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Abstract
This article shows how to construct an overlay network of constant degree and diameter O(log n) in O(log n) time starting from
an arbitrary weakly connected graph. We assume a synchronous communication network in which nodes can send messages
to nodes they know the identifier of, and new connections can be established by sending node identifiers. Suppose the initial
network’s graph is weakly connected and has constant degree. In that case, our algorithm constructs the desired topology with
each node sending and receiving only O(log n)messages in each round in O(log n) time w.h.p., which beats the currently best
O(log3/2 n) time algorithm of Götte et al. (International colloquium on structural information and communication complexity
(SIROCCO), Springer, 2019). Since the problem cannot be solved faster than by using pointer jumping for O(log n) rounds
(which would even require each node to communicate �(n) bits), our algorithm is asymptotically optimal. We achieve this
speedup by using short random walks to repeatedly establish random connections between the nodes that quickly reduce
the conductance of the graph using an observation of Kwok and Lau (Approximation, randomization, and combinatorial
optimization. Algorithms and techniques (APPROX/RANDOM 2014), Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
2014). Additionally, we show howour algorithm can be used to efficiently solve graph problems in hybrid networks (Augustine
et al. in Proceedings of the fourteenth annual ACM-SIAM symposium on discrete algorithms, SIAM, 2020). Motivated by
the idea that nodes possess two different modes of communication, we assume that communication of the initial edges is
unrestricted, whereas only polylogarithmicallymanymessages can be sent over edges that have been established throughout an
algorithm’s execution. For an (undirected) graph G with arbitrary degree, we show how to compute connected components,
a spanning tree, and biconnected components in O(log n) time w.h.p. Furthermore, we show how to compute an MIS in
O(log d + log log n) time w.h.p., where d is the initial degree of G.

Keywords Distributed protocol · Peer-to-peer network · Randomized algorithm · Expander

1 Introduction

Many modern distributed systems (especially those which
operate via the internet) are not concerned with the physical
infrastructure of the underlying network. Instead, these large-
scale distributed systems form logical networks that are often
referred to as overlay networks or peer-to-peer networks. In
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these networks, nodes are considered as connected if they
know each other’s IP addresses. Examples include overlay
networks like Chord [55], Pastry [51], and skip graphs [3].
This work considers the fundamental problem of construct-
ing an overlay network of low diameter as fast as possible
from an arbitrary initial state. Note that O(log n) is the obvi-
ous lower bound for the problem: If the nodes initially form
a line, it takes O(log n) rounds for the two endpoints to learn
each other, even if every node could introduce all of its neigh-
bors to each other in each round.

To the best of our knowledge, the first overlay construc-
tion algorithmwith polylogarithmic time and communication
complexity that can handle (almost) arbitrary initial states has
been proposed by Angluin et al. [2]. The authors assume a
weakly connected graph of initial degree d. If in each round,
each node can send and receive at most d messages, and new
edges can be established by sending node identifiers, their
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Table 1 An overview of the
related work

Result Runtime Init. topology Communication Comment

[2] O(d + log2 n) w.h.p Any O(log n) First Result

[4] O(log n) w.h.p Outdegree 1 O(log n) Opt. for Topology

[35] O(log2 n) w.h.p Any O(n) Self-stabilizing

[30] O(log2 n) Any O(d log n) Deterministic

[31] O(log3/2 n) w.h.p Any O(d log n) Previous Best

[28] O(log2 n) w.h.p Any O(d log n) Churn-resistant

[6] O(log n) Line Graph O(log n) Opt. for Topology

Theorem 1.1 O(log n) w.h.p Any O(d log n)

Theorem 1.2 O(log n) w.h.p Any O(d + log2 n)

Note that d denotes the initial graph’s degree. Communication refers to the number of messages per node and
round

algorithm transforms the graph into a binary search tree of
depth O(log n) in O(d + log2 n) time, w.h.p.1 A low-depth
tree can easily be transformed into many other topologies,
and fundamental problems such as sorting or routing can be
easily solved from such a structure.

This idea has sparked a line of research investigating how
quickly such overlays can be constructed. Table 1 provides
an overview of the works that can be compared with our
result. For example, [4] gives an O(log n) time algorithm for
initial graphs with outdegree 1. If the initial degree is d and
nodes can send and receive O(d log n) messages, there is a
deterministic O(log2 n) time algorithm [30]. Very recently,
this has been improved to O(log3/2 n), w.h.p. [31]. How-
ever, to the best of our knowledge, there is no O(log n)-time
algorithm that can construct a well-defined overlay with log-
arithmic communication for any topology. This article finally
closes the gap and presents the first algorithm that achieves
these bounds, w.h.p.

All of the previous algorithms (i.e., [2,4,28,30,31]) essen-
tially employ the same high-level approach of [2] to alter-
natingly group and merge so-called supernodes (i.e., sets of
nodes that act in coordination) until only a single supernode
remains. However, these supernodes need to be consolidated
after being grouped with adjacent supernodes to distinguish
internal from external edges. This consolidation step makes
it difficult to improve the runtime further using this approach.
This work presents a radically different approach, arguably
simpler than existing solutions. Instead of arranging the
nodes into supernodes (and paying a price of complexity and
runtime for their maintenance), we establish random connec-
tions between the nodes by performing short constant length
random walks. Each node starts a small number of short ran-
domwalks, connects itself with the respective endpoints, and
drops all other connections. Then, it repeats the procedure on
the newly obtained graph.

1 An event holds with high probability (w.h.p.) if it holds with proba-
bility at least 1 − 1/nc for an arbitrary but fixed constant c > 0.

The approach is based on classical overlay maintenance
algorithms for unstructured networks such as, for example,
[41] or [29] as well as practical libraries for overlays like
JXTA [48]. Note that our analysis significantly differs from
[41] and [29] as we do not assume that nodes arrive one
after the other. Instead, we assume an arbitrary initial graph
with possibly small conductance. Using novel techniques by
Kwok and Lau [39] combined with elementary probabilistic
arguments, we show that short random walks incrementally
reduce the conductance of the graph. Once the conductance
is constant, the graph’s diameter must be O(log n). Note that
such a graph can easily be transformed into many other over-
lay networks, such as a sorted ring, e.g., by performing a BFS
and applying the algorithm of Aspnes andWu [4] to the BFS
tree or by using the techniques by Gmyr et al. [30]

1.1 Related work

The research on overlay construction is not limited to the
examples in the introduction. Since practical overlay net-
works are often characterized by dynamic changes coming
from churn or adversarial behavior, many papers aim to
reach and maintain a valid topology of the network in the
presence of faults. These works can be roughly catego-
rized into two areas. On the one hand, there are so-called
self-stabilizing overlay networks, which try to detect invalid
configurations locally and recover the system into a stable
state (see, e.g., [21] for a comprehensive survey). However,
since most of these solutions focus on a very general con-
text (such as asynchronous message passing and arbitrary
corrupted memory), only a few algorithms provably achieve
polylogarithmic runtimes [14,35], and most have no bounds
on the communication complexity. On the other hand, there
are overlay construction algorithms that use only polyloga-
rithmic communication per node and proceed in synchronous
rounds. We have algorithms maintaining an overlay topol-
ogy under randomized or adversarial errors in this category.
These works focus on quickly reconfiguring the network
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to distribute the load evenly (under churn) or to reach an
unpredictable topology (in the presence of an adversary)
[9,10,18,32]. However, a common assumption is that the
overlay starts in some well-defined initial state. Gilbert et
al. [28] combine the fast overlay construction with adversar-
ial churn. They present a construction algorithm that tolerates
adversarial churn as long as the network remains connected,
and there eventually is a period of length�(log n2)where no
churn happens. The exact length of this period depends on
the goal topology. Further, there is a paper byAugustine et al.
[6] that considers ˜O(d)-time2 algorithms for so-called graph
realization problems. They aim to construct graphs of any
given degree distributions as fast as possible. They assume,
however, that the network starts as a line, which makes the
construction of the graphs considered in this work consider-
ably more straightforward.

One of the main difficulties in designing algorithms to
construct overlay networks quickly lies in the node’s limited
communication capabilities in a broader context. Therefore,
our algorithm further touches on a fundamental question in
designing efficient algorithms for overlay networks: How
can we exploit the fact that we can (theoretically) com-
municate with every node in the system but are restricted
to sending and receiving O(log n) messages? Recently, the
impact of this restriction has been studied in the so-called
Node-Capacitated Clique (NCC) model [7], in which the
nodes are connected as a clique and can send and receive
at most O(log n) messages in each round. The authors
present ˜O(a) algorithms, where a is the arboricity3 of G
for local problems such as MIS, matching, or coloring, a
˜O(D + a) algorithm for BFS tree, and a ˜O(1) algorithm
for the minimum spanning tree (MST) problem. Robinson
[50] investigates the information the nodes need to learn
to solve graph problems and derives a lower bound for
constructing spanners in the NCC. Interestingly, his result
implies that spanners with constant stretch require poly-
nomial time in the NCC and are much harder to compute
than MSTs. As pointed out in [20], the NCC can simulate
PRAM algorithms efficiently under certain limitations. If
the input graph’s degree is polylogarithmic, for example,
we easily obtain polylogarithmic time algorithms for (min-
imum) spanning forests [17,34,49]. Notably, Liu et al. [43]
recently proposed an O(log D + log logm/n n) time algo-
rithm for computing connected components in the CRCW
PRAM model, which would also likely solve overlay con-
struction. Assadi et al. [5] achieve a comparable result in the
MPCmodel (that uses O(nδ) communication per node) with
a runtime logarithmic in the input graph’s spectral expansion.
Note that, however, the NCC, the MPC model, and PRAMs

2
˜O(·) hides polylogarithmic factors

3 The arboricity of a graph is the minimum number of forests its edges
can be partitioned into.

are arguably more powerful than the overlay network model
considered in this article since nodes can reach any other
node (or, in the case of PRAMs, processors can contact arbi-
trary memory cells), which rules out a naive simulation that
would have �(log n) overhead if we aim for a runtime of
O(log n). Also, if the degree is unbounded (our assump-
tion for the hybrid model), simulating PRAM algorithms,
which typically havework�(m), becomes completely infea-
sible. Furthermore, since many PRAM algorithms are very
complicated, it is highly unclear whether their techniques
can be applied to our model. Last, there is a hybrid net-
work model by Augustine et al. [8] that combines global
(overlay) communication with classical distributed models
such as CONGEST or LOCAL. Here, in a single round, each
node can communicate with all its neighbors in a commu-
nication graph G, and in addition, can send and receive
a limited amount of messages from each node in the sys-
tem. So far, most research for hybrid networks focussed on
shortest-path problems [8,20,38]. For example, in general
graphs, APSP can be solved exactly and optimally (up to
polylogarithmic factors) in ˜O(

√
n) time, and SSSP can be

computed in ˜O
(

min
{

n2/5,
√
D
})

time exactly. Whereas

even an�(
√
n) approximation for APSP takes time ˜O(

√
n),

a constant approximation of SSSP can be computed in ˜O(nε)

time [8,38]. Note that these algorithms require very high
(local) communication. If the initial graph is very sparse,
then SSSP can be solved in (small) polylogarithmic time and
with limited local communication, exploiting the power of
the NCC [20].

1.2 Our contribution

The main goal of this article is to construct a well-formed
tree, which is a rooted tree of degree O(log n) and diameter
O(log n) that contains all nodes ofG.We chose this structure
because any well-behaved overlays of logarithmic degree
and diameter (e.g., butterfly networks, path graphs, sorted
rings, trees, regular expanders, DeBruijnGraphs, etc.) can be
constructed in O(log n) rounds, w.h.p., starting from a well-
formed tree.Distributed algorithms can use these overlays for
common tasks like aggregation, routing, or sampling in log-
arithmic time. We present an algorithm that constructs such
a tree in O(log n) time, w.h.p., in the P2P-CONGEST model.
In addition to their initial neighborhood, we only assume
that all nodes know an approximation of log n, i.e., a very
loose polynomial upper bound on n, the number of nodes.
All nodes must know the same approximation as we use it
to synchronize between the different stages of the algorithm.
More precisely, all know a common value L ∈ �(log n) that
affects the runtime. Further, all nodes must know a common
value � ∈ �(log n) that controls how many overlay edges
the nodes create, which in turn affects the algorithm’s success
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probability. We believe that the common knowledge of these
variables is a realistic assumption, as a node may simply use
the length of its identifier as an approximation for log n. Our
main result is the following:

Theorem 1.1 (Main theorem) Let G = (V , E) be a weakly
connected directed graphwith degree O(d) and assume each
node knows a runtime bound L ∈ �(log n) and security
parameter � ∈ �(log n). There is a randomized algorithm
in the P2P-CONGEST model that with probability 1−e−�(�)

1. constructs a well-formed tree TG = (V , TV ) in O(L)

rounds, and
2. lets each node send at most O(d�) messages per round.

Note that for L,� ∈ �(log n), the algorithm completes in
O(log n) time and sends O(d log n) messages, w.h.p. We
present the promised algorithm in Sect. 3. Note that we can
use techniques from [30] or [4] to further refine our con-
structions and to reduce the degree of the well-formed tree
to O(1). However, since the main focus of our algorithm is
the novel idea of using randomwalks, we omit further details
here and refer the reader to [30] and [4].

Our result comes with various applications and implica-
tions for several distributed computation problems. First, we
point out the following immediate implications that simply
follow from the fact that any initial overlay topology can be
turned into a well-formed overlay in O(log n) time.

1. Every monitoring problem presented in [30] where the
goal is to observe the properties of the input graph can
be solved in O(log n) time, w.h.p., instead of O(log2 n)

deterministically. These problems includemonitoring the
graph’s node and edge count, its bipartiteness, and the
approximate (and even exact) weight of an MST.

2. For the churn-resistant overlays from [6,9,10,18,32], the
common assumption is that the graph starts in a well-
initialized overlay. This assumption can be dropped.

3. For most algorithms presented for the NCC (and hybrid
networks that model the global network by the NCC)
[7,8,20], the rather strong assumption that all node iden-
tifiers are known may be dropped. Instead, suppose the
initial knowledge graph has degree O(log n). In that case,
we can construct a butterfly network in O(log n) time,
which suffices for most primitives to work (note that all
presented algorithms have a runtime of �(log n) any-
way).

In Sect. 4, we then give further applications of the algo-
rithm for the hybrid model. For an (undirected) graphG with
arbitrary degree, we showhow to compute connected compo-
nents (cf. Sect. 4.1), amaximal independent set (cf. Sect. 4.2),
a spanning tree (cf. Sect. 4.3), and biconnected components

(cf. Sect. 4.4). As already pointed out, all of the following
algorithms can be performed in the hybrid network model of
Augustine et al. [8], which provides a variety of novel contri-
butions for these networks. The local capacity of each edge
is O(1), which corresponds to the classic CONGEST model.
For each algorithm, we give a bound on the required global
capacity. Note that our algorithms may likely be optimized
to require a smaller global capacity using more sophisticated
techniques. We remark that all of the following algorithms
can be adapted to achieve the same runtimes in the NCC0

model if the initial degree is constant. In the following, we
briefly summarize the results.

Connected components

As a first application of our algorithm, in Sect. 4.1, we show
how to establish a well-formed tree on each connected com-
ponent of G (if G is not connected initially).

Theorem 1.2 Let G = (V , E) be a directed graph. Further,
all components have a (known) size of O(n′). There is a
randomized algorithm that constructs a well-formed tree on
each connected component of (the undirected version of) G in
O(log n′) rounds, w.h.p., in the hybrid model. The algorithm
requires global capacity O(log2 n), w.h.p.

If the graph is connected, i.e., there is exactly one compo-
nent with n nodes, this theorem simply translates Theorem
1.1 to the hybridmodel. Note that in the hybridmodel, a node
v ∈ V can no longer create O(d(v) log n) overlay edges,
which was possible in the P2P − CONGEST model. Thus,
high degree nodes cannot simply simulate the algorithm from
before. The section, therefore, presents an adaption of our
main algorithm that circumvents some problems introduced
by the potentially high node degrees. Here, we first need to
transform the graph into a sparse spanner using the efficient
spanner construction of Miller et al. [46], later refined by
Elkin and Neiman [19]. In their algorithm, each node v ∈ V
draws an exponential random variable δu and broadcasts it
to all nodes in the graph 4. Let u∗

v be the node that maxi-
mizes δu∗

v
−dist(u∗

v, v) where dist(u∗
v, v) is the hop distance

between u∗
v and v. Then, v joins the cluster of u∗

v by storing its
identifier and adding the first edge over which it received the
broadcast from u∗

v to the spanner. Finally, the nodes share
the identifier of their cluster with their neighbors and add
edges between the clusters to obtain a connected graph. It is
known that the resulting subgraph ofG has very few edges as
each node has only a few neighbors in different clusters. This
follows from the fundamental properties of the exponential
distribution.

4 We describe the concrete implementation of this broadcast in Sect. 4.1
and assume that it is possible for the moment.
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We show that if the size of each connected component in
graph G is bounded by n′, it suffices to observe variables δv

that are conditioned on being smaller than 4 log n′, i.e., trun-
cated exponential random variables. With this small change,
we speed up the algorithm to O(log n′) while still producing
a sparse subgraph with fewer edges. This graph can then be
rearranged into a connected O(log n)-degree network, allow-
ing us to apply our main algorithm of Theorem 1.1 with
parameters L ∈ O(log n′) and � ∈ O(log n). Note that the
message complexity per node is still logarithmic in n, the
size of the original graph, and not in n′.

Maximal independent set (MIS)

In the MIS problem, we ask for a set S ⊆ V such that (1)
no two nodes in S are adjacent in the initial graph G and (2)
every node v ∈ V \ S has a neighbor in S. We present an
efficient MIS algorithm that combines the shattering tech-
nique [12,23] with our overlay construction algorithm to
solve the MIS problem in almost O(log d) time, w.h.p. This
technique shatters the graph into small components of unde-
cided nodes in O(log d) time, w.h.p. We then compute a
well-formed tree of depth O(log d + log log n) in all these
small components. This takes O(log d + log log n) rounds
w.h.p. using the algorithm of Theorem 1.2. In each com-
ponent, we can now independently compute MIS solutions
using O(log n) parallel executions of the CONGEST algo-
rithm by Metivier et al. [47]. As we will see, at least one of
these executions must finish after O(log d+ log log n) round
w.h.p, so the nodes only need to agree on a solution. The
problem is that the nodes cannot locally check which exe-
cutions have finished. However, we can use our well-formed
tree to broadcast information on the executions to all nodes
in the component in O(log d + log log n) time. This leads to
an O(log d + log log n) time algorithm, where d is the initial
graph’s degree. In Sect. 4.2, we provide the necessary details
omitted in this overview and show that:

Theorem 1.3 Let G = (V , E) be a weakly connected
directed graph. There is a randomized algorithm that com-
putes an MIS of G in O(log d + log log n) rounds, w.h.p.,
in the hybrid model. The algorithm requires global capacity
O(log2 n), w.h.p.

Spanning trees

A spanning tree (V , ES) is a subgraph of G with n−1 edges
that connects all its nodes. In Sect. 4.3, we compute a (not
necessarily minimum) spanning tree of the initial graph G.
We show how to obtain this spanning tree by unwinding the
random walks over which the additional edges to make up
our well-formed tree have been established. More precisely,
for each edge (v,w) used by our algorithm, the identifier of

w must have somehow been sent to v along some random
walk (v1 = w, . . . , v� = v). Given that (v,w) is part of
spanning tree, we show how replace (v,w) by some edge
(vi , vi+1). Through recursively applying this trick, we show
that:

Theorem 1.4 Let G = (V , E) be a weakly connected
directed graph. There is a randomized algorithm that con-
structs a spanning tree of (the undirected version of) G in
O(log n) rounds, w.h.p., in the hybrid model. The algorithm
requires global capacity O(log2 n), w.h.p.

We remark that it is unclear whether our algorithm also helps
compute a minimum spanning tree, which is easily possible
with earlier overlay construction algorithms. It seems that in
order to do so, we would need different techniques.

Biconnected components

We call an undirected graph H biconnected if every two
nodes u, v ∈ V are connected by two directed node-
disjoint paths. Intuitively, biconnected graphs are guaranteed
to remain connected even if a single node fails. Our goal
is to find the biconnected components of G, which are the
maximal biconnected subgraphs of G. Note that cut ver-
tices,i.e., nodes whose removal increases the number of
connected components, are contained in multiple bicon-
nected components. In Sect. 4.4, we show how to apply
the PRAM algorithm of Tarjan and Vishkin [56] to com-
pute the biconnected components of a graph to the hybrid
model. The algorithm relies on a spanning tree computation,
which allows us to use Theorem 1.4 to achieve a runtime of
O(log n), w.h.p.

Theorem 1.5 Let G = (V , E) be a weakly connected
directed graph. There is a randomized algorithm that com-
putes the biconnected components of (the undirected version
of) G in O(log n) rounds, w.h.p., in the hybrid model. Fur-
thermore, the algorithm computes whether G is biconnected
and, if not, determines its cut nodes and bridge edges. The
algorithm requires global capacity O(log5 n), w.h.p.

2 Mathematical preliminaries

Before we formally define the problems considered in this
article, we first review some basic concepts from graph the-
ory, probability theory, and in particular, the analysis of
random walks.

2.1 Basic terms from graph theory

We begin with some general terms that will be used through-
out this article. Recall that G = (V , E) is a directed graph
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with n := |V | nodes and m := |E | edges. A node’s outde-
gree denotes the number of outgoing edges, i.e., the number
of identifiers it stores. Analogously, its indegree denotes the
number of incoming edges, i.e., the number of nodes that
store its identifier. A node’s degree is the sum of its in- and
outdegree, and the graph’s degree is the maximum degree
of any node, which we denote by d. We say that a graph is
weakly connected if there is a (not necessarily directed) path
between all pairs of nodes. For a node pair v,w ∈ V , we
let dist(v,w) we let be the length of a shortest path between
v and w in the undirected version of G, i.e., the minimum
number of hops to get from v to w. A graph’s diameter is the
length of the longest shortest path in G. Last, for a graph G
we define G� := (V , E�) to be the �-walk graph of G, i.e.,
G� is the multigraph where each edge (v,w) ∈ E� corre-
sponds to an �-step walk in G. Note that a walk can visit the
same edge more than once, so G� must be a multigraph. For
a subset S ⊆ V , we denote S := V \ S. We define the cut
c(S, S) as the set of all edges (v,w) ∈ V with v ∈ S and
w ∈ S. We define the number edges that cross a cut c(S, S)

as OS := |c(S, S)|.

2.2 Probability theory and combinatorics

In this section, we establish well-known bounds and tail
estimates from probability theory and useful facts from com-
binatorics that help us analyze certain random events in our
algorithms. The first bound is Markov’s inequality, which
estimates the probability of a random variable reaching a
certain value based on its expectation. It holds:

Lemma 2.1 (Markov’s inequality) Let X be a non-negative
random variable and a > 0, then it holds:

Pr [X ≥ a] ≤ E[X ]
a

(1)

While this inequality applies to various variables, it is not
very precise. For more precise bounds, we heavily use the
well-known Chernoff bound, another standard tool for ana-
lyzing distributed algorithms. In particular, we will use the
following version:

Lemma 2.2 (Chernoff bound) Let X = ∑n
i=1 Xi for inde-

pendent distributed random variables Xi ∈ {0, 1} and
E(X) ≤ μH and δ ≥ 1.

Pr [X > (1 + δ)μH ] ≤ e−
(

δμH
3

)

, (2)

Similarly, for E(X) ≥ μL and 0 ≤ δ ≤ 1 we have

Pr [X < (1 − δ)μL ] ≤ e−
(

δ2μL
2

)

(3)

Further, we use the union bound that helps us to bound the
probability for many correlated events as long as all these
events have a very small probability of happening. It holds:

Lemma 2.3 (Union bound) Let B := B1, . . . , Bm be a set of
m (possibly dependent) events. Then, the probability any of
the events in B happens can be bounded as follows:

Pr

[

m
⋃

i=1

Bi

]

≤
m
∑

i=1

Pr [Bi ] (4)

This bound is tremendously helpful when dealing with a
polynomial number of bad events, say nc many, that do not
happen with high probability, say 1 − nc

′
for some tunable

constant c′. If we choose this constant c′ big enough, the
union bound trivially implies that the probability of any bad
event happening is n−c′′

for a constant c′′ := c′ − c. Thus,
if we can show that a specific event holds for a single node
w.h.p., the union bound implies that it holds for all nodes
w.h.p. However, if the number of events in question is super-
polynomial, i.e., bigger than nc for any constant c, the union
bound alone is not enough to show that these events do not
happenw.h.p. In this work, we need tomake some statements
about events that correlate to all possible subsets of nodes of
a random graph. Since there are exponentially many of these
subsets, we need to apply the union bound more carefully.
Indeed, we can show the following technical lemma:

Lemma 2.4 (Cut-based union bound) Let G := (V , E) be a
(multi-)graph with n nodes and m edges and let B := {BS |
S ⊆ V ∧ |S| ≤ n/2} a set of bad events.

Suppose that the following three properties hold:

1. G has at most m ∈ O(nc1) edges for some constant
c1 > 1.

2. For eachBS it holdsPr [BS] ≤ e−c2OS for some constant
c2 > 0.

3. The minimum cut of G is at least � := 4 c1
c2
c3 log n edges

for some tunable constant c3 > 1.

Then, the probability any of the events in B happens can be
bounded by:

Pr

[

⋃

S⊂V

BS

]

≤ n−c3 (5)

In other words, w.h.p. no event from B occurs.

Proof The core of this lemma is a celebrated result of Karger
[36] that bounds the number of cuts (and therefore the number
of subsets S ⊂ V with |S| ≤ n/2 as one side of each cut must
have fewer than n/2 nodes) with at most α� outgoing edges
by O(n2α). More precisely, it holds:
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Theorem 2.1 (Theorem 3.3 in [36], simplified) Let G be an
undirected, unweighted (multi-)graph and let � > 1 be the
size of a minimum cut in G. For an even parameter α ≥ 1,
the number of cuts with at most α� edges is bounded by n2α .

Thus, if the probability of a bad event for a set S expo-
nentially depends on OS (and not some constant c), a careful
application of the union bound will give us the desired result.
The idea behind the proof is to divide all subsets into groups
based on the number of their outgoing edges. Then, we use
Karger’s Theorem to bound the number of sets in a group
and use the union bound for each group individually.

More precisely, let Pow(V ) denote all possible subsets of
V . Then, we define Sα ∈ Pow(V ) to be the set of all sets that
have a cut of size c ∈ [α�, 2α�). Using this definition, we
can show that the following holds by using the union bound
and regrouping the sum:

Pr [B] ≤
∑

S⊂V

Pr [BS] ≤
m
�
∑

α=1

∑

S∈Sα

Pr [BS | S ∈ Sα] (6)

Note that the upper limit m
�
of the outermost sum is derived

from the fact that at most m edges may cross any cut in the
graph. Further note that that for each α > 1 it holds that
Sα ⊂ {S ⊂ V | OS ≤ 2α�} by definition and therefore
|Sα| ≤ |{S ⊂ V | OS ≤ 2α�}| Now we can apply Theorem
2.1 and see that

Pr [B] ≤
m
�
∑

α=1

∑

S⊂V ,OS≤2α�

Pr [BS | S ∈ Sα] (7)

≤
m
�
∑

α=1

n2·(2α) max
S⊂V ,OS≤2α�

Pr [BS | S ∈ Sα] (8)

≤
m
�
∑

α=1

n2·(2α) max
S⊂V ,OS≤2α�

Pr [BS | OS ≥ α�] (9)

≤
m
�
∑

α=1

n2·(2α)e−c2�α (10)

Here, inequality (8) followed from Theorem 2.1, everything
else from the definition of Sα and BS . Finally, our specific
choice of � ≥ 4 c1

c2
c3 log n comes into play. Plugging it into

the exponent of our bound, we get:

Pr [B] ≤
m
�
∑

α=1

n2·(2α)n−4c1·c3α (11)

≤
m
�
∑

α=1

n−c1c3 ≤ m

�
n−c1c3 (12)

To complete the proof, we need to bound m
�
. Per definition,

it holds that m ≤ nc1 . Back in the formula, we get

Pr [B] ≤ m

�
n−c1c3 ≤ nc1

�
n−c1c3 ≤ 1

�
nc3 < n−c3 (13)

This proves the lemma. ��

2.3 Randomwalks on regular graphs

Finally, we observe the behavior of (short) random walks on
regular graphs and establish useful definitions and results.
Starting with the most basic definition, a random walk on
a graph G := (V , E) is a stochastic process (vi )i∈N that
starts at some node v0 ∈ V and in each step moves to some
neighbor of the current node. If G is 	-regular, the proba-
bility of moving from v to its neighbor w is e(v,w)/	. Here,
e(u, w) denotes the number of edges between u and w as G
is a multigraph. We say that a 	-regular graph G (and the
corresponding walk on its nodes) is lazy if each node has at
least 	

2 self-loops (and therefore a random walk stays at its
current node with probability at least 1/2 in each step). For
v,w ∈ V let X�

v(w,G) be the indicator for the event that an
�-step random walk in G which started in v ends in w. Anal-
ogously, let X1

v(w,G�) be the indicator that a 1-step random
walk in G� which started in v ends in w. If we consider a
fixed node v that is clear from the context, we may drop the
subscript and write X1(w,G�) instead. Further, let P�(v,w)

be the exact number of walks of length � between v and w in
G. Note that it holds P1(v,w) = e(v,w). Given these def-
initions, the probability to move from v to w in G� is given
by the following lemma:

Lemma 2.5 Let G be a 	-regular graph and G� its �-walk
graph for some � > 1 , then it holds:

Pr
[

X1(w,G�)
]

= Pr
[

X�(w,G)
]

= P�(v,w)

	�
(14)

Proof The statement can be proved via an induction over �,
the length of the walk. For the base case, we need to show
that 1-step random walk in G is equivalent to picking an out-
going edge in G1 := G uniformly at random. This follows
trivially from the definition of a random walk. Now suppose
that performing an (� − 1)-step random walk in G is equiv-
alent to performing a 1-step walk in G�−1. Consider a node
w ∈ V and let Nw denote its neighbors in G and witself. By
the law of total probability, it holds:

Pr
[

X�(w,G) = 1
]

(15)

:=
∑

u∈Nw

Pr
[

X�−1(u,G) = 1
]

(16)

· Pr
[

X�(w,G) = 1 | X�−1(u,G) = 1
]

(17)
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Using the induction hypothesis we we can substitute
Pr
[

X�−1(u,G) = 1
]

for Pr
[

X1(u,G�−1) = 1
]

and get:

Pr
[

X�(w,G) = 1
]

(18)

:=
∑

u∈Nw

Pr
[

X�−1(u,G) = 1
]

(19)

· Pr
[

X�(w,G) = 1 | X�−1(u,G) = 1
]

(20)

=
∑

u∈Nw

P�−1(v, u)

	�−1 (21)

· Pr
[

X�(w,G) = 1 | X�−1(u,G) = 1
]

(22)

Recall thatG is a multigraph, and there can be more than one
edge between each u andw and e(u, w) denote the number of
edges between u and w for every u ∈ Nw. Since we defined
that w ∈ Nw, the value e(w,w) counts w’s self-loops. Since
G is 	-regular, the probability that a random walk at node u
moves to w is exactly e(u,w)

	
. Back in the formula, we get:

Pr
[

X�(w,G) = 1
]

(23)

=
∑

u∈Nw

P�−1(v, u)

	�−1 (24)

· Pr
[

X�(w,G) = 1 | X�−1(u,G) = 1
]

(25)

=
∑

u∈Nw

P�−1(v, u)

	�−1

e(u, w)

	
(26)

= 1

	�

∑

u∈Nw

P�−1(v, u) · e(u, w) (27)

Finally, note that
∑

u∈Nw
P�−1(v, u)·e(u, w) counts all paths

of length exactly � from v to w in G. This follows because
each path P := (e1, . . . , e�) from u tow can be decomposed
into a path P ′ := (e1, . . . , e�−1) of length � − 1 to some
neighbor of w (or w itself) and the final edge (or self-loop)
e�. Thus, it follows that:

Pr
[

X�(w,G) = 1
]

(28)

= 1

	�

∑

u∈Nw

P�−1(v, u) · e(u, w) (29)

= P�(v,w)

	�
= Pr

[

X1(w,G�) = 1
]

(30)

This was to be shown.
��

In other words, the multigraphG� is	�-regular and has edge
(v,w) for every walk of length � between v and w.

Our analysis will heavily rely on the conductance of the
communication graph. The conductance of set S ⊂ V is the

ratio of its outgoing edges and all its edges. The conductance

G of a graph G is the minimal conductance of every subset
that contains less than n/2 nodes. Formally, the conductance
is defined as follows:

Definition 1 (Conductance) LetG := (V , E) be a connected
	-regular graph and S ⊂ V with |S| ≤ |V |

2 be any subset ofG
with at most half its nodes. Then, the conductance 
G(S) ∈
(0, 1) of S is


G(S) := |{(v,w) ∈ E | v ∈ S, w /∈ S}|
	|S| = OS

	|S| . (31)

We further need the notion of small-set conductance,which is
a natural generalization of conductance. Instead of denoting
theminimum conductance of all sets smaller than n/2, small-
set conductance only considers sets of size δ|V |

2 for any δ ∈
(0, 1]. Analogous to the conductance, it is defined as follows:

Definition 2 (Small-set conductance) Let G := (V , E) be a
connected 	-regular graph and S ⊂ V with |S| ≤ δ|V |

2 be
any subset of G. The small-set conductance 
δ of G is


δ(G) := min
S⊂V ,|S|≤ δ|V |

2


(S). (32)

We further need twowell-known facts about the conductance.
First, we see that we can relate the minimum conductance of
a 	-regular graph to its minimum cut. It holds:

Lemma 2.6 (Minimum conductance) Let G := (V , E) be
any 	-regular connected graph with minimum cut � ≥ 1.
Then for all δ ∈ (0, 1] it holds:


δ(G) ≥ 2�

	δn
. (33)

Proof Consider the set S with |S| ≤ δn
2 that minimizes
(S′)

among all sets |S′| ≤ δ
2n. Then, it holds by the definition


δ(G), S and � that:


δ(G) := min
S′⊂V ,|S′|≤ δ|V |

2


(S′) (34)

:= 
(S) := OS

	|S| (35)

≥ 2OS

	δn
�As |S| ≤ δ

2
n (36)

≥ 2�

	δn
�As |OS| ≥ � (37)

��
Second, we show that a constant conductance implies a log-
arithmic diameter if the graph is regular. It holds:
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Lemma 2.7 (High conductance implies low diameter) Let
G := (V , E) be any lazy bi-directed 	-regular graph
with conductance 
, then the diameter of G is at most
O(
−2 log n).

Proof Wewill prove this lemma by analyzing the distribution
of random walks on G. Let v,w ∈ V be two nodes of G and
let � > 0 be an integer. We denote p�(v,w) ∈ [0, 1] as
the probability that an �-step random walk that starts in v,
ends in w. Note that p�(v,w) > 0 implies that there must
exist path of length � from v to w. Following this argument,
if it holds p�(v,w) > 0 for all pairs v,w ∈ V , then the
graph’s diameter must be smaller or equal to �. Thus, in the
following, we will show that for � ∈ �(
−2

G log n) we have
p�(v,w) > 0 for all pairs of nodes. First, we note that a
sharp upper bound on the probabilities also implies a lower
bound.

Claim 1 Let v ∈ V be a node with p�(v,w) ≤ 1
n + 1

n2
for

all w ∈ V . Then, it holds

p�(v,w) ≥ 1

n2
(38)

Proof As each random walk must end some node w ∈ V ,
we have:

∑

w∈V
p�(v,w) = 1 (39)

Together with our upper bound of 1
n + 1

n2
, we can now derive

the following lower bound

p�(v,w) = 1 −
∑

u∈V \{w}
p�(v, u) (40)

≥ 1 −
∑

u∈V \{w}

(

1

n
+ 1

n2

)

(41)

= 1 −
(

n − 1

n
+ n − 1

n2

)

(42)

= 1 −
(

1 − 1

n
+ 1

n
− 1

n2

)

(43)

= 1

n2
(44)

��
Thus, a low enough maximal probability implies a positive
lower bound. Our next goal is to find such a precise upper
bound. We will use well-known concepts from the analysis
of Markov chains to do this. We define π := (πv)v∈V as
the stationary distribution of a random walk on G. For any
	-regular graph, it holds:

πv := dv

|E | = 	

	n
= 1

n
(45)

For a connected, bidirected, non-bipartite graph, the distri-
bution of possible endpoints of a random walk converges
towards its stationary distribution. For a fixed �, we define
the relative pointwise distance as:

ρG(�) := max
v,w∈V

{

p�(v,w) − πw

πw

}

(46)

This definition describes how far the distribution is from the
stationary distribution after � steps. Given this definition, it
is easy to see that the following claim holds:

Claim 2 Suppose that ρG(�) < 1
n , then it holds for all v,w ∈

V that

p�(v,w) ≤ 1

n
+ 1

n2
(47)

Proof For contradiction, assume that the statement is false.
Then, there is a pair v′, w′ ∈ V with

p�(v′, w′) = 1

n
+ c

n2
(48)

for some c > 1. Further, it must hold that

ρG(�) := max
v,w∈V

{

p�(v,w) − πw

πw

}

(49)

≥ p�(v′, w′) − πv,w

πv,w

(50)

= p�(v′, w′) − 1
n

1
n

(51)

=
1
n + c

n2
− 1

n
1
n

= c

n
(52)

>
1

n
> ρG(�). (53)

This is the desired contradiction. ��
Thus, we will determine an upper bound for ρG(�) in the
remainder. In an influential article, Jerrum and Sinclair
proved that relative pointwise distance after � steps is closely
tied to the graph’s conductance. In particular, they showed
that:

Lemma 2.8 (Theorem 3.4 in [54], simplified) Let G be lazy,
regular, and connected. Further, let π be its stationary dis-
tribution of a random walk. Then for any node v ∈ V , the
relative pointwise distance satisfies

ρG(�) ≤

(

1 − 
2
G
2

)�

π∗ (54)

With π∗ := maxv∈V {πv}
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In the original lemma, the underlying Markov chain must
be ergodic, i.e., every state is reachable from every other
state, and time-reversible, i.e., it holds p�(v,w) = p�(w, v).
The first property is implied by the fact that the graph is
connected, so every node is reachable. The latter follows
from the facts that the graph is bi-directed and regular, so
it holds p1(v,w) = e(v,w)

	
= e(w,v)

	
= p1(w, v). Further,

note that for our graph, we have π∗ := 1
n . Plugging this and

� := 4
−2 log n in the formula, we get:

ρG(�) ≤

(

1 − 
2
G
2

)�

πv

= n

(

1 − 
2
G

2

)�

(55)

= n

(

1 − 
2
G

2

)4
−2
G log n

(56)

≤ ne−2 log n (57)

≤ 1

n
. (58)

Here, inequality (57) follows from the well-known fact that
(1 − 1/x)x ≤ 1/e for any x > 1.5, which clearly holds as

2

G < 1. Thus, following Claims 1 and 2, all probabilities
are strictly positive after � steps of the random walk and the
diameter must be smaller �. ��

For our analysis, itwill be crucial to observe the (small-set)
conductance of G� for a constant �. However, the standard
Cheeger inequality (see, e.g., [53] for an overview) that is
most commonly used to bound a graph’s conductance with
the help of the graph’s eigenvalues does not help us in deriv-
ing a meaningful lower bound for 
G� . In particular, it only
states that 
G� = �(�
2

G). Thus, it only provides a useful
bound if � = �(
−1

G ), which is too big for our purposes,
as �(
−1

G ) is only constant if 
G is constant. More recent
Cheeger inequalities shown in [42] relate the conductance
of smaller subsets to higher eigenvalues of the random walk
matrix. At first glance, this seems helpful, as one could use
these to show that at least the small sets start to be more
densely connected and then, inductively, continue the argu-
ment. Still, even with this approach, constant length walks
are out of the question as these new Cheeger inequalities
introduce an additional tight O(log n) factor in the approx-
imation for these small sets. Thus, the random walks would
need to be of length �(log n), which is still too much to
achieve our bounds. Instead, we use the following result by
Kwok and Lau [39], which states that 
G� improves even
for constant values of �. Given this bound, we can show that
benign graphs increase their (expected) conductance from
iteration to iteration. In the following, we prove Lemma 2.9
by outlining the proofs of Theorem 1 and 3 in [39]. It holds
that:

Lemma 2.9 (Conductance of G�, based on Theorem 1 and 3
in [39]) Let G = (V , E) be any connected 	-regular lazy
graph with conductance 
G and let G� be its �-walk graph.
For a set S ⊂ G define 
G� (S) as the conductance of S in
G�. Then, it holds:


G� (S) ≥ min

{

1

2
,
1

40

√
�
(G)

}

(59)

Further, if |S| ≤ δn for any δ ∈ (0, 1
2 ], we have


G� (S) ≥ min

{

1

4
,
1

40

√
�
2δ(G)

}

(60)

Proof Before we go into the details, we need another batch
of definitions from the study of random walks and Markov
chains. Let G := (V , E) be a 	-regular, lazy graph and
let AG ∈ R

n×n the stochastic random walk matrix of G.
Each entry AG(v,w) in thematrix has the value e(v,w)

	
where

e(v,w) denotes the number of edges between v and w (or
self-loops if v = w). Likewise A�

G is the randomwalkmatrix

of G� where each entry has value P�(v,w)

	� . Note that both AG

and A�
G are doubly-stochastic, meaning that their rows and

columns sum up to 1. For these types of weighted matrices,
Kwok and Lau define the expansion ϕ(S) of a subset S ⊂ V
as follows:

ϕ(S) = 1

|S|
∑

v∈S,w∈S
AG(v,w) (61)

For regular graphs (and only those), this value is equal to the
conductance 
G(S) of S, which we observed before. The
following elementary calculation can verify this claim:

ϕ(S) = 1

|S|
∑

v∈S,w∈S
AG(v,w) (62)

= 1

|S|
∑

v∈S,w∈S

e(v,w)

	
(63)

=
∑

v∈S,w∈S e(v,w)

	|S| =: 
G(S) (64)

Therefore, the claim that Kwok and Lau make for the expan-
sion also holds for the conductance of regular graphs5. The
proof in [39] is based on the function C (�)(|S|) introduced
by Lovász and Simonovits [44]. Consider a set S ⊂ V ,
then Lovasz and Simonovits define the following curve that

5 Indeed, they explicitly mention that for non-regular graph one could
define a escape probability for which their claimswould hold andwhich
could be used instead of the conductance in our proofs. Nevertheless,
since we only observe regular graphs, we use the notion of conductance
to avoid introducing more concepts.
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bounds the distribution of random walk probabilities for the
nodes of S.

C (�)(|S|) = max
δ0+···+δn=x,0≤δi≤1

n
∑

i=1

δi (A
� pS)i (65)

Here, the vector pS is the so-called characteristic vector of S
with pi = 1

|S| for each vi ∈ S and 0 otherwise. Further, the

term (A� p)i denotes the i th value of the vector A� pS . Lovász
and Simonovits used this curve to analyze the mixing time of
Markov chains. Kwok and Lau now noticed that it also holds
that:

Lemma 2.10 (Lemma 6 in [39]) It holds:


G� (S) ≥ 1 − C (�)(|S|) (66)

Based on this observation, they deduce that a bound for 1 −
C (�)(S) doubles as a bound for 
G� . In particular, they can
show the following bounds for C (�)(|S|):
Lemma 2.11 (Lemma 7 in [39]) It holds

C (�)(|S|) ≤ 1 − 1

20

(

1 − (1 − 
G)
√

�
)

(67)

We refer the interested reader to Lemma 7 of [39] for the full
proof with all necessary details. For the next step, we need
the following well-known inequality:

Lemma 2.12 For any t > 1 and z ≤ 1
2 , it holds:

(1 − z)t ≤ 1 − 1

2
zt (68)

Now assume that G does not already have a constant con-
ductance of 
(G) = 1

2 . Plugging this assumption and the
two insights by Kwok and Lau together, we get


G� (S) ≥ 1 − C (�)(|S|) �By Lemma 2.10

(69)

≥ 1

20

(

1 − (1 − 
G)
√

�
)

�By Lemma 2.11

(70)

≥ 1

20

(

1 − (1 − 1

2

√
�
G)

)

(71)

=
√

�

40

G (72)

The last inequality follows from the fact that
√

�
G is atmost
1
2 . The second part of the theorem can be derived similarly.
Again, we observe an auxiliary lemma by Kwok and Lau and
see:

Lemma 2.13 (Lemma 10 in [39]) Let S be set of size at most
δn with δ ∈ [0, 1

4 ). Then, it holds:

C (�)(|S|) ≤ 1 − 1

20

(

1 − (1 − 2
2δ(G))
√

�
)

(73)

Proof Analogously to theprevious case,weget for
2δ(G) ≤
1
4 that


G� (S) ≥ 1 − C (�)(|S|) �By Lemma 2.10

(74)

≥ 1

20

(

1 − (1 − 2
2δ(G))
√

�
)

�By Lemma 2.13

(75)

≥ 1

20
(1 − (1 − 2
2δ(G))) (76)

=
√

�

20

2δ(G) ≤

√
�

40

2δ(G) (77)

In the last inequality, we used Lemma 2.12 with z =
2
2δ(G). ��
Finally, these two lower bounds are too loose for graphs
(and subsets) that already have good conductance. Instead
we require that 
G� (S) is at least as big as 
G(S). Note
that this is not necessarily the case for all graphs. Instead, we
must use the fact that our graphs are lazy. We show this in
the following lemma:

Lemma 2.14 Let G := (V , E) be any connected 	-regular
lazy graph with conductance 
G and let G� be its �-walk
graph. For a set S ⊂ G define 
G� (S) the conductance of S
in G�. Then, it holds:


G� (S) ≥ 
G(S) (78)

Proof Our technical argument is based on the following
recursive relation between C (�+1) and C (�), which was (in
part) already shown in [44]: ��
Lemma 2.15 (Lemma 1.4 in [44]) It holds

C (�+1)(|S|) ≤1

2

(

C (�)(|S| + 2
G ˆ|S|) (79)

+ C (�)(|S| − 2
G ˆ|S|)) (80)

Here, we use the abbreviation ˆ|S| := max{|S|, n − |S|}. The
remainder of the proof is based on two claims. First, we claim
that C (�)(|S|) is monotonically increasing in �.

Claim 3 It holds C (�)(|S|) ≤ C (�−1)(|S|)
Proof This fact was already remarked in [44] based on an
alternative formulation. However, given thatC (�) is concave,
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it holds that for all values γ, β ≥ 0 with γ ≤ β that

C (�)(S + β Ŝ) + C (�)(|S| − β Ŝ) (81)

≤ C (�)(S + γ ˆ|S|) + C (�)(|S| − γ ˆ|S|) (82)

And thus, together with Lemma 2.15, we get:

C (�)(|S|) ≤ 1

2

(

C (�−1)(|S| + 2
G |Ŝ|) (83)

+ C (�−1)(|S| − 2
G |Ŝ|)) (84)

≤ 1

2

(

C (�−1)(|S| + 0 · |Ŝ|) (85)

+ C (�−1)(|S| − 0 · |Ŝ|)) (86)

= C (�−1)(|S|) (87)

Here, we chose β = 2
G and γ = 0 and applied Eq. 81.
This proves the first claim. ��

Second, we claim that C (1))(|S|) is equal to 1 − 
G(S) as
long as the graph we observe is lazy.

Claim 4 It holds C (1)(|S|) = 1 − 
G(S)

Proof For this claim (whichwas not explicitly shown in [39],
but implied in [44]) we observe

C (1)(S) = max
δ0+···+δn=x,0≤δi≤1

n
∑

i=1

δi (AG pS)i (88)

and find the assignment of the δ’s that maximizes the sum.
Lovasz andSimonovits already remarked that it ismaximized
by setting δi = 1 for all vi ∈ S. However, we prove it here
since there is no explicit lemma or proof to point to in [44].
First, we show that all entries (AG pS)i for nodes vi ∈ S are
least 1

2|S| and all entries (AG pS)i ′ for nodes vi ′ /∈ S are at

most 1
2|S| . We begin with the nodes in S. Given that G is

	-regular and lazy, we have for all vi ∈ S that

(AG pS)i =
n
∑

j=1

AG(vi , v j )pS j (89)

≥ AG(vi , vi )pSi (90)

≥ 1

2|S| . (91)

Here, pSi = 1
|S| follows because vi ∈ S per definition. The

inequality AG(vi , vi ) ≥ 1
2 follows from the fact that A is

lazy and each node has a self-loop with probability 1
2 . As a

result, the entry (AG pS)i for vi ∈ S has at least a value of
1

2|S| , even if it has no neighbors in S. On the other hand, we

have for all nodes vi ′ /∈ S that

(AG pS)i ′ =
n
∑

j=1

AG(v j , vi ′)p j (92)

=
∑

v j∈S
AG(vi ′ , v j )

1

|S| (93)

This follows from excluding all entries p j with v j /∈ S. Note
that for these values, it holds p j = 0. Further, Since A is
	-regular and lazy, each node vi ′ /∈ S has at most 	

2 edges
to nodes in S.

(AG pS)i ′ =
∑

v j∈S
AG(vi , v j )

1

|S| (94)

≤ 	

2

1

	

1

|S| = 1

2|S| (95)

Thus, the corresponding value (AG pS)i of any vi ∈ S is at
least as big as value (AG pS)i ′ of vi ′ /∈ S. By a simple greedy
argument, we now see that

∑n
i=1 δi (A� pS)i is maximized by

picking δi = 1 for all nodes in S: To illustrate this, suppose
that there is a choice of the δ’s such that

∑n
i=1 δi (AG ps)i

is maximized and it holds δi < 1 for some vi ∈ S. Since
no δ can be bigger than 1 and the

∑n
i=1 δi = |S| there must

be a vi ′ /∈ S with δi ′ > 0. Since (AG pS)i ≥ (AG pS)i ′
decreasing δi ′ and increasing δi does not decrease the sum.
Thus, choosing δi = 1 for all vi ∈ S must maximize the term
∑n

i=1 δi (AG ps)i . This yields:

n
∑

i=1

δi (AG pS)i =
∑

vi∈S

∑

v j∈S
AG(vi , v j )

1

|S| (96)

= 1

|S|
∑

vi∈S

e(vi , v j )

	
(97)

= 	|S| − OS

	|S| (98)

= 1 − OS

	|S| = 1 − 
G(S) (99)

Here, the value OS denotes the edges leaving S. Given that
the graph is 	-regular, the term 	|S| − OS counts all edges
in S. This was to be shown. ��

If we combine our two claims, the lemma follows. ��
Thus, 
G� (S) is at least as big as 
G(S). Together with

the previous lemmas, this proves Lemma 2.9. ��

3 The overlay construction algorithm

In this section, we present our algorithm to construct a well-
formed tree in O(log n) time, w.h.p., and give the proof to
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establish the correctness of Theorem 1.1. To the best of our
knowledge, our approach is different from all previous algo-
rithms for our problem [3,4,30,31] in that it does not use
any form of clustering to contract large portions of the graph
into supernodes. On a high level, our algorithm progresses
through O(log n) iterations, where the next graph is obtained
by establishing randomedges on the current graph.More pre-
cisely, each node of a graph simply starts a few randomwalks
of constant length and connects itself with the respective end-
points. The next graph only contains the newly established
edges.Wewill show that after O(log n) iterations of this sim-
ple procedure, we reach a graphwith diameter O(log n). One
can easily verify that this strategy does not trivially work on
any graph, as the graph’s degree distributions and other prop-
erties significantly impact the distribution of random walks.
However, as it turns out, we only need to ensure that the ini-
tial graph has some nice properties to obtain well-behaved
randomwalks.More precisely, throughout our algorithm, we
maintain that the graph is benign, whichwe define as follows.

Definition 3 (Benign graphs) Let G := (V , E) be a simple
undirected graph and � ∈ �(log n) and 	 ≥ 64� be two
values (with big enough constants hidden by the�-Notation).
Then,we callG benign if and only if it has the following three
properties:

1. (G is 	-regular) Every node v ∈ V has exactly 	 in-
and outgoing edges (which may be self-loops).

2. (G is lazy)Every node v ∈ V has at least 1/2	 self-loops.
3. (G has a �-sized minimum cut) Every cut c(S, S) with

S ⊂ V has at least � edges.

The properties of benign graphs are carefully chosen to be
as weak as possible while still ensuring the correct execution
of our algorithm. A degree of 	 ∈ �(log n) is necessary to
keep the graph connected. If we only had a constant degree, a
standard result from randomgraphs implies that, w.h.p., there
would be nodes disconnected from the graph when sampling
new neighbors. If the graphs were not lazy, many theorems
from the analysis of Markov chains would not hold as the
graph could be bipartite, which would greatly complicate the
analysis. This assumption only slows down randomwalks by
a factor of 2. Lastly, the �-sized cut ensures that the graph
becomes more densely connected in each iteration, w.h.p. In
fact, with constant-sized cuts, we cannot easily ensure this
property when using random walks of constant length.

3.1 Algorithm description

Wewill nowdescribe the algorithm inmore detail. Recall that
throughout this section, we will assume the P2P-CONGEST
model. Further, we assume that the initial graph has maxi-
mum degree d and is connected. Given these preconditions,

the algorithm has four input parameters �,	,�, and L
known to all nodes. Recall that L ∈ �(log n) is an upper
bound on log n and determines the runtime. The value � ∈
�(1) denotes the length of the random walks, 	 ∈ O(log n)

is the desired degree, and� ∈ O(log n) denotes the (approx-
imate) size of the minimum cut. All of these parameters
are tunable and the hidden constants need to be chosen big
enough for the algorithm to succeed, w.h.p. In particular, the
value of�will determine the success probability.We discuss
this in more detail in the analysis.

Our algorithm consists of three stages. In the first stage,
we ensure that the initial graph is benign by adding additional
edges to each node. In the second stage, which is the main
part of the algorithm, we continuously increase the graph’s
conductance to random walks while assuring that it stays
benign. Finally, in the last stage, we exploit the graph’s loga-
rithmic diameter to construct a well-formed tree in O(log n)

time. This phase primarily uses techniques from [3,4,30,31].
We now describe each phase in more detail.

Stage 1: Initialization
Before the first iteration, we need to prepare the initial com-
munication graph to comply with parameters 	 and �, i.e.,
we must turn it into a benign graph. W.l.o.g., we can assume
thatG is a simple bidirected graph.Otherwise, all of itsmulti-
edges can bemerged into a single edge, and all directed edges
(v,w) ∈ E can be bi-directed by sending v’s identifier to
w. Next, we deal with the graph’s regularity. Arguably, the
easiest way to make a graph of maximum degree d regular
is adding d − d(v) self-loops to each node v ∈ V , so all
nodes have the same degree. However, this is not possible
in general, as in our model, each node can only send and
receive O(d(v) log n) messages per round, which might be
lower than d. Thus, we need another approach. For this, we
need the concept of virtual nodes V ′, which are simulated by
the nodes of graph G. A virtual node v′ ∈ V ′ is simulated
by v ∈ V and has its own virtual identifier of size O(log n).
This virtual identifier consists of the original node’s identifier
combinedwith a locally unique identifier. For the simulation,
any message intended for v′ will first be sent to v (using v’s
identifier) and then locally passed to v′. Given this concept,
we show that the node in graph G := (V , E) can simulate
a graph G ′ := (V ′, E ′) with |V ′| = 2|E | that only consists
of virtual nodes and edges between them. We construct V ′
through the following process:

1. First, For each edge {v,w} ∈ E both v and w create and
simulate virtual nodes v′ and w′ and add them to V ′.

2. Second, v and w connect the virtual nodes v′ and w′ via
an edge {v′, w′} by exchanging the respective identifiers.
This ensures that for each edges (v,w) ∈ E , there is an
edge (v′, w′) ∈ E ′.
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Fig. 1 Pseudocode for our main
algorithm

3. Finally, all virtual nodes of a real node v are connected in
a cycle. For this, v first sorts its virtual nodes in an arbi-
trary order v′

1, . . . , v
′
d(v). Then, it adds bidirected edges

between v1 and vd(v) and every consecutive pair of nodes
in the order.

The resulting graph G ′ is connected and each node v′ ∈ V ′
has at most 3 edges. To be precise, it has exactly one edge to
another virtual nodew′ ∈ V ′ simulated by v 
= w ∈ V and at
most two connections to the predecessor and successor in the
cycle of virtual nodes simulated by v. Further, each original
node simulates exactly d(v) virtual nodes, so as long as each
virtual node receives at most O(log n) messages (which is
the case in our algorithm), this is possible in ourmodel. Later,
we will show how to revert the simulation and obtain a well-
formed tree for the original node set V .

Given that the graph is regular, we need to increase its
degree and minimal cut. Since the input graph has a max-
imum degree of 3, this is quite simple as we can assume
6� ≤ 	 by choosing 	 big enough. Given this assumption,
the graph can be turned benign in 2 steps:

1. First, all edges are copied � times to obtain the desired
minimum cut. After this step, each node has at least �

edges to other nodes and at least � edges cross each cut.
2. Then, each node adds self-loops until its degree is 	 and

each node has 	
2 self-loops. As we chose 6� ≤ 	, this

is always possible.

Thus, the resulting graph is benign. Further, note that the
resulting graph is a multi-graph while G is a simple graph.

Stage 2: Construction of a Low Diameter Overlay
Let now G0 = (V ′, E0) be the resulting benign graph.
The algorithm proceeds in iterations 1, . . . , L . In each itera-
tion, a new communication graph Gi = (V ′, Ei ) is created
through sampling 	

8 new neighbors via random walks of
length �. Each node v ∈ V ′ creates 	

8 messages contain-
ing its own identifier, which we call tokens. Each token is
randomly forwarded for � rounds in Gi . More precisely,
each node that receives a token picks one of its incident

edges in Gi uniformly at random and sends the token to
the corresponding node.6 This happens independently for
each token. If v receives less than 3

8	 tokens after � steps, it
sends its identifier back to all the tokens’ origins to create
a bidirected edge. Otherwise, it picks 3

8	 tokens at ran-
dom (without replacement)7. Since the origin’s identifier is
stored in the token, both cases can be handled in one com-
munication round. Finally, each node adds self-loops until
its degree is 	 again. The whole procedure is given in Fig. 1
as the method CreateExpander(G0, �,	,�, L). The sub-
routineMakeBenign(G0, �,	,�) add edges and self-loops
to make the graph comply with Definition 3 (i.e., it imple-
ments the first stage). Our main observation is that after
L = O(log n) iterations, the resulting graph GL has con-
stant conductance, w.h.p., which implies that its diameter is
O(log n). Furthermore, the degree of GL is O(	) by con-
struction. Finally, if we add any virtual nodes in the first
stage, we can now merge them back into a single node (with
all connections of all its virtual nodes). For this, we sim-
ply transform each edge (v′, w′) ∈ EL between two virtual
nodes v′, w′ to an edge (v,w) between two original nodes
v,w ∈ V . This produces a graph with the same degree distri-
bution as G and can only decrease the diameter further. We
denote this graph as G ′

L .

Stage 3: Finalization
To obtain a well-formed tree TG , perform a BFS onG ′

L start-
ing from the node with the lowest identifier. Since a node
cannot locally check whether it has the lowest identifier, the
implementation of this step is slightly more complex. The
algorithm proceeds for L ∈ O(log n) rounds. In the first
round, every node creates a token message that contains its
identifier. Then, it sends the token to all its neighbors. For all
remaining rounds 1, . . . , L , every node that receives one or
more tokens only forwards the token with the lowest identi-
fier to all its neighbors and drops all others. Since the graph’s
diameter is O(log n), all nodes must have received the low-

6 We will show that each node only sends and receives at most O(	)

tokens in each round, w.h.p.
7 We will see, however, that this case does not occur w.h.p.
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est identifier at least once after these L ∈ O(log n) rounds.
Finally, each node v marks the edge (v,w) over which it first
received the token with the lowest identifier. Ties can be bro-
ken arbitrarily. If the node itself has the smallest identifier, it
does not mark any edge. All marked edges then constitute a
tree T with degree O(	) and diameter O(log n). Note that
this process requires O(	) messages per node and round,
as each node sends at most one token to all its neighbors
per round. To transform this tree T into a well-formed tree,
we perform the merging step of the algorithm of [30, Theo-
rem 2]. This deterministic subroutine transforms any tree of
degree O(	) into a well-formed tree of degree O(log n) in
O(log n) rounds.

Tomake this article self-contained,we sketch the approach
of [30, Theorem 2] in the remainder. The algorithm first
transforms T into a constant-degree child-sibling tree [4],
in which each node arranges its children as a path and only
keeps an edge to one of them. For each inner node w ∈ V let
w1, . . . , wd+(w) denote its children in T sorted by increasing
identifier. Now v only keeps the child with the lowest iden-
tifier and delegates the others as follows: Each wi ∈ N (w)

with i > 1 changes its parent to be its predecessor wi−1

on the path and stores its successor wi+1 as a sibling (if it
exists). In the resulting tree, each node stores at most three
identifiers: a parent and possibly a sibling and a child. Since
we can interpret the sibling of a node as a second child, we
obtain a binary tree. This transformation takes O(1) rounds
and requires O(	) communication as each node needs to
send two identifiers to its children.

Note that the tree’s diameter has now been increased by
a factor of O(	). Based on this binary tree, we construct a
ring of virtual nodes using the so-called Euler tour technique
(see, e.g., [20,30,56]). Consider the depth-first traversal of the
tree that visits the children of each node in order of increasing
identifier. A node occurs at most three times in this traversal.
Let each node act as a distinct virtual node for each such
occurrence and let k ≤ 3n be the number of virtual nodes.
More specifically, every node v executes the following steps:

1. v creates virtual nodes v0, . . . , vd(v)−1 where vi has the
virtual identifier id(vi ) := v ◦ i . Intuitively, the node
v0 corresponds to the traversal visiting v from its parent.
Analogously, each vi is the visit from child wi .

2. v sends the identifier of v0 and vd(v)−1 to its parent. Note
that v0 and vd(w)−1 may be the same virtual node if v has
no children.

3. Let w0
i and w

d(w)−1
i be the identifier received from wi ,

i.e., the i th child of v. Then v sets w0
i as the successor

of vi−1 and w
d(w)−1
i as the predecessor of vi . In other

words, vi−1 and vi are connected to the first and last
virtual node of wi .

4. Finally, each virtual node introduces itself to its prede-
cessor and successor.

Therefore, the nodes can connect their virtual nodes into
a ring in O(1) rounds by sending at most two messages
per edge in each round. Next, we use the Pointer jumping
technique (see, e.g., [20,30,56]) to quickly add chords (i.e.,
shortcut edges) to the ring. To be precise, the virtual nodes
execute the following protocol for L ∈ O(log n) rounds:

1. Let l0 and r0 be the predecessor and successor of v in the
ring. In the first round of pointer jumping, v sends l0 to
r0 and vice versa.

2. In round t > 0, each node receives an identifier lt−1 and
rt−1 sent in the previous round. It sets lt to the identifier
received from lt−1 and rt to the identifier received from
rt−1. Finally, it sends lt to rt and vice versa.

A simple induction reveals that the distance between these
neighbors (w.r.t the ring) doubles from round to round (until
the distance exceeds the number of virtual nodes k). Based
on this observation, it is not hard to show that after the L
rounds, the graph’s diameter has reduced to O(log n) while
the degree has grown to O(log n). A final BFS from the node
of the lowest identifier then yields our desired well-formed
tree TG , which concludes the algorithm.

With further techniques that exploit the structure of the
chords, the degree can be reduced to 6. For details, we refer
to [30, Theorem 2]. Another possibility to achieve a constant
degree is the algorithm by Aspnes and Wu [4]. This algo-
rithm requires a graph of outdegree 1—which simply is a
by-product of the BFS—and requires O(W + log n) time,
w.h.p. The termW denotes the length of the node identifiers,
which is also O(log n) in our case. Although the algorithm is
simple, elegant, and has the desired runtime, we do not use it
as a black box as it would lead to problems with some appli-
cations. We need to create a well-formed tree for subgraphs
with n′ < n nodes for some of the applications and require
that the runtime is logarithmic in n′ and not n. Without addi-
tional analysis, the algorithm by Aspnes and Wu would still
take O(log n) time, w.h.p., whereas the approach sketched
above always finishes in O(log n′) time.

3.2 Analysis ofCREATEEXPANDER

The main challenge of our analysis is to show that after
L ∈ O(log n) iterations, the final graph GL has a diameter
of O(log n). We will conduct an induction over the graphs
G1, . . . ,GL to show this. Ourmain insight is that—given the
communication graph is benign—we can use short random
walks of constant length to iteratively increase the graph’s
conductance until we reach a graph of low diameter. In the
following, we will abuse notation and refer to the virtual
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nodes V ′ used in this stage of the algorithm as V . We show
the following:

Lemma 3.1 Let G0 := (V , E0) a benign (multi-)graph with
n nodes and O(n3) edges. Let L := 3 log n and � :=
6400λ log n for some tunable λ > 1. Then, it holds:

Pr
[


(GL) ≥ 1

32

]

≥ (1 − n−λ
)

(100)

Intuitively, this makes sense as the conductance is a graph
property that measures how well-connected a graph is,
and—since the random walks monotonically converge to
the uniform distribution—the newly sampled edges can only
increase the graph’s connectivity. Our formal proof is struc-
tured into four steps: First, we show that w.h.p. each node
receives and sends at most O(	) messages in each round.
Thus, no messages are dropped during the execution of the
algorithm. With this technicality out of the way, we show
that the conductance of Gi+1 increases by a factor of �(

√
�)

w.h.p. if Gi is benign. Furthermore, we show that each Gi+1

is benign if Gi is benign. Finally, we use the union bound to
tie these facts together and prove Theorem 1.1.

3.2.1 Bounding the communication complexity

Before we go into the proof’s more intricate details, let us
first prove that all messages are successfully sent during the
algorithm’s execution. Remember that we assume the nodes
have a communication capacity ofO(log n). Thus, a node can
only send and receive O(log n)messages as excess messages
are dropped arbitrarily. To prove that no message is dropped,
we must show that no node receives more than O(log n)

random walk tokens in a single step. However, this is a well-
known fact about the distribution of random walks:

Lemma 3.2 (Also shown in [16,18,52]) For a node v ∈ V
and an integer t , let X(v, t) be the random variable that
denotes the number of tokens at node v in round t. Then, it

holds Pr
[

X(v, t) ≥ 3	
8

] ≤ e− 	
12 .

The lemma follows from the fact that each node receives 	
8

tokens in expectation, given that all neighbors received 	
8

tokens in the previous round. This holds because Gi is reg-
ular. Since all nodes start with 	

8 tokens, the lemma follows
inductively. Since all walks are independent, a simple appli-
cation of the Chernoff bound with δ = 2 (cf. Lemma 2.2)
yields the result as

Pr
[

X(v, t) ≥ 3	

8

]

= Pr
[

X(v, t) ≥ (1 + 2)
	

8

]

(101)

≤ e− 2
3

	
8 = e− 	

12 (102)

Note that this Lemma also directly implies that, w.h.p., all
random walks create an edge as every possible endpoint
receives less than 3	

8 token and therefore replies to all of
them. For our concrete value of 	 it holds:

Lemma 3.3 Let 	 ≥ � := 6400λ log n for some tunable
parameter λ > 1. Then, for any round t it holds with proba-
bility at least 1− n−8λ that every node holds fewer than 3

8	

tokens.

Proof This follows directly fromLemma 3.2. Denote X(v, t)
the number of tokens that node v ∈ V receives after t steps.
Consider the event that node v receivesmore than 3

8	 tokens.
Recall that the probability for this event is

Pr
[

X(v, t) ≥ 3

8
	

]

≤ e− 	
12 � By Lemma 3.2 (103)

Now we use that 	 is at least as big as � := 6400λ log n.
Plugging this into the formula yields:

Pr
[

X(v, t) ≥ 3

8
	

]

≤ e− 	
12 (104)

≤ e−9λ log n = n−9λ (105)

Finally, let B the event that any node receives more than 3
8	

tokens. By the union bound, we see

Pr [B] = Pr

[

⋃

v∈V
X(v, �) ≥ 3

8
	

]

(106)

≤
∑

v∈V
Pr
[

X(v, �) ≥ 3

8
	

]

�Union bound

(107)

≤
∑

v∈V
n−9λ ≤ n−8λ �By Equation (104)

(108)

��
Therefore, all nodes receive less than 3	

8 tokens each round
and the algorithm stays within the congestion bounds of our
model with probability 1 − n−8λ. Since all iterations take
� ·L ∈ O(log n) rounds in total, the union bound implies that
no node receives too many messages in any round, w.h.p.

3.2.2 Bounding the conductance of Gi

In this section, we show that the graph’s conductance is
increasing by a factor �(

√
�) from Gi to Gi+1 w.h.p. if Gi

is benign. More formally, we show the following:

Lemma 3.4 Let λ > 0 be a parameter and let Gi and Gi+1

be the graphs created in iteration i and i + 1, respectively.
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Finally, assume that Gi is benign with a minimum cut of at
least � ≥ 6400λ log n and degree 	 > 64�. Then, it holds
with probability at least 1 − n−7λ that


Gi+1 ≥ min

{

1

32
,

1

640

√
�
Gi

}

(109)

In particular, for any � ≥ (2 · 640)2, it holds


Gi+1 ≥ min

{

1

32
, 2 · 
Gi

}

(110)

Our first observation is the fact that randomwalks of length �

are distributed according to 1-step walks in G�
i . In particular,

if we consider a subset S ⊂ V and pick a node v ∈ S
uniformly at random, then 
G�

i
(S) denotes the probability

that a random walk started at v ends outside of the subset
after � steps.

Lemma 3.5 Let G be a 	-regular graph and S ⊂ V be a
any subset of nodes with |S| ≤ n

2 and suppose each node in
S starts 	

8 random walks. Let YS count the �-step random
walks that start at some node in v ∈ S and end at some node
w ∈ V \ S. Then, it holds:

E [YS] := 	|S|
8


G�
i
(S)

Proof First, we observe that we can express YS as the sum
of binary random variables for each walk. For each vi ∈ S
let Y 1

i , . . . ,Yd
i be indicator variables that denote if a token

started by vi ended in S := V \ S after � steps. Given this
definition, we see that

YS :=
|S|
∑

i=1

	
8
∑

j=1

Y j
i . (111)

Recall that an �-step random walk in Gi corresponds to a
1-step random walk in G�

i . This means that for each of its
	
8 tokens node v j picks one of its outgoing edges in G�

i
uniformly at random and sends the token along this edge
(which corresponds to an �-step walk). For ease of notation,
let O�

j be the number of edges of node v j ∈ S in G�
i where

the other endpoint is not in S, i.e.,

O�
j :=

∑

w∈S
P�(v j , w) (112)

Now consider the kth random walk started at v j and observe
Y k
j . Note that it holds:

E[Y j
k (t)] (113)

=
∑

w∈S
Pr
[

X1
v j

(w,G�)
]

· E[Y j
k (t) | X1

v j
(w,G�)] (114)

=
∑

w∈S
Pr
[

X1
v j

(w,G�)
]

(115)

=
∑

w∈S

P�(v j , w)

	�
(116)

= O�
j

	�
(117)

Here, Eq. (116) follows from Lemma 2.5. Let O�
S be the

number of all outgoing edges from the whole set S in G�
i .

It holds that O�
S := ∑v j∈S O

�
j . Recall that the definition of


G�
i
is the ratio of edges leading out of S and all edges with at

least one endpoint in S. Given that G�
i is a 	�-regular graph,

a simple calculation yields:

E [YS] = E

⎡

⎢

⎣

|S|
∑

j=1

	
8
∑

k=1

Y k
j

⎤

⎥

⎦
=

|S|
∑

j=1

	
8
∑

k=1

E

[

Y k
j

]

(118)

= 	

8

∑|S|
i=1 O

�
i

	�
= 	

8

O�
S

	�
�By Eq. (117)

(119)

= 	|S|
8

O�
S

|S|	�
(120)

= 	|S|
8


G�
i
(S) (121)

In the last line , we used that 
G�
i
(S) := O�

S
|S|	� per definition

as O�
S counts the edges with an endpoint outside of S and

|S|	� counts the total number edges with an endpoint in S
as G�

i is a 	�-regular graph. This proves the lemma. ��
Therefore, a lower bound on 
G�

i
gives us a lower bound

on the expected number of tokens that leave any set S. Thus,
as long as Gi is regular and lazy, we have a suitable lower
bound for
G�

i
withLemma2.9. In fact, given that the random

walks are independent, we can even show the following:

Lemma 3.6 Let S ⊂ V be set of nodes with OS outgoing
edges, then it holds:

Pr
[

YS ≤ 	|S|
16


G�
i
(S)

]

≤ e− OS
64 (122)

Proof This follows from the Chernoff bound and the fact that
the random walks are independent. Recall that for each set
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S, the number of outgoing edges YS := ∑s
i=1
∑	/8

k=1 Y
k
i in

Gi+1 is determined by a series independent binary variables.
Thus, by the Chernoff bound, it holds that

Pr [Y ≤ (1 − δ)E[Y]] ≤ e− δ2
2 E[Y]. (123)

By choosing δ = 1/2, we get

Pr
[

Y ≤ 1

2
E[YS]

]

≤ e−E[YS ]
8 . (124)

Therefore, it remains to show that our claim that E[Y] ≥ OS
8

holds, and we are done. By Lemma 3.5 we have for all set
with OS outgoing edges that

E[YS] ≥ 	|S|
8


G�
i
(S) �By Lemma 3.5 (125)

≥ 	|S|
8


Gi (S) � By Lemma 2.14 (126)

≥ 	|S|
8

OS

	|S| ≥ OS

8
� As
(S) := OS

	|S| (127)

This proves the lemma. ��
Recall that we need to show that every subset S ⊂ V with
|S| ≤ n/2 has a conductance of O(

√
�
Gi ) in Gi+1 in order

to prove that
Gi+1 = �(
√

�
Gi ). In the following, wewant
to prove that for every set S, there are at least �(

√
�
Gi )

tokens that start at some node v ∈ S and end at some node
w ∈ S after � steps w.h.p. These tokens are counted by the
random variable YS , which we analyzed above. In particu-
lar, given that a set S has OS outgoing edges, the value of
YS is concentrated around its expectation with probability
e−�(OS). Thus, we can apply Lemma 2.4 and show that—for
a big enough �—all sets have many tokens that escape.

Lemma 3.7 Let Gi be a benign graph with� ≥ 6400λ log n.
Then, it holds

Pr
[

∀S ⊂ V : YS ≥ min

{

	|S|
32

,
	|S|
640

√
�
Gi

}]

(128)

≥ 1 − n−8λ. (129)

Proof For a set S ⊂ V we define BS to be the event that S
has bad conductance, i.e., it holds that YS—the number of

tokens that leave S—is smaller thanmin
{

	|S|
32 ,

	|S|
640

√
�
G

}

.

We let B1 = ⋃S⊂V BS be the event that there exists a set S
with bad conductance, i.e., there is any BS that is true. By
Lemma 3.6, we know that the probability of BS exponen-
tially depends on OS . Thus, we want to use Lemma 2.4 to
that no BS occurs w.h.p. Therefore, we must show that the
three conditions mentioned in the lemma are fulfilled. The
first and third property follow directly from the definition of

benign graphs, as the graph is polynomial in size and has a
logarithmic minimum cut with a tunable constant. For the
concrete constants, it holds:

1. G has at most m ∈ O(nc1) edges for some constant
c1 > 1: Recall that we limited ourselves to simple initial
graphs with O(n2) edges and copied each edge O(�)

times. Since � ∈ o(n), we have strictly less than n3

edges. Thus, we have c1 := 3.
2. For each BS it holds Pr [BS] ≤ e−c2OS for some con-

stant c2 > 0: By Lemma 3.6 a bad event BS for a set

S ⊆ V happens with probability at most e− OS
64 . Thus, we

have c2 := 1
64 .

3. The minimum cut of G is at least � := 4 c1
c2
c3 log n

edges for some tunable variable c3 > 1: Since Gi is
benign, it holds � ≥ 6400λ log n > (4 · 3 · 64) 8λ log n
for a constant λ. Thus, we have c3 := 8λ. Note that λ

is tunable as it can be chosen as high as we want by
constructing a sufficiently large minimum cut in G0 by
creating copies of each initial edge.

Given that all three conditions are fulfilled with constants
c1 = 3,c2 = 1

64 , and c3 = 8λ, Lemma 2.4 implies that it
holds:

Pr

⎡

⎣

⋃

S⊆V

BS

⎤

⎦ ≤ n−c3 := n−8λ (130)

This was to be shown. ��

With this insight, we can now formally prove Lemma 3.4:

Proof of Lemma 3.4 First, we note that if no set S ⊂ V with
|S| ≤ n/2 has less than min

{

	|S|
32 ,

	|S|
640

√
�
Gi

}

tokens that

end outside of S and all tokens are used to create an edge,
then the resulting conductance of Gi+1 must also be at least

min
{

1
32 ,

1
640

√
�
Gi

}

and the lemma follows. This can easily

be verified by observing the algorithm: We note that by con-
struction, the degree can never be higher than 	. Recall that
every node creates its edges for Gi+1 based on the tokens it
received. If any node receives fewer than	 tokens, it creates
self-loops to reach a degree of 	. Excess edges are dropped
arbitrarily to ensure a degree of at most 	. Thus, each set S
maintains 	|S| edges in total, as each node will always have
	 edges regardless of how many tokens it receives. Further,
we let O(i+1)

S be the number of edges that leave S in Gi+1.

Two sets of edges determine the value of O(i+1)
S :

1. The edges that are created by nodes outside S. These are
based on tokens they received fromnodes in S.We denote
these edges by ˜YS .
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2. The edges that are created by nodes in S. These are based
on tokens they received from nodes outside. We do not
make any statements about these edges and ignore them
for the remainder of the proof.

For easier notation, letB1 be the event that each set S ⊂ V has

min
{

	|S|
32 ,

	|S|
640

√
�
Gi

}

tokens that end outside of the set.

Moreover, letB1 be the event that this is not the case. Further,
let B2 be the event that all these tokens are used to create an
edge. Again, let B2 denote the complementary event. Note
that the event B2 directly implies that ˜YS = YS . Given these
facts and definitions, we can use Lemma 3.5 from above and
see that the events B1 and B2 imply that the conductance of

each set is bigger or equal to min

{

1
32 ,

√
�
Gi
640

}

. If they both

occur simultaneously, it holds for each set S ⊂ V :

B1 ∩ B2 (131)

⇒
{

YS ≥ min

{

	|S|
32

,
	|S|√�
Gi

640

}}

∩ {˜YS = YS}
(132)

⇒
{

˜YS ≥ min

{

	|S|
32

,
	|S|√�
Gi

640

}}

(133)

⇒
{

O(i+1)
S ≥ min

{

	|S|
32

,
	|S|√�
Gi

640

}}

(134)

⇒
{

O(i+1)
S

	|S| ≥ min

{

1

32
,

√
�
Gi

640

}}

(135)

⇒
{


Gi+1(S) ≥ min

{

1

32
,

√
�
Gi

640

}}

(136)

Since this implication holds for all sets S ⊂ V , we get:

B1 ∩ B2 ⇒
{


Gi+1 ≥ min

{

1

32
,

√
�
Gi

640

}}

(137)

Therefore, it holds that

Pr

[


Gi+1 ≥
√

�
Gi

640

]

(138)

≥ Pr
[B1 ∩ B2

]

� By Equation (137)
(139)

≥ 1 − (Pr [B1] + Pr [B2]) �Union bound
(140)

≥ 1 −
(

n−8λ + n−8λ
)

� By Lemmas 3.7 and 3.3

(141)

≥ 1 − n−7λ (142)

This proves the lemma. ��

3.2.3 Ensuring that each G_i is benign

Since all the arguments from before only hold ifGi is benign,
we must make sure that each graph in G := G1, . . . ,GL is
indeed benign. As before, we prove this step by step and
show that Gi+1 is benign given that Gi is benign.

Lemma 3.8 Let Gi and Gi+1 be the graphs created in itera-
tion i and i + 1, respectively, and assume that Gi is benign.
Then with probability at least 1 − n−8λ the graph Gi+1 is
also benign

Proof Wewill show that eachGi+1 is a	-regular, lazy graph
with a �-sized cut. Note that the last property also ensures
that Gi+1 is connected. The first property follows directly
from observing the algorithm: Recall that every node creates
its edges forGi+1 based on the tokens it received. If any node
receives fewer than 	 tokens, it creates self-loops to reach a
degree of 	. Excess edges are dropped arbitrarily to ensure
a degree of at most 	. By a similar argument, we can easily
see that Gi+1 lazy. For this, recall that a node connects to
endpoints of all its 	

8 tokens and additionally to the origins
of all (but at most 3	

8 ) tokens it received. Thus, in the worst
case, it creates at most 	

8 + 3	
8 = 	

2 edges. Therefore, it
creates at least 	

2 —and therefore enough—self-loops. The
third property—the �-sized minimum cut—is perhaps the
most difficult to show. However, at a closer look, the proof
is almost identical to the proof of Lemma 3.4. In particular,
we show that all cuts that are close to the minimum cut will
(in expectation and w.h.p.) increase in size in each iteration
and never fall below �. The idea behind the proof uses the
fact that [39] (and therefore Lemma 2.9) gives us a stronger
bound on the expected growth of the subset than just the
conductance. This observation is enough to show that all
sets that have close to � outgoing connections will slightly
increase the number of outgoing connections for a big enough
�. In particular, it holds:

Lemma 3.9 Suppose that � ≥ (2 · 640)2. Then, for any set
S ⊆ V with |S| ≤ n

2 and OS outgoing edges, it holds:

Pr [YS ≤ �] ≤ e− OS
64 (143)

Proof By Lemma 3.6 we have that

Pr
[

Y ≤ 1

2

(

	|S|
8


G�
i
(S)

)]

≤ e
OS
64 .

Thus, it remains to show that for all sets S ⊆ V , it holds:

	|S|
8


G�
i
(S) ≤ 2� (144)
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Consider a set of size |S| := δsn. For this set, it holds:

E[YS] = 	|S|
8


G�
i
(S) ≥ 	|S|

8

δ(G

�
i ) (145)

This follows because
δs (G
�
i ) ≤ 
G�

i
(S) per definition. Due

to Lemma 2.9, we know that we can bound this as follows:

Case 1: δs ≥ 1
4 It holds:


G�,δs
≥ min

{

1

2
,
1

40

√
�
(G)

}

�By Lemma 2.9

(146)

≥ min

{

1

2
,
1

40

√
�
2�

	n

}

� By Lemma 2.6

(147)

≥ min

{

1

2
,
1

40

√
�

�

2	|S|
}

� As|S| ≥ n/4

(148)

Case 2: δs ≤ 1
4 It holds:


G�,2δs ≥ min

{

1

4
,
1

40

√
�
2δs

}

� By Lemma 2.9

(149)

≥ min

{

1

4
,
1

40

√
�

2�

	2δsn

}

� By Lemma 2.6

(150)

≥ min

{

1

4
,
1

40

√
�

�

	|S|
}

� As|S| := δsn

(151)

The factor of 2 that appears in the denominator in the second
line results from a subtle detail in Lemma 2.9. Since we
observe a set of size δsn, we must consider 
2δs . Since we
always consider sets of size at most n

4 , this is always well-
defined.

Putting these bounds back into the formula gives us (for a
set of any size):

E[YS] ≥ 	|S|
8

min

{

1

4
,
1

40

√
�

�

2	|S|
}

(152)

Now, choosing � > (2 · 640)2 yields:

E[YS] ≥ 	|S|
8

min

{

1

4
,
1

40

√

(2 · 640)2 �

2	|S|
}

(153)

≥ 	|S|
8

min

{

1

4
,
1

16

�

	|S|
}

(154)

We need to again distinguish between two cases:

Case 1 : 1
4 ≤ 1

16
�

	|S| In this case, we have:

E[YS] ≥ 	|S|
8

1

4
≥ 	|S|

32
≥ 64�

32
= 2� (155)

Here, we used that 	 ≥ 64� as Gi is benign.

Case 2 : 1
4 > 1

16
�

	|S| In this case, we have:

E[YS] ≥ 	|S|
8

16�

	|S| = 2� (156)

This proves that E[YS] ≤ 2� and therefore the lemma. ��
We can round up the proof with the same trick as before.
Again, we must show that every cut has a value of at � and
use Karger’s bound together with Lemma 3.9 to show that
no cut has a worse value, w.h.p.

Lemma 3.10 LetGi beabenigngraphwith� ≥ 6400λ log n.
Then, it holds

Pr [∀S ⊂ V : YS ≥ �}] ≥ 1 − n−8λ. (157)

Proof The proof is completely analogous to the proof of
Lemma 3.7 down to the constants. For each set S with
|S| ≤ n/2, we observe the eventBS thatYS is smaller than�.
Just as in Lemma 3.7, the graph Gi has at most n3 edges, the

event BS has probability at most e− OS
64 , and the minimum cut

is of size 6400λ log n. Thus, Lemma 2.4 yields this lemma.
��

Finally, recall that each token creates an edgewith probability
1− n−8λ by Lemma 3.6 and at least � tokens leave each set
with prob. 1 − n−8λ by Lemma 3.10. By the union bound,
both these events hold with prob. at least 1 − n−7λ. This
implies that each cut in Gi+1 has at least size � w.h.p. and
therefore proves Lemma 3.8

��

3.2.4 Finalizing the proof

To round up the analysis, we only need to prove Lemma 3.1
and show that afterO(log n) iterations, the graphhas constant
conductance. Based on our insights, we can conclude that if
	, �, and � are big enough and Gi is benign, then Gi+1 is
benign and has at least twice its conductance w.h.p. (if it was
not already constant). To be precise, assume thatGi is benign
and let � := (2 · 640)2 and � ≥ 6400λ log n. Then, it holds
that with probability 1 − n−7λ that

1. Gi+1 has conductance at least 2
Gi (if
was not already
constant) by Lemma 3.4, and

2. Gi+1 is benign by Lemma 3.8.
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For an easier notion, letZi+1 be a random variable that takes
the value of Gi+1’s conductance if Gi+1 benign and 0 oth-
erwise. For any value ϕ > (0, 1

32 ), it holds that:

Pr
[Zi+1 ≥ ϕ

]

(158)

≥ Pr
[

Zi ≥ ϕ

2

]

Pr
[

Zi+1 ≥ ϕ | Zi ≥ ϕ

2

]

(159)

≥ Pr
[

Zi ≥ ϕ

2

] (

1 − (2n−7λ)
)

(160)

Here, the first inequality follows from the law of total expec-
tation and the last follows fromLemmas 3.4 and 3.8 aswell as
the union bound. Given that after every iteration the graph’s
conductance increases by a factor of 2w.h.p, Inequality (160)
implies the following:

Pr
[

Zi+1 ≥ 2i+1

2L32

]

(161)

≥ Pr
[

Zi ≥ 2i

2L32

]

(

1 − (2n−7λ)
)

(162)

If we inductively apply this argument L times, we get:

Pr
[

ZL ≥ 1

32

]

(163)

≥ Pr
[

ZL−1 ≥ 1

64

]

(

1 − (2n−7λ)
)

(164)

≥ . . . (165)

≥ Pr
[

Z0 ≥ 1

2L32

]

(

1 − (2n−7λ)
)L

(166)

By choosing L := 3 log n, we obtain:

Pr
[

ZL ≥ 1

32

]

≥ Pr
[

Z0 ≥ 1

32n3

]

(

1 − n−6λ
)

(167)

Since the minimal conductance of any benign graph is
O(n−3) by Lemma 2.6, it follows:

Pr
[

ZL ≥ 1

32

]

≥
(

1 − n−6λ
)

(168)

Therefore, the graph, w.h.p., has a constant conductance after
O(log n) iterations. This takes O(log n) rounds, since each
iteration lasts only � ∈ O(1) rounds. Finally, a constant con-
ductance implies a logarithmic diameter by Lemma 2.7. This
concludes the analysis.

4 Applications and implications

Several connectivity problems (Connected Components,
Spanning Tree, Biconnectivity) and Maximum Independent

Set can be solved faster using our approach as a subroutine.
Note that all of the following algorithms can be performed in
the hybrid network model of Augustine et al. [8] with local
CONGEST edges. For each algorithm, we give a bound on the
required global capacity. Note that our algorithms can very
likely be optimized to require a much smaller global capacity
by using more sophisticated techniques, i.e., we did not aim
to optimize logarithmic factors here.

4.1 Connected components

This section shows howour algorithm can be extended to find
connected components in an arbitrary graph G. In particular,
for each connected component C of G, we want to establish
a well-formed tree of overlay edges that contains all nodes of
C . The main result of this section is the following theorem:

Theorem 1.2 Let G = (V , E) be a directed graph. Further,
all components have a (known) size of O(n′). There is a
randomized algorithm that constructs a well-formed tree on
each connected component of (the undirected version of) G in
O(log n′) rounds, w.h.p., in the hybrid model. The algorithm
requires global capacity O(log2 n), w.h.p.

Note that the main difficulty preventing us from apply-
ing Theorem 1.1 directly on each component is that we now
assume the initial graph’s degree is unbounded. Therefore,
the main contribution of this section is a preprocessing algo-
rithm that transforms any connected subgraph of G into a
graph of bounded degree O(log n). Then, we execute the
algorithm of Theorem 1.1 to create a well-formed tree for
each component. By Theorem 1.1, this takes O(log n′) time,
w.h.p., for parameters L ∈ O(log n′) and � ∈ O(log n).
Therefore, we only need to prove the following lemma.

Lemma 4.1 Let G = (V , E) be a directed graph in which
each component contains atmostm nodes. There exists a ran-
domized algorithm that transforms G into a directed graph
H := (V , EH ) that has degree O(log n) and in which two
nodes lie in the same component if and only if they lie in the
same component in G. The algorithm takes O(log n′) rounds
w.h.p., in the CONGEST model.

The algorithm will be executed in parallel on all connected
components of the graphG. In the remainder, wewill w.l.o.g.
focus on a single connected component C and its implied
subgraph GC := (VC , EC ). In particular, we present an
algorithm that creates a bounded degree graph H(GC )for
the nodes of GC , so our main algorithm can transform it into
a well-formed tree in O(log n′) time. Since there is no com-
munication between components and we run the algorithm
independently for each component, focusing on a single com-
ponent is enough to prove the lemma.

The algorithm’s main idea is to first eliminate most edges
by constructing a sparse spanner. Then, in a second step,
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we let all remaining nodes of high degree delegate their
edges to nodes of lower degree. This roughlymeans that each
node introduces its neighbor to each other in a way that pre-
serves the connectivity but massively reduces its own degree
(if it is higher than ω(log n)) while only slightly increas-
ing the neighbors’ degrees. If every node of a high degree
has sufficiently many neighbors of a low degree, the overall
degree becomes small enough for our algorithm to handle.
Here, we use the fact that most modern spanner construction
algorithms create spanners with exactly this property. To be
precise, the spanners have a low arboricity. The arboricity of
a graph is the minimum number of forests it can be parti-
tioned into. As we will see, this property implies that we will
have relatively few nodes of high degree, and all these nodes
have many neighbors of low degree, which is exactly what
we are aiming for.

Note thatwell-known spanner constructions takeO(log n)

time, so a more careful analysis is required to show that we
can construct such a graph in O(log n′) time, i.e., logarithmic
in the size of the biggest connected component. Further, we
remark that—although we use the term spanner—we are not
interested in the approximation of shortest paths but only in
the sparsification of the initial graph.

In the following, we present the two steps of our pre-
processing algorithm, the spanner construction and the
delegation of edges in detail.

Step 1: Create a Sparse Spanner S(GC ).
In the first step, we will construct a spanner S(GC ) :=
(VC , S(EC )) of GC to reduce the number of edges to
O(n log n) and its arboricity to O(log n). In particular, we
note that S(GC ) is a subgraph of G, so every edge in S(GC )

is a local edge in our hybrid model. We will adapt spanner
construction algorithms based on exponential start time clus-
tering [57]. For themost part,wewill follow the idea ofMiller
et al.’s spanner construction [46]. However, wewill use some
of the insights by Elkin andNeiman [19] and technical details
from Haeupler and Li [33], who present a similar algorithm
explicitly tailored to the CONGESTmodel. Note that Haupler
and Li use the geometric distribution, but this does not make
too much of a difference.

Conceptually, our algorithm can be subdivided into two
phases. First, we construct clusters of nodes. Each cluster is
a subset of nodes that is internally connected via a spanning
tree. Then, in the second phase, we add additional edges to
connect the clusters.

Our algorithm does the same as Haeupler and Li’s algo-
rithm but uses a slightly different mechanism to construct the
clusters. We begin with the description of clustering phase
where each node joins some cluster. By joining a cluster, we
mean that a node v ∈ V either declares itself the head of a
cluster or picks a neighbor p(w) ∈ Nv , such that the edge
(v, p(w)) is the next edge of a path to the head of the cluster.

In the latter case, we will refer to p(w) as the predecessor of
v. The clusters are constructed as follows.

1. In the beginning, each node v independently draws a
random value rv from the exponential distribution with
parameterβ = 1/2.Values larger than 4 log n′ are redrawn
until rv ≤ 4 log n′, i.e., we draw exponentially distributed
variables conditioned on being smaller than 4 log n′.

2. If a node v did not receive any message until round
4 log n′ − �rv�, it creates the message (rv, v, 0) that con-
tains its random value rv , its identifier, and a hop counter.
Finally, node v delivers this message to itself together
with all other messages received in this round.

3. Once a node v receives one or more messages of the
form (ru, u, xu) with u ∈ V , it joins a cluster. Let u∗
be node that maximizes the term ru∗ − xu∗ among all
received values. Then, v joins the cluster of u∗. If u∗ =
v, it declares itself the cluster head. Otherwise, v joins
u∗’s cluster. For this, it stores the identifier of u∗ and the
identifier of the neighbor p(v) fromwhich it received the
message (ru∗ , u∗, xu∗). In other words, we declare node
p(v) to be its predecessor. If v received the message
simultaneously from more than one neighbor, it picks
the one with the smallest identifier as its predecessor. In
the end, v sends (ru∗ , u∗, xu∗ +1), i.e., the samemessage
with an increased hop counter, to all its neighbors.

After each node joins a cluster, all nodes add the edge to their
predecessor to the spanner (if they have one). By adding an
edge tow to the spanner, wemean that a node v locallymarks
w as a neighbor in the spanner and sends a message to w, so
w also locally marks v as a neighbor in the spanner. Thus, the
edges are always bi-directed and we only add edges that are
present in the initial graph GC . The latter is very important
for our construction, as we will require local communication
on these edges later on.

However, the subgraph implied by the edges added during
this phase is not necessarily connected. These edges only
connect a node with its predecessor in its cluster. As we will
see, these edges imply a spanning tree rooted in the node’s
respective cluster head, but there are nopaths to nodes in other
clusters. Thus, in the second part, we add edges between the
clusters to the spanner to ensure it is connected. To simplify
notation, we refer to all clusters that contain at least one
neighbor of a node as its neighboring clusters. We create the
edges between clusters in the following way. First, all nodes
send the identifier of their cluster head to all their neighbors to
inform them about their neighboring clusters. This way, each
node can determine all its neighboring clusters and which of
its neighbors are in which neighboring clusters. Second, all
nodes add an edge to exactly one node of each neighboring
cluster. To be precise, suppose that v ∈ V is in the cluster of
some node u∗

v ∈ V and a neighborw ∈ Nv is in the cluster of
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some node u∗
v 
= u∗

w ∈ V . Then, after receiving the identifier
u∗

w from w, node v adds an edge w to the spanner. If more
than one neighbor is in this cluster, node v again picks the
neighbor with the smallest identifier and only adds the edge
to this neighbor to the spanner. As a result, it is also possible
that that w perhaps adds another edge to another member of
v’s cluster. However, the number of edges each individual
node adds is bounded by the number of their neighboring
clusters. This concludes the construction of the spanner and
the first phase of our preprocessing algorithm.

It is fairly straightforward to see that this step takes
O(log n′) communication rounds. For the clustering phase,
note that a node v ∈ V joins a cluster at the latest in round
4 log n′ − �rv� when it creates its own message. Thus, after
4 log n′ +1 steps, all nodes joined a cluster due to our choice
of the rv’s. Therefore, the runtime of the first phase is only
O(log n′). In the second phase, all nodes only exchange two
messages with their neighbors in S(GC ), so its runtime is
O(1). Since all nodes know the same estimate of O(log n′),
the phases can be synchronized via round counters. Thus,
it remains to show that the subgraph created by our proce-
dure is indeed connected and there are few edges between
the clusters. We show that it holds:

Lemma 4.2 The algorithm above creates a connected sub-
graph S(GC ) of GC in O(log n′) rounds where each node
has at most O(log n) neighboring clusters w.h.p.

We present the proof in Sect. 4.1.1.
The key difference—besides the use of the exponential

distribution—between our algorithm and the construction by
Haeupler and Li is that we broadcast the values for only
O(log n′) and not O(log n) rounds, and redraw rv’s that
are larger than O(log n′). Therefore, our algorithm creates
slightly different spanners but allows us to reuse some ana-
lytical results from Elkin and Neiman. Finally, we want to
remark that Elkin and Neiman only described the algorithm
differently without the concept of clusters. However, the end
result is basically the same as we will see in our analysis.

Step 2: Transform S(GC ) into a bounded degree graph
H(GC ).
Nowwe will construct a bounded degree graph H(GC ) from
S(GC ). Note that H(GC )—in contrast to S(GC )—is not a
subgraph of GC and contains additional edges. Although
S(GC ) has few edges in total, there can still be high-degree
nodes. Our goal is for high-degree nodes to redirect their
edges to other nodes to balance the degrees. This technique
is conceptually similar to constructing a child-sibling tree as
in [4] and [30].

1. In the first step, we add an orientation to the edges sim-
ilar to the Nash-Williams Forest Decomposition, which
is often utilized in algorithms for sparse graphs [7,11].

This procedure adds an orientation to each edge {v,w}
such that it is either oriented towards v or w. We will
slightly abuse notation and refer to all edges oriented
towards a node v ∈ V as its incoming edge and all others
as outgoing edges. Note that we will still require bidirec-
tional communication between v and w.
It is well known that any graph of arboricity a has an
orientation where each node has at most O(a) outgo-
ing edges [7,11]. However, instead of directly bounding
our spanner’s arboricity and using standard techniques to
create the orientation, we take a slightly different path.
Given the clustering from the previous step, a sufficiently
good orientation can be constructed in a single round.
Every node v ∈ V declares all edges it added during
spanner construction as outgoing edges. Recall that this
includes the edge to the predecessor and an edge to one
node of each neighboring cluster. The nodes inform their
neighbors about the orientation by sending a message
containing their identifier. Recall that we have not used
our nodes’ global communication capabilities to compute
the spanner’s edges. Each node simply marked a set of
edges in the initial graphusingonly local communication.
Since the corresponding edges must also have existed
in the initial graph, we can again use local communica-
tion on these edges. Note that each node has at most one
predecessor by construction and at most O(log n) neigh-
boring clusters w.h.p. by Lemma 4.2. Therefore, it has at
most O(log n) outgoing edges. However, it can have up
to n incoming edges as it can be the predecessor of many
nodes.

2. Next, we delegate all incoming edges away and create
line-like connections between all incomingnodes. For the
construction, consider a node v ∈ V and let w1, . . . , wk

be all nodes with (wi , v) ∈ S(EC ), i.e, the incoming
edges of v. W.l.o.g., assume that w1, . . . , wk are ordered
by increasing identifier. Then, for each i > 1, v sends the
identifier of wi to wi−1 and vice versa.

One can easily verify that each node has atmost one incoming
edge left (i.e., the edge from w1 to v) and received at most
two edges for each outgoing edge (i.e., the edges to wi−1

and wi−1). Thus, the resulting graph H(GC ) has a degree
of O(log n) as needed. Further, this part of the algorithm
only requires O(1) of communication between neighboring
nodes.

4.1.1 Proof of Lemma 4.2

In the following, wewill show that the resulting graph S(GC )

is connected and each node has atmost O(log n) neighboring
clusters, w.h.p. First, we show that the connectivity follows
directly from our construction of the clusters. We begin with
the connections within a cluster. Intuitively, the path along
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the predecessors leads to the head of the cluster. For com-
pleteness, we formally show the following claim:

Claim 5 Suppose that v ∈ V joined the cluster of u∗ ∈ V ,
then there is a bi-directed path from v to u∗ in S(GC ).

Proof Recall that a node w ∈ V joins u∗’s cluster by receiv-
ing a message of the form (ru∗ , u∗, xu∗). Here, xu∗ is the hop
counter that is increased each time the message is forwarded.
For each node w ∈ V that is in u∗’s cluster, we can therefore
define xw

u∗ ≥ 0 as the value of the hop counter when it joins
the cluster8.

Equipped with this definition, we can now prove the
lemma via an induction over all possible values of xv

u∗ . For
the start of the induction, suppose that xv

u∗ = 0. Note that
xv
u∗ = 0 can only hold if v = u∗. Recall that the message

(ru∗ , u∗, xu∗) that lets nodes join the cluster originates at u∗
with a hop counter of 0. The hop counter is increased every
round, so u∗ is the only node that can ever receive (ru∗ , u∗, 0).
Thus, for xv

u∗ = 0, it must hold v = u∗ and there is a trivial
path contained in the spanner as a node has a path to itself.

Now we get to the induction step. Assume that xv
u∗ = i

and for all nodes w ∈ V with xw
u∗ = i − 1 there is a path

to u∗ in the spanner. We claim that one of these nodes must
be v’s predecessor p(v). First, we observe that node p(v)

must be part of u∗’s cluster as each node only forwards the
message of the cluster it joined. Therefore, the value x p(v)

u∗
is well-defined. According to the algorithm, p(v) joins the
cluster when it receives (ru∗ , u∗, x p(v)

u∗ ) and then fowards

(ru∗ , u∗, x p(v)
u∗ +1) to v. Upon receiving this message, v joins

the cluster. This implies that for v and its predecessor p(v),
it holds xv

u∗ = x p(v)
u∗ + 1. Therefore, we have x p(v)

u∗ = i − 1
as we assumed xv

u∗ = i . Finally, v adds a bi-directed edge
to p(v) and p(v) has a bi-directed path to u∗ per induction
hypothesis, so the lemma follows. ��

Note that this lemma directly implies that the spanner is
connected. Consider an edge (v,w) ∈ EC . If both nodes are
in the same cluster of some node u∗, the lemma certifies that
for both nodes, there is a bi-directed path to u∗ connecting
them. Otherwise, there are two possibilities if the nodes are
in different clusters. Either v directly adds the edge (v,w) to
the spanner, or it adds another edge (v,w′) where w′ ∈ Nv

is in the same cluster as w. In the latter case, there must be a
path from w to w′ by the same argument as before, as they
are in the same cluster. Thus, for each edge (v,w) ∈ E , there
is a path that connects v and w in S(GC ).

Next, we consider the number of neighboring clusters,
which is a bit more involved. Before we go into the details
of the analysis, we first introduce some helpful definitions.

8 Later on, we will see that it actually holds xw
u∗ = dist(u∗, w), but this

is immaterial for this proof.

First, recall that we denote the distance, i.e., the number of
hops on the shortest path between two nodes v and w in
GC , as dist(v,w). As we only consider unweighted graphs,
all distances are integer and we have dist(v, v) := 0 and
dist(v,w) ≥ 1 for any w 
= v. Further, for all nodes u ∈ V ,
we define the value

mu(v) := ru − dist(u, v). (169)

We denote m(v) to the maximum among these values and
u∗

v ∈ V as the node that drew the respective variable. In
other words, it holds:

m(v) := mu∗
v
(v) := max{mu(v) | u ∈ V } (170)

These values will be integral to our analysis as we will see
u∗

v is indeed the node that takes v into its cluster. Equipped
with these definitions, we show the following.

Lemma 4.3 Fix anodev ∈ V and let u∗
v be the node thatmax-

imizesm(v). Then,v receives themessage (u∗
v, ru∗

v
,dist(v, u∗

v))

in round
(

4 log n′ − �ru∗
v
�)+dist(v, u∗

v) and joins the cluster
of u∗.

Proof For this proof, we will drop the subscript from u∗
v

and simply write u∗ if clear from the context. Note that
(

4 log n′ − �ru∗�)+dist(v, u∗) is the earliest round in which
the message can possibly be received by node v as the mes-
sage is started in round

(

4 log n′ − �ru∗�) and takes (at least)
dist(v, u∗) steps to reach v. First, we show that v cannot
receive another message in an earlier round.

Claim 6 v will not receive any message before round
(

4 log
n′ − �ru∗�)+ dist(v, u∗).

Proof We begin the proof by noting that u∗ minimizes
(

4 log n′ − ru
) + dist(v, u) among all nodes of V . This can

be shown through an elementary calculation. We start with:

(

4 log n′ − ru∗
)+ dist(v, u∗) <

(

4 log n′ − ru
)+ dist(v, u)

(171)

To simplify the term, we subtract 4 log n′. Then, we get:

− ru∗ + dist(v, u∗) < −ru + dist(v, u) (172)

⇔ ru∗ − dist(v, u∗) > ru − dist(v, u) (173)

⇔ mu∗(v) > mu(v) (174)

Let U ⊂ V be the set of nodes whose messages reach v

first (note that several such messages may be received in the
same round from different neighbors of v). Denote the round
in which v first receives something as t . For all nodes u ∈ U ,
it holds:

t = (4 log n′ − �ru�
)+ dist(v, u) (175)
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We argue that u∗ must be contained in U . For contradiction,
suppose that the value would be received in a later round,
i.e., it holds:

t + 1 ≤ (4 log n′ − �ru∗�)+ dist(v, u∗) (176)

≤ (4 log n′ − ru∗
)+ dist(v, u∗). (177)

Now, note that for all values u ∈ U , it holds that �ru�− ru <

1. Therefore, we have:

(

4 log n′ − ru
)+ dist(v, u) (178)

= (4 log n′ − �ru� + �ru� − ru
)+ dist(v, u) (179)

= (4 log n′ − �ru�
)+ dist(v, u) + (�ru� − ru) (180)

<
(

4 log n′ − �ru�
)+ dist(v, u) + 1 (181)

= t + 1 (182)

By combining these two observations, we see that u∗ would
not be the node with minimal value as any node in U has a
smaller one. This is a contradiction as we defined u∗ to be
minimal. ��

Wewill see that our lemma holds if all nodes on a shortest
path from u∗ join the cluster of u∗ and forward the message.
In particular, we claim the following

Claim 7 Let l := dist(u∗, v) and let P = (w0 :=
u∗, . . . , wl := v) be any shortest path from u∗ to v. For
0 ≤ i ≤ l, it holds that wi joins the cluster of u∗ in round
(

4 log n′ − �ru∗�)+ i .

Proof For contradiction, assume thatwi ∈ P is the first node
that does not join the cluster. As all nodesw0, . . . , wi−1 until
this point joined the cluster of u∗, it holds thatwi−1 must have
sent the message (ru∗, u∗, i) in round

(

4 log n′ − �ru∗�) +
(i − 1). Therefore, wi must have joined another cluster in or
before this round.Aswi cannot have received amessage in an
earlier round due to Claim 6,wi must decide for another clus-
ter in round

(

4 log n′ − �ru∗�)+ i . More specifically, there is
a vertex z ∈ V , such that wi receives (rz, z, xz) and it holds:

rz − xz > ru∗ − xu∗ (183)

= ru∗ − i (184)

= ru∗ − dist(u∗, wi ) (185)

As xz increases on every hop from z towi , it is lower bounded
by dist(z, w). This implies that:

rz − dist(z, wi ) > ru∗ − dist(u∗, wi ) (186)

However, this has implications for the value mz(v). Using
our observations, we see that it holds:

mz(v) := rz − dist(z, v) (187)

≥ rz − dist(z, wi ) + dist(wi , v) (188)

> ru∗ − dist(u∗, wi ) + dist(wi , v) (189)

= ru∗ − dist(u∗, v) (190)

= mu∗(v) := m(v) (191)

Here, inequality (187) follows from the triangle inequality,
inequality (189) follows from inequality (186), and equality
(190) holds because wi is on the shortest path from u∗ to
v. This is a contradiction as m(v) must be bigger or equal
to mz(v) per definition. Therefore, u∗ must the node which
minimizes (ru∗ −xu∗) among all values received bywi . Thus,
wi would not have joined another cluster and must have for-
warded u∗’s message. ��
Finally, as v := wl and l := dist(u∗, v), the lemma follows.

��
Next, we observe neighboring clusters of a node v and

show that they are bounded by O(log n) w.h.p. Suppose that
v ∈ V has a neighbor w ∈ V that joined another cluster.
Then, there must a node u∗

v 
= u∗
w ∈ V that maximizes

ru∗
w

− dist(u∗
w,w). Since v and w are neighbors, the value

ru∗
w
cannot be much bigger than ru∗

v
because otherwise, the

corresponding message would reach v much earlier and it
would join a different cluster. Following this intuition, we
show that the following holds:

Lemma 4.4 . Let v,w ∈ V be two neighboring nodes in
different clusters. Then it holds m(v) ≤ m(w) + 1

Proof Note that it holds

dist(u∗
v, w) ≤ dist(u∗

v, v) + 1 (192)

due to the triangle inequality and the fact that v and w are
neighbors. This implies that:

m(w) > mu∗
v
(w) := ru∗

v
− dist(u∗

z , w) (193)

Using inequality (192), we see that:

m(w) ≥ ru∗
v
− (dist(u∗

v, v) + 1
)

(194)

≥ mu∗
v
(v) − 1 (195)

:= m(v) − 1 (196)

This proves the statement. ��
Therefore, the number of neighboring clusters of any node
v ∈ V is upper bounded by the number of values mu′ :=
ru − dist(u, v) which are close to m(v). Elkin and Neimann
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analyzed this random value for the case that the random
variables are drawn according to the exponential distribution
without truncation. Note that their lemma is itself based on
an observation byMiller et al. [46]. They show the following:

Lemma 4.5 (Lemma 1 in [19]) Let d1 ≤ . . . ≤ dm be
arbitrary values and let δ1, . . . , δm be independent random
variables sampled from the exponential distribution with
parameter β. Define the random variables M = maxi {δi −
di } and I = {i : δi −di ≥ M−1}. Then for any 1 ≤ t ≤ m,

Pr[|I | ≥ t] = (1 − e−β)t−1 .

Although we draw the variables differently, their bound will
be a very good approximation for our algorithm. Nowwe can
show the following lemma:

Lemma 4.6 Every node has at most O(log n) neighboring
clusters, w.h.p.

Proof For a node v ∈ V let Xv denote the number of its
neighboring clusters. It holds:

Xv ≤ |{u ∈ V | ru − dist(v, u) ∈ [m(v) − 1,m(v)]}|
(197)

Further, let δ1, . . . , δn′ be a series of independent, exponen-
tially distributed random variables with parameter β. Define
m̂(v) = maxu∈V {δi − dist(u, w)} and consider the variable

X̂v = |{u ∈ V | δu − dist(v, u) ∈ [m̂(v) − 1, m̂(v)]}|.
(198)

Note that X̂v can be analyzed using Lemma 4.5 by choosing
the shortest path distances to v as the di ’s and m̂(v) as M .
Finally, let Z be the event that all variables δ1, . . . , δm are
smaller than 4 log n′. Then, it holds:

Pr[Xv ≥ c log n] = Pr[X̂v ≥ c log n | Z] (199)

Given these definitions, we want to show that there are con-
stants c, c′ > 0, such that it holds:

Pr[X̂v ≥ c log n | Z] ≤ 1

nc′ (200)

By the law of total probability, it holds:

Pr[X̂v ≥ c log n | Z] ≤
Pr
[

X̂v ≥ c log n
]

Pr [Z]
(201)

Note that the term in the nominator removed the condition
that the variables are smaller than 4 log n′. Thus, it can be

bounded with Lemma 4.5. By choosing β = 1/2 and t =
c1 log n with c1 := e− 1

2 · c2 + 1, we see that:

Pr[X̂v ≥ c1 log n] = (1 − e− 1
2 )c1 log n−1 (202)

= (1 − e− 1
2 )

(

e− 1
2 ·c2+1

)

log n−1
(203)

≤ e−c2 log n = n−c2 . (204)

The last inequality followed from the fact that (1− 1/x)x ≤
e−1 for any x > 0. On the other hand, we have the following:

Pr [Z] := Pr

⎡

⎣

n′
⋂

i=1

δi ≤ 4 log n′
⎤

⎦ (205)

= 1 − Pr

⎡

⎣

n′
⋃

i=1

δi > 4 log n′
⎤

⎦ (206)

≥ 1 −
n′
∑

i=1

Pr
[

δi > 4 log n′] (207)

The last inequality follows from the union bound. Finally, we
use that each δi is exponentially distributed with parameter
β = 1/2. It holds:

≥ 1 −
n′
∑

i=1

e− 1
2 4 log n

′ � Def .of δi . (208)

≥ 1 − n′

n′2 ≥ 1

2
� As n′ ≥ 2 (209)

Note that we can assume n′ ≥ 2 as a component with one
node has no edges. Plugging our two insights together, we
get the following:

Pr[X̂v ≥ c log n | Z] ≤ 2n−c2 (210)

Thus, by a union bound, every node has at most c1 log n
neighboring clusters with probability at least 1 − n−c3 with

c3 = c2 − 2. This proves the Eq. (200) for c1 ≥ c3 · e− 1
2 + 3

and therefore the lemma. ��

4.2 Maximal independent set

This section describes our Maximal Independent Set (MIS)
algorithm. The MIS is defined as follows:

Definition 4 (Maximal Independent Set (MIS)) Let G :=
(V , E) be an undirected graph, then S ⊆ V is an MIS if and
only if it fulfills the two following properties:

1. No two nodes in S are adjacent in the initial graph G.
2. Every node v ∈ V \ S has a neighbor in S.
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By a result of Kuhn et al. [37], there are graphs of degree

d in which computing the MIS takes �
(

log d
log log d

)

rounds,

even in the LOCAL model. In models in which the commu-
nication is not limited to the neighbors of a node (which
roughly corresponds to our notion of global communication),
the runtime is often exponentially better. For example, both in
the congested clique and the MPC model [13,15,25,26] one
can achieve runtimes of O(log log n) or even O(log log d)

which beats this lower bound. However, these models allow
for communication primitives beyond our model’s capabili-
ties. Thus, these extreme improvements are still out of reach.
Nevertheless, we can show a little improvement compared
to the LOCAL model where bounds are also of the form
O(log d + polylog(log n)) [27]. More precisely, we prove
the following theorem:

Theorem 1.3 Let G = (V , E) be a weakly connected
directed graph. There is a randomized algorithm that com-
putes an MIS of G in O(log d + log log n) rounds, w.h.p.,
in the hybrid model. The algorithm requires global capacity
O(log2 n), w.h.p.

Before we go into the details of our algorithm, we take a
short detour and recap some known techniques used in MIS
algorithms.Many state-of-the-artMISalgorithms employ the
so-called shattering technique [12,23], which conceptually
works in two stages9:

1. First, there is the so-called shattering stage, where the
problem is solved for most nodes using a local strategy.
As a result of this stage, each node knows—with proba-
bility 1−o(1/d)—whether it is in the MIS itself or has a
neighbor in theMIS and, therefore, cannot be in theMIS.
We say that these nodes have decided as the state of these
nodes will not change for the remainder of the algorithm.
Likewise, we refer to all other nodes as undecided nodes.

2. In the second stage, we solve the problem for all remain-
ing undecided nodes. These undecided nodes only need
to communicate with their undecided neighbors as all
other nodes know whether they are in the MIS or not.
Note that the probability of 1 − o(d) implies that each
undecided node has less than one undecided neighbor
in expectation. By a Galton-Watson argument, the graph
G is, therefore, shattered into small isolated subgraphs
G1, . . . ,Gk of undecided nodes after the first stage. Two
undecided nodes are part of the same subgraphGi if there
is a path of undecided nodes between them. In the sec-
ond stage, the MIS is solved on these subgraphs where
we can exploit that the subgraphs G1, . . . ,Gk are far
smaller than G.

9 Note that the faster algorithms are more intricate and use more pre-
processing stages to reduce degrees, but still rely on this scheme in the
end.

The first phase can be implemented in (nearly) optimal
O(log d) time due to a brilliant result by Ghaffari [23,24]. It
holds:

Lemma 4.7 (Based on Lemmas 4.2 in [23] and 2.1 in [24])
Let c bea large enoughconstant andG := (V , E)bea simple
undirected graph. There is a distributed MIS algorithm A
with following properties:

1. Let B be the set of nodes remaining undecided after
O(c log d) rounds of A. Then, with probability at least
1 − n−c, all connected components of G[B], the sub-
graph of G induced by nodes in B, have each at most
O(d4 logd(n)) nodes.

2. Each message only consists of 1 bit.

Given this result, the crux of many modern MIS algo-
rithms lies in their implementation of the second phase. In
the LOCAL and CONGEST model, we can use deterministic
algorithms to obtain sublogarithmic runtimes. Note that we
need to be very careful when we execute randomized algo-
rithms in this phase if the probability of failure only depends
on the number of nodes. Since the number of nodes n′ in each
component is much smaller than n, a bound of 1 − o(n′−c)

does not imply that the algorithm succeeds w.h.p. In models
withmassive global communication, all remaining nodes and
edges of a component can be gathered at a single node using
the global communication and then solved locally. This, of
course, requires this node to receive a huge amount of mes-
sages in a single round. Because of this high message load,
this approach cannot be used directly in our model. However,
we can do something similar that requires far fewermessages

while still coming close to the�
(

log d
log log d

)

bound for LOCAL.
This emphasizes that even a small amount of non-local com-
munication is as strong as unbounded local communication.

Next, we consider the CONGEST model. Here, the MIS
problem can be solved in O(log n) time—in expectation and
w.h.p.—due to a celebrated algorithm by Luby [45] andAlon
et al. [1]. The idea behind the algorithms is quite simple: Each
node picks a random rank in [0, 1], which is sent to all neigh-
bors. Then, all local minima join the MIS and inform their
neighbors about it. All remaining nodes, i.e., nodes that did
not join the set and had no neighbor that joined the set, repeat
this process until every node has decided. Later, Métivier et
al. [47] provided a simpler analysis and showed that sending
a single bit per round and edge is sufficient. For our algo-
rithm, we take a closer look at the fact that Métivier et al.’s
algorithm has an expected runtime of O(log n). In particular,
it holds that in every round, in expectation, half of all edges
disappear due to nodes deciding (see [47] or the appendix of
[23] for a comprehensive proof). Thus, if we execute it on
a subgraph with n′2 edges, it finishes after O(log n′) rounds
in expectation. That means, by Markov’s inequality, with at
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least constant probability, the algorithm only takes O(log n′)
rounds. In fact, Métivier et al. even prove the following more
precise statement:

Lemma 4.8 (Theorem 3 in [47]) There is a randomized dis-
tributed algorithm for arbitrary simple graphs G := (V , E)

with n nodes in the CONGEST model that:

1. finishes in O(log n) time with probability 1−o(n−1), and
2. each message contains only 1 bit.

The lemma implies a success probability of 1 − 1
m if we

run the algorithm on a graph of m nodes. Therefore, if we
execute it O(log n) times independently in parallel, there
must be at least one execution that finishes within O(log n′)
rounds, w.h.p.

Now we go back to the shattering technique and consider
the undecided nodes after the shattering stage. Instead of
reporting all edges to an observer that solves the problem
locally for each subgraph of undecided nodes, we execute
Metevier et al.’s algorithm O(log n) times in parallel and
report which executions finished. Once there is one execu-
tion in which all nodes are finished, we signal the nodes to
stop via broadcast and let them agree on the outcome of one
execution. To do so efficiently, we execute the algorithm of
Theorem 1.2 on each component of undecided nodes. Note
that this requires far fewer messages per node than aggre-
gating all edges at a node and still achieves a sublogarithmic
runtime.

More precisely, our algorithm to solve the MIS problem
operates in the following three steps of length O(log d +
log log n) each. To synchronize these steps, we need to
assume that, in addition to an approximation of log log n,
the nodes also know an approximation of log d.

Step 1: Shatter the Graph into Small Components.
First, we run Ghaffari’s shattering algorithm from [23] for
O(log d) rounds. Note that Ghaffari’s algorithm can seam-
lessly be implemented in theCONGESTmodel as it only sends
1-bit messages. After executing it for O(log d) rounds, each
knows with probability 1− o(d−1) whether it is in the MIS.
Thus, w.h.p, the graph is shattered into isolated, undecided
componentsG1, . . . ,Gk of size atmostO(d4 logd n)).Obvi-
ously, the nodes can use the local edges to determine which
neighbors are in the same component. The remainder of our
algorithm will run on each of these Gi ’s in parallel.

Step 2: Construct an Overlay for each Component.
Next, we establish a well-formed tree Si on eachGi using the
algorithm of Theorem 1.2. Since each component has size
O(d4 logd n), the construction takes O(log(d4 logd n)) =
O(log d + log log n) time, w.h.p., by Theorem 1.2. Further,
the resulting trees S1, . . . , Sk also have a height of only
O(log d + log log n). However, the message complexity is
still O(d + log2 n).

Step 3: Execute Métivier et al.’s Algorithm in Parallel.
Using the well-formed tree from the previous step, we can
(deterministically) compute aggregate functions on each Gi

in O(log d + log log n) time. Given this powerful tool, we
construct an MIS for each Gi as follows:

1. On each Gi , we run the MIS algorithm of Métivier et
al. independently c1 log n times in parallel for τc2 :=
c2 (log	 + log log n) rounds. Here, c1 and c2 are some
tunable constants, but c2 is chosen such that τc2 is bigger
than the diameter of Si . By Theorem 1.2, such a minimal
c2 can always be found. Since each execution needs mes-
sages of size 1, all messages sent by all executions can
be sent in one round of the CONGEST model. More pre-
cisely, in each round r ∈ [0, τc2 ], a node simply sends the

random bit string Mr (w) :=
(

mr
1(w), . . . ,mr

c1 log n
(w)
)

of length c1 log n to its neighbor w. Here, the value
mr

j (w) ∈ {0, 1} is the 1-bit message that is sent by exe-
cution j to w in round r .

2. After τc2 rounds, each node checks in which executions it
has decided, i.e., itself or one of its neighbors joined the
MIS. It creates the bit string F (0)

v := ( f1, . . . , fc1 log n),
where f j = 1 if and only if the node v has decided in
execution j and f j = 0 otherwise. Again, since there are
at most O(log n) executions, the information on which
executions have finished can be fitted into O(log n) bits
and therefore be sent as a single message.

3. We then use Si to aggregate all executionswhere all nodes
have decided. To be precise, we need to compute the
logical AND of all Fv for all v ∈ Gi . Recall that this
operation returns 1 if all its inputs are 1 and 0 otherwise.
The algorithm to do this is trivial: For τc2 rounds, each
node sends its current value of Fv to all its neighbors
and computes the logical AND of all values it received
(including its own). More precisely, in round r > 0 the
current value F (r)

v is computed as follows:

F (r)
v :=

⊗

w∈NSi (v)∪{v}
F (r−1)

w (211)

Here, the set NSi (v) contains all of v’s neighbors in Si
and⊗ denotes the logical AND. One can easily verify that
for a big enough c2, all nodes know all finished execution
after τc2 rounds. Note that the bits of a finished execution
will never be flipped to 0 as all of them are 1. Therefore,
we must show that all bits of all non-finished executions
are 0, i.e., the value f j for an execution j will be set to 0
in every node if there is at least one node, say v, that did
not decide. A simple induction yields that after r rounds,
each node in the distance r to v sets its fi -value to 0.
Since the diameter of Si is smaller than τc2 , all nodes
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know if at least one node in a given execution did not
decide.

4. Finally, the nodes adopt the result of an execution that
has finished (if there is one). If several executions are
finished, the execution with the smallest index is chosen.

Since the correctness of the first two steps follows directly
fromLemmas 4.7 and Theorem 1.2, we focus only on the last
stage. In particular, we need to show that there are constants
c1 and c2 such that in all components, there is at least one
execution that finishes in τc2 time. For a given component
Gi and execution j , let X j ∈ {0, 1} be the random variable
that all nodes have decided after τc2 rounds. Note that each
undecided component must have at least 2 nodes: Seeking
contradiction, let there be a component consisting of a single
node v. If all of v’s neighbors have decided and no neighbor
joined the MIS, then v can join the MIS. Otherwise, if there
is one neighbor in the MIS, then v has decided per definition
as it cannot join the MIS. Combining this fact with Lemma
4.8, we have that:

Pr [Xi = 0] ≤ 1

|Vi | ≤ 1

2
(212)

Since all executions are independent, the probability that
none of the c1 log n executions finishes after τc2 rounds is:

Pr

⎡

⎣

c1 log n
⋂

j=1

X j = 0

⎤

⎦ (213)

=
c1 log n
∏

j=1

Pr
[

X j = 0
]

(214)

≤
(

1

2

)c1 log n

= e− c1 log n
log 2 ≤ n−c′

1 (215)

Now recall that there are at most n undecided components.
Therefore—by the union bound—all components have at
least one finished execution. Thus, all nodes have decided at
the end of stage 3 w.h.p. Since the time and message bounds
follow directly from the algorithms we used as a black box,
this proves Theorem 1.3

4.3 Spanning trees

We will now show how the algorithm of Theorem 1.2 can be
used to construct a spanning tree of the (undirected version
of the) initial graph G. For simplicity, we assume that this
graph is connected; our algorithm can easily be extended to
also compute spanning forests of unconnected graphs by run-
ning it in each connected component. We show the following
theorem:

Theorem 1.4 Let G = (V , E) be a weakly connected
directed graph. There is a randomized algorithm that com-
putes an MIS of G in O(log d + log log n) rounds, w.h.p.,
in the hybrid model. The algorithm requires global capacity
O(log2 n), w.h.p.

Our algorithm will heavily rely on node labelings, i.e.,
we assign a short label l(v) to each node v ∈ V that can
be compared with other labels. If a node v ∈ V has edge
{v,w} ∈ E to some node w with l(w) < l(v), we call this a
critical edge. Our goal is to exploit the following simple fact:

Lemma 4.9 (Ordering implies spanning tree) Let G :=
(V , E) be an undirected graph and l(v0), . . . , l(vn) be an
ordered labeling of the nodes. Further, let ES be a set of
edges. Suppose it holds that

1. There is exactly one node v′ with l(v′) < l(v) for all
v ∈ V \ {v′}, and

2. all other nodes v ∈ V \ {v′} have a critical edge.

Then, if each v ∈ V \ {v′} adds a critical edge to ES, the
resulting graph (V , ES) is a spanning tree of G.

Proof Since each node (except v′) adds at most one edge, the
resulting graph canhave atmostn−1 edges and is either a tree
or a forest. Therefore, it remains to show that it is connected
and, therefore, a tree. However, this follows because each
node must have a path to v′. Otherwise, there either would
be a node vwith l(v) > l(v′) that did not add an edge, or there
are two nodes with minimal labels. Both options contradict
one of the two conditions; thus, our claim follows. ��

Our goal is to find such a labeling. Our strategy roughly
works as follows: Note that the algorithm of Theorem 1.2
constructs a graph GL that results from L ∈ O(log n)

evolutions of the graph G0 that resulted from Lemma 4.1.
Therefore, it has diameter O(log n) and degree O(log2 n),
w.h.p. We will use this graph as the starting point for our
construction, not the final well-formed tree (i.e., we skip the
last step where we reduce the degree). First, we construct a
spanning tree SL of GL by performing a BFS from the node
with the lowest identifier and then compute an ordering on
SL . Our idea is to iteratively replace all the edges of SL by
edges of GL−1, replace these edges by edges of GL−2, and
so on until we reach a graph that contains only edges of G0.
In every step of the recursion, we also carefully update the
ordering and preserve the conditions mentioned in Lemma
4.9, such that the final ordering implies a spanning tree in G.

More precisely, our algorithm executes the following
steps.

Step 1: Create a Locally Checkable Ordering.
Let v0 be the node with the lowest identifier. We first per-
form a BFS in GL from v0 and create our initial (BFS-)tree
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SL . Each node v ∈ V \ {v0} stores the round in which the
broadcast reached it, i.e., its distance to v0, as its label. Note
that there can be nodes with equal labels. However, it holds
that

1. the root v0 is the only node with label lv0 = 0, and
2. all nodes have a parentwith a lower label (as the broadcast

reached them in the previous round).

Therefore, we have a labeling as required by Lemma 4.9.

Step 2: Recursively Replace Edges.
Next, we want to replace all edges of SL with edges of G0 in
a recursive fashion. In each step of the recursion, each node
maintains a label l(v) such that each node v with l(v) 
= l(v0)
has at least one critical edge and the root stays unique. Since
all nodes initially know their hop distance to the root, this
condition is trivially fulfilled for SL . Now we get to the
recursive replacement: Suppose we are in the i th step of the
recursion, i.e., we want to construct SL−(i+1) from SL−i .
Let the edge (v,w) ∈ SL−i be the result of a random walk
(v, v1, . . . , v�−1, w) in our main algorithm. We assume for
the moment that v knows all nodes of the walk and can com-
municate with them. Then we perform the following steps:

1. v sends the label (l(v) ◦ j) to each v j on the walk. Here,
◦ denotes the concatenation operator for two bit strings.

2. v j then picks the minimum of all its received labels as
its new label and informs all its neighbors in GL−(i+1)

about it.
3. The root v0 sets its label to l(v0) = l(v0) ◦ 0 (which

obviously remains the unique minimal label).

Finally, each node except the root picks a critical edge (v,w′)
with l(w′) ≤ l(v) and adds it to SL−(i+1).

To prove that this indeed is a spanning tree, we must show
that the conditions from above still hold: Since there is only
one rootwith theminimal label by construction,wemust only
show that all other nodes have a critical edge. In particular,
if v is not the root, there must be a neighbor with a smaller
label. Let now l ′v := l(x) ◦ j the minimal label that was
assigned to v, i.e., v is the j th node on some walk from x to
y in GL−(i+1). Consider the following cases:

• If v = x , then v assigned a label to itself, so the prefix
of the new label is its old label l(v). However, since v

has a parent p(v) in SL−i , it must have received a label
l ′p(v) with prefix l(p(v)) from p(v). Since (v, p(v)) was
a critical edge by construction, it holds l(p(v)) < l(v),
i.e., the label l ′(p(v)) sent by p(v) is strictly smaller than
l ′(v). Thus, v did not pick the minimum label, which is
a contradiction.

• Otherwise, if x 
= v, there must be a predecessor in the
walk that is a neighbor of v inGL−(i+1). This predecessor
can only get a label smaller or equal to l(x)◦ j −1 which
therefore is smaller than v’s new label l ′(v).

Thus, each v ∈ V has a neighbor that has a critical edge or
is the root (which has the unique minimal label). By Lemma
4.9,we can construct SL−(i+1) in one step bypicking a critical
edge.

As mentioned, our algorithm requires that the two end-
points of every edge e need to know the nodes that the
corresponding walk traversed (i.e., the nodes thatmake up e)
while sending no more than O(log3 n) messages. To imple-
ment this, we slightly adapt our main algorithm to add the
identifier of each traversed node to each token. Further, when
creating an edge all of these identifiers are sent back to the
node that started the token (i.e., we sample the whole walk
instead of just the endpoint). Note that as the token traverses
� ∈ O(1) nodes, the size of each token stays (asymptoti-
cally) the same. Thus, the endpoints of each edge e of SL−i

can inform the endpoints of all edges of GL−(i+1) that make
up e. Recall that a node needs to send at most � labels for
each edge, resulting in at most O(� log2 n) labels. The size
of a label grows by an additive O(1) bits for each recursion
as we always add a constant number to the label. So, after
L ∈ O(log n) recursions, the label size is still O(log n) and
therefore, a global capacity of O(log2 n) suffices. Finally,
since each recursion step takes O(1) rounds, we finish after
L ∈ O(log n) rounds.

Step 3: Replace Spanner Edges.
Recall that an edge {u, w} in S0 may not exist in G, i.e.,
if it resulted from a redirection of an edge {u, v} in G0 in
the algorithm of Sect. 4.1, where u and w were incoming
nodes of v. So S0 may not be a spanning tree of G. Now,
as before, we can simply model each edge {u, w} that does
not exist in G as the result of the walk that crossed {u, v}
and then {v,w} in G. This is not a random walk, but that
is immaterial. Node u computes the new labels exactly as
before and sends them to v and w. Each node v can be part
of O(d(v)) walks. However, since we can now use the local
CONGEST edges, a node v can send and receive a new label
to and from all its neighbors in one round. Given the labels,
we can construct the tree as before.

We conclude Theorem 1.4.

4.4 Biconnected components

In this section, we present an adaptation of Tarjan and
Vishkin’s biconnectivity algorithm [56] to compute the
biconnected components of G in O(log n) time, proving the
following theorem.
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Theorem 1.5 Let G = (V , E) be a weakly connected
directed graph. There is a randomized algorithm that com-
putes the biconnected components of (the undirected version
of) G in O(log n) rounds, w.h.p., in the hybrid model. Fur-
thermore, the algorithm computes whether G is biconnected
and, if not, determines its cut nodes and bridge edges. The
algorithm requires global capacity O(log5 n), w.h.p.

The algorithm constructs a helper graph G ′ = (E, E ′)
with the edges of G as nodes and with an edge set E ′ chosen
such that any two edges of G are connected in G ′ if and only
if they lie on a cycle in G. Therefore, the nodes of each con-
nected component of G ′ are edges of the same biconnected
component in G. If there is only one component in G ′, then
G is biconnected.

On a high level, the algorithm can be divided into five
steps. In Step 1, we construct a rooted spanning tree T of G
and enumerate the nodes from 1 to n, assigning each node
v a label l(v), according to the order in which they are vis-
ited in a depth-first traversal of T . Let D(v) be the set of
descendants of v in T (including v). The goal of Step 2 is to
compute nd(v) := |D(v)| as well as high(v) := max{l(u) |
u ∈ D+(v)} and low(v) := min{l(u) | u ∈ D+(v)}, where
D+(v) := D(v)∪{u ∈ V | {u, w} ∈ E\T , w ∈ D(v)} is the
union of v’s descendants and its descendants’ neighbors in
the undirected version ofG. Using these values, in Step 3, the
nodes construct the subgraph G ′′ of G ′ that only contains the
nodes that correspond to edges of T (i.e., it does not include
nodes for the non-tree edges of G − T ). The nodes simu-
late G ′′ in a way that allows them to perform Theorem 1.2
without any overhead to establish a well-formed tree on each
connected component of G ′′ in Step 4. Finally, in Step 5, the
components of G ′′ are extended by nodes corresponding to
non-tree edges to obtain the full biconnected components of
G.

In the remainder of this section, we describe how the five
steps can be implemented in the hybrid model in O(log n)

time using Theorem 1.1 together with the results of [7] and
[20]. The correctness of Theorem 1.5 then follows directly
from [56, Theorem 1].

Step 1: Construct T .
T is computed using Theorem 1.4 in O(log n) time, w.h.p.
The tree can be rooted using the algorithm of [20, Lemma
4], which arranges the nodes of T as an overlay ring corre-
sponding to a depth-first traversal of T and performs pointer
jumping on that ring. As a by-product, we can easily enumer-
ate the nodes in the order they are visited in the depth-first
traversal, whereby each node obtains its label.

Step 2: Compute Subtree Aggregates.
To retrieve the value nd(v) for each node v ∈ V , the nodes
perform the algorithm of [20, Lemma 6] on T : If each node
u stores a value pu , then the algorithm computes the sum of
all values that lie in each of v’s adjacent subtrees (i.e., the

components into which G decomposes if v gets removed)
deterministically in O(log n) time; we obtain nd(v) by set-
ting pu = 1 for each u ∈ V . However, to compute high(v)

and low(v), for each node v ∈ V , the nodes need to com-
pute maxima and minima. Therefore, we need the following
lemma, which is a generalization of [20, Lemma 6].10

Lemma 4.10 Let T = (V , E) be a tree and assume that each
node v ∈ V stores some value pv . Let f be a distributive
aggregate function. The goal of each node v is to compute
the value f ({pw | w ∈ Cu}) for each of its neighbors u in
H, where Cu is the connected component C of the subtree
T ′ of T induced by V \ {v} that contains u. The problem can
be solved in O(log n) time, w.h.p.

Proof As described before, we enumerate the nodes of T
from 1 to n by assigning them a label l(v) according to the
order in which they are visited in a depth-first traversal of
T (starting at the node s with the smallest identifier). Fur-
thermore, we construct a list L as an overlay in ascending
order of their label and root T towards s. This can be done
in O(log n) time using techniques of [20]. Afterward, the
nodes perform pointer jumping on L to create shortcut edges
ES for O(log n) rounds, which decreases the diameter of L
to O(log n). Additionally, the endpoints i , j of a shortcut
edge {i, j} ∈ ES learn the weight w({i, j}) := f ({pk | k ∈
V , l(i) ≤ l(k) ≤ l( j)}). Now consider some node v ∈ V .
First, we show how v can compute f ({pu | u ∈ D(v)}), i.e.,
the aggregate of all values in v’s subtree. Note that this value
is exactly f ({pk | k ∈ V , l(v) ≤ l(k) ≤ l(w)}), where w

is the node for which l(w) = l(v) + |D(v)| − 1 (i.e., the
node in v’s subtree with largest label). Note that this value is
the aggregate of all values on the segment between v and w

on L . To obtain this value, v only needs to learn the weights
of at most O(log n) shortcut edges on that segment. More
formally, there is a path P = (v = v1, v2, . . . , vt = w)

on L such that l(vk+1) = l(vk) + 2�log(l(w)−l(vk ))� for all
k < t . Obviously, t = O(log n), and there is a shortcut edge
between any two consecutive nodes on that path. To learn the
weights of all these shortcut edges, v needs to contact all vk .

However, since many nodes may want to contact the same
node, we cannot send request messages directly, even if each
node knows all node identifiers. Instead, we make use of
techniques of [7] to construct multicast trees towards each
node11. Since each node needs to contact O(log n) nodes, it
participates in constructing O(log n)multicast trees. Further,

10 Note that a naive PRAM simulation in a butterfly introduces an
additional factor of (at least) �(log n) to the runtime, which we can-
not afford. Furthermore, this result may be of independent interest for
hybrid networks.
11 Note that [7] assumes that the nodes know all node identifiers; how-
ever, the nodes on L can easily simulate a butterfly network, which
suffices for the algorithms of [7].
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Fig. 2 The directed edges are
tree edges, and the undirected
edge is a non-tree edge. Left:
The first rule adds an edge
between the two parent edges of
v and w. Center: The second
rule connects all nodes on the
two paths from v to w to their
lowest common ancestor. Right:
The edge {v,w} is connected to
the component using the third
rule

each node u ∈ V is the root of at most O(log n) multicast
trees (one for each of its adjacent shortcut edges). When u
multicasts theweight of a shortcut edge in the respectivemul-
ticast tree, all nodes that participated in constructing that tree
will be informed. Plugging the parameters L = O(n log n)

(which is the total number of requests) and l = l̂ = O(log n)

(which is the number of weights each node wants to learn)
into [7, Theorem 2.3] and [7, Theorem 2.4], we get that each
node learns all weights in O(log n) time, w.h.p.12

After having learned the weights of all edges on P , v can
easily compute f ({pu | u ∈ D(v)}). By sending this value
to its parent in T (over a local edge), each node learns the
aggregate of the subtree of each of its children. It remains to
compute f ({pu | V \ D(v)}), i.e. the aggregate of all non-
descendants of v. Note that since the descendants of v form a
connected segment from v to w in L , these non-descendants
form exactly two segments on L: one from s to v (excluding
v) and one fromw to the last node of L (excludingw). Using
the same strategy as before, v can compute the aggregate of
all these values by learning the weight of O(log n) shortcut
edges. ��

Step 3: Construct G ′′.
Recall that G ′′ is the subgraph of G ′ induced only by the
nodes corresponding to edges of T . In order to simulate G ′′,
we let each node v of G act on behalf of the node of G ′′
that corresponds to v’s parent edge. That is, when simulating
an algorithm on G ′′, v is responsible for all messages the
node corresponding to v’s parent edge is supposed to com-
municate. We now need to connect all nodes corresponding
to edges on a common simple cycle in G. Tarjan and Vishkin

12 [7, Theorem 2.4] actually restricts each node to multicasting at most
onemulticast message. However, the theorem can easily be extended to
allow multiple messages without increasing the runtime. The authors
in [7] assume a global capacity of O(log n). Since we assume a global
capacity of �log2 n, each node can execute the algorithm O(log n)

times in parallel with the same complexity. Thus, we can build O(log n)

multicast trees per node in time O(log n).

showed that it suffices to consider the simple cycles consist-
ing of a non-tree edge and the unique shortest path between
its adjacent nodes [56]. To do this, they propose the following
rules:

1. If (v, u) and (w, x) are edges in the rooted treeT (directed
from child to parent), and {v,w} is an edge inG−T such
as that v is no descendant of w and w is no descendant
of v in T (i.e., v and w lie in different subtrees), add
{{u, v}, {x, w}} to G ′′.

2. If (w, v) and (v, u) are edges in T and some edge of G
connects a descendant of w with a non-descendant of v,
add {{u, v}, {v,w}} to G ′′.

Roughly speaking, for each non-tree edge {v,w} that con-
nects two different subtrees of T , the first rule connects the
parent edges of v and w, whereas the second rule connects
all edges of T that lie on the two paths from v to w to their
lowest common ancestor. An illustration of these rules can
be found in the left and center image of Fig. 2.

As Tarjan and Vishkin point out, each node v can deter-
mine each connection of its parent edge that is formed
according to the first rule by comparing l(v)+nd(v)with the
label l(u) of each of its neighbors u in G; if l(v) + nd(v) ≤
l(u), then the two parent edges of v are connected in G ′′. For
the second rule, each node v, l(v) 
= 1 with childw connects
its parent edge with the parent edge of w if low(w) < v or
high(w) ≥ v + nd(v).

Step 4: Compute Connected Components of G ′′.
To compute the connected components ofG ′′, we execute the
algorithm of Theorem 1.2 on G ′′. Note that every two nodes
that are connected in G ′′ are simulated by adjacent nodes in
G; therefore, the local communication in G ′′ can be carried
out using the local edges of G. Furthermore, since each node
of G simulates at most one node of G ′′, the global communi-
cation can also be simulated with the same communication
capacity as in Theorem 1.2. After O(log n) rounds, w.h.p.,
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we have established a well-formed tree on each connected
component of G ′′.

Step 5: Extend G ′′ to G ′.
Finally, we incorporate the non-tree edges into the connected
components of G ′′ using the following rule of Tarjan and
Vishkin.

3. If (w, u) is an edge of T and {v,w} is an edge in G − T ,
such that l(v) < l(w), add {{u, w}, {v,w}} to G ′′.

An example can be found in the right image of Fig. 2. Note
that this only extends the connected components of G ′′ by
single nodes (i.e., it does not merge components of G ′′).
Therefore, we know the biconnected component of each edge
of G. Specifically, if there is only one biconnected compo-
nent in G ′ (which can easily be determined by counting the
number of nodes that act as the root of a well-formed tree in
G ′′), we can determine whether G is biconnected. Further-
more, we can determine the cut nodes and bridge edges in
G. We conclude Theorem 1.5.

5 Concluding remarks and future work

In this article, we answered the longstanding open question
of whether an overlay network can be transformed into a
graph of diameter O(log n) in O(log n) time with polyloga-
rithmic communication. We present several applications for
our algorithm and thereby show that it can speed up solu-
tions for various other distributed problems. Whereas our
solution is asymptotically time-optimal, our communication
bounds may improve. If the initial degree is d, then our
nodes need to communicate �(d + log2 n) many messages.
However, there might be an algorithm that only requires a
communication capacity of �(d + log n). Eradicating the
additional log n factor from our algorithm seems non-trivial
and poses an exciting goal. Furthermore, we believe that—
due to its simplicity—our algorithm can also be extended to
construct expanders under (randomized) churn. Last, since
our algorithm runtime is strongly tied to the initial graph’s
conductance, it may also be used to speed up distributed
algorithms for property testing (see [22,40] for examples) in
hybrid networks.
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