formed at each node in these algorithms must be polynomial.
Even though the LOCALmodel does not account for the local
computation time, most of the LOCAL algorithms are in fact
efficient in this regard. We next define this notion more for-
mally.

Definition 17 (Extendable algorithms) Let A be a random-
ized LOCAL algorithm for an LCL problem P with round
complexity at most T (n,�) (where T is non-decreasing in n
and�) on every n-node graph, when provided with the exact
value of n and maximum degree �. Then, A is extendable
if:

(i) Any partially decided subgraph can be extended into
a global solution for P . Formally, A returns an output
labeling onG giving each node a label in L∪{⊥}, where
L is the output alphabet permitted by the problem P .
Then, re-labeling the nodes labeled ⊥ with any valid
output labeling on their induced graphmust give a valid
output labeling on G. This must hold with certainty
(even though A is a randomized algorithm).

(ii) In expectation, A labels less than 1
2 nodes ⊥.

(iii) In every round i of A, each node u performs at most
�O(T (n,�)) internal computation to determine its output
for that round (e.g., the messages to be sent in the next
round, internal states, and its final output in the last
round).

We next show that using the PRG construction of Lemma
16 any extendable LOCAL algorithm running in t = T (n,�)

rounds can be simulated deterministically within O(log t)
MPC rounds.This has various applications for derandomizing
LOCAL algorithms on low-degree graphs, which conse-
quently yields a separation between stable and unstable
deterministic MPC algorithms. For simplicity, we consider
LOCAL algorithms for LCL problems, however, this can be
extended for the approximation variants of LCL problems
(e.g., approximate max-IS and maximal matching).

Theorem 24 For every constant φ ∈ (0, 1), there is some
constant γ such that any T (n,�)-round extendable LOCAL
algorithm A satisfying that �γ ·T (n,�) ≤ nφ , in which
each node uses at most �O(T (n,�)) bits of randomness, can
be derandomized,13 within O(log(T (n,�)) + log∗ n) MPC
rounds with local space O(nφ) and global space O(n1+φ).

Proof Consider a fixed n-node graph G = (V , E), with
maximum degree �, and let t := T (n,�). First, the MPC
algorithm allocates a separate machine Mu to each node
u that stores its 2t-radius ball in G. This can be done in
O(log t) rounds, by the standard graph exponentiation tech-
nique. Next, the algorithm computes a �4t -coloring in the
graph G2t . The purpose of this step is to reduce the name
space of the nodes from O(log N) bits into O(t log�) bits,
such that in each 2t-radius ball, the new IDs of the nodes (i.e.,
their colors) are unique. This coloring can be implemented
within O(log∗ N) deterministic rounds [33].

Wewill simulateO(1) iterations of algorithmA, each time
running on the subset of nodes labeled with⊥ in the last iter-
ation. That is, we start on our input graph G, and provide A
with the values n and�, and in subsequent iterations provide

13 The deterministic MPC algorithm in the derandomization relies on
the PRG construction in Lemma 16, and therefore it may perform heavy
local computations or alternatively, this result can be stated as a non-
uniform derandomization where the PRG function is hard-coded in the
MPC machines, in which case local computation is polynomial.

123

Component stability in low-space massively parallel computation 59

the current values n∗ ≤ n and �∗ ≤ �. By extendability of
A, we know that the resulting labeling can be extended to a
valid full solution by relabeling ⊥ with any valid labeling on
their induced graph. It remains only to show that after O(1)
iterations, we can ensure that no nodes remain labeled ⊥.

In each iteration of A we let machine Mu determine the
output for node u, and we use the PRG construction of
Lemma 16 in order to deterministically fix a good random
seed for the algorithm. We need to provide each node with
�O(t) random bits, and we do so based on the new IDs (i.e.,
nodes with the same new IDs receive the same random bits,
but since these nodes are of distance at least 2t apart, this
does not cause any dependency issues). So, our PRG will
need to generate �O(t) total pseudorandom bits.

By Lemma 16, a (�O(t), n−ε) PRG can be constructed
using eO(t log�+ε log n) space. Setting ε to be a sufficiently
small constant, this is O(nφ). Note that we always use this
PRG (i.e., with parameters in terms of original number of
nodes n), and do not update to the current value n∗.

When we run A, with a uniformly random seed from the
PRG, on a graph of size n∗ ≤ n (since we run only on the
induced graphs of subsets of nodes labeled ⊥), the output at
each node is (�O(t), n−ε) indistinguishable from its output
under full randomness. So, the expected number of nodes
which output⊥ is atmost 12+n∗·n−ε. AfterO(1/ε) iterations
we therefore reduce the expected number of nodes labeled⊥
below 1.

Now it remains only to deterministically choose a seed
from the PRG that achieves this expected value of unde-
cided nodes (and, since the number of undecided nodes is
an integer, it must then be 0). To do so, we use a distributed
implementation of the classical method of conditional expec-
tations, a means of having all machines agree on some seed
which achieves at most the expected value of some cost mea-
sure (in this case, the number of nodes labeled ⊥). Czumaj
et al. [14, 16] show how to implement this method, in low-
space MPC, in such a way that �(log n) bits specifying the
seed can be fixed in a single round, provided that the global
cost measure is the sum of functions computable locally on
single machines. Here, each machine Mu can locally com-
pute the indicator variable for the event {uis labeled⊥} under
A using any particular seed, and the global cost function is
the sum (over all nodes u ∈ V) of these variables.

Since the seeds for the PRG are O(t log� + ε log n) =
O(log n) bits long, we can perform the method of condi-
tional expectations in O(1) rounds in each iteration, fixing
a globally agreed seed from our PRG which ensures that
the number of nodes labeled ⊥ is at most its expectation.
Then, after O(1

ε
) = O(1) iterations, we have no remaining

nodes labeled ⊥, and so have a complete valid solution for
the problem. The total running time of the deterministicMPC
algorithm is therefore O(log t) (for initially collecting balls)
plus O(log∗ n) (for coloring). 	

4.3.1 Application to maximal independent set andmaximal
matching

To demonstrate the applicability of this derandomization
recipe, we show how it can be used to improve the determin-
istic running times of two cornerstone problems in low-space
MPC: maximal independent set and maximal matching. The
best prior round complexities for both problems is O(log�+
log log n) [14]; here we improve the dependency on n to
triple-logarithmic, and surpass the component-stable lower
bound for � = 2log

o(1) n .

Theorem 25 For any constant φ > 0, a maximal indepen-
dent set and maximal matching can be found determinis-
tically in low-space MPC in O(log log� + log log log n)

rounds when � = 2log
o(1) n, with local space O(nφ) and

global space O(n1+φ).

Proof Wefocus onmaximal independent set, since the results
for maximal matching will then follow by reduction.

We will use the LOCAL algorithm of Ghaffari [22], which,
when combined with the polylogarithmic network decompo-
sition of [45], runs in t = O(log�+polyloglog(n)) rounds,
on graphs with n nodes, when provided with the values n
and�, succeeding (globally) with probability at least 1− 1

n2
.

We use the following final labeling: nodes which have been
placed in the output independent set are labeled IN, adjacent
nodes are labeled OUT, and all other nodes are labeled ⊥.

Ghaffari’s algorithm has the following important prop-
erty: even when the algorithm probabilistically fails, it never
places two adjacent nodes in the output independent set;
instead it merely fails to decide the status of some nodes.
Therefore, any output labeling produced by Ghaffari’s algo-
rithm in this way is extendable to a full solution by any valid
output (i.e., a valid MIS) on the induced graph of undecided
nodes (those labeled ⊥).

Another property we need is a bound on the number of
random bits used by each node. Ghaffari’s algorithm uses
O(t log�) random bits per node (O(log�) per round i),
since a node v’s only random choice each round is to ‘mark’
itself with some probability pt (v), which is equal to 2−ki for
some ki ∈ [�log��]. To perform this choice, v can take ki
random bits and mark itself if they are all 0.

Furthermore, since with probability at least 1 − 1
n2

the
algorithm succeeds globally (i.e., labels no nodes ⊥), the
expected number of nodes labeled ⊥ is at most n

n2
< 1

2 .

Therefore the algorithm is extendable. We have �O(t) =
2log

o(1) N ≤ Nφ , and so we can apply Theorem 24 to solve
MIS inO(log t) = O(log log�+log log log n) rounds deter-
ministically inMPCwith local space O(nφ) and global space
O(n1+φ).

To performMaximalMatching, we use standard reduction
of finding an MIS on the line graph of the input graph. It is

123

60 A. Czumaj et al.

well-known that this corresponds to a maximal matching in
the original graph, and in LOCAL only increases the round
complexity by 1, which means that we still adhere to our
MPC space bounds. 	

Theorem 26 Assuming the connectivity conjecture, there is
nodeterministic low-space component-stableMPCalgorithm
that computes a maximal matching or maximal independent
set in o(log� + log log n) rounds.

Proof Balliu et al. [5] show an�(min{�,
log N

log log N })-round14
deterministic LOCAL lower bound for both problems, even
when exact values of n and � are known. Using constrained
function T (N ,�) = √

min{�, log N }, we apply Theorem
5 to obtain an �(min{log�, log log N })-round conditional
lower bound for component-stable low-space deterministic
MPC algorithms, (directly for maximal independent set, and
using the standard conversion to the line graph for maximal
matching). 	

Hence, Theorem 25 surpasses this component-stable con-
ditional lower bound when � = 2log

o(1) n .
In earlier versions of this work, as a corollary of Theorem

25, we gave a round complexity of O(log� + log log log n)

rounds for maximal independent set and maximal match-
ing, in MPC with local space nφ and global space n1+φ .
While this is indeed achievable, we note that there is in fact a
straightforward way in which to achieve an even faster round
complexity:

Lemma 27 For any constant φ > 0, a maximal independent
set and maximal matching can be found deterministically in
low-spaceMPC in O(log�+ log(log∗ n)) rounds, with local
space nφ and global space n1+φ .

Proof When � = �(3
√
log n), we use the low-space MPC

algorithm of [14], with running time O(log�+ log log n) =
O(log�). When � = o(3

√
log n), we collect balls of

radius O(�2 + log∗ n) around each node onto dedicated
machines. This takes O(log� + log(log∗ n)) rounds via
graph exponentiation, and does not exceed the space bounds
since the total size of such balls is �O(�2+log∗ n) =
(log n)o(log

2/3 n+log∗ n) = no(1). Machines can then imme-
diately simulate the deterministic distributed maximal inde-
pendent set andmaximal matching algorithms of [42] (which
require knowledge of the O(�2 + log∗ n)-ball and O(� +
log∗ n)-ball respectively) to obtain the output for their dedi-
cated node. 	

14 That is, a deterministic LOCAL algorithmcannot simultaneously have
round complexity o(�) and o(log N

log log N); algorithms do exist which are
faster in one parameter at the expense of the other.

5 Separation between stable and unstable
randomizedMPC

In this section, we demonstrate the existence of a natural
problem for which there is a (conditional) gap between ran-
domized component-stable and component-unstable algo-
rithms. This will give us a proof of Theorem 1.

We consider the task of computing large independent sets
in n-node graphswithmaximumdegree�. Recently, [32] has
shown that for any n, there exists n-node graphs with max-
imum degree � = �(n/ log n), for which any randomized
LOCAL algorithm for computing an independent set of size
�(n/�)with success probability 1− 1

n (in fact, even reaching
a weaker success guarantee of 1− 1

log n), requires �(log∗ n)

rounds. (Here, and throughout this section, we assume that
� ≥ 1 so that the problem is well-defined.) Since the cardi-
nality of the maximum independent set in their lower bound
graph can be bounded by O(n/�), their result can also be
stated as a lower bound for computing a constant approxima-
tion for the maximum independent set. We start by providing
a mild adaptation to the lower bound proof of [32] so that it
would fit the framework from Sect. 2 and from [26]. In par-
ticular, to be able to lift this LOCAL lower bound into theMPC
setting fromTheorem 5 in Sect. 2 and from [26], it is required
for the lower bound to hold even if nodes are equipped with
shared randomness, and with an estimate N on the number
of nodes n which is at least more than a log N -factor loose,
i.e., nodes cannot distinguish between n = �(N/ log N)

and n = �(N). We begin with the following fact implicit in
Corollary V.4 of [26].

Fact 1 [26] Any randomized LOCAL algorithm to compute
a maximum independent set in n-node cycle graph requires
�(log∗ n) rounds; this holds even if the nodes know n (and,
naturally, know � = 2) and even if they have access to an
unlimited amount of shared randomness.

We can then plug this lower bound, strengthened to hold
against shared randomness, into the result of [32], yielding
Theorem 28. The proof is identical to Theorem 4 of [32]; it
is unaffected by the change to shared randomness.

Theorem 28 [32] Any randomized LOCAL algorithm to com-
pute an independent set of size�(n/�) in any n-node graph
(i.e., over the full range of � ∈ [1, n)) requires �(log∗ n)

rounds. This holds even if the nodes have the exact maximum
degree �, access to an unlimited amount of shared random-
ness, and an input size estimate N of n which is more than
a log N-factor loose, i.e., they cannot distinguish between
n = �(N/ log N) and n = �(N).

We can now combine Theorem 28 and Lemma 3 with the
lifting argument inTheorem5, using the constrained function
T (N ,�) := log∗ N , to obtain the following lower bound for
component-stable MPC algorithms.

123

Component stability in low-space massively parallel computation 61

Lemma 29 (Super-constant lower bound for component-
stable IS) Assuming that the connectivity conjecture holds,
there is no o(log log∗ n)-round low-space component-stable
MPC algorithm that computes an independent set of size
�(n/�), in any graph with n nodes and � ∈ [1, n), with
success probability at least 1 − 1

n .

Finally, we show that there is a simple component-
unstable MPC algorithm for computing large independent
sets in a constant number of rounds.

5.1 O(1)-round randomized algorithm

We first give a O(1)-round randomized algorithm that com-
putes an independent set of �(n/�) nodes, in expectation.
We can then apply derandomization techniques to reach an
algorithm that does so with certainty. First, each node com-
putes its degree, which can be done in O(1) rounds. The
algorithm then consists of a single step of Luby’s algorithm
(see [38]), where each node v picks a number χv ∈ [0, 1]
uniformly at random. A node v joins the independent set if
χv < χu for every neighbor u of v. This can be verified in
O(1) rounds in the low-space MPC setting. We next observe
that the probability that a node v has theminimumχv value in
its neighborhood is at least 1/(dv +1) ≥ 1/(�+1). Thus, in
expectation, the number of nodes that joins the independent
set is at least n/2�.

5.2 O(1)-round deterministic algorithm

We slightly change the algorithm described above so that
it would work with pairwise independence, and hence to
become deterministic.

Claim 1 Consider a simulation of a single step of Luby’s
algorithm with pairwise independence. Then, the expected
number of independent set nodes is n/4�.

Proof For a node v we consider the event that χv < 1/(2�)

and that χu ≥ 1/(2�) for every neighbor u of v. Note
that if this event occurs then v joins the independent set.
To bound the probability of this event for node v, we first
bound the probability that χu ≥ 1/(2�) for every neigh-
bor u conditioned on the event that χv < 1/(2�). Due to
pairwise independence, for every neighbor u, it holds that
χu ≤ 1/(2�) with probability 1/2� even when condition-
ing on χv < 1/(2�). Thus, conditioned on χv < 1/(2�),
by the union bound, the probability that v has some neighbor
u′ with χu′ ≤ 1/2� is at most 1/2. Overall, the probability
for the event to hold is 1/4�. 	

This step can be derandomized by applying O(1) steps
of graph sparsification, in a similar manner as done for the
derandomization of Luby’s step in the maximal independent
set algorithm of [14], yielding the following:

Theorem 30 There is a deterministic low-space MPC algo-
rithm that in O(1) rounds computes an independent set of
size �(n/�), in any graph on n nodes with � = [1, n).

Proof Let δ > 0 be a constant sufficiently smaller than φ.
If � > n2δ , we perform an initial derandomized sparsifica-
tion procedure following the lines of [14]. Specifically, we
proceed in j := � log�

δ log n �−2 (= O(1)) iterations. Each itera-
tion is based on the randomized process of having each node
remain in the graph with probability n−δ , and drop out oth-
erwise. As in [14], we can show that, even if the random
choices are only c-wise independent for some sufficiently
large constant c, with high probability the maximum degree
in the graph reduces by a factor of �(nδ). Furthermore, the
expected number of nodes in the graph reduces by a factor of
n−δ . So, we can use a random function from a c-wise inde-
pendent family of hash functions for the randomness (taking
O(log n) bits to specify), and then fix such a function for
which the above two properties hold (i.e. maximum degree
reduces by �(nδ), and number of nodes reduces by O(nδ).

Then, we have that after iteration j , the number of nodes
in the graph is �(n1− jδ), and the maximum degree is

O(�n− jδ) = O(�n(2− log�
δ log n)δ

) = O(2nδ).
Since degrees are now low enough to fit 2-hop neighbor-

hoods onto single machines (as δ is sufficiently lower than
φ), we can derandomize a step of Luby’s algorithm on this
sparsified graph exactly as in [14]: by Claim 1 one step of
Luby’s algorithm yields an independent set of expected size
�(n′/�′) on an n′-node graph of maximum degree �′, even
under only pairwise independent random choices. By apply-
ing the method of conditional expectations combined with a
pairwise-independent family of hash functions, we can deter-
ministically find an independent set of at least the expected

size, in this case �(n1− jδ

�n− jδ) = �(n
�

).

If, instead, we initially have � ≤ n2δ , then we omit the
sparsification procedure and derandomize a step of Luby’s
algorithm directly on the input graph, which again yields an
independent set of size �(n

�
). 	

6 General non-uniform and non-explicit
derandomization of MPC algorithms

The conditional lifting arguments for component-stable
MPC algorithms in Theorem 5 imply that for some (O(1)-
replicable, and hence, e.g., LCLs) graph problems there is
a (conditional) exponential gap between randomized and
deterministic algorithms, e.g., for problems that admit such
an exponential gap in the LOCAL model [11, 12]. In this
section we provide a proof of Theorem 9, showing that in
the MPC model with polynomially many machines, no such
gap exists from a complexity perspective. That is, we show
that any randomized low-space MPC algorithm with round

123

62 A. Czumaj et al.

complexity T (n,�) and which uses a polynomial number
of machines, can be transformed into a deterministic MPC
algorithm that runs in O(T (n,�)) rounds and also uses a
polynomial number of machines. This deterministic algo-
rithm is component-unstable, and it is also non-uniform and
non-explicit.

Webeginwith an auxiliary lemma that adapts the approach
for LOCAL algorithms from [12] (see also [25]) toMPC algo-
rithms. (Whereas in [12, 25] this claim holds only for LCL
problems, in our case we will use it in Lemma 32 for any
problemwhose solution can be verified efficiently in theMPC
setting.)

Lemma 31 (Implicit in [12]) Let A be (a possibly non-
uniform) randomized MPC algorithm that solves a graph
problem P on n-node graphs with maximum degree � in
T (n,�) rounds, with probability at least 1 − 2−n2 . Then,
there is a non-uniform, non-explicit deterministic MPC algo-
rithm A′ that solves P on n-node graphs with maximum
degree � in O(T (n,�)) rounds.

The local and global space of algorithm A′ is asymptoti-
cally the same as that of A.

Proof As we defined it in Sect. 2.4.4, the randomized MPC
algorithm A has access to shared randomness S of polyno-
mial length. Once the string S is fixed, A is deterministic.
Let Gn,� be the family of graphs with at most n nodes and
maximum degree �. Notice than |Gn,�| ≤ 2n

2
. Therefore, if

we runA on each seed and each possible seed fails on at least
one graph in Gn,�, the success guarantee of the algorithmA
cannot be better than 1 − 1/2n

2
. So, since A succeeds with

probability at least 1− 1/2n
2
, there must be at least one seed

S∗ that when provided to the MPC algorithm, the algorithm
is correct for every graph in Gn,�.

This gives us a deterministic algorithmA′, which uses the
seed S∗ to solve P on every graph in Gn,�. Note that the
resulting deterministic algorithm is non-explicit in the sense
that the desired seed should be hard-coded into themachines.
Furthermore, it is non-uniform in the sense that a different
seed is hard-coded for each n, and so we must use a different
algorithm for each n (it is not possible to hard-code the seeds
for all n into the same algorithm, since this would require
unbounded space and therefore would not fit on machines,
or even over our poly(n) global space bound). 	

Lemma 32 Let A be (a possibly non-uniform) randomized
MPC algorithm that solves a graph problem P on n-node
graphs with maximum degree � in T (n,�) rounds, with
probability at most 1 − 1

n using nα local space and nβ

global space. In addition, assume that the correctness of
the algorithm can be checked in T (n,�) MPC rounds, using
nα local space and nβ global space. Then, there exists a
component-unstable, non-uniform, non-explicit determinis-
tic MPC algorithm A′ that solves P on n-node graphs with

maximum degree � in O(T (n,�)) rounds. The local space
of A′ is nα and the global space is Õ(n2+β).

Proof We first boost the success guarantee of A by running
multiple parallel simulations: we will run 	 = O(n2) sim-
ulations of algorithm A in parallel, using a distinct set of
machines for each simulation. We can determine the correct-
ness of all simulations in T (n,�) MPC rounds, and the final
output is determined by choosing an arbitrary correct simu-
lation, if one exists. The probability that the algorithm fails
in all these simulations is at most (1n)	 = 2−ω(n2). Thus, if
we incorporate this algorithm in Lemma 31, there exists a
non-uniform, non-explicit deterministic MPC algorithm A′
that solves the problem in T (n,�) rounds using the same
local space as A and Õ(n2+β) global space.

Let us finally mention that the obtained algorithm A′ is
component-unstable, since it relies on globally agreeing on
the outcome of all simulations. 	

NowLemma32 yields the proof of Theorem9; informally,
DetMPC = RandMPC holds in the regime of polynomially
many machines and for non-uniform, non-explicit low-space
MPC algorithms.

7 Conclusions

In this paper, we investigate the power of component-
instability for solving local graph problems in the low-space
MPC model. Our main conclusion is that component insta-
bility is useful mainly in two related aspects: amplification
of the success guarantee and derandomization. In the con-
text of randomized algorithms, it allows one to boost the
success guarantee of the algorithm. This appears to be
useful especially for approximation problems (e.g., maxi-
mizing or minimizing a subset of edges or vertices with a
given property). In the context of derandomization, it allows
one to efficiently simulate the randomized local algorithm
while globally foraging for a short seed. Amplification and
derandomization are both obtained by a global computation
regardless of the connected components of the graph.

Wehave shownavariety of problems forwhich component-
instability provides additional power in low-spaceMPC, and
allows algorithms to surpass the component-stable condi-
tional lower bounds given by Ghaffari et al. [26] and revised
and extended here. We note, however, that we know of
no examples of randomized LCL problems for which this
is the case. Indeed, the ways in which we have exploited
component-instability would not seem to help for such prob-
lems. A major open problem left by this work is therefore
to either provide such an example, or to provide conditional
hardness results for randomized LCL problems that hold also
for unstable algorithms.

123

Component stability in low-space massively parallel computation 63

Acknowledgements This work is partially supported by a Weizmann-
UK Making Connections Grant, the Centre for Discrete Mathematics
and its Applications (DIMAP), IBM Faculty Award, EPSRC award
EP/V01305X/1, European Research Council (ERC) Grant No. 949083,
and the European Union’s Horizon 2020 programme under the Marie
Skłodowska-Curie Grant Agreement No. 754411.

Author Contributions All authors contributed equally.

Declarations

Conflict of interest The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Alon, N., Goldreich, O., Håstad, J., Peralta, R.: Simple construc-
tions of almost k-wise independent random variables. Random
Struct. Algorithms 3(3), 289–304 (1992)

2. Andoni, A., Nikolov, A., Onak, K., Yaroslavtsev, G.: Parallel algo-
rithms for geometric graph problems. In: Proceedings of the 46th
Annual ACM Symposium on Theory of Computing (STOC), pp.
574–583 (2014)

3. Andoni, A., Song, Z., Stein, C., Wang, Z., Zhong, P.: Parallel graph
connectivity in log diameter rounds. In: Proceedings of the 59th
IEEE Symposium on Foundations of Computer Science (FOCS),
pp. 674–685 (2018)

4. Assadi, S., Bateni, M.H., Bernstein, A., Mirrokni, V., Stein, C.:
Coresets meet EDCS: algorithms for matching and vertex cover on
massive graphs. In: Proceedings of the 30th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pp. 1616–1635
(2019)

5. Balliu,Alkida, Brandt, Sebastian,Hirvonen, Juho,Olivetti, Dennis,
Rabie,Mikaël, Suomela, Jukka: Lower bounds formaximalmatch-
ings and maximal independent sets. In: Proceedings of the 60th
IEEE Symposium on Foundations of Computer Science (FOCS),
pp. 481–497 (2019)

6. Balliu, A., Brandt, S., Olivetti, D.: Distributed lower bounds for
ruling sets. In: Proceedings of the 61st IEEE Symposium on Foun-
dations of Computer Science (FOCS), pp. 365–376 (2020)

7. Beame, P., Koutris, P., Suciu, D.: Communication steps for parallel
query processing. J. ACM (JACM) 64(6), 1–58 (2017)

8. Behnezhad, S., Hajiaghayi, M., Harris, D.G.: Exponentially faster
massively parallel maximal matching. J. ACM 70(5), 1–18 (2023)

9. Brandt, S., Fischer, O., Hirvonen, J., Keller, B., Lempiäinen, T.,
Rybicki, J., Suomela, J., Uitto, J.: A lower bound for the distributed
Lovász Local Lemma. In: Proceedings of the 48th Annual ACM
Symposium on Theory of Computing (STOC), pp. 479–488 (2016)

10. Chang, Y-J, Fischer, M, Ghaffari, M, Uitto, J, Zheng, Y: The com-
plexity of (�+ 1) coloring in congested clique, massively parallel

computation, and centralized local computation. In: Proceedings of
the 38th ACMSymposium on Principles of Distributed Computing
(PODC), pp. 471–480 (2019)

11. Chang, Y.-J., He, Q., Li, W., Pettie, S., Uitto, J.: Distributed edge
coloring and a special case of the constructive Lovász local lemma.
ACM Trans. Algorithms 16(1), 8:1-8:51 (2020)

12. Chang, Y.-J., Kopelowitz, T., Pettie, S.: An exponential separation
between randomized and deterministic complexity in the LOCAL
model. SIAM J. Comput. 48(1), 122–143 (2019)

13. Chung, K.-M., Pettie, S., Hsin-Hao, S.: Distributed algorithms for
theLovász local lemmaandgraph coloring.Distrib. Comput. 30(4),
261–280 (2017)

14. Czumaj, A., Davies, P., Parter, M.: Graph sparsification for deran-
domizing massively parallel computation with low space. ACM
Trans. Algorithms 17(2), 1–27 (2021)

15. Czumaj, A., Davies, P., Parter, M.: Improved deterministic (�+1)
coloring in low-spaceMPC. In: Proceedings of the 40thACMSym-
posium on Principles of Distributed Computing (PODC) (2021)

16. Czumaj, A., Davies, P., Parter, M.: Simple, deterministic, constant-
round coloring in congested clique and MPC. SIAM J. Comput.
50(5), 1603–1626 (2021)

17. Czumaj, A., Ła̧cki, J., Ma̧dry, A., Mitrović, S., Onak, K.,
Sankowski, P.: Round compression for parallel matching algo-
rithms. SIAM J. Comput. 49(5), STOC18–1 (2019)

18. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on
large clusters. Commun. ACM 51(1), 107–113 (2008)

19. Fischer, M., Ghaffari, M.: Sublogarithmic distributed algorithms
for Lovász local lemma, and the complexity hierarchy. In: Pro-
ceedings of the 31st International Symposium on Distributed
Computing (DISC), pp. 18:1–18:16 (2017)

20. Fish, B., Kun, J., Lelkes, Á.D., Reyzin, L., Turán, G.: On the com-
putational complexity of MapReduce. In: Proceedings of the 29th
International Symposium on Distributed Computing (DISC), pp.
1–15 (2015)

21. Fraigniaud, P., Heinrich, M., Kosowski, A.: Local conflict color-
ing. In: 2016 IEEE 57th Annual Symposium on Foundations of
Computer Science (FOCS), pp. 625–634. IEEE (2016)

22. Ghaffari, M.: An improved distributed algorithm for maximal
independent set. In: Proceedings of the 27th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pp. 270–277 (2016)

23. Ghaffari, M., Gouleakis, T., Konrad, C., Mitrović, S., Rubinfeld,
R.: Improved massively parallel computation algorithms for MIS,
matching, and vertex cover. In: Proceedings of the 37th ACM
Symposium on Principles of Distributed Computing (PODC), pp.
129–138 (2018)

24. Ghaffari, M., Harris, D.G., Kuhn, F.: On derandomizing local dis-
tributed algorithms. In: Proceedings of the 59th IEEE Symposium
on Foundations of Computer Science (FOCS), pp. 662–673 (2018)

25. Ghaffari, M., Kuhn, F.: On the use of randomness in local dis-
tributed graph algorithms. In: Proceedings of the 38th ACM
Symposium on Principles of Distributed Computing (PODC), pp.
290–299 (2019)

26. Ghaffari, M., Kuhn, F., Uitto, J.: Conditional hardness results for
massively parallel computation from distributed lower bounds. In:
Proceedings of the 60th IEEE Symposium on Foundations of Com-
puter Science (FOCS), pp. 1650–1663 (2019)

27. Ghaffari,M., Su, H.-H.: Distributed degree splitting, edge coloring,
and orientations. In: Proceedings of the 28th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pp. 2505–2523
(2017)

28. Ghaffari, M. , Uitto, J.: Sparsifying distributed algorithms with
ramifications in massively parallel computation and centralized
local computation. In: Proceedings of the 30thAnnualACM-SIAM
Symposium on Discrete Algorithms (SODA), pp. 1636–1653
(2019)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

64 A. Czumaj et al.

29. Goodrich, M.T., Sitchinava, N., Zhang, Q.: Sorting, searching, and
simulation in the MapReduce framework. In: Proceedings of the
22nd International Symposium on Algorithms and Computation
(ISAAC), pp. 374–383 (2011)

30. Isard, M., Budiu, M., Yuan, Yu., Birrell, A., Fetterly, D.: Dryad:
distributed data-parallel programs from sequential building blocks.
SIGOPS Oper. Syst. Rev. 41(3), 59–72 (2007)

31. Karloff, H.J., Suri, S., Vassilvitskii, S.: A model of computation
for MapReduce. In: Proceedings of the 21st Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pp. 938–948 (2010)

32. Kawarabayashi, K., Khoury, S., Schild, A., Schwartzman, G.:
Improved distributed approximation to maximum independent set.
In: Proceedings of the 34th International Symposium on Dis-
tributed Computing (DISC), pp. 35:1–35:16 (2020)

33. Kuhn, F.: Weak graph colorings: distributed algorithms and appli-
cations. In: Proceedings of the 21st Annual ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA), pp. 138–144
(2009)

34. Kuhn, F., Moscibroda, T., Wattenhofer, R.: The price of being
near-sighted. In: Proceedings of the 17th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pp. 980–989 (2006)

35. Kurosawa, K., Johansson, T., Stinson, D.R.: Almost k-wise inde-
pendent sample spaces and their cryptologic applications. J.
Cryptol. 14(4), 231–253 (2001)

36. Lattanzi, S., Moseley, B., Suri, S., Vassilvitskii, S.: Filtering: a
method for solving graph problems inMapReduce. In: Proceedings
of the 23rd Annual ACMSymposium on Parallelism in Algorithms
and Architectures (SPAA), pp. 85–94 (2011)

37. Linial, N.: Locality in distributed graph algorithms. SIAM J. Com-
put. 21(1), 193–201 (1992)

38. Luby,M.: A simple parallel algorithm for themaximal independent
set problem. SIAM J. Comput. 15(4), 1036–1053 (1986)

39. Nanongkai, D., Scquizzato, M.: Equivalence classes and con-
ditional hardness in massively parallel computations. Distrib.
Comput. 35(2), 165–183 (2022)

40. Naor, M., Stockmeyer, L.J.: What can be computed locally? SIAM
J. Comput. 24(6), 1259–1277 (1995)

41. Onak, K.: Round compression for parallel graph algorithms in
strongly sublinear space (2018)

42. Panconesi, A., Rizzi, R.: Some simple distributed algorithms for
sparse networks. Distrib. Comput. 14(2), 97–100 (2001)

43. Pettie, S., Hsin-Hao, S.: Distributed coloring algorithms for
triangle-free graphs. Inf. Comput. 243, 263–280 (2015)

44. Roughgarden, T., Vassilvitski, S., Wang, J.R.: Shuffles and circuits
(on lower bounds for modern parallel computation). J. ACM 65(6),
41:1-41:24 (2018)

45. Rozhoň, V., Ghaffari, M.: Polylogarithmic-time deterministic net-
work decomposition and distributed derandomization. In: Pro-
ceedings of the 52nd Annual ACM Symposium on Theory of
Computing (STOC), pP. 350–363 (2020)

46. Vadhan, S.P.: Pseudorandomness. Found. Trends Theor. Comput.
Sci. 7(1–3), 1–336 (2012)

47. White, T.: Hadoop: The Definitive Guide. O’Reilly Media Inc,
Sebastopol (2012)

48. Yaroslavtsev, G., Vadapalli, A.: Massively parallel algorithms and
hardness for single-linkage clustering under 	p distances. In: Jen-
nifer, D., Andreas K. (eds.) Proceedings of the 35th International
Conference on Machine Learning, volume 80 of Proceedings of
Machine Learning Research, pP. 5600–5609. PMLR, 10–15 Jul
(2018)

49. Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., Stoica,
I.: Spark: cluster computing with working sets. In: Proceedings of
the 2nd USENIX Workshop on Hot Topics in Cloud Computing
(HotCloud) (2010)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

	Component stability in low-space massively parallel computation
	Abstract
	1 Introduction
	1.1 Background
	1.2 Our aims
	1.3 Our contributions
	1.3.1 A robust lifting framework
	1.3.2 Extensions to deterministic and degree-dependent lower bounds
	1.3.3 Instability helps randomized MPC algorithms
	1.3.4 Instability helps deterministic MPC algorithms
	1.3.5 Relations between randomized and deterministic MPC algorithms
	1.3.6 Complexity summary

	2 Revised framework of component stability
	2.1 Discussion of definitions of component stability
	2.1.1 Randomized component-stable algorithms must be allowed dependency on n
	2.1.2 If we allow dependency on n, we must restrict the class of problems in order to obtain MPC lower bounds
	2.1.3 Uniqueness of identifiers
	2.1.4 Initial distribution of input

	2.2 Graph families
	2.3 Types of graph problems and replicability
	2.3.1 Replicable graph problems

	2.4 Algorithm definitions, and revised definition of component-stability
	2.4.1 LOCAL algorithms
	2.4.2 Output
	2.4.3 Shared randomness
	2.4.4 MPC algorithms
	2.4.5 Computation in MPC algorithms
	2.4.6 Component-stable MPC algorithms

	2.5 Landscape of MPC complexity classes and component-stability

	3 Conditional MPC lower bounds from LOCAL
	3.1 Basic definitions: normal graph families and sensitive MPC algorithms
	3.2 LOCAL hardness yields indistinguishability of graphs locally
	3.3 Conditional MPC lower bounds from LOCAL (proving Theorem 5)
	3.4 Applications of Theorem 5: conditional MPC lower bounds
	3.4.1 Deterministic conditional MPC lower bounds

	4 Separation between stable and unstable deterministic MPC
	4.1 Derandomization tools
	4.1.1 Strongly (ε,k)-wise independent hash functions
	4.1.2 Pseudorandom generators

	4.2 Problems related to the Lovász local Lemma
	4.2.1 Algorithmic Lovász local lemma
	4.2.2 Sinkless orientation
	4.2.3 Edge-coloring
	4.2.4 Vertex-coloring triangle-free graphs

	4.3 Extendable algorithms
	4.3.1 Application to maximal independent set and maximal matching

	5 Separation between stable and unstable randomized MPC
	5.1 O(1)-round randomized algorithm
	5.2 O(1)-round deterministic algorithm

	6 General non-uniform and non-explicit derandomization of MPC algorithms
	7 Conclusions
	Acknowledgements
	References

