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Abstract
We investigate the effect of omnipresent cloud storage on distributed computing. To this end, we specify a network model with
links of prescribed bandwidth that connect standard processing nodes, and, in addition, passive storage nodes. Each passive
node represents a cloud storage system, such as Dropbox, Google Drive etc. We study a few tasks in this model, assuming a
single cloud node connected to all other nodes, which are connected to each other arbitrarily.We give implementations for basic
tasks of collaborativelywriting to and reading from the cloud, and formore advanced applications such asmatrixmultiplication
and federated learning. Our results show that utilizing node-cloud links as well as node-node links can considerably speed up
computations, compared to the case where processors communicate either only through the cloud or only through the network
links. We first show how to optimally read and write large files to and from the cloud in general graphs using flow techniques.
We use these primitives to derive algorithms for combining, where every processor node has an input value and the task is to
compute a combined value under some given associative operator. In the special but common case of “fat links,” where we
assume that links between processors are bidirectional and have high bandwidth, we provide near-optimal algorithms for any
commutative combining operator (such as vector addition). For the task of matrix multiplication (or other non-commutative
combining operators), where the inputs are ordered, we present tight results in the simple “wheel” network, where procesing
nodes are arranged in a ring, and are all connected to a single cloud node.

1 Introduction

In 2018 Google announced that the number of users of
Google Drive is surpassing one billion [28]. Earlier that
year, Dropbox stated that in total, more than an exabyte
(1018 bytes) of data has been uploaded by its users [15].
Other cloud-storage services, such as Microsoft’s OneDrive,
Amazon’s S3, or Box, are thriving too. The driving force of
this paper is our wish to let other distributed systems take
advantage of the enormous infrastructure that makes up the
complexes called “clouds.” Let us explain how.

The computational and storage capacities of servers in
cloud services are well advertised. A lesser known fact is that
a cloud system also entails a massive component of commu-
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nication, that makes it appear close to almost everywhere
on the Internet. (This feature is particularly essential for
cloud-based video conferencing applications, such as Zoom,
Cisco’s Webex and others.) In view of the existing cloud ser-
vices, our fundamental idea is to abstract a complete cloud
system as a single, passive storage node.

To see the benefit of this approach, consider a network
of the “wheel” topology: a single cloud node is connected
to n processing nodes arranged in a cycle (see Fig. 1). Sup-
pose each processing node has a wide link of bandwidth
n bits per time unit to its cycle neighbors, and a narrower
link of bandwidth

√
n to the cloud node. Further suppose

that each processing node has an n-bit vector, and that the
goal is to calculate the sum of all vectors. Without the cloud
(Fig. 1, left), such a task requires at least�(n) time units—to
cover the distance; on the other hand, without using the cycle
links (Fig. 1, middle), transmitting a single vector from any
processing node (and hence computing the sum) requires
�(n/

√
n) = �(

√
n) time units—due to the limited band-

width to the cloud. But using both cloud links and local links
(Fig. 1, right), the sum can be computed in �̃( 4

√
n) time units,

as we show in this paper.
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2 Y. Afek et al.

Fig. 1 Wheel topology with n = 8. The vi nodes are processing nodes connected by a ring of high-bandwidth links. The cloud node vc is connected
to the processing nodes by lower-bandwidth links. All links are bidirectional and symmetric

More generally, in this paper we initiate the study of the
question of how to use an omnipresent cloud storage to speed
up computations, if possible. We stress that the idea here is
to develop a framework and tools that facilitate computing
with the cloud, as opposed to computing in the cloud.

Specifically, in this paperwe introduce the computingwith
the cloud model (CWC), and present algorithms to compute
schedules that efficiently combine distributed inputs to com-
pute various functions, such as vector addition and matrix
multiplication. To this end, we first show how to implement
(using dynamic flow techniques) primitive operations that
allow for the efficient exchange of large messages (files)
between processing nodes and cloud nodes. Finally, we show
how to use the combining schedules to implement some pop-
ular applications, including federated learning [34] and file
de-duplication (dedup) [35].

1.1 Model specification

The “Computing with the Cloud” (CWC) model is a syn-
chronous network whose underlying topology is described
by a weighted directed graph G = (V , E, w). The node set
consists of two disjoint subsets: V = Vp ∪ Vc, where Vp is
the set of processing nodes, and Vc is the set of cloud nodes.
Cloud nodes are passive nodes that function as shared stor-
age: they support read and write requests, and do not perform
any other computation.

We use n to denote the number of processing nodes (the
number of cloud nodes is typically constant).

The set of links connecting processing nodes is denoted by
EL (“local links”), and EC (“cloud links”) denotes the set of
links that connect processing nodes to cloud nodes. Each link
e ∈ E = EL ∪ EC has a prescribed bandwidth w(e) > 0 (
there are no links between different cloud nodes). We denote

byGp
def= (Vp, EL) the graphG−Vc, i.e., the graph spanned

by the processing nodes.

Our executionmodel is the standard synchronous network
model, based onCONGEST [36]. Executions proceed in syn-
chronous rounds, where each round consists of processing
nodes receiving messages sent in the previous round, doing
an arbitrary local computation, and then sending messages.
The size of a message sent over a link e in a round is at most
w(e) bits.

Cloud nodes do not perform any computations: they can
only receive requests we denote by FR and FW (file read and
write, respectively), to which they respond in the following
round. More precisely, each cloud node has unbounded stor-
age space; to write, a processing node vi invokes FW with
arguments that describe the filename f , a bit string S, and
the location (index) within f that is the starting point for
writing S. It is assumed that |S| ≤ w(vi , vc) bits (longer
writes are implemented by a sequence of FW operations). To
read, a processing node vi invokes FR with arguments that
describe a filename f and the range of indices to fetch from
f . Again, we assume that the size of the range in any single
FR invocation by node vi is at most w(vi , vc).1

FW operations are exclusive, i.e., when an FW operation
is executing, no other operation (read or write) referring to
the same file locations is allowed to take place concurrently.
Concurrent FR operations reading from the same location
are allowed.
Discussion. We believe that our model is fairly widely
applicable. A processing node in our model may represent
anything from a computer cluster with a single gateway to
the Internet, to cellphones or even smaller devices—anything
with a non-shared Internet connection. The local links can
range from high-speed fibers to Bluetooth or infrared links.
Typically in this setting the local links have bandwidth much

1 For both the FW and FR operations we ignore the metadata (i.e., vc’s
descriptor, the filename f and the indices) and assume that the total size
of metadata in a single round is negligible and can fit within w(vi , vc).
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Distributed computing with the cloud 3

larger than the cloud links (and cloud downlinks in many
cases have larger bandwidth than cloud uplinks). Another
possible interpretation of the model is a private network (say,
in a corporation), where a cloud node represents a storage
device or a file server. In this case the cloud link bandwidth
may be as large as the local link bandwidth.

1.2 Problems considered andmain results

In this paper we address the question of how to effi-
ciently move information around a CWCnetwork (themodel
described above). To avoid confusion, we start by distin-
guishing between schedules, which specify what string of
bits to send over each link in every step (cf. Definition 2.3),
and algorithms, which compute these schedules. While the
schedules are inherently parallel because they concern all
links in each step, the algorithms we present in this paper are
typically centralized. Our main objective is to find optimal or
near-optimal schedules (i.e., whose timespan is close to the
best possible). For the positive results, we present efficient
(i.e., polynomial-time) algorithms that produce such sched-
ules.

Our main results are algorithms to compute schedules that
allow the users to combine values stored at nodes. These
schedules use building blocks that facilitate efficient trans-
mission of large messages between processing nodes and
cloud nodes. These building block schedules, in turn, are
computed in a straightforward way using dynamic flow tech-
niques. Finally, we show how to use the combining schedules
to derive new algorithms for federated learning and file de-
duplication (dedup) in the CWC model. More specifically,
we provide implementations of the following tasks.
Basic cloud operations: Let s ∈ N be a given parameter. We
use vc to denote a cloud node below.

• cWi (cloud write): write an s-bits file f stored at node
i ∈ Vp to node vc.

• cRi (cloud read): fetch an s-bits file f from node vc to
node i ∈ Vp.

• cAW (cloud all write): for each i ∈ Vp, write an s-bits
file fi stored at node i to node vc.

• cAR (cloud all read): for each i ∈ Vp, fetch an s-bits file
fi from node vc to node i .

Combining and dissemination operations:

• cComb: (cloud combine):Each node i ∈ Vp has an s-bits
input string Si , and there is a binary associative operator
⊗ : {0, 1}s × {0, 1}s → {0, 1}s . The requirement is to
write to a cloud node vc the s-bits string S1⊗S2⊗· · ·⊗Sn .
Borrowing from Group Theory, we call the operation
⊗ multiplication, and S1 ⊗ S2 is the product of S1 by
S2. In general, ⊗ is not necessarily commutative. We

assume the existence of a unit element for ⊗, denoted 1,
such that 1 ⊗ S = S ⊗ 1 = S for any s-bits strings S.
The unit element is represented by a string of O(1) bits.
Examples for commutative operators include vector (or
matrix) addition over a finite field, logical bitwise oper-
ations, leader election, and the top-k problem. Examples
for non-commutative operators may be matrix multipli-
cation (over a finite field) and function composition. Note
that we require that the result of applying ⊗ is as long as
each of its operands.

• cCast (cloudcast): All the nodes i ∈ Vp simultaneously
fetch a copy of an s-bits file f from node vc. (Similar to
network broadcast.)

Applications. cComb and cCast can be used directly to
provide matrix multiplication, matrix addition, and vector
addition. We also outline the implementation of the follow-
ing.
Federated learning (FL) [34]: In FL, a collection of agents
collaborate in training a neural network to construct a model
of some concept, but the agents want to keep their data pri-
vate. Unlike [34], in our model the central server is a passive
storage device that does not carry out computations.We show
how elementary secure computation techniques, along with
our combining algorithm, can efficiently help training anML
model in the federated scheme implemented in CWC, while
maintaining privacy.
File deduplication: Deduplication (or dedup) is a task in file
stores, where redundant identical copies of data are identi-
fied (and possibly unified)—see, e.g., [35]. Using cComb
and cCast, we implement file dedup in the CWC model on
collections of files stored at the different processing nodes.
The algorithm keeps a single copy of each file and pointers
instead of the other replicas.

Special topologies. The complexity of the schedules we
present depends on the given network topology. We study a
few cases of interest.

First, we consider s-fat-links network, defined to be, for a
given parameter s ∈ N, as the CWCmodelwith the following
additional assumptions:

• All links are symmetric, i.e.,w(u, v) = w(v, u) for every
link (u, v) ∈ E .

• Local links have bandwidth at least s.
• There is only one cloud node vc.

The fat links model seems suitable in many real-life cases
where local links are much wider than cloud links (uplinks
to the Internet), as is the intuition behind the HYBRIDmodel
[6].

Another topology we consider is the wheel network,
depicted schematically in Fig. 1 (right). In a wheel system
there are n processing nodes arranged in a ring, and a cloud
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4 Y. Afek et al.

node connected to all processing nodes. Thewheel network is
motivated by non-commutative combining operations, where
the order of the operands induces a linear order on the pro-
cessing nodes, i.e., we view the nodes as a line, where the first
node holds the first input (operand), the second node holds
the second input etc. Thewheel is obtained by connecting the
first and the last nodes for symmetry, and then connecting all
to a cloud node.

Overview of techniques. As mentioned above, sched-
ules for the basic file operations (cW, cR, cAW and cAR) are
computed optimally using dynamic flow techniques, or more
specifically, quickest flow (Sect. 2), which have been studied
in numerous papers in the past (cf. [10, 37]). We present
closed-form bounds on cW and cR for the wheel topology
with general link bandwidths in Sect. 4.

We present tight bounds for cW and cR in the s-fat-links
network, where s is the input size at all nodes. We then
continue to consider the tasks cComb with commutative
operators and cCast, and prove nearly-tight bounds on their
time complexity in the s-fat-links network (Theorems 3.7,
3.8, 3.10). The idea is to first find, for every processing node
i , a cluster of processing nodes that allows it to perform cW
in an optimal number of rounds. We then perform cComb by
combining the valueswithin every cluster using convergecast
[36], and then combining the results in a computation-tree
fashion.We perform the described procedure in near-optimal
time.

Non-commutative operators are explored in the natural
wheel topology.We present algorithms to compute schedules
forwheel networkswith arbitrary bandwidth (both cloud and
local links). We prove an upper bound for cComb (Theorem
4.6 ) and a nearly-matching lower bound (Theorem 4.10).

Paper organization. In Sect. 2 we study the topology of
basic primitives in the CWCmodel. In Sect. 3 we study com-
bining schedules in general topologies in fat links networks.
In Sect. 4 we consider combining for non-commutative oper-
ators in the wheel topology. In Sect. 5 we discuss application
level usage of theCWCmodel, such as federated learning and
deduplication. Conclusions and open problems are presented
in Sect. 6.

1.3 Related work

Our model is based on, and inspired by, a long history of
theoretical models in distributed computing. To gain some
perspective, we offer here a brief non-comprehensive review.

Historically, distributed computing is split along the
dichotomyofmessage passing vs sharedmemory [18].While
message passing is deemed the “right” model for network
algorithms, the shared memory model is the abstraction of
choice for programming multi-core machines.

The prominentmessage-passingmodels are LOCAL [31],
and its derived CONGEST [36]. (Somemodels also include a

broadcast channel, e.g. [2].) In both LOCAL andCONGEST,
a system is represented by a connected (typically undirected)
graph, in which nodes represent processors and edges rep-
resent communication links. In LOCAL, message size is
unbounded, and in CONGEST, message size is restricted,
typically to O(log n) bits. Thus, CONGEST accounts not
only for the distance information has to traverse, but also
for information volume and the bandwidth available for its
transportation.

While most algorithms in the LOCAL and CONGEST
models assume fault-free (and hence synchronous) execu-
tions, in the distributed shared memory model, asynchrony
and faults are the primary source of difficulty. Usually, in the
shared memory model one assumes that there is a collection
of “registers,” accessible by multiple threads of computa-
tion that run at different speeds and may suffer crash or
even Byzantine faults (see, e.g., [5]). The main issues in this
model are coordination and fault-tolerance. Typically, the
only quantitative hint to communication cost is the number
and size of the shared registers.

The CONGESTEDCLIQUE (CC) model [32] is a special
case of CONGEST, where the underlying graph is assumed
to be fully connected. The CC model is appropriate for com-
puting in the cloud, as it has been shown that under some
relatively mild conditions, algorithms designed for the CC
model can be implemented in the MapReduce model, i.e.,
run in datacenters [22]. Another model for computing in
the cloud is the MPC model [24]. Recently, the HYBRID
model [6] was proposed as a combination of CC with clas-
sical graph-based communication. More specifically, the
HYBRID model assumes the existence of two commu-
nication networks: one for local communication between
neighbors, where links are typically of infinite bandwidth
(exactly like LOCAL); the other network is a node-congested
clique, i.e., a node can communicate with every other node
directly via “global links,” but there is a small upper bound
(typically O(log n)) on the total number of messages a
node can send or receive via these global links in a round.
Even though the model was presented only recently, there
is already a line of algorithmic work in it, in particular for
computing shortest paths [4, 6, 11, 25, 26].

Another classical model of easily accessible shared mem-
ory is the PRAM [17], whose original focus was on detailed
complexity of parallel computation. An early attempt to
incorporate communicationbandwidth constraints inPRAM,
albeit indirectly, is due to Mansour et al. [33], who consid-
ered PRAM with m words of shared memory, p processors
and input length n, in the regime where m � p � n.
The LogP model [13] by Culler et al. aimed at adjusting
the PRAM model to network-based realizations. Another
proposal that models shared memory explicitly is the QSM
model ofGibbons et al. [20], inwhich there is an explicit (typ-
ically uniform) limit on the bandwidth connecting processors
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Distributed computing with the cloud 5

to sharedmemory.QSM is similar to our CWCmodel, except
that there is no network connecting processors directly. A
thorough comparison of bandwidth limitations in variants of
the BSP model [38] and of QSM is presented by Adler et al.
[1]. We note that LogP and BSP do not provide shared mem-
ory as a primitive object: the idea is to describe systems in a
way that allows implementations of abstract shared memory.

Recently, Aguilera et al. [3] introduced the “m&m”model
that combines message passing with shared memory. The
m&mmodel assumes that processes can exchange messages
via a fully connected network, and there are shared registers
as well, where each shared register is accessible only by a
subset of the processes. The focus in [3] is on solvability
of distributed tasks in the presence of failures, rather than
performance.

Discussion. Intuitively, our CWC model can be viewed
as the classical CONGEST model over the processors, aug-
mented by special cloud nodes (object stores) connected to
some (typically, many) compute nodes. To reflect modern
demands and availability of resources, we relax the very
stringent bandwidth allowance of CONGEST, and usually
envision networks with much larger link bandwidth (e.g., nε

for some ε > 0).
Considering previous network models, it appears that

HYBRID is the closest to CWC, even though HYBRID
was not expressly designed to model the cloud. In our view,
CWC is indeed more appropriate for computation with the
cloud. First, in most cases, global communication (modeled
by clique edges in HYBRID) is limited by link bandwidth,
unlike HYBRID’s node capacity constraint, which models
computational bandwidth. Second, HYBRID is not readily
amenable to model multiple clouds, while this is a natural
property of CWC.

Regarding shared memory models, we are unaware of
topology-based bandwidth restriction on shared memory
access in distributed models. In some general-purpose paral-
lel computationmodels (based onBSP [38]), communication
capabilities are specified using a few global parameters such
as latency and throughput, but these models deliberately
abstract topology away. In distributed (asynchronous) shared
memory, the number of bits that need to be transferred to and
from the shared memory is seldom explicitly analyzed.

2 Implementation of basic communication
primitives inCWC

In this section we consider the basic operations of reading
or writing to the cloud, by one or all processors. First, we
give optimal results using standard dynamic flow techniques.
While optimal, the resulting schedules are somewhat opaque
in the sense that theydonot givemuch intuition about the con-
struction. We then consider the special case of networks with

fat links, where we introduce the notion of “cloud clusters”
that are both intuitive and can be used in a straightforward
way to give good approximate solutions to the basic tasks.

We first review dynamic flows in Sect. 2.1, and then apply
them to the CWC model in Sect. 2.2. Cloud clusters for fat-
links networks are introduced in Sect. 2.3.

2.1 Dynamic flows

The concept of quickest flow [10], a variant of dynamic flow
[37], is defined as follows. 2 A flow network consists of a
directed weighted graph G = (V , E, c) where c : E → N,
with a distinguished source node and a sink node, denoted
s, t ∈ V , respectively. A dynamic flow with time horizon
T ∈ N and flow value F is a mapping f : E × [1, T ] → N

that specifies for each edge e and time step j , howmuch flow
e carries between steps j − 1 and j , subject to the natural
constraints:

• Edge capacities. For all e ∈ E, j ∈ [1, T ]:

f (e, j) ≤ c(e) (1)

• Only arriving flow can leave. For all v ∈ V \ {s} , j ∈
[1, T − 1]:

j∑

i=1

∑

(u,v)∈E
f ((u, v), i) ≥

j+1∑

i=1

∑

(v,w)∈E
f ((v,w), i) (2)

• No leftover flow at time T . For all v ∈ V \ {s, t}:

T∑

j=1

∑

(u,v)∈E
f ((u, v), j) =

T∑

j=1

∑

(v,w)∈E
f ((v,w), j) (3)

• Flow value (source).

T∑

j=1

⎛

⎝
∑

(s,v)∈E
f ((s, v), j) −

∑

(u,s)∈E
f ((u, s), j)

⎞

⎠ = F

(4)

• Flow value (sink).

T∑

j=1

⎛

⎝
∑

(t,v)∈E
f ((t, v), j) −

∑

(u,t)∈E
f ((u, t), j)

⎞

⎠ = −F

(5)

2 We simplify the original definition to our context by setting all trans-
mission times to 1.
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6 Y. Afek et al.

Usually in dynamic flows, T is given and the goal is
to maximize F . In the quickest flow variant, the roles are
reversed:

Definition 2.1 Given a flow network, the quickest flow for
a given value F is a dynamic flow f satisfying (1–5) above
with flow value F , such that the time horizon T is minimal.

Theorem 2.1 ([10]) The quickest flow be computed in
strongly polynomial time.

The Evacuation Problem [23] is a variant of dynamic flow
that we use, specifically the case of a single sink node [7]. In
this problem, each node v has an initial volume of F(v) ≥ 0
flow units, and the goal is to ship all the flow volume to
a single sink node t in shortest possible time (every node
v with F(v) > 0 is considered a source). Similarly to the
single source case, shipment is described by a mapping f :
E × [1, T ] → N where T is the time horizon. The dynamic
flow is subject to the edge capacity constraints (Eq.1), and
the following additional constraints:

• Only initial and arriving flow can leave. For all v ∈
V , j ∈ [1, T − 1]:

F(v) +
j∑

i=1

∑

(u,v)∈E
f ((u, v), i)

≥
j+1∑

i=1

∑

(v,w)∈E
f ((v,w), i) (6)

• Flow value (sources). For all v ∈ V \ {t}:
T∑

j=1

⎛

⎝
∑

(v,w)∈E
f ((v,w), j) −

∑

(u,v)∈E
f ((u, v), j)

⎞

⎠

= F(v) (7)

• Flow value (sink).

T∑

j=1

⎛

⎝
∑

(u,t)∈E
f ((u, t), j) −

∑

(t,w)∈E
f ((t, w), j)

⎞

⎠

=
∑

v∈V
F(v) (8)

Formally, we use the following definition and result.

Definition 2.2 Given a flow network in which each node v

has value F(v), a solution to the evacuation problem is a
dynamic flow f with multiple sources satisfying (1) and (6–
8). The solution is optimal if the time horizon T of f is
minimal.

Theorem 2.2 ([7]) An optimal solution to the evacuation
problem can be computed in strongly polynomial time.

2.2 Using dynamic flows inCWC

In this section we show how to implement (i.e., compute
schedules for) basic cloud access primitives using dynamic
flow algorithms. These are the tasks of reading and writing
to or from the cloud, invoked by a single node (cW and cR),
or by all nodes (cAW and cAR). Our goal in all the tasks and
algorithms is to find a schedule that implements the task in
the minimum amount of time.

Definition 2.3 Given a CWC model, a schedule for time
interval I is a mapping that assigns, for each time step in
I and each link (u, v): a send (or null) operation if (u, v) is
a local link, and a FW or FR (or null) operation if (u, v) is a
cloud link.

We present optimal solutions to these problems in general
directed graphs, using the quickest flow algorithm.

2.2.1 Serving a single node

Let us consider cW first. We start with a lemma stating
the close relation between schedules as defined above and
dynamic flows.

Lemma 2.3 Let G = (V , E, w) be a graph in the CWC
model. There exists a schedule implementing cWi from pro-
cessing node i to cloud node vc with string S of size s in T
rounds if and only if there exists a dynamic flow of value s
and time horizon T from source node i to sink node vc.

Proof Converting a schedule to a dynamic flow is trivial, as
send and receive operations between processing nodes and
FW and FR operations directly translate to a dynamic flow
that transports the same amount of flow satisfying bandwidth
constraints. For the other direction, let f be a dynamic flow
of time horizon T and value s from node i to the cloud vc.
We construct a schedule implementing cWi as follows.

First, we construct another dynamic flow f ′ which is the
same as f , except that no flow leaves the sink node vc. For-
mally, given a dynamic flow g, a node v and a time step t ,
let storedg(v, t) be the volume of flow stored in v at time
t according to g. Flow f ′ is constructed by induction; At
time step 1, f ′ is defined to be the same as f , except for
setting f ′(e, 1) = 0 for every edge e that leaves vc. Let
t ∈ {1, T − 1}. For step t + 1, f ′ is defined to be the same
as f , except for capping the total flow that leaves any node
v by stored f ′(v, t), and setting f ′(e, 1) = 0 for every edge
e that leaves the sink.

Let Gp = G − {vc}, and let storedg(Gp, t) denote∑
v∈Vp

storedg(v, t) for some dynamic flow g. Initially,
stored f (Gp, 0) = stored f ′(Gp, 0) = s, and by the
induction, in every step t ∈ {1, T }, stored f (Gp, t) ≥
stored f ′(Gp, t) due to flow that was not sent from vc to Gp.
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Distributed computing with the cloud 7

Also, in time step T , stored f (Gp, T ) = 0 since all flow was
sent to the sink, and thus stored f ′(Gp, T ) = 0 as well and
stored f ′(vc, T ) = s due to flow conservation. Therefore, f ′
is a dynamic flow with time horizon (at most) T and value s.

Given f ′, we construct a schedule S to implement cWi by
encoding flowusing the operations ofmessage send,message
receive, and FW (no FR operations are required because in f ′
flow never leaves vc). To specify which data is sent in every
operation of the schedule, refer to all FW operations of the
schedule. Let K be the number of FW operations in S, let ik
be the node initiating the k-th call to FW and let lk be the size
of the message in that call. We assign the data transferred on
each link during S so that when node ik runs the k-th FW, it
writes the lk bits of S starting from index s·∑k−1

j=1 l j . Note that
processing nodes do not need to exchange indices of the data
they transfer, as all nodes can calculate in preprocess time the
schedule and thus “know in advance” the designated indices
of the transferred data.

Correctness of the schedule S follows from the validity of
f , as well as its time complexity. ��
Theorem 2.4 Given any instance G = (V , E, w) of the
CWC model, an optimal schedule realizing cWi can be com-
puted in polynomial time.

Proof Consider a cW issued by a processing node i , wishing
to write s bits to cloud node vc. We construct an instance of
quickest flow as follows. The flow network is G where w is
the link capacity function, node i is the source and vc is the
sink. The requested flow value is s. The solution, computed
by Theorem 2.1, is directly translatable to a schedule, after
assigning index ranges to flow parts according to Lemma
2.3. Optimality of the resulting schedule follows from the
optimality of the quickest flow algorithm. ��
� Remarks.

• Note that in the presence of multiple cloud nodes, it may
be the case that while writing to one cloud node, another
cloud node is used as a relay station.

• Schedule computation can be carried out off-line: we can
compute a schedule for each node i and for each required
file size s (possibly consider only powers of 1+ε for some
ε > 0), so that in run-time, the initiating nodewould only
need to tell all other nodes which schedule to use.

Next, we observe that the reduction sketched in the proof
of Theorem 2.4 works for reading just as well: the only dif-
ference is reversing the roles of source and sink, i.e., pushing
s flow units from the cloud node vc to the requesting node i .
We therefore have the following theorem.

Theorem 2.5 Given any instance of the CWCmodel, an opti-
mal schedule realizing cRi can be computed in polynomial
time.

2.2.2 Serving multiple nodes

Consider now operations with multiple invocations. Let us
start with cAW (cAR is analogous, as above). Recall that in
this task, each node has a (possibly empty) file to write to a
cloud node. If all nodes write to the same cloud node, then
using the evacuation problem variant of the quickest flow
algorithm solves the problem (see Definition 2.2), Specifi-
cally, we have the following theorem.

Theorem 2.6 Given any instance G = (V , E, w) of the
CWC model, an optimal schedule realizing cAW (cAR) in
which every node i needs to write (read) a message of size si
to (from) cloud node vc can be computed in strongly polyno-
mial time.

Proof Similarly to Lemma 2.3, it is easy to see that there is
such a schedule for cAW if and only if there is a dynamic
flow solving the evacuation problem (Definition 2.2). Thus
in order to solve cAW, we can construct a flow network as
in Theorem 2.4, apply Theorem 2.2 to get the solution, and
then translate it into a schedule. A schedule for cAR can
be obtained by reversing the schedule for cAW, similarly to
Theorem 2.5. ��

However, in the case of multiple cloud nodes, we resort to
the quickest multicommodity flow, defined as follows [37].
We are given aflownetwork as described inSect. 2.1, butwith
k source-sink pairs {(si , ti )}ki=1, and k demands d1, . . . , dk .
We seek k flow functions fi , where fi describes the flow
of di units of commodity i from its source si to its sink ti ,
subject to the usual constraints: the edge capacity constraints
(1) applies to the sum of all k flows, and the node capacity
constraints (2–3), as well as the source and sink constraints
(4–5) are specified for each commodity separately.

It is known that determiningwhether there exists a feasible
quickest multicommodity flow with a given time horizon T
is NP-hard, but on the positive side, there exists an FPTAS
to it [16], i.e., we can approximate the optimal T to within
1+ ε, for any constant ε > 0. Extending Theorem 2.6 in the
natural way, we obtain the following result.

Theorem 2.7 Given any instance of the CWCmodel and ε >

0, a schedule realizing cAW or cAR can be computed in time
polynomial in the instance size and ε−1. The length of the
schedule is at most (1 + ε) times larger than the optimal
length.

2.3 Cloud clusters in fat-links networks

Recall that in the case of an s-fat-links network, all local
links have bandwidth at least s, and all links are symmetric.
For this case we develop a rather intuitive framework for the
basic tasks, introducing the concept of cloud clusters.
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8 Y. Afek et al.

Fig. 2 A simple path example. The optimal distance to travel in order
to write an s-bits file to the cloud would be

√
s/x

Consider cWi , where i wishes to write s bits to a given
cloud node. The basic tension in finding an optimal schedule
for cWi is that in order to use more cloud bandwidth, more
nodes need to be enlisted. But while more bandwidth reduces
the transmission time, reaching remote nodes (that provide
the extra bandwidth) increases the traversal time. Our algo-
rithm looks for the sweet spot where the conflicting effects
are more-or-less balanced.

For example, consider a simple path of n nodes with infi-
nite local bandwidth, where each node is connected to the
cloud with bandwidth x (Fig. 2). Suppose that the leftmost
node l needs to write a message of s bits to the cloud. By
itself, writing requires s/x rounds. Using all n nodes, upload-
ing would take O(s/nx) rounds, but n−1 rounds are needed
to ship the messages to the fellow-nodes. The optimal solu-
tion in this case is to use only

√
s/x nodes: the time to ship

the file to all these nodes is
√
s/x , and the upload time is

s/
√
s/x
x = √

s/x , because each node needs to upload only
s/

√
s/x bits.

In general, we define “cloud clusters” to be node sets that
optimize the ratio between their diameter and their total band-
width to the cloud. The schedules produced by our algorithms
for cW and cR use nodes of cloud clusters. We prove that the
running-time of our implementation is asymptotically opti-
mal. Formally, we have the following.

Definition 2.4 Let G = (V , E, w) be a CWC system with
processor nodes Vp and cloud nodes Vc. The cloud band-
width of a processing node i ∈ Vp w.r.t. a given cloud node

vc ∈ Vc is bc(i)
def= w(i, vc). A cluster B ⊆ Vp in G

is a connected set of processing nodes. The cloud (up or
down) bandwidth of cluster B w.r.t a given cloud node,
denoted bc(B), is the sum of the cloud bandwidth to vc over

all nodes in B: bc(B)
def= ∑

i∈B bc(i). The (strong) diame-
ter of cluster B, denoted diam(B), is the maximum distance
between any two nodes of B in the induced graph G[B]:
diam(B) = maxu,v∈B distG[B](u, v).

We use the following definition for the network when
ignoring the cloud. Note that the metric here is hop-based—
w indicates link bandwidths.

Algorithm 1 cWi

1: Construct a BFS spanning tree of Bi rooted at node i and assign for
each index 1 ≤ x ≤ |Bi | a unique node v(x) ∈ Bi according to their
BFS order (v(1) = i)

2: Broadcast S from node i to all nodes in Bi using the tree
3: for all x := 1 to |Bi |, in parallel do
4: Node v(x) writes to the cloud the part of S starting at s ·∑x−1

y=1 bc(v(y))
bc(Bi )

and extending for s · bc(v(x))
bc(Bi )

bits, writing bc(v(x))
bits in every round.

5: Node v(x) �= i sends an acknowledgment to i when done, and
halts

6: end for
7: Node i halts when all acknowledgments are received. // for cR

reversal

Definition 2.5 Let G = (V , E, w) be a CWC system with
processing nodes Vp and cloud nodes Vc. The ball of radius
r around node i ∈ Vp, denoted Br (i) is the set of nodes at
most r hops away from i in Gp.

Finally, we define the concept of cloud cluster of a node.

Definition 2.6 Let G = (V , E, w) be a CWC system with
processing nodes Vp and cloud node vc, and let i ∈ Vp.

Given s ∈ N, the s-cloud radius of node i , denoted ks(i),
is defined to be

ks(i)
def= min(

{
diam(Gp)

} ∪ {k | (k+1) · bc(Bk(i)) ≥ s}) .

The ball Bi
def= Bks (i)(i) is the s-cloud cluster of node i .

The timespan of the s-cloud cluster of i is denoted Zi
def=

ks(i) + s
bc(Bi )

.
We sometimes omit the s qualifier when it is clear from

the context.

Inwords, Bi is a cluster of radius k(i) aroundnode i , where
k(i) is the smallest radius that allows writing s bits to vc by
using all cloud bandwidth emanating from Bi for k(i) + 1
rounds. Zi is the time required (1) to send s bits from node i
to all nodes in Bi , and (2) to upload s bits to vc collectively
by all nodes of Bi . Note that Bi is easy to compute. We can
now state our upper bound.

Theorem 2.8 Given a fat-links CWC system, Algorithm 1
solves the s-bits cWi problem in O(Zi ) rounds on Bi .

Proof The algorithm broadcasts all s bits to all nodes in Bi ,
and then each nodewrites a subrange of the datawhose size is
proportional to its cloud bandwidth. Correctness is obvious.
As for the time analysis: Steps 1–2 require O(k(i)) rounds.
In the loop of steps 4–5, bc(Bi ) bits are sent in every round,
and thus it terminates in O(s/bc(Bi )) rounds. The theorem
follows from the definition of Zi . ��

Next, we show that our solution for cWi is optimal, up to
a constant factor. We consider the case of an incompressible
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input string: such a string exists for any size s ∈ N (see,
e.g., [30]). As a consequence, in any execution of a correct
algorithm, s bits must cross any cut that separates i from the
cloud node, giving rise to the following lower bound.

Theorem 2.9 Any algorithm solving cWi in a fat-links CWC
requires �(Zi ) rounds.

Proof By definition, Zi = k(i) + s/bc(Bi ). Lemmas 2.10
and 2.11 show that each term of Zi is a lower bound on the
running time of any algorithm for cWi . ��
Lemma 2.10 Any algorithm solving cWi in a fat-links CWC
system requires �(k(i)) rounds.

Proof Let A be an algorithm for cWi that writes string S
in tA rounds. If tA ≥ diam(Gp) then tA ≥ k(i) and we
are done. Otherwise, we count the number of bits of S that
can get to the cloud in tA rounds. Since S is initially stored
in i , in a given round t , only nodes in Bt−1(i) can write
pieces of S to the cloud. Therefore, overall, A writes to the
cloud at most

∑tA
t=1 bc(Bt−1(i)) ≤ tA · bc(BtA−1(i)) bits.

Hence, by assumption that A solves cWi , we must have tA ·
bc(BtA−1(i)) ≥ s. The lemma now follows from definition
of k(i) as the minimal integer � ≤ diam(Gp) such that (�+
1) · bc(B�(i)) ≥ s if it exists (otherwise, kc(i) = diam(Gp)

and tA > diam(Gp)). Either way, we are done. ��
Lemma 2.11 Any algorithm solving cWi in a fat-links CWC
system requires �(s/bc(Bi )) rounds.

Proof Let A be an algorithm that solves cWi in tA rounds.
If k(i) = diam(Gp) then Bi contains all processing nodes
Vp, and the claim is obvious, as no more than bc(Vp) bits
can be written to the cloud in a single round. Otherwise,
k(i) ≥ s/bc(Bi ) − 1 by Definition 2.6, and we are done
since tA = �(k(i)) by Lemma 2.10. ��

By reversing time (and hence information flow) in a sched-
ule of cW, one gets a schedule for cR. Hence we have the
following immediate corollaries.

Theorem 2.12 cRi can be executed in O(Zi ) rounds in a fat-
links CWC.

Theorem 2.13 cRi in a fat-linksCWCrequires�(Zi ) rounds.

� Remark: The lower bound of Theorem 2.9 and the def-
inition of cloud clusters (Definition 2.6) show an interplay
between the message size s, cloud bandwidth, and the net-
work diameter; For large enough s, the cloud cluster of a
node includes all processing nodes (because the time spent
crossing the local network is negligible relative to the upload
time), and for small enough s, the cloud cluster includes only
the invoking node, rendering the local network redundant.
� Large operands. Suppose that a given CWC system S is s-
fat-links, and we need to implement an operation (e.g., cW)

with operand size s′ > s. We can still use the algorithms
from this section, at the cost of increasing the running time
by a “scaling factor” of �s′/s�. The idea is to first compute a
schedule for the operation in a system S′ which is identical
to S except that all link bandwidths are multiplied by the
scaling factor �s′/s�. The schedule for S′ is then emulated in
S by executing each step of S′ by �s′/s� steps of S.

We note that in this case the resulting schedule of S may
be non-optimal, because our optimality arguments do not
apply to the emulation. More concretely, suppose that the
schedule produced for a certain operation in S′ is T steps
long. Then, by the lower bounds in this section, we know
that the operation cannot be implemented in o(T ) steps in
S′, implying the same lower bound for S (because S is less
powerful than S′). The emulation outlined above shows that
the operation can be implemented in S in �s′/s�T steps, so
the best implementation time in S may be anywhere in the
intersection of �(T ) and O

(�s′/s�T )
.

3 Computing and writing combined values

In this section we consider combining operations, reminis-
cent of convergecast inCONGEST [36].Note that flow-based
techniques are not applicable in the case of writing a com-
bined value, because the very essence of combining violates
conservation constraints (i.e., the number of bits entering a
node may be different from the number of bits leaving it).

In Sect. 3.1 we explain how to implement cComb in the
general case using cAW and cAR. The implementation is
simple and generic, but may be inefficient. We offer partial
remedy in Sect. 3.2,wherewe present one of ourmain results:
an algorithm to compute schedules for cComb in the special
(but common) case, where ⊗ is commutative and the local
network has “fat links,” i.e., all local links have capacity at
least s. For this important case, we show how to complete the
task in time larger than the optimum by an O(log n) factor.

3.1 Combining non-commutative operators in
general graphs

We now present algorithms to compute schedules for
cComb and for cCast on general graphs, using the primi-
tives treated in Sect. 2. Note that with a non-commutative
operator, the operands must be ordered; using renaming if
necessary, we assume w.l.o.g. that in such cases the nodes
are indexed by the same order as their operands.

Theorem 3.1 Let Ts be the time required for cAW (and cAR)
when all files have size s. ThenAlgorithm 2 produces a sched-
ule for cComb whose timespan is in O(Ts log n) rounds.

Proof The idea is to do the combining over a binary “com-
putation tree” by using the cloud to store the partial results.

123



10 Y. Afek et al.

Fig. 3 Computation tree with
n = 8. X j

i denotes the result
stored in node i in iteration j

Algorithm 2 High-level algorithm for cComb using cAW
and cAR
1: m := n, j := 0
2: for all 0 ≤ i < n set X0

i := Si
3: while m > 1 do
4: run cAW with inputs X j

i for 0 ≤ i < m // processor i holds X j
i

5: run cAR with inputs X j
2i for 0 ≤ i < �m/2� // read left children

6: if m is even then
7: run cAR with inputs X j

2i+1 for 0 ≤ i < �m/2�
8: else
9: run cARwith inputs X j

2i+1 for 0 ≤ i < �m/2�−1; set X j
m−1 :=

1 // take care of single-child parent
10: end if
11: m := �m/2� // processor i now holds X j

2i and X j
2i+1

12: for all 0 ≤ i < m, in parallel, node i calculates X j+1
i := X j

2i ⊗
X j
2i+1 locally

13: j := j + 1
14: end while
15: run cW from node 0 to write X j

0 to the cloud

The computation tree is defined as follows (see Fig. 3). Let
X j
i denote the i-th node at level j , as well as the value of that

node. The leaves X0
i are the input values, and the value of

an internal node X j+1
i at level j + 1 with left child X j

2i and

right child X j
2i+1 is X j

2i ⊗ X j
2i+1. Pseudocode is provided

in Algorithm 2. Correctness of the algorithm follows from
the observation that after each execution of Step 4, there are
m files of size s written in the cloud, whose product is the
required output, and that m is halved in every iteration. If at
any iteration m is odd, then node �m/2� − 1 only needs to
read one file, and therefore we set the other file that it reads
to be 1. When m reaches 1, there is only 1 file left, which is
the required result.

As for the time analysis: Clearly, a single iteration of the
while loop takes 3Ts = O(Ts) rounds.3 There are �log n�
iterations due to Step 11. Step 15 is completed in O(Ts)
rounds, and thus the total schedule time is O(Ts log n). ��

3 Note that when writing 1 to the cloud, it can be encoded as a 0-bit
string, which can only improve the runtime.

In a way, cCast is the “reverse” problem of cComb, since
it starts with s bits in the cloud and ends with s bits of output
in every node. However, cCast is easier than cComb because
our model allows concurrent reads and disallows concurrent
writes to the same memory location. We have the following
result.

Theorem 3.2 Let Ts be the time required to solve cAR when
all files have size s. Then cCast can be solved in Ts rounds.

Proof First note that if there were n copies of the input file S
in the cloud, then cCast and cAR would have been the exact
sameproblem.The theorem follows from theobservation that
any algorithm for cARwith n inputs of size s in the cloud can
be modified so that each invocation of FR with argument Si
is converted to FR with argument S (the input of cCast). ��

3.2 Combining commutative operators in fat links
network

In some cases, we can implement cComb more efficiently
than the promise of Theorem 3.2. Specifically, if the combin-
ing operator is commutative and the network is an s-fat links
network, we use the cloud clusters (as defined in Sect. 2.3) to
do the combining in time which is at most a polylogarithmic
factor larger than optimum. The saving is a result of using
multiple concurrent cW and cR operations instead of cAW
and cAR.

The high-level idea is simple. Assume that we are given
a partition C = {B1, . . . , Bk} of the nodes set into clusters,
i.e.,∪i Bi = Vp and Bi ∩ Bj = ∅ for i �= j . We first compute
the result of combining within each cluster Bi using the local
network and then combine the cluster results using the cloud
operations. Below,we first explain how to implement cComb
using any given partition C of the nodes. We later show how
to find good partitions.

Consider first combining within clusters. We assume that
we are given a distinguished leader node r(B) ∈ B for each
cluster B ∈ C. We proceed as follows (see Algorithm 3).
First we construct, in each cluster B ∈ C, a spanning tree
rooted at r(B). We then apply convergecast using⊗ over the
tree. Clearly (see, e.g., [36]) we have:
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Algorithm 3 Computing the combined result of cluster B at
leader r(B)

1: Construct a BFS tree of B rooted at node r(B).
Let h be the height of the tree, and let child(v) denote the children
of a node v in the tree.

2: for d := h to 2 do
3: for all i ∈ B at layer d of the tree, in parallel do
4: if i is not a leaf then
5: i computes S′

i := Si ⊗ ⊗
j∈child(i) S′

j
6: else
7: S′

i := Si
8: end if
9: i sends S′

i to its parent node in the tree
10: end for
11: end for
12: Node r(B) computes PB := Sr(B) ⊗

(⊗
j∈child(r(B)) S

′
j

)

Algorithm 4 Computing the high level tree-nodes values
1: for l := �log |C|� to 1 do
2: for all tree-nodes y in layer l of the computation tree, in parallel

do
3: Let B := cl(y)
4: if y is not a leaf then
5: Let y� and yr be the left and the right children of y, respec-

tively.
6: r(B) invokes cR for vl(y�)
7: r(B) invokes cR for vl(yr )
8: r(B) computes vl(y) := vl(y�) ⊗ vl(yr )
9: else
10: vl(y) := PB // if y is a leaf its value is already stored at

r(B)

11: end if
12: r(B) invokes cW for vl(y)
13: end for
14: end for

Lemma 3.3 Algorithm 3 computes PB = ⊗
i∈B Si at node

r(B) in O(diam(B)) rounds.

WhenAlgorithm3 terminates in all clusters, the combined
result of every cluster is stored in its leader. We combine the
cluster results by filling in the values of a virtual computation
tree defined over the clusters (see Fig. 3). The leaves of the
tree are the combined values of the clusters of C, as com-
puted by Algorithm 3. To fill the values of other nodes in the
computation tree, we use the clusters of C: Each node in the
tree is assigned a cluster which computes its value using the
cR and cW primitives.

Specifically, in Algorithm 4we consider a binary tree with
|C| leaves, where each non-leaf node has exactly two chil-
dren. The tree is constructed from a complete binary treewith
2�log |C|� leaves, after deleting the rightmost 2�log |C|� − |C|
leaves. (If after this deletion the rightmost leaf is the only
child of its parent, we delete the rightmost leaf and repeat
until this is not the case.)

We associate each node y in the computation tree with a
cluster cl(y) ∈ C and a value vl(y), computed by the proces-
sors in cl(y). Clusters are assigned to leaves by index: The

i-th leaf from the left is associated with the i-th cluster of C.
For internal nodes, we assign the clusters arbitrarily except
that we ensure that no cluster is assigned to more than one
internal node. (This is possible because in a tree where every
node has two or no children, the number of internal nodes is
smaller than the number of leaves.)

The clusters assigned to tree nodes compute the values as
follows (see Algorithm 4). The value associated with a leaf
yB corresponding to cluster B is vl(yB) = PB . This way,
every leaf x has vl(x), stored in the leader of cl(x), which
canwrite it to the cloud using cW. For an internal node y with
children yl and yr , the leader of cl(y)obtains vl(yl) andvl(yr )
using cR, computes their product vl(y) = vl(yl)⊗vl(yr ) and
invokes cW to write it to the cloud. The executions of cW and
cR in a cluster B are done by the processing nodes of B.

Computation tree values are filled layer by layer, bottom
up. To analyze the running time we use the following defini-
tion.

Definition 3.1 Let C be a partition of the processing nodes
into connected clusters, and let B be a cluster in C. The times-
pan of node i in B, denoted ZB(i), is the minimum number
of rounds required to perform cWi (or cRi ), using only nodes
in B. The timespan of cluster B, denoted Z(B), is given by
Z(B) = mini∈B ZB(i). The timespan of the partition C,
denoted Z(C), is the maximum timespan of its clusters.

In words, the timespan of cluster B is the minimum time
required for any node in B to write an s-bit string to the
cloud using only nodes of B.

With these definitions, we can state the following result.

Lemma 3.4 Let {P1, . . . , Pm} be the values stored at the
leaders of the clusters when Algorithm 4 is invoked. Then
Algorithm 4 computes

⊗m
i=1 Pi in O(Z(C) · log |C|) rounds.

Proof Computing all values in a tree layer requires a constant
number of cW and cR invocations in a cluster, i.e., by Def-
inition 3.1, at most O(Z(C)) rounds of work in every layer.
The number of layers is �log |C|�. The result follows. ��

Combining Lemma 3.3 and Lemma 3.4, we can give an
upper bound for any given cover C.
Theorem 3.5 Given a partition C of the processing nodes
where all clusters have diameter at most Dmax, cComb can
be solved in a fat-links CWC in O (Dmax + Z(C) · log |C|)
rounds.

� Remark. We note that in Algorithm 4, Lines 6, 7 and 12
essentially compute cAR and cAW in which only the rele-
vant cluster leaders have inputs. Therefore, these calls can be
replaced with a collective call for appropriate cAR and cAW.
By using optimal schedules for cAW and cAR, the running-
time can only improve beyond the upper bound of Theorem
3.5.
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Algorithm 5 Computing a partition of the processing nodes
1: LetC0 = {

Bi | i ∈ Vp
}
be the set of all cloud clusters // cf. Definition

2.6
2: Let C1 ⊆ C0 be a maximal set of disjoint clusters from C0 // any

maximal set will do
3: Let V1 be shorthand for

⋃
B∈C1

B // V1 denotes the set of nodes
covered by C1

4: while V1 �= Vp do
5: for all j ∈ Vp \ V1 in parallel do
6: if j has a neighbor in some B ∈ C1 then
7: B ← B ∪ { j} // if more than one such B, choose arbitrarily
8: end if
9: end for
10: end while
11: output C1

Partitioning the nodes.We now arrive at the problem of
designing a good partition. This is done as follows (see Algo-
rithm 5). We consider the set of all s-cloud clusters (recall
that a cloud cluster is defined for each processing node in
Definition 2.6). From these clusters we pick a maximal set
C1 of disjoint clusters, say by the greedy algorithm. We then
extend the clusters of C1 to cover all nodes while keeping
them disjoint, in a breadth-first fashion: each iteration of the
while loop (line 4) adds another layer of uncovered nodes to
each cluster. We have the following:

Lemma 3.6 The output of Algorithm 5 is a collection of dis-
joint clusters whose union is Vp. Furthermore, the diameter
of the largest cluster in the output is at most 3 · Dmax, where
Dmax is the largest s-cluster diameter.

Proof The disjointness of the sets in the output follows by
induction: The initial clusters are disjoint by line 2, and
thereafter, clusters are extended only by nodes which are
not already members in other clusters in C1 (line 5). Clearly,
by line 7, a node is added to a single cluster.

It is easy to see that when the algorithm terminates, the
sets in the output cover all nodes: the distance of a node
from C1 decreases by 1 in each iteration of the while loop.
Finally, regarding the diameter of clusters in C1, note that by
maximality of the input C0, each node not covered by C1 after
the execution of line 2 is at distance at most Dmax from some
node in C1. Since the diameter of each cluster increases by
at most 2 in each iteration of the while loop, and since there
are at most Dmax iterations, the lemma follows. ��

Conclusion. We now arrive at our main result for this
section. We use the following definition.

Definition 3.2 Let G = (V , E, w) be a CWC system with

fat links. Zmax
def= maxi∈Vp Zi is the maximal timespan in

G.

In words, Zmax is the maximal amount of rounds that is
required for any node in G to write an s-bit message to the
cloud, up to a constant factor (cf. Theorem 2.9).

Theorem 3.7 Let G = (V , E, w) be a CWC system with fat
links.

Then cComb with a commutative combining operator can
be solved in O(Zmax log n) rounds.

Proof Let C be the partition output by Algorithm 5. By
Lemma 3.6, the diameter of any cluster in C is at most 3
times larger than themaximal diameter of any s-cloud cluster
of the system. It follows from Lemma 3.3 that we can apply
Algorithm 3 in each cluster B ∈ C and compute its combined
value in time proportional to its diameter, which is bounded
by Z(B) (cf. Definition 2.6). Since the clusters are disjoint
by Lemma 3.6, we can compute all these values in paral-
lel in time O(Z(C)). Finally, we invoke Algorithm 4, which
produces the desired result in additional O(Z(C) · log |C|)
rounds by Lemma 3.4. ��

Our algorithm produces schedules which are optimal to
within a logarithmic factor, as stated in the following the-
orem.

Theorem 3.8 Let G = (V , E, w) be a CWC system with fat
links.

Then cComb requires �(Zmax) rounds.

Proof By reduction from cW. Let i be any processing node.
Given a bit string S, assign Si = S as the input of node i
in cComb, and for every other node j �= i , assign S j = 1.
Clearly, any algorithm for cComb that runs with these inputs
solves cWi with input S. The result follows from Theorem
2.9. ��

cCast. To implement cCast, one can reverse the sched-
ule of cComb. However, a slightly better implementation is
possible, because there is no need to ever write to the cloud
node. More specifically, let C be a partition of Vp. In the
algorithm for cCast, each cluster leader invokes cR, and then
the leader disseminates the result to all cluster members. The
time complexity for a single cluster B is O(Z(B)) for the
cR operation, and O(diam(B)) rounds for the dissemination
of S throughout B (similarly to Lemma 3.3). We obtain the
following result.

Theorem 3.9 Let G = (V , E, w) be a CWC system with fat
links. Then cCast can be performed in O(Zmax) rounds.

Finally, we note that since any algorithm for cCast also
solves cRi problem for every node i , we get from Theorem
2.13 the following result.

Theorem 3.10 Let G = (V , E, w) be a CWC system with fat
links. Any algorithm solving cCast requires�(Zmax) rounds.

123



Distributed computing with the cloud 13

4 Non-commutative operators and the
wheel settings

In this section we consider cComb for non-commutative
operators in the wheel topology (Fig. 1).

Trivially, Theorem 3.5 applies in the non-commutative
case if the ordering of the nodes happens tomatch an ordering
induced by the algorithm, but this need not be the case in gen-
eral. However, it seems reasonable to assume that processing
nodes are physically connected according to their combining
order. Neglecting other possible connections, assuming that
the last node is also connected to the first node for symmetry,
and connecting a cloud node to all processors, we arrive at
the wheel topology, which we study in this section.

Our main result in this section is an algorithm for cComb
in the wheel topology that works in time which is a loga-
rithmic factor larger than optimal. In contrast to the result of
Theorem 3.7 that applies any topology but requires fat links,
here we analyze a particular topology with arbitrary band-
widths. We note that by using standard methods [27], the
algorithm presented in this section can be extended to com-
pute, with the same asymptotic time complexity, all prefix
sums, i.e., compute

⊗ j
i=0 Si for each 0 ≤ j < n.

4.1 Cloud intervals and the complexity of cW and cR
in the wheel topology

We start by defining cloud intervals. Cloud intervals in the
wheel settings correspond to cloud clusters in general topolo-
gies, defined in Sect. 2.3.

Definition 4.1 The cloud bandwidth of a processing node

i ∈ Vp in a given wheel graph is bc(i)
def= w(i, vc). An

interval [i, i+k] def= {i, i+1, . . . , i+k} ⊆ V is a path of
processing nodes in the ring. Given an interval I = [i, i+k],
|I | = k + 1 is its size, and k is its length. The cloud band-
width of I , denoted bc(I ), is the sum of the cloud bandwidth
of all nodes in I : bc(I ) = ∑

i∈I bc(i). The bottleneck band-
width of I , denoted φ(I ), is the smallest bandwidth of a
link in the interval: φ(I ) = min {w(i, i+1) | i, i+1 ∈ I }. If
|I | = 1, define φ(I ) = ∞.

For ease of presentation we consider the “one sided” case
in which node i does not use one of its incident ring links.
As we shall see, this limitation does not increase the time
complexity by more than a constant factor.

Definition 4.2 Let i be a processing node in the wheel set-
tings. We define the following quantities for clockwise inter-
vals; counterclockwise intervals are defined analogously.

• kc(i) is the length of the smallest interval starting at i ,
for which the product of its size by the total bandwidth

to the cloud along the interval exceeds s, i.e.,

kc(i) = min ({n} ∪ {k | (k+1) · bc([i, i+k]) ≥ s}) .

• k�(i) is the length of the smallest clockwise interval
starting at node i , for which the bandwidth of the
clockwise-boundary link bandwidth is smaller than the
total cloud bandwidth of the interval, i.e.,

k�(i) = min
( {n} ∪ {k} | w(i+k, i+k+1)

< bc([i, i+k])) .

• k(i) = min {kc(i), k�(i)}.
• Ii = [i, i+k(i)]. The interval Ii is called the (clockwise)
cloud interval of node i .

• Zi = |Ii | + s

φ(Ii )
+ s

bc(Ii )
. Zi is the timespan of the

(clockwise) cloud interval of i .

The concept of cloud intervals is justified by the following
results.

Theorem 4.1 Given the cloud interval Ii of node i , Algorithm
1 solves the s-bits cWi problem in O(Zi ) rounds.

Proof The BFS tree of the interval would be a simple line
graph, that is the whole interval. Step 2 of Algorithm 1

requires O
(
|Ii | + s

φ(Ii )

)
rounds: there are s bits to send over

�(|Ii |) hopswith bottleneck bandwidthφ(Ii ). The rest of the
time analysis is the same as in Theorem 2.8. ��
We have the following immediate consequence.

Theorem 4.2 Let Z�
i and Zr

i denote the timespans of the
counterclockwise and the clockwise cloud intervals of i ,
respectively. Then cWi can be solved in O(min(Z�

i , Z
r
i ))

rounds.

The upper bounds are essentially tight, as we show next.
We start with one sided intervals.

Theorem 4.3 In the wheel settings, any algorithm for cWi

which does not use link (i−1, i) requires �(Zi ) rounds.

Proof We show that each term of Zi is a lower bound on
the running time of any algorithm solving cWi . First, note
that any algorithm for cWi that does not use edge (i−1, i)
requires �(kc(i)) ≥ �(k(i)) = �(|Ii |) rounds, due to the
exact same arguments as in Lemma 2.10.

Next, we claim that any algorithm for cWi which does not
use edge (i−1, i) requires �(s/φ(Ii )) rounds. To see that
note first that if k(i) = 0, then φ(Ii ) = ∞ and the claim is
trivial. Otherwise, let ( j, j+1) ∈ E be any link in Ii with
w( j, j+1) = φ (Ii ). Note that j − i < k(i) because j +1 ∈
Ii . Consider the total bandwidth of links emanating from the

123



14 Y. Afek et al.

interval I ′ def= [i, j]. Since we assume that the link (i−1, i)
is not used, the number of bits that can leave I ′ in t rounds is
at most t · (

bc(I ′) + w( j, j+1)
)
. Notice that at least s bits

have to leave I ′. Observe that bc(I ′) ≤ w( j, j+1), because
otherwise we would have k�(i) = j − i , contradicting the
fact that k(i) > j − i . Therefore, any algorithm A that solves
cWi in tA rounds satisfies

s ≤ tA · (
bc(I

′) + w( j, j+1)
) ≤ 2tA · w( j, j+1)

= 2tA · φ (Ii ) ,

and the claim follows.
Finally, we claim that any algorithm A for cWi which does

not use edge (i−1, i) requires �(s/bc(Ii )) rounds. To see
that, recall that k(i) = min(kc(i), k�(i)). If k(i) = n then Ii
contains all processor nodes Vp, and the claim is obvious, as
nomore thanbc(Vp)bits canbewritten to the cloud in a single
round. Otherwise, we consider the two cases: If k(i) = kc(i),
then k(i) ≥ s/bc(Ii )−1 by definition, and we are done since
tA = �(k(i)). Otherwise, k(i) = k�(i). Let us denote wR =
w(i+k(i), i+k(i)+1). In this case we have wR < bc(Ii ).
We count how many bits can leave Ii . In a single round, at
most bc(Ii ) bits can leave through the cloud links, and atmost
wR bits can leave through the local links. Since A solves cWi ,
we must have s ≤ tA · (bc(Ii ) + wR) ≤ 2tA · bc(Ii ) , and
hence tA = �(s/bc(Ii )). ��

Theorem 4.4 Let Z�
i and Zr

i denote the timespans of the
counterclockwise and the clockwise cloud intervals of i ,
respectively. Then cWi requires �(min(Z�

i , Z
r
i )) rounds in

the wheel settings.

Proof Let T be the minimum time required to perform cWi .
Due to Lemma 2.3, we know that there is a dynamic flow
mapping with time horizon T and flow value s from node i
to the cloud. Let f be such amapping.Weassume that noflow
is transferred to the source node i , as we canmodify f so that
these flow units would not be sent from i at all until the point
where they were previously sent back to i . Let sL and sR be
the total amount of flow that is transferred on links (i − 1, i)
and (i, i +1), respectively, and assume w.l.o.g. that sR ≥ sL .
Let f ′ be a new dynamic flow mapping which is the same as
f , except that no flow is transferred on link (i−1, i). Since f
is a valid dynamic flow that transfers all s flow units from i to
the cloud, f ′ has flowvalue at least s−sL . Let A be a schedule
derived from f ′. The runtime of A is at most T rounds. Let A′
be a schedule that runs A twice: A′ would transfer 2(s − sL)

bits from node i to the cloud. Since s ≥ sR + sL , we get that:
2(s− sL) = 2 s−2sL ≥ s+ sL + sR −2sL ≥ s, and thus A′
solves cWi without using link (i − 1, i). From Theorem 4.3,
we get a lower bound for 2T of �(Zr

i ) = �(min(Z�
i , Z

r
i )).��

From Theorem 4.2 and Theorem 4.4 we get the following
corollary for the uniform wheel:

Corollary 4.5 Consider the uniform wheel topology, where
all cloud links have bandwidth bc, and all local links have
bandwidth b� ≥ bc. In this case cW can be solved in

�
(

s
b�

+ min(
√

s
bc

,
b�

bc
)
)
rounds. If b� < bc, the running time

is �(s/bc) rounds.

Proof If b� < bc, k�(i) = 0, φ(Ii ) = ∞ and the result fol-
lows. Otherwise, by definition we have kc(i) = √

s/bc − 1
and k�(i) = b�/bc−1, hence |Ii | = O(min(

√
s/bc, b�/bc)).

It follows that bc(Ii ) = O(min(
√
s · bc, b�)). The result fol-

lows by noting that φ (Ii ) = b�. ��
Recall the example of Fig. 1: there we have bc = √

s and
b� ≥ s3/4, and the running time is O(s1/4).
�Remark.Notice that the same upper and lower bounds hold
for the cRi problem as well.

4.2 Combining in the wheel setting

We are now ready to adapt Theorem 3.5 to the wheel settings.

Definition 4.3 Given an n-node wheel, for each process-
ing node i , let Ii be the cloud interval of i with the
smaller timespan (clockwise or counter-clockwise). Define
jmax = argmaxi {|Ii |}, jc = argmini {bc(Ii )}, and j� =
argmini {φ (Ii )}. Finally, define Zmax = |I jmax | + s

φ
(
I j�

)+
s

bc(I jc )
.

Inwords: jmax is the nodewith the longest cloud interval, jc is
the node whose cloud interval has the least cloud bandwidth,
and j� is the node whose cloud interval has the narrowest
bottleneck.

Our upper bound is as follows.

Theorem 4.6 In the wheel settings, cComb can be solved in
O(Zmax log n) rounds.

The general approach to prove Theorem 4.6 is similar to the
one taken in the fat-links case: partition the nodes into clusters
(intervals in thewheel case), compute combined values in the
clusters using local links, and then complete the computation
tree using cR and cW. The third stage is identical to the fat-
links case, but the first two are not. We elaborate on them
now.
� Partitioning the nodes. Given the set of cloud intervals,
we construct a cover, i.e., a (not necessarily disjoint) set of
cloud intervals whose union is Vp, the set of all processing
nodes. We can do this so that every node is a member in a
constant number of intervals in the cover.

Specifically, let C be the set of all cloud intervals Ii . We
select a cover C′ ⊆ C such that every node is a member of
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either one or two intervals of C′. It is straightforward to find
such a cover, say, by a greedy algorithm. In fact, a cover with
a minimal number of intervals is found by the algorithm in
[29] (in O(n log n) sequential time). The covers produced
by [29] are sufficient for that matter, as the following lemma
states.

Lemma 4.7 Let C be a collection of intervals and denoteU =⋃
I∈C I . Let C′ ⊆ C be a minimal-cardinality cover of U,

and let loadC′(i) = |{I ∈ C′ : I � i}|. Then for all i ∈ U,
1 ≤ loadC′(i) ≤ 2.

Proof Clearly loadC′(i) ≥ 1 for all i ∈ U since C′ is a cover
ofU . For the upper bound, first note that by theminimality of
|C′|, there are no intervals I , I ′ ∈ C′ such that I ⊆ I ′, because
in this case I could have been discarded. This implies that the
right-endpoints of intervals in C′ are all distinct, as well as the
left-endpoints.Now, assume for contradiction, that there exist
three intervals I , I ′, I ′′ ∈ C′ such that I ∩ I ′ ∩ I ′′ �= ∅ (i.e.,
there is at least one nodewhich is amember of all three). Then
I ∪ I ′ ∪ I ′′ is a contiguous interval. Let l = min(I ∪ I ′ ∪ I ′′)
and r = max(I ∪ I ′ ∪ I ′′). Clearly, for one of the three
intervals, say I , no endpoint is l or r . But this means that
I ⊆ I ′ ∪ I ′′, i.e., we can discard I , in contradiction to the
minimality of |C′|. ��

After selecting the minimal cover, we need to take care of
node 0:We require that the interval that contains node 0 does
not contain node n−1. If this is not the case after computing
the cover, we split the interval I0 ∈ C′ that contains node 0
into two subintervals I0 = I L0 ∪ I R0 , where I L0 is the part that
ends with node n− 1, and I R0 is the part that starts with node
0.
� Computing within intervals.Given a cover C, we compute
the combined valueswithin each cloud intervals inC.We now
explain how this is done. First, we require that each input Si
is associated with a single interval in C. To this end, we use
the rule that if a node i is a member in two intervals I and I ′,
then its input Si is associated with the interval I satisfying
max(I ) < max(I ′), and a unit input 1 is associated with i
in the context of I ′, where 1 is the unit (neutral) operand for
⊗. Intuitively, this rule means that the overlapping regions in
an interval are associated with the “left” (counterclockwise)
interval.

To do the computation, we apply a computation tree
combining approach now within the intervals. Consider an
interval I , and let p = 2�log |I |�. We map I to a complete
binary tree with p leaves, where the leftmost p − |I | leaves
have the unit input 1. These leaves are emulated by the
leftmost node of I (the emulation is trivial). The actual com-
putation proceeds in stages, where each stage � computes
all level-� products in parallel. Let S j

i denote the product of
Si , . . . , S j . The algorithm maintains the invariant that after

S j
i is computed, it is stored in node j . Initially, by assump-

tion, for all 0 ≤ i < n, we have that Sii is stored at node i .
The computation of a stage is performed as follows.

Let S j
i = Ski ⊗ S j

k+1 be a product we wish to compute at

level �, and let Ski , S
j
k+1 be the values held by its children.

Note that k+1− i = j − k = 2�−1. The algorithm forwards
Ski from node k to node j , which multiplies it by (the locally

stored) S j
k+1, thus computing S j

i , which is stored in node j
for the next level. This way, the number of communication
rounds is just the time required to forward s bits from k to j .
Using pipelining, the number of rounds required is

j − k + s

φ([k, j]) = 2�−1 + s

φ([k, j]) ≤ 2�−1 + s

φ(I )
.

(9)

We therefore have the following lemma.

Lemma 4.8 Computing the combined value of an interval I

can be done in O
(
|I jmax | + log |I jmax | · s

φ(I j� )

)
rounds in the

wheel settings, with PI stored in the rightmost node of I for
each cloud interval I .

Proof We compute the values as described above. Correct-
ness is obvious. Regarding time complexity, we conclude
from Eq.9 that the total time required to compute the prod-
uct of all inputs of any interval I is at most

�log |I |�∑

�=1

(
2�−1 + s

φ(I )

)
≤ 2

(
|I | + log |I | · s

φ(I )

)
.

(10)

��
Finally, we have to deal with the possible overlap of inter-

vals in the cover. This is done by simple time-multiplexing:
by Lemma 4.7, each node is contained in at most two inter-
vals, and hence the set of even-numbered intervals (starting
from the interval containing node 0) are disjoint, and so is
the set of the odd-numbered intervals. Time multiplexing is
done by activating all even-numbered intervals every even
time slot, and activating the odd-numbered intervals at every
odd time slot. This waywe can compute the combined values
of all intervals in parallel, with only a constant factor increase
in the asymptotic complexity stated in Lemma 4.8.
� Combining the interval values. After computing the com-
bined values of each interval of C , we combine these values
in a computation tree fashion using cW and cR, as in Algo-
rithm 4. Again, we have to deal with the overlap, and we do it
using multiplexing. A slight complication here is due to the
possible splitting of the cloud interval that contains node 0:
the cR and cW operations still require the full cloud interval.
To solve this problem, we multiplex the parallel invocations
of cR and cW over four time slots: one of the even-numbered
intervals excluding the interval containing node 0, two for the
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interval containing node 0 (one for each of its sub-intervals),
and one for odd-numbered intervals.

We have the following lemma.

Lemma 4.9 Given the interval combined values, the root
value of the computation tree is computed in O(Zmax · log n)

rounds.

Proof As explained above, by employing time multiplexing,
we can run Algorithm 4 with a constant-factor slowdown.
Thus, similarly to Lemma 3.4, completing the computa-
tion tree requires O(Zmax(C ′) · log |C ′|) rounds. Noting that
|C ′| ≤ |C | ≤ n and that all intervals inC ′ are cloud intervals,
we get an upper bound of O(Zmax · log n) rounds. ��

The proof of Theorem 4.6 can now be completed as fol-
lows. The correctness of the algorithm is derived from the
general case (Theorem 3.5). As for the time analysis: The
low levels of the algorithm (computing within intervals)
require O(Zmax log n) according to Lemma 4.8, noting that
|I jmax | ≤ n and that Zmax = |I jmax | + s

φ
(
I j�

) + s
bc(I jc )

by

definition. The high levels of the algorithm (completing the
computation tree using cR and cW) require O(Zmax · log n)

according to Lemma 4.9. All in all, the algorithm terminates
in O(Zmax · log n) rounds. ��

We close our treatment of the wheel topology with the
lower bound.

Theorem 4.10 Any algorithm for cComb in the wheel topol-
ogy requires �(Zmax) rounds.

Proof Similarly to Theorem 3.8, �(Zi ) is a lower bound
for every node i , by reduction from cWi . Recall that Zi =
|Ii | + s

φ(Ii )
+ s

bc(Ii )
. For index jmax we get a lower bound

of �(Z jmax) ∈ �(|I jmax |). For index j� we get a lower
bound of�(s/φ

(
I j�

)
). For index jc we get a lower bound of

�
(
s/bc(I jc)

)
. Summing them all up, gives the desired lower

bound. ��
Remark. We note that if the combining operator can be

applied to the operands in a piecewise fashion (as in vector
addition, where a coordinate of the sum can be computed
based only on the corresponding values of the coordinates
of the summands), tighter pipelining is possible, yielding
overall complexity which is essentially O(Zmax + log n).
Details can be found in [21].

5 CWC applications

In this section we briefly explore some of the possible appli-
cations of the results shown in this paper to two slightly more
involved applications, namely Federated Learning (Sect. 5.1)
and File Deduplication (Sect. 5.2).

5.1 Federated learning in CWC

Federated Learning (FL) [12, 34] is a distributed Machine
Learning training paradigm, by which a model for some con-
cept is acquired. The idea is to train over a huge data set that
is distributed across many devices such as mobile phones
and user PCs, without requiring the edge devices to explic-
itly exchange their data. Thus it gives the end devices some
sense of privacy and data protection. Examples of such data
is personal pictures, medical data, hand-writing or speech
recognition, etc.

In [9], a cryptographic protocol for FL is presented,
under the assumption that any two users can communicate
directly. The protocol of [9] is engineered to be robust against
malicious users, and uses cryptographic machinery such as
Diffie-Hellman key agreement and threshold secret sharing.
We propose a way to do FL using only cloud storage, without
requiring an active trusted central server. Here, we describe
a simple scheme that is tailored to the fat-links scenario,
assuming that users are “honest but curious.”

The idea is as follows. Each of the users has a vector of
m weights. Weights are represented by non-negative integers
from {0, 1, . . . , M − 1}, so that user input is simply a vector
in (ZM )m . Let xi be the vector of user i . The goal of the
computation is to compute

∑n−1
i=0 xi (using addition overZM )

and store the result in the cloud. We assume that M is large
enough so that no coordinate in the vector-sum exceeds M ,

i.e., that
∑n−1

i=0 xi =
(∑n−1

i=0 xi mod M
)
.

To compute this sum securely, we use basic multi-party
computation in the CWC model. Specifically, each user i
chooses a private random vector zi, j ∈ (ZM )m uniformly,
for each of her neighbors j , and sends zi, j to user j . Then
each user i computes yi = xi−∑

(i, j)∈E zi, j+∑
( j,i)∈E z j,i ,

where addition is modulo M . Clearly, yi is uniformly dis-
tributed even if xi is known. Also note that

∑
i yi = ∑

i xi .
Therefore all that remains to do is to compute

∑
i yi , which

can be done by invoking cComb, where the combining oper-
ator is vector addition over (ZM )m . We obtain the following
theorem from Theorem 3.7.

Theorem 5.1 In a fat-links network, an FL iterationwith vec-
tors in (ZM )m can be computed in O(Zmax log n) rounds.

In the wheel case we obtain the following.

Theorem 5.2 In the uniform n-node wheel, an FL iteration
with vectors in (ZM )m canbe computed in O(

√
(m logM)/bc·

log n) rounds, assuming that bcm logM ≤ b2� and bc ≥
logM.

Proof Using the notation of Sect. 3 and Sect. 4, the assump-
tion implies that s = m logM , and Zmax = O(

√
s/bc) =

O(
√

(m logM)/bc). The result follows from Theorem 4.6.
��
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5.2 File deduplication with the cloud

Deduplication, or Single-Instance-Storage (SIS), is a central
problem for storage systems (see, e.g., [8, 19, 35]). Grossly
simplifying, the motivation is the following: Many of the
files (or file parts) in a storage system may be unknowingly
replicated. The general goal of deduplication (usually dubbed
dedup) is to identify such replications and possibly discard
redundant copies. Many cloud storage systems use a dedup
mechanism internally to save space. Here we show how the
processing nodes can cooperate to carry out dedup without
active help from the cloud, when the files are stored locally
at the nodes (cf. serverless SIS [14]). We ignore privacy and
security concerns here.

We consider the following setting. Each node i has a set
of local files Fi with their hash values, and the goal is to
identify, for each unique file f ∈ ⋃

i Fi , a single owner user
u( f ). (Once the operation is done, users may delete any file
they do not own.)

This is easily done with the help of cComb as follows.
Let h be a hash function. For file f and processing node
i , call the pair (h( f ), i) a tagged hash. The set Si =
{(h( f ), i) | f ∈ Fi } of tagged hashes of Fi is the input of
node i . Define the operator ∪̃ that takes two sets Si and S j

of tagged hashes, and returns a set of tagged hashes without
duplicate hash values, i.e., if (x, i) and (x, j) are both in the
union Si ∪ S j , then only (x,min(i, j)) will be in Si ∪̃ S j .
Clearly ∪̃ is associative and commutative, has a unit element
(∅), and therefore can be used in the cComb algorithm. Note
that if the total number of unique files in the system is m,
then s = m · (H + log n), where H is the number of bits
in a hash value. Applying cComb with operation ∪̃ to inputs
Si , we obtain a set of tagged hashes S for all files in the sys-
tem, where (h( f ), i) ∈ S means that user i is the owner of
file f . Then we invoke cCast to disseminate the ownership
information to all nodes. Thus dedup can be done in CWC
in O(Zmax log n) rounds.

6 Conclusion and open problems

In this paper we have introduced a new model that incorpo-
rates cloud storage with a bandwidth-constrained communi-
cation network. We have developed a few building blocks
in this model, and used these primitives to obtain effective
solutions to some real-life distributed applications. There are
many possible directions for future work; below, we mention
a few.

One interesting direction is to validate the model with
simulations and/or implementations of the algorithms, e.g.,
implementing the federated learning algorithm suggested
here.

A few algorithmic questions are left open by this paper.
For example, can we get a good approximation ratio for the
problem of combining in a general (directed, capacitated)
network? Our results apply to fat links and the wheel topolo-
gies.

Another interesting issue is the case of multiple cloud
nodes: How can nodes use them effectively, e.g., in com-
bining? Possibly in this case one should also be concerned
with privacy considerations.

Finally, fault tolerance: Practically, clouds are considered
highly reliable. How should we exploit this fact to buildmore
robust systems? And on the other hand, how can we build
systems that can cope with varying cloud latency?
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