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Abstract
We describe a simple deterministic O(ε−1 log�) round distributed algorithm for (2α +1)(1+ε) approximation of minimum
weighted dominating set on graphs with arboricity at most α. Here � denotes the maximum degree. We also show a lower
bound proving that this round complexity is nearly optimal even for the unweighted case, via a reduction from the celebrated
KMW lower bound on distributed vertex cover approximation (Kuhn et al. in JACM 63:116, 2016). Our algorithm improves
on all the previous results (that work only for unweighted graphs) including a randomized O(α2) approximation in O(log n)

rounds (Lenzen et al. in International symposium on distributed computing, Springer, 2010), a deterministic O(α log�)

approximation in O(log�) rounds (Lenzen et al. in international symposium on distributed computing, Springer, 2010), a
deterministic O(α) approximation in O(log2 �) rounds (implicit in Bansal et al. in Inform Process Lett 122:21–24, 2017;
Proceeding 17th symposium on discrete algorithms (SODA), 2006), and a randomized O(α) approximation in O(α log n)

rounds (Morgan et al. in 35th International symposiumon distributed computing, 2021). We also provide a randomized
O(α log�) round distributed algorithm that sharpens the approximation factor to α(1 + o(1)). If each node is restricted to
do polynomial-time computations, our approximation factor is tight in the first order as it is NP-hard to achieve α − 1 − ε

approximation (Bansal et al. in Inform Process Lett 122:21-24, 2017).

Keywords Distributed computing · Dominating set · Arboricity · Approximation algorithms

1 Introduction

The minimum dominating set (MDS) problem is a classic
and central problem in graph algorithms. In this problem,
the goal is to construct a minimum weight set of nodes S
such that each node is either in S or has a neighbor in S.
The MDS problem has been widely studied both in the clas-
sic centralized setting and in the distributed setting, and it
has various applications, for example, clustering and routing
in ad-hoc networks. It is well-known that a simple greedy
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algorithm gives ln (� + 1) approximation for the problem
for graphs with maximum degree � [17], and that it is NP-
hard to obtain a c ln�-approximation for a suitable constant
c [10]. A similar approximation can be also obtained by
efficient distributed algorithms [9, 16, 18, 19]. In particular,
Kuhn, Moscibroda, and Wattenhofer showed a randomized
O(log�)-approximation algorithm that takes O(log2 �)

rounds in theCONGESTmodel, wheremessages are restricted
to O(log n) bits, or O(log n) rounds in the LOCALmodel,
where the message size is unbounded [19]. There is also
a deterministic poly-logarithmic O(log�)-approximation
algorithm for the problem in CONGESTthat is obtained by
combining the algorithm of Deurer, Kuhn, andMaus [9] with
the recent deterministic network decomposition of Rozhoň
and Ghaffari [25]. If one allows unbounded messages and
exponential local computation, one can obtain even (1+ ε)-
approximation for the problem in poly-logarithmic time in
the LOCALmodel using the algorithm of Ghaffari, Kuhn, and
Maus [13]. On the lower bound side, Kuhn, Moscibroda,
andWattenhofer showed that one needs�(log�/ log log�)

rounds or �(
√
log n/ log log n) rounds (the minimum of
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these two lower bounds applies) to get a logarithmic approx-
imation [20].

Since it is NP-hard to obtain better than logarithmic
approximation in general graphs, a large body of research
focused on finding algorithms with a better approximation
in special graph families, such as planar graphs, graphs of
bounded expansion, and more (see, e.g., [1, 3, 6, 8, 22,
23, 27]). One prominent example is the class of bounded
arboricity graphs, which informally speaking are graphs that
are sparse everywhere. The arboricity α of a graph is the
minimum number of forests into which its edges can be
partitioned. The class of bounded arboricity graphs includes
many important graph classes such as planar graphs, graphs
of bounded treewidth or genus, and graphs excluding a fixed
minor. Many real-world graphs are sparse and believed to
have low arboricity, for example, theWorldWideWeb graph
and graphs representing social networks. This led to exten-
sive study of graph problems in low-arboricity graphs (see,
e.g., [4, 7, 12, 14, 15, 21, 24]).

1.1 MDS in bounded arboricity graphs

Lenzen and Wattenhofer showed the first algorithms for
MDS in bounded arboricity graphs [21]. In particular,
they showed a randomized O(α2)-approximation algorithm
that takes O(log n) time, and a deterministic O(α log�)-
approximation algorithm that takes O(log�) time. An
O(α2)-approximation can be also obtained deterministically
in O(log n) time as was shown recently by Amiri [2]. All
these algorithms work in the CONGESTmodel. A recent line
of work shows O(α)-approximation algorithms for the prob-
lem. First, a centralized algorithm of Bansal and Umboh
gives (2α + 1)-approximation for the problem [4].1 They
also show that it is NP-hard to obtain an (α − 1 − ε)-
approximation for the problem. The algorithm of Bansal
and Umboh is based on LP-rounding, and can be imple-
mented efficiently in the CONGESTmodel using an algorithm
for approximating the LP. This leads to a deterministic
O(log2 �/ε4)-round (2α + 1)(1 + ε)-approximation algo-
rithm using the (1 + ε)-approximation algorithm of Kuhn,
Moscibroda, and Wattenhofer for approximating the LP
[19]. A recent combinatorial algorithm for MDS in bounded
arboricity graphs was shown by Morgan, Solomon andWein
[24]; they obtain a randomized O(α log n)-round O(α)-
approximation algorithm for the problem in CONGEST. All
the above algorithms solve the unweighted version of the
problem. Lastly, a very recent centralized algorithm of Sun
[26] gives an (α+1)-approximation for the weighted version
of the problem. This algorithm however seems inherently

1 The paper claimed a 3α-approximation, but optimizing the parameters
of the algorithm gives a (2α + 1)-approximation, as was observed by
Dvořák [11].

sequential and does not seem to translate to an efficient
distributed algorithm (see section 1.3 for a more detailed
discussion).

1.2 Our contribution

Our first contribution is showing that O(α)-approximation
for weighted MDS can be obtained in just O(log�) rounds
in theCONGESTmodel. In particular, we show a simple deter-
ministic algorithm that gives the following. For this and all
the other algorithms in this paper, we assume that both� and
α are known to all nodes. Please see remark 1 and remark 2
for a discussion on the setting where � and α are unknown.
We also assume that α ≥ 2 throughout the whole paper. For
α = 1, there is a simple 3-approximation algorithm (refer to
Appendix 1. for the proof).

Theorem 1 For any 0 < ε < 1, there is a deterministic
(2α + 1)(1 + ε)-approximation algorithm for the minimum
weighted dominating set problem in graphs with arboricity

at most α. The algorithm runs in O
(
log(�/α)

ε

)
rounds in the

CONGESTmodel.

Our algorithm is faster compared to the two previ-
ous O(α)-approximation algorithms that take O(log2 �/ε4)

rounds [4, 19] and O(α log n) rounds [24], and its O(log�)

complexity is nearly optimal, as we will discuss later when
describing lower bounds. Its approximation ratio of (2α +
1)(1+ε)matches the best approximation that was previously
obtained by a distributed algorithm. It is a deterministic algo-
rithm, where the previous O(α log n) round algorithm was
randomized. Moreover, to the best of our knowledge, our
algorithm is the first distributed algorithm that solves the
weighted version of the problem.

Improved approximation
We also show a randomized algorithm with an improved
approximation of α(1 + o(1)), giving the following.

Theorem 2 For any 1 ≤ t ≤ α
logα

, there is a randomized

algorithm with expected
(
α + O

(
α
t

))
-approximation factor

for the minimum weighted dominating set problem in graphs
with arboricity at most α. The algorithm runs in O(t log�)

rounds in the CONGESTmodel.

In particular, by setting t = α
logα

, we can get (α +
O(logα))-approximation in O(α log�) time. For algo-
rithms that are only using polynomial time computations,
this approximation factor is tight in the first order as it is
NP-hard to achieve α − 1 − ε approximation [4].

As a byproduct of our randomized algorithm, we improve
on the approximation factor for the minimum dominating set
problem on general graphs with maximum degree �. Previ-
ously, the best approximation factor for the problem in O(k2)
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(for a parameter k) rounds was due to the work of Kuhn,
Moscribroda, and Wattenhofer [19] where they provided a
randomized algorithm with expected approximation factor

O(k�
2
k log�). We drop the O(log�) term in their result.

Theorem 3 For any k, there is randomized algorithm that
computes a weighted dominating set with expected approx-

imation factor at most �
1
k (�

1
k + 1)(k + 1)· = O(k�

2
k ) in

O(k2) rounds in the CONGESTmodel.

Lower Bound
Our algorithms provide O(α)-approximation in O(log�)

rounds. A natural question is whether a logarithmic depen-
dence on � is needed in the time complexity. While in
general graphs it is known that �(log�/ log log�) rounds
are required for obtaining a constant or logarithmic approx-
imation [20], in special graph families faster algorithms are
known. For example, in planar graphs one can obtain O(1)-
approximation in O(1) rounds in the LOCALmodel [22, 27].
Also, in the special case of trees that have arboricity 1,
a trivial algorithm that takes all non-leaf nodes gives a 3-
approximation for unweighted MDS (see Appendix 1 for the
proof). Interestingly, we show that as soon as the arboricity is
increased from1 to2, the locality of theminimumdominating
set approximation problem changes radically, and any con-

stant or poly-logarithmic approximation needs �
(

log�
log log�

)

time, even in the LOCALmodel where the size of messages is
unbounded.

Theorem 4 Any distributed algorithm that computes any
constant or poly-logarithmic approximation of the mini-
mum dominating set on graphs of arboricity 2 requires

�
(

log�
log log�

)
rounds in the LOCALmodel.

Hence, the O(log�) round complexity of our algorithms
is nearly optimal.

1.3 Our techniques

At a high-level, our algorithms construct a dominating set in
two steps. In the first step, we construct a partial dominating
set S that has the following nice properties. First, the weight
of the set S is a good approximation for the optimal dominat-
ing set. Second, the nodes T that are undominated by S have
a nice structure that allows us to find efficiently a dominating
set for T with a good approximation guarantee. In the second
step, we construct a dominating set for T . In fact, in our first
algorithm,we show that if for each node in T weaddone node
to the dominating set, we already obtain a (2α + 1)(1 + ε)-
approximation. In our second algorithm, we show how to
exploit the structure of T to obtain a better approximation.
Our algorithm for constructing the partial dominating set is
inspired by the primal-dual method. To explain the idea, we

first describe in section 3 a simpler variant of our algorithm
that works for unweighted graphs. Next, in section 4, we gen-
eralize the algorithm for weighted graphs, and also show our
randomized algorithm with improved approximation. Our
lower bound appears in section 5.

Comparison to [26] We remark that in a very recent inde-
pendent work [26], the author uses the primal-dual method
to obtain approximation algorithm for MDS in bounded
arboricity graphs in the centralized setting. This algorithm
however does not seem to translate to an efficient distributed
algorithm, as it has a reverse-delete step that makes it inher-
ently sequential. In this step, the algorithm goes over all the
nodes thatwere added to the dominating set S in reverse order
and removes them from S if it is still a valid dominating set.
This part is crucial for obtaining a good approximation ratio,
and the analysis crucially relies on this part. While in our
algorithm we also use the primal-dual method, we use it in a
different way, and only to construct a partial solution for the
problem.

2 Preliminaries

The input graph is G = (V , E) with n nodes, m edges,
maximum degree �, and arboricity α. For each node v ∈ V ,
let Nv be the set of neighbors of v and N+

v = {v} ∪ Nv . For
a set of nodes S ⊆ V , let N+

S = ⋃
v∈S N+

v be set of nodes
that are dominated by S. Let wv be the weight of v and for
set S ⊆ V , let wS = ∑

v∈S wv be the total weight of the set
S. We assume all the weights are positive integers and are
bounded by nc for some constant c.

Our algorithms are inspired by the primal-dual method.
We associate a packing value 0 ≤ xv to each node such that
for any node u, the value Xu = ∑

v∈N+
u
xv ≤ wu . Fromweak

duality, we have the following.

Lemma 5 For any feasible packing,
∑

v∈V xv ≤ OPT where
OPT is the weight of the minimum dominating set of G.

Proof Let S∗ be a dominating set of G with weight OPT. We
have:

OPT =
∑
v∈S∗

wv ≥
∑
v∈S∗

Xv ≥
∑
u∈V

xu

The last inequality comes from the fact that S∗ is a dominat-
ing set. Hence, each node u contributes to at least one of Xv

for v ∈ S∗. 	


Model

Our algorithms work in the standard CONGESTmodel. We
have a communication network with n nodes that is identical
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to the input graph. Nodes communicate with each other by
sending O(log n) bit messages in synchronous rounds. In
the beginning, each node only knows its own weight and set
of neighbors. At the end of the algorithm, each node should
know if it is part of the constructed dominating set. Our lower
boundworks even for themore powerful LOCALmodelwhere
the size of messages is unbounded.

3 Algorithm for unweightedMDS

As a warm-up, we start by describing a simpler variant of
our algorithm that works for unweighted graphs, showing
the following.

Theorem 6 For any 0 < ε < 1, there is a deterministic
(2α + 1)(1 + ε)-approximation algorithm for the mini-
mum dominating set problem in unweighted graphs with

arboricity at most α that runs in O
(
log(�/α)

ε

)
rounds in

the CONGESTmodel.

Our approach is inspired by the primal-dual method. Each
node v has a packing value xv , such that during the algorithm
for each node, the value Xv = ∑

u∈N+
v
xu ≤ 1. From lemma

5 we have that
∑

v∈V xv ≤ OPT, where OPT is an optimal
solution. Our algorithm first builds a partial dominating set
S with the following properties.

Lemma 7 For any 0 < ε < 1, there is a deterministic algo-

rithm that takes O
(
log(�/α)

ε

)
rounds and outputs a partial

dominating set S ⊆ V along with packing values {xv}v∈V
such that

1. |S| ≤ (2α + 1)(1 + ε)
∑

v∈N+
S
xv .

2. For each node v /∈ N+
S , we have xv ≥ 1

(2α+1)(1+ε)
.

Before proving lemma 7, let us first describe how S can be
extended to a dominating set. Let T = V \N+

S be the set of
undominated nodes.We next show that adding the nodes of T
to the dominating set S results in the desired approximation.

Claim 8 The set S ∪ T is a dominating set of size at most
(2α + 1)(1 + ε)OPT.

Proof The set S ∪ T is clearly a dominating set, as we added
to S all the undominated nodes. From lemma 7, we have that

|S| ≤ (2α + 1)(1 + ε)
∑

v∈N+
S

xv,

|T | =
∑
v∈T

1 ≤ (2α + 1)(1 + ε)
∑
v∈T

xv.

Hence, we get that |S ∪ T | ≤ (2α + 1)(1 + ε)
∑

v∈V xv ≤
(2α + 1)(1+ ε)OPT, where the last inequality follows from
lemma 5. 	


To complete the proof, our goal is to prove lemma 7.

Proof of lemma 7 Let us start with the description of the algo-
rithm. Let r be the integer such that

(1 + ε)r
1

� + 1
≤ 1

(2α + 1)(1 + ε)
< (1 + ε)r+1 1

� + 1
.

Our algorithm consists of r + 1 iterations. At the beginning,
all the nodes are unmarked and all packing values xv are set
to 1

�+1 . Then, per iteration, we run the following on each
node v. All nodes run each line simultaneously.

1. Compute Xv = ∑
u∈N+

v
xu .

2. If Xv ≥ 1
1+ε

, add v to S and mark all the nodes in N+
v .

3. If v is not marked, set xv ← xv(1 + ε).

A straightforward but important observation of this algorithm
is the following.

Observation 9 For all nodes, Xv is always at most 1.

Proof At the start of the first iteration, Xv ≤ |N+
v |

�+1 ≤ 1. At
the beginning of iteration i ≥ 2, if v is not in S, it means
Xv < 1

1+ε
in iteration i − 1 and so Xv < 1 in this iteration.

If v is in S, then Xv is not changed after that and so Xv ≤ 1.
	


To provide the upper bound on the size of S in lemma 7,
we use the following property of bounded arboricity graphs.

Observation 10 Let G be a graph with arboricity at most α,
then the edges of G can be oriented such that the out-degree
of each node is at most α.2

Observation 10 follows from the fact that the edges of
the graph can be partitioned into α forests, and in each one
of them we can orient the edges with out-degree one, by
fixing a root in each tree and orienting the edges towards
the root. We fix one of those orientations. We emphasize
that this orientation is used only in the analysis, and we do
not construct it in the algorithm. With this in mind, for each
node v, let N in

v be the set of incoming neighbors and N out
v be

the set of outgoing neighbors of v with respect to this fixed
orientation. Note that for all nodes in N+

S , the packing value
is increased at most r times. Hence, from the choice of r ,
we have that xv ≤ 1

(2α+1)(1+ε)
for v ∈ N+

S . For each v ∈ S,

2 All of our algorithms work as long the input graph is orientable with
the maximum out-degree of at most α. Hence, our results can be applied
to the slightly larger class of graphs that are decomposable to at most
α-pseudoforests. A psuedoforest is a graph in which every connected
component has at most one cycle.
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we have (all the values xv are considered at the end of the
algorithm):

Xv =
∑

u∈N in
v

xu + xv +
∑

u′∈Nout
v

xu′ ≥ 1

1 + ε

⇒
∑

u∈N in
v

xu ≥ 1

1 + ε
− α + 1

(2α + 1)(1 + ε)

≥ α

(2α + 1)(1 + ε)

Let λ = α
(2α+1)(1+ε)

. From the above, we have that
1
λ

∑
u∈N in

v
xu ≥ 1. We can bound the size of S as follows:

|S| =
∑
v∈S

1 ≤ 1

λ

∑
v∈S

∑

u∈N in
v

xu

≤ 1

λ

∑

u∈N+
S

xu
∑
v∈S

I[u ∈ N in
v ]

≤ α

λ

∑

u∈N+
S

xu ≤ (2α + 1)(1 + ε)OPT.

Note that we bound
∑

v∈S I[u ∈ Nin
v ] with α. This is

because the out-degree of u is at most α, so u can be an
incoming neighbor of at most α nodes.

So far we have proved the first guarantee of lemma 7. To
conclude the proof of lemma, we should show that for each
node v /∈ N+

S , we have xv ≥ 1
(2α+1)(1+ε)

. This follows from

the choice of r , as for nodes v /∈ N+
S we increase the packing

value r + 1 times.
Each iteration can be implemented in O(1) rounds in the

CONGESTmodel. In total, O(r) = O
(
log(�/α)

ε

)
rounds. 	


4 Algorithm for weightedMDS

We next show a generalized version of our algorithm from
section 3. First, the algorithm works for weighted graphs.
Second, we allow for different trade-offs between the two
dominating sets we compute in the algorithm. Recall that in
section 3 we start by computing a partial dominating set S,
and then we add to it additional set S′ to dominate the rest
of the nodes. Previously we just constructed S′ as the set
of all undominated nodes, but we will see in section 4.2 an
algorithm that exploits the structure of undominated nodes
to get an improved approximation for this part. To get a bet-
ter approximation for the whole algorithm, we can stop the
algorithm for computing a partial dominating set earlier and
get an improved approximation for the first part as well. We
start by presenting our general scheme, which allows us to
get a deterministic algorithm for weighted graphs with the

same guarantees obtained in section 3, and then we show a
randomized algorithm that can obtain an improved approxi-
mation.

4.1 Deterministic algorithm

We again follow the primal-dual method. We associate a
packing value 0 ≤ xv to each node such that for any node
u, the value Xu = ∑

v∈N+
u
xv ≤ wu . For each node v ∈ V ,

let τv = minu∈N+
v

wu be the minimum weight of a node that
can dominate v.

Lemma 11 For any 0 < ε < 1 and 0 < λ < 1
(α+1)(1+ε)

,
there is a deterministic algorithm that outputs a partial dom-
inating set S ⊆ V along with packing values {xv}v∈V with
the following properties:

(a) wS ≤ α
(

1
1+ε

− λ(α + 1)
)−1 ∑

v∈N+
S
xv .

(b) For each undominated node v /∈ N+
S , its packing value

xv is at least λτv .

The algorithm runs in O
(
log(�λ)

ε

)
rounds in the

CONGESTmodel.

Before proving this lemma, we illustrate it can be used
to derive one of our main results which is presented in the
following theorem.

Theorem 1 For any 0 < ε < 1, there is a deterministic
(2α + 1)(1 + ε)-approximation algorithm for the minimum
weighted dominating set problem in graphs with arboricity

at most α. The algorithm runs in O
(
log(�/α)

ε

)
rounds in the

CONGESTmodel.

Proof We run the algorithm of lemma 11with the same ε and
with λ equals to 1

(2α+1)(1+ε)
. We want to find a set S′ such

that S ∪ S′ is a dominating set. For this, we go over all the
undominated nodes v /∈ N+

S , and add a node from N+
v with

weight τv to S′. Clearly, S ∪ S′ is a dominating set and its
weight can be bounded as follows:

wS∪S′ = wS +
∑

v∈V \N+
S

τv

≤ α

(
1

1 + ε
− λ(α + 1)

)−1 ∑

v′∈N+
S

xv′ +
∑

v∈V \N+
S

xv

λ

≤ (2α + 1)(1 + ε)
∑
v∈V

xv

≤ (2α + 1)(1 + ε) · OPT
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In the first inequality, we use property (a) of lemma 11
to bound the first term, and we invoked property (b) of this
lemma, i.e. λτv ≤ xv , to bound the second term. 	

Proof of lemma 11 For each node v, initialize xv to

τv

�+1 . This
gives us a feasible packing since for each node u:

Xu =
∑

v∈N+
u

xv =
∑

v∈N+
u

τv

� + 1
≤

∑

v∈N+
u

wu

� + 1
≤ wu

If λ < 1
�+1 , we can satisfy the two required properties by

setting S to the empty set. Assume λ ≥ 1
�+1 and let r ≥ 1

be the integer that

(1 + ε)r−1 1

� + 1
≤ λ < (1 + ε)r

1

� + 1

We run the following procedure for r iterations.

1. For each node u, compute Xu = ∑
v∈N+

u
xv .

2. If Xu ≥ wu
1+ε

, add u to S.
3. For each undominated node v /∈ N+

S , set xv ← xv(1+ε).

Observation 12 Through the algorithm, {xv}v∈V is always a
feasible packing.

Observation 13 In the end, the packing value of each undom-
inated node, i.e. nodes in V \ N+

S , is strictly greater than λτv

and the packing value of each dominated node is at most λτv .

Proof of observation 13 Let v ∈ V \ N+
S . Its packing value

is multiplied by 1 + ε in all the r iterations. So its final
value is (1 + ε)r τv

�+1 > λτv . If v ∈ N+
S , it is multiplied

by 1 + ε at most r − 1 times. So its final value is at most
(1 + ε)r−1 τv

�+1 ≤ λτv . 	

Back to the proof of lemma 11, to boundwS , we use obser-

vation 10 and orient the edges of G such that the out-degree
of each node is at most α. The orientation is used only for
the analysis. For each node v, let N in

v be the set of incoming
neighbors and N out

v be the set of outgoing neighbors of v in
this fixed orientation.

Consider the packing values at the end of the algorithm.
Note that through the algorithm, we freeze the packing value
of a node as soon as it gets dominated. With this, we can
write the following for each node u ∈ S:

Xu =
∑

v∈N in
u

xv + xu +
∑

v′∈Nout
u

xv′ ≥ wu

1 + ε

⇒
∑

v∈N in
u

xv ≥ wu

1 + ε
− λτu −

∑

v′∈Nout
u

λτv′

≥ wu

(
1

1 + ε
− λ(α + 1)

)
.

This implies:

wS =
∑
u∈S

wu ≤
∑
u∈S

(
1

1 + ε
− λ(α + 1)

)−1 ∑

v∈N in
u

xv

≤
(

1

1 + ε
− λ(α + 1)

)−1 ∑

v∈N+
S

xv

∑
u∈S

I[v ∈ N in
u ]

≤ α

(
1

1 + ε
− λ(α + 1)

)−1 ∑

v∈N+
S

xv.

(1)

In the last inequality, we upper bound
∑

u∈S I[v ∈ Nin
u ]with

α. This is because out-degree of v is at most α, so v can be
an incoming neighbor of at most α nodes.

The bound of eq. 1 along with observation 13 guarantee
property (a) and property (b). The only remaining compo-
nent is the round complexity. Note that each iteration of the
procedure runs in O(1) rounds in the CONGESTmodel. So in

total, there are O(r) = O(log1+ε �λ) = O
(
log(�λ)

ε

)
many

rounds. 	

Remark 1 (Unknown �) We can transform the algorithm
of theorem 1 into one that works in the setting where � is
unknown.Recall that the algorithmhas twophases. In thefirst
phase, it computes a partial dominating set S by applying the
algorithm of lemma 11with λ being 1

(2α+1)(1+ε)
. Then, in the

second phase, for each node v that is not dominated by S, we
add a node with weight τv from N+

v to the final dominating
set. To convert our algorithm, first we initialize the packing
value xv of each node v with

τv

maxu∈N+
v
|N+

u |

rather than with τv

�+1 . Next, we run the iterations of the
algorithm of lemma 11 similarly with one extra step at the
beginning of each iteration. In this extra step, each undomi-
nated node vwith a packing value strictly larger thanλτv adds
a node with weight τv in its neighborhood to the final domi-

nating set. Observe that after O
(
log�

ε

)
rounds, all nodes are

dominated and the approximation analysis goes through sim-
ilarly. Intuitively, since a node cannot decide locallywhen the
first phase terminates, we add this extra step for each iteration
to simulate its effect.

Remark 2 (Unknown α) When α is unknown, we are not
aware of a way to keep the algorithm’s round complexity
independent of n, while preserving the approximation factor.
However, we can find a dominating set with approximation
factor (2α + 1)(2+ ε) in O(

log n
ε

) rounds (note that here we
assume that all nodes know n). For that, first we apply the
orientation algorithm of Barenboim and Elkin [5] to find an
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orientation of edges where the out-degree of each node is at
most (2+ε)α. This algorithm runs in O(

log n
ε

) rounds. Next,
each node v computes a local approximation of arboricity,
denoted by α̂v , for itself which is the maximum out-degree
of the nodes in N+

v . To find the partial dominating set S,
each node initializes its packing value with 1

n+1 . We run
the algorithm of lemma 11 where each node has its own λ,
denoted by λv , and which equals λv = 1

(2α̂+1)(1+ε)
. Similar

to remark 1, we add an extra step in the beginning of each
iteration on which any undominated node v with a packing
valuemore than thresholdλvτv , adds a nodewithweight τv in

N+
v to the final dominating set. After O

(
log n

ε

)
iterations, all

nodes are dominated and the approximation factor is (2α +
1)(2 + O(ε)).

4.2 Randomized algorithm

In the previous section, to extend our partial dominating set
S to a dominating set, we simply added one node to S for
each undominated node and this introduced a factor 2 in the
approximation factor. Here, we show how we can get α +
O(logα) approximation, but we need O( α

logα
log�) rounds

rather than O(log�) rounds. The algorithm also becomes
randomized.

To reduce the approximation factor, we can leverage prop-
erty (b) of lemma 11. To explain the intuition, we focus first
on the unweighted case. If the problem is unweighted (so τv

is 1 for all the nodes), then property (b) implies that each
node has at most λ−1 undominated neighbors. The reason is
that Xu = ∑

v∈N+
u
xv ≤ 1 for all u. Now since any node

v /∈ N+
S has xv ≥ λ, there can only be at most λ−1 undomi-

nated nodes in N+
u . So, dominating the set of nodes that are

not in N+
S is a set cover problem with maximum set size

λ−1 which can be approximated with a factor of O(log λ−1)

in O(log λ−1 log�) rounds according to [19] (Note that an
undominated node can be a neighbor of many dominated
nodes, so the frequency in the set cover instance can be
as large as � + 1). Recall that the size of S is bounded

by α
(

1
1+ε

− λ(α + 1)
)−1 · OPT. On the other hand, for

extending S, we add O(log λ−1 · OPT) many nodes. If we

set λ = 	
(
logα

α2

)
and ε = 	

(
logα

α

)
, with straightforward

calculations we can show that the expected size of the final
dominating set is (α + O(logα)) · OPT and the algorithm

takes O
(

α
logα

log�
)
many rounds. The bottleneck for the

round complexity is the first phase when we construct S as
there the number of rounds depends linearly on 1

ε
.

The weighted case is more subtle as there is no bound on
the set size. Now lemma 11 implies that xv ≥ λτv , which is a
different value for every v, hence we cannot argue anymore
that each node has at most λ−1 undominated neighbors. We
are not aware of a result in the literature that we can use

as a black box or with a clean reduction for this case, but
we still want to exploit property (b) of lemma 11 to get an
improved approximation. To do so, we devise a simple iter-
ative randomized algorithm for this case. Towards resolving
this, we also improve on the results of [18, 19] for solving the
dominating set problem on general graphs. There, they pre-
sented an O(k2) rounds randomized algorithmwith expected

O(k�
2
k log�) approximation factor for the dominating set

problem. We shave off the factor log� in their bound as it is
stated in theorem 3.

Our algorithm of extending S in full generality is stated
in the following lemma.

Lemma 14 For 0 < λ and 1 < γ , there is a ran-
domized algorithm that given the output of lemma 11, it
finds S′ ⊆ V such that S ∪ S′ is a dominating set and
E[wS′ ] = γ (γ + 1)�logγ λ−1� ·OPT. The algorithm runs in

O(logγ λ−1 logγ �) rounds in the CONGESTmodel.

Before proving lemma 14, we first show how we can
prove the claim of theorem 2 via optimizing the parameters
in lemma 11 and lemma 14. The theorem is restated below.

Theorem 2 For any 0 < ε < 1, there is a deterministic
(2α + 1)(1 + ε)-approximation algorithm for the minimum
weighted dominating set problem in graphs with arboricity

at most α. The algorithm runs in O
(
log(�/α)

ε

)
rounds in the

CONGESTmodel.

Proof We first execute the algorithm of lemma 11 and then
lemma 14 with a suitable set of parameters such that wS ≤
α

(
1 + 1

t

)
and wS′ = O

(
α
t

)
. Since S ∪ S′ is a dominating

set, this gives us the desired approximation factor. For the

parameters, we set ε = 1
4t , λ = ε

α+1 , and γ = max(2, α
1
2t ).

To bound wS , note that:

wS ≤ α

(
1

1 + ε
− λ(α + 1)

)−1

· OPT
≤ α(1 − 2ε)−1 · OPT
≤ α(1 + 4ε) · OPT
≤

(
α + α

t

)
· OPT

In the second last inequality, we use the fact that ε = 1
4t ≤ 1

4 .
To bound wS′ , first note that λ−1 = 4t(α + 1) = O(α2)

because t ≤ α
logα

. If γ is 2, we have:

E[wS′ ] = O(γ 2 logγ λ−1 · OPT)

= O(logα) · OPT
= O

(α

t

)
· OPT.
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If γ is α
1
2t , then t ≤ logα

2 , and we have:

E[wS′ ] = O(γ 2 logγ λ−1) · OPT
= O(α

1
t t) · OPT

= O
(α

t

)
· OPT.

To derive the last equality, we can compare the logarithm of
the two bounds. Note that log(α/t) = logα− log t and since
t ≤ (logα)/2, we have log(α/t) = �(logα). On the other
hand, log(α1/t t) = (logα)/t+log t and using t ≤ (logα)/2,
we get log(α1/t t) = O(logα).

The algorithmof lemma11 runs inO(
log�

ε
) = O(t log�)

rounds and the algorithm of lemma 14 runs in

O(logγ λ−1 logγ �) = O(log
α

1
2t

α2 logγ �)

= O(t log�).

rounds. 	

Proof of lemma 14 We construct S′ in several steps. For a
moment, assume that the problem is unweighted (all nodes
have weight one). Fromwhat we have discussed before, each
node can dominate at most q = O(α) nodes in V \ N+

S . In
the first step of constructing S′, we try to reduce q to q

2 . We
call a node heavy if it has at least q

2 undominated neighbors.
To get rid of heavy nodes, first, we sample each of them
with probability 1

�+1 . We add all the sampled nodes to S′
and update the set of undominated nodes to V \N+

S∪S′ . The
set of heavy nodes is updated accordingly. Then, we sample
each heavy node with probability 2

�+1 . We repeat this for
O(log�) iterations until the sampling probability becomes
1. This ensures that in the end, there is no heavy node. To
show that there are not too many sampled nodes, let n′ be the
number of undominated nodes before the first iteration and
observe that we need at least n′

q nodes to dominate them. It
can be shown that after all the iterations, the expected number
of sampled nodes is O( n

′
q ). So in O(log�) rounds and with

an additive loss of O(1) in the approximation factor, we can
reduce q to q

2 . Repeating this for O(log q) = O(logα) times,
we get a set S′ in O(logα log�) rounds with expected size
O(logα ·OPT) such that S∪S′ is a dominating set. A detailed
discussion on the parameterized version of this algorithm that
works also for the weighted case is given in the following.

We start S′ as an empty set. Unlike the previous parts, for
each node u, we set Xu = ∑

v∈N+
u ∩(V \N+

S∪S′ ) xv to be the

summation of packing values of only undominated nodes in
N+
u . Let �1 = {u /∈ S ∪ S′ : Xu ≥ γ −1wu}. We sample

nodes of �1 and update it for r = �logγ (� + 1)� + 1 iter-
ations. Before the first iteration, we initialize the sampling
probability p with 1

�+1 . Then, we run the following in each
iteration:

1. Sample each node in the current �1 with probability p.
2. Add the sampled nodes to S′.
3. Update Xu for each node u. That is, compute

Xu =
∑

v∈N+
u ∩(V \N+

S∪S′ )

xv

.
4. Remove all the nodes from �1 with Xu < γ −1wu .
5. Set p ← min(γ p, 1).

For each element v, we define a random variable cv . If v is
already dominated by S or if it is not dominated by S′ after
all the iterations, we set cv to zero. Otherwise, let i be the first
iteration where v is dominated. We set cv to be the number
of sampled nodes in iteration i that dominates v.

Observation 15 For each node v, we have E [cv] ≤ γ + 1.

Proof If v is already dominated by S, then cv is always zero.
So suppose this is not the case and assume that it is in d
sets of �1 before the first iteration. Let d = d1 ≥ d2 ≥
· · · ≥ dr be the sequence that maximize the expected value
of E[cv] where di is the number of sets in �1 that contains v

in the beginning of iteration i . Let pi = γ i−1

�+1 be the sampling
probablity at iteration i . We have:

E[cv] ≤
r∑

i=1

pidi

i−1∏
j=1

(1 − p j )
d j ≤

r∑
i=1

pidi

i−1∏
j=1

e−p j d j

To simplify the notation, we define βi = pidi . Denote
the prefix sum of sequence βi as β̄i = ∑i−1

j=1 βi . Let us

emphasize that β̄i does not include βi . Rewriting the above
inequality using β and β̄, we have:

E[cv] ≤
r∑

i=1

βi

i−1∏
j=1

e−β j =
r∑

i=1

βi e
−β̄i

Since the sequence d1, . . . , dr is non-increasing and pi =
γ pi−1, we have βi ≤ γβi−1 for any 2 ≤ i . Using this, we
can deduce the following:

E[cv] ≤
r∑

i=1

βi e
−β̄i = β1 +

r∑
i=2

βi e
−β̄i

≤ d1
� + 1

+
r∑

i=2

γβi−1e
−β̄i

≤ 1 + γ

r∑
i=2

∫ β̄i

β̄i−1

e−xdx
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In the last inequality, note that β̄i−β̄i−1 = βi−1 by definition.
Since all the integral ranges are disjoint, we have:

E[ce] ≤ 1 + γ

∫ ∞

0
e−xdx = γ + 1

	

Observation 16 The expected total weight of sampled nodes
in all iterations is at most γ (γ + 1) · OPT.
Proof Suppose a node u that is sampled in iteration i . Let
Tu be the set of nodes in N+

u that are undominated in the
beginning of iteration i . At that point, u is in �1 implying
γ −1wu ≤ ∑

v∈Tu xv . So we can upper bound the weight
of any sampled node u by wu ≤ γ

∑
v∈Tu xv . From the

definition of cv , each node v appears in cv many Tus for
a sampled node Tu . So the total weight of sampled nodes
is upper bounded by γ

∑
v∈V cvxv . Finally, we know that

E[cv] ≤ γ + 1 from lemma 15 which concludes the proof.
	


Back to the proof of lemma 14, we now try to use these
two observations to show the claims of this lemma. First,
note that the set S ∪ S′ is not necessarily a dominating set.
Consider the subproblem of dominating V \N+

S∪S′ . Clearly,
we can dominate these nodes with a set of weight at most
OPT. Moreover, {xv}v /∈N+

S∪S′ is a feasible packing for this

subproblem. Multiply the packing value of each node v /∈
S ∪ S′ by a factor γ and update Xu for each u /∈ S ∪ S′.
The packing for this subproblem remains feasible. This is
because, in the last iteration, we sample all nodes of �1. So
at the end of this iteration, a node u that is not in S ∪ S′ has
Xu ≤ γ −1wu and as a result, multiplying the packing values
by a factor γ is safe.

Now, we define �2 as {u /∈ S ∪ S′ : Xu ≥ γ −1wu} and
run the procedure with�2. We repeat this for t = �logγ λ−1�
times and claim that after that, S ∪ S′ is a dominating set.

Suppose it is not and let v be an undominated node. At the
very beginning, xv ≥ λτv due to property (b) of lemma 11.
Since v is undominated, its packing value is γ i xv after we
finish the process of �i . Since t = �logγ λ−1�, there should
be an i such that the packing value of v is at least γ −1τv when
we finish working with �i−1. On the other hand and from the
definition of τv , there is a neighbor u of v with weight τv .
This means that u is in �i and it remains in �i until it is
sampled. This contradicts that v is not dominated.

From lemma16, the expectedweight of the sampled nodes
in one phase is γ (γ +1)·OPT. So in total, the expectedweight
of S′ is γ (γ + 1)�logγ λ−1� · OPT.

Each iteration of each phase can be run in O(1) rounds in
the CONGESTmodel. So in total, the algorithm needs

O(t · r) = O(logγ λ−1 logγ �)

many rounds. 	


Theorem 3 For any k, there is randomized algorithm that
computes a weighted dominating set with expected approx-

imation factor at most �
1
k (�

1
k + 1)(k + 1)· = O(k�

2
k ) in

O(k2) rounds in the CONGESTmodel.

Proof In lemma 14, we assume S is empty and set λ to 1
�+1 .

This does not violate any condition in the lemma. By setting

γ to �
1
k , the output S′ of the lemma is a dominating set with

the claimed size. 	


5 Lower Bound

Theorem 4 ThmLB Any distributed algorithm that computes
any constant or poly-logarithmic approximation of the min-
imum dominating set on graphs of arboricity 2 requires

�
(

log�
log log�

)
rounds in the LOCALmodel.

Proof Kuhn,Moscibroda andWattenhofer proved that obtain-
ing a constant or poly-logarithmic approximation for the

MinimumVertexCover (MVC)problem requires�
(

log�
log log�

)

rounds in the LOCALmodel [20]. In fact, their lower bound
holds even for the fractional version of the problem, in which
the goal is to assign a value xv for each node such that for
each edge {u, v} ∈ E , we have that xv + xu ≥ 1, and

∑
v xv

is minimized. Let G be the Kuhn-Moscibroda-Wattenhofer
(KMW) lower bound graph for approximating the Minimum
Fractional Vertex Cover (MFVC), with maximum degree �,
n nodes, and m edges. We build a new graph H as follows:
Take �2 copies of G, let us call them G1, G2, . . ., G�2 . Add
a set T of n additional nodes, one for each node of G, and
connect each new node to all copies of that original G-node.
So the degree of each node in T is�2. Next, for eachGi , add
a node in the middle of each of its edges. This completes the
construction of H . See fig1 for an illustration. Some obser-
vations on H is in the following:

– Each Gi has n + m nodes (one copy for each node of
G and m middle nodes) and 2m edges. Taking T into
consideration, H has�2(n+m)+n nodes and�2(2m+
n) edges.

– The maximum degree of H is �2.
– The arboricity of H is 2. For each middle node, orient its
two incident edges outward. For each node in T , orient
its �2 incident edges inward. This gives us an orienta-
tion of all the edges of H . There is no directed cycle in
this orientation and its maximum out-degree is 2, so the
arboricity of H is 2.

– Let OPTH
MDS be the size of the minimum dominating

set of H and OPTG
MVC (OPTG

MFVC) be the size of the
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Fig. 1 The lower bound graph H assumes that the KMW graph G is
K4. Only three copies (rather than nine copies) of G are drawn. The
middle nodes are indicated by hollow diamonds and T is the set of four
nodes in the gray area

minimum (fractional) vertex cover of G, then:

OPTH
MDS ≤ �2 · OPTG

MVC + n

= �2 · OPTG
MFVC + n.

(2)

The first inequality is because T along with copies of a
minimum vertex cover of G in each Gi is a dominating
set of H . This is because every node in Gi that is not a
middle-node has a neighbor in T . On the other hand, all
the middle-nodes are dominated as we add a vertex cover
for each Gi . For the equality OPTG

MVC = OPTG
MFVC in

(2), we leverage the fact that the KMW graph G is bipar-
tite and as a result the integrality gap of vertex cover on
G is 1.3 In addition, OPTG

MFVC ≥ m
�
. This holds if {xv}v

is the optimal fractional solution. So we have that

m ≤
∑

{u,v}∈E
(xu + xv) ≤ �

∑
v

xv

= � · OPTG
MFVC

On the other hand, sinceOPTG
MFVC ≥ m

�
and also because

for the KMW graph we have m ≥ n, we can write:

OPTH
MDS ≤ (�2 + �) · OPTG

MFVC.

To prove the theorem, suppose there is an algorithm

A with round complexity o
(

log�
log log�

)
that computes a c-

approximation of Minimum Dominating Set (MDS) on H
for some constant or poly-logarithmic c. Using this algo-
rithm, we will show that we get an algorithm that computes a
c(1+ 1

�
) approximation of MFVC of G in the same number

of rounds, hence putting us in contradiction with the lower
bound of [20], thus completing the proof.

3 Alternatively, we can use the fact that OPTG
MVC ≤ 2 · OPTG

MFVC in
any graph, which would only change the constant in our analysis.

Notice that the graph G can simulate the graph H in the
LOCALmodel, where each node simulates all its copies in
H , and each node in H that corresponds to an edge in G is
simulated by one of its endpoints. Note that for each edge in
H , its two endpoints are simulated either by the same node in
G or by two neighboring nodes in G, hence we can simulate
a round of an algorithm in H in one round inG. Let us run the
algorithm on the graph H , by actually working on the graph
G. Let S be the computed dominated set of H . We want to
turn S into a fractional vertex cover of G. First, replace each
middle node in S with one of its endpoints. This can only
decrease the size of S and after it, all the middle nodes are
still dominated. Let Si be the set of nodes of Gi in S. Since
S dominates all the middle nodes, Si is a vertex cover of the
original graph G. As A is a c-approximation algorithm for
MDS, we have:

∑

i∈[�2]
|Si | ≤ |S| ≤ c(�2 + �) · OPTG

MFVC

At the end, each node v of G, computes yv = |{i :v∈Si }|
�2 .

Observe that
∑

v yv ≤ c(1 + 1
�

) · OPTG
MFVC, and we show

that {yv}v is a fractional vertex cover ofG. This follows from
the fact that each Si is a vertex cover of G. Hence, for each
edge {u, v} ∈ G, if we denote by {ui , vi } the corresponding
edge in Gi , we have that at least one of ui , vi is in the vertex
cover. Let yiv indicate if vi ∈ Si . We have

yu + yv = 1

�2

∑

1≤i≤�2

(yiu + yiv) ≥ 1,

as needed. So if A exists, then we can compute a c(1 + 1
�

)

approximation of minimum fractional vertex cover of G in

o
(

log�
log log�

)
rounds contradicting the lower bound of [20]. 	


Appendix Amissing proofs

Observation 17 There is a single-round algorithm that com-
putes a 3-approximation of minimum unweighted dominat-
ing set on graphs of arboricity 1.

Proof Take all non-leaf nodes as the dominating set. This is
a dominating set, we next show the approximation ratio. Let
S∗ be an optimal dominating set. A graph of arboricity 1 is
a forest, we can fix a root in each one of the trees. We create
a dominating set S′ as follows. For each node v ∈ S∗, we
add to S′ the node v along with its parent and grandparent in
the tree (if they exist). Clearly |S′| ≤ 3|S∗|. We show that S′
contains all non-leaf nodes, completing our proof. Assume
to the contrary that there is a node v /∈ S′ that is an internal
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node in the tree, and let u be a child of v (that exists, as v is
non-leaf). It follows that u /∈ S∗, as otherwise v ∈ S′. Since v

and u are not in S∗, and S∗ is a dominating set, there is a child
w of u such that w ∈ S∗, but then v ∈ S′, a contradiction. 	
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