
Distributed Computing (2022) 35:145–164
https://doi.org/10.1007/s00446-021-00414-6

Strong eventual consistency of the collaborative editing framework
WOOT

Emin Karayel1,2 · Edgar Gonzàlez1

Received: 3 July 2020 / Accepted: 4 November 2021 / Published online: 4 January 2022
© The Author(s) 2021

Abstract
Commutative Replicated Data Types (CRDTs) are a promising new class of data structures for large-scale shared mutable
content in applications that only require eventual consistency. The WithOut Operational Transforms (WOOT) framework is
the first CRDT for collaborative text editing introduced by Oster et al. (In: Conference on Computer Supported Cooperative
Work (CSCW). ACM, New York, pp 259–268, 2006a). Its eventual consistency property was verified only for a bounded
model to date. While the consistency of many other previously published CRDTs had been shown immediately with their
publication, the property for WOOT remained open for 14 years. We use a novel approach identifying a previously unknown
sort-key based protocol that simulates the WOOT framework to show its consistency. We formalize the proof using the
Isabelle/HOL proof assistant to machine-check its correctness.

Keywords Distributed Systems · CRDT · Eventual Consistency · WOOT · Formal Verification

1 Introduction

A Replicated (Abstract) Data Type (RDT) consists of “mul-
tiple copies of a shared Abstract Data Type (ADT) replicated
over distributed sites, [which] provides a set of primitive
operation types corresponding to that of normal ADTs, con-
cealing details for consistency maintenance” [25]. RDTs
can be classified as state-based or operation-based depend-
ing on whether full states (e.g., a document’s text) or only
the operations performed on them (e.g., character insertions
and deletions) are exchanged among replicas. Operation-
based RDTs are commutative when the integration of any
two concurrent operations on any reachable replica state
commutes [27]. Commutative (Operation-Based) Repli-
cated Data Types (CRDTs1 from now on) enable sharing
mutable content with optimistic replication—ensuring high-

1 Note that other authors like Shapiro et al. [27] use CmRDT to refer
to Commutative RDTs, with CRDT standing for Conflict-free RDTs.

B Emin Karayel
me@eminkarayel.de

Edgar Gonzàlez
edgargip@google.com

1 Google, Mountain View, USA

2 Present Address: Karlsruhe, Germany

availability, responsive interaction, and eventual consistency
in an asynchronous network without consensus-based con-
currency control [14]. They are used in highly scalable robust
distributed applications [4,31]. An RDT (and, in particular a
CRDT) is eventually consistent when, if after some point in
time no further updates are made at any replica, all replicas
eventually converge to equal states. It is strongly eventually
consistent when it is both eventually consistent and strongly
convergent, i.e., any pair of peers which have integrated the
same set of updates (in possibly different order) are in the
same state [27]. The first [3] proposed CRDT for collabo-
rative text editing was the WithOut Operational Transforms
(WOOT) Framework [21]. It has been implemented as part
of several OSS projects [5,7,9,19]. However its eventual con-
sistency property was verified only for a bounded model to
date [20,21]. The usual commutativity of operations based
proofs of consistency fail to apply for WOOT, hence we use
a novel approach, identifying a previously unknown sort-key
based protocol that simulates the WOOT framework. Due
to the length and complexity of the proof, we formalized it
and machine-checked its correctness using the proof assis-
tant Isabelle/HOL [10]. In summary our novel contributions
are:

• the first proof of the strong eventual consistency of
WOOT (not limited to a bounded model),

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00446-021-00414-6&domain=pdf
http://orcid.org/0000-0003-3290-5034
http://orcid.org/0000-0002-9169-0769

146 E. Karayel, E. Gonzàlez

• the introduction of a new class of sort key based protocols
for collaborative editing with logarithmic message size
per edit operation,

• the observation that the WOOT framework can be sim-
ulated by an instance of the above, revealing previously
unknown hidden-structure of the framework.

After reviewing related work in the following section,
we start in Sect. 3 with a well-known strongly consistent
CRDT making a sequence of refinements until we reach the
WOOT framework. This allows us to discuss each idea in
the proof individually, instead of presenting a large intri-
cate proof in one go. Section 3 motivates the question of the
existence of a certain sort-key space, which we confirm in
Sect. 4. In Sect. 5 we present the rigorous results implied by
the previous section and their formalized proof. We discuss
the high-level proof strategy and key intermediate results. In
Sect. 6we explain howwemodelled the framework and proof
in Isabelle/HOL. In Sect. 7 we conclude with a summary and
discuss open research directions.

2 Related work

Ellis andGibbs [6] introduced the first collaborative text edit-
ing tools, which were based on operational transformations
(OT). Thebasic idea behindOT-based frameworks is to adjust
edit operations, based on the effects of previously executed
concurrent operations. For instance, in Fig. 1a, peer B can
execute the message received from peer A without correc-
tion, but peer A needs to transform the one received from
peer B to reach the same state. Proving the correctness of OT-
based frameworks is error-prone and requires complicated
case coverage [15,22]. Counter-examples have been found
in most OT algorithms [25],[8, §8.2]. LSEQ [17], LOGOOT
[31] and TreeDoc [23] are CRDTs that create and send sort
keys for symbols (e.g., 1.5 and 3.5 in Fig. 1b). These keys
can then be directly used to order them,without requiring any
transformations, and are drawn from a dense totally ordered
space. In the figure rational numberswere chosen for simplic-
ity, but more commonly lexicographically ordered sequences
are used.2 The consistency property of these frameworks
can be established easily. However, the space required per
sort key potentially grows linearly with the count of edit
operations. In LSEQ, a randomized allocation strategy for
new identifiers is used to reduce the key growth, based on
empirically determined edit patterns—but in the worst-case
the size of the keys will still grow linearly with the count
of insert operations. Preguica et al. [23] propose a solu-
tion for this problem using regular rebalancing operations.

2 In addition, peers draw sort keys from disjoint (but dense) subsets to
avoid concurrently choosing the same sort key.

However, this can only be done using a consensus-based
mechanism, which is only possible when the number of par-
ticipating peers is small. A benefit of LSEQ, LOGOOT, and
TreeDoc is that deleted symbols can be garbage-collected
(though delete messages may have to be kept in a buffer if the
corresponding insertion message has not arrived at a peer),
in contrast to the WOOT Framework, where deleted sym-
bols (tombstones) cannot be removed. Replicated Growable
Arrays (RGAs) are another data structure for collaborative
editing, introduced by Roh et al. [25]. Contrary to the previ-
ous approaches, the identifiers associated with the symbols
are not sort keys, but are instead ordered consistently with the
happened-before relation. A peer sends the identifier of the
symbol immediately preceding the new symbol at the time it
was created and the actual identifier associated with the new
symbol. The integration algorithm starts by finding the pre-
ceding symbol and skipping following symbols with a larger
identifier before placing the new symbol. The authors pro-
vide a mathematical eventual consistency proof. Recently,
Gomes et al. [8] also formalized the eventual consistency
property of RGAs using Isabelle/HOL [18]. The message
size of both the WOOT framework and of RGAs grows only
logarithmically with the number of peers and edit opera-
tions.3 In addition to the original design of WOOT by Oster
et al. [21], a number of extensions have also been proposed.
For instance, Weiss et al. [30] propose a line-based version
called WOOTO. Ahmed-Nacer et al. [2] introduce a second
extension called WOOTH, which improves performance by
using hash tables. The latter compare their implementation
in benchmarks against LOGOOT, RGA, and an OT algo-
rithm. To the best of our knowledge there were no previous
publications that further expand on the correctness of the
WOOT Framework. The fact that the general convergence
proof was missing had also been mentioned by Kumawat
and Khunteta [12, §3.10].

3 DerivingWOOT

As we mentioned in the introduction, a rigorous correctness
proof for the eventual consistency of the WOOT framework
is long and complex, which is the reason we relied on a
proof assistant to avoid any subtle flaws in the argument.
In this section we want to highlight the key ideas in it: we
derive the WOOT framework starting from the well-known
consistent CRDT 2P-Set (Two-Phase-Set), making iterative
refinements until we reach WOOT. On each refinement, we
explain intuitively why it preserves consistency. This way,

3 In the original presentation RGAs had message sizes proportional
with the number of peers, but Gomes et al. [8, §6.1] discuss a possible
implementation using the logical clocks introduced by Lamport [13].

123

Strong eventual consistency of the collaborative editing framework WOOT 147

Peer A Peer B

p a n t p a n t

Insert 2 e Insert 4 u

p e a n t p a n u t

Insert 5 u Insert 2 e

p e a n u t p e a n u t

(a) Transformation-based

Peer A Peer B

p

1

a

2

n

3

t

4

p

1

a

2

n

3

t

4

Insert (e,1.5) Insert (u,3.5)

p

1

e

1.5

a

3

n

4

t

4

p

1

a

2

n

3

u

3.5

t

4

Insert (u,3.5) Insert (e,1.5)

p

1

e

1.5

a

2

n

3

u

3.5

t

4

p

1

e

1.5

a

2

n

3

u

3.5

t

4

(b) Sort-key based

Fig. 1 Collaborative text editing

we can convey each idea from the exhaustive proof, inde-
pendently and decoupled from each other.

3.1 2P-Set

The 2P-Set [27] is one of the simple CRDTs allowing a
shared replicated data structure for a set where elements can
be added and removed.

Each peer keeps track of two sets S and R initially both
being empty. An element e is added/removed to/from the
replicated data structure by broadcasting a message add e /
remove e. A peer that receives an add e message adds the
element e to the first set S. If a peer receives a remove e it
will add it to the second set R. A peer determines whether an
element is in the 2P-Set by checking whether it is in the first
set and not in the second set. Note that an element which was
removed can never be added again.4 Messages are broadcast
to all peers including the one that originated the message and
the integration algorithm for a message is identical, irrespec-
tive of whether the message originated from the same peer or
fromadifferent one.5 We summarize theCRDT inProtocol 1.
We think of the peers as single threaded machines, com-
municating by broadcasting messages in an asynchronous

4 In practice this can be circumvented by storing an additional unique
identifier per set element. See also U-set [27] for an example of this
design.
5 Modelling a replicated data structure this way enables easier proofs,
as there is no need to distinguish those two cases. However, a real-
world implementation may have separate code-paths for broadcasting
a message to other peers, and integrating the message locally. See for
example [8, §5.2], where the same approach has been taken.

network. There is no synchronization or shared variables
between peers. For simplicity, we do assume a single broad-
castmessagewill be received (with a possibly arbitrary delay)
at most once by each peer6 and that messages are neither
being altered nor being sent by peers implementing a differ-
ent protocol. It is easy to see that, once each peer has received
all updates, theywill all be in the same state, i.e., if we assume
eventual delivery than we have eventual consistency. And,
similarly, that two peers who have integrated the same set
of messages will be in the same state. This essentially fol-
lows from the fact that set union is commutative, associative,
and idempotent. For example the operations add e / add f
commute because:

(S ∪ {e}) ∪ { f } = S ∪ {e, f } = (S ∪ { f }) ∪ e

A more naive implementation with only a single set, where
remove (element e) removes the element from that set, would
not have the same consistency properties:Apeer that receives
an insert operation after the remove operation of the same
element will be in a different state than a peer that receives
the remove operation after the insert operation. Algebraically
this happens because:

(S \ {e}) ∪ {e} �= (S ∪ {e}) \ {e}

In the CRDT community the elements of the second set are
called tombstones. The information in the set needs to be pre-

6 In a real error-prone network, this could be achieved by having a
unique identifier per message and keeping track of already received
messages.

123

148 E. Karayel, E. Gonzàlez

served to enable order-independent integration of messages
and would be avoidable in a single process application.

Protocol 1 2P-Set
Each peer is initialized by calling the init function. Here we set up
the global state variables S and R.

init
S ← ∅ : set
R ← ∅ : set

The query functions are part of the interface of the CRDT and provide
a view to the data structure.

query lookup(e : element) : boolean
return e ∈ S ∧ e /∈ R

Similarly, themodify functions are part of the interface of the CRDT
and allow modifications to the data structure.

modify add(e : element)
broadcast (add e)

modify remove(e : element)
broadcast (remove e)

Modification functions broadcast messages, that are integrated into
the state of each peer, when the respective message is received using
the integrate functions:

integrate add(e : element)
S ← S ∪ {e}

integrate remove(e : element)
R ← R ∪ {e}

3.2 Sort keys

Symbols may occur multiple times and in arbitrary order
within text, hence sets do not seem to be a useful CRDT
for collaborative text editing, but we can easily support
sequences using the 2P-Set as a building block.

To do that we use set elements e that are pairs of:

• A sort key α(e) ∈ A
• The symbol σ(e) ∈ �

The user only observes the symbols, but in the order
induced by the sort keys. In the following we use the term
character to refer to the compound tuple consisting of the
symbol and additional associated information, like the sort
key. In Table 1, we give an example of a state with pairs of
sort keys and symbols—for the sequence “pant”.

Characters are inserted into the sequence by creating a
sort key that is ordered between those of the preceding and
succeeding sequence elements. In the example (Table 1), to

Table 1 Sort keys and symbols Sort key Symbol

1 p

2 a

3 n

4 t

insert the symbol ‘l’ between the first and second charac-
ter, a peer could generate the new character (1.5, ‘l’). The
algorithm to query the current string based on the set of non-
deleted characters consists of sorting the sequence according
to the sort key and presenting the resulting symbol sequence
to the user.

Protocol 2 Sort Key based Protocol for String Editing
init

S ← ∅ : (A × �) set
R ← ∅ : (A × �) set

query view() : � list
w := sortα(S \ R)

return σ(w1) · · · σ(w|S\R|) � Symbols of w

modify insert(σ : �, k : N) � Insert σ at position k
l := α(rankα(S \ R, k)) or 	 if k = 0
u := α(rankα(S \ R, k + 1)) or
 if k = |S \ R|
α := build-sort-key(l, u)

broadcast(insert (α, σ))

modify delete(k : N) � Delete the k-th character
c := rankα(S \ R, k))

broadcast(delete c)

integrate insert(c : (A × �))
S ← S ∪ {c}

integrate remove(c : (A × �))
R ← R ∪ {c}

In Protocol 2 we summarize the framework: We denote
by rankα(S, k) the function that returns the k-th smallest7

element of the set S according to the order induced by α.
Similarly sortα(S) returns the sequence of the elements in S
according to the order induced by α.

The algorithm build-sort-key computes a sort keybetween
the pair of sort keys it was given. Note that for the special
case where a sort key for the beginning (resp. end) of the
string needs to be generated: We allow passing in the special
values 	 (resp.
) as first (resp. second) argument represent-
ing an element outside the set of sort keys with order strictly
smaller (resp. larger) than all of them.

7 Here k is indexed starting from 1; e.g. rankα(S, 1) is the smallest
element and rankα(S, |S|) is the largest element.

123

Strong eventual consistency of the collaborative editing framework WOOT 149

To clarify, the above approach works under the assump-
tion that the available sort keys are elements of a dense totally
ordered set, such that it is always possible to find a new sort
key between each pair of previously generated sort keys.8

Additionally, a mechanism needs to be introduced that pre-
vents the possibility of choosing the same sort key twice.

3.3 Avoiding collisions

As mentioned in the previous paragraph, the above solu-
tion may lead to collisions, where two distinct characters
are inserted at the same position with the same sort key. That
prevents them from being ordered in a sequence, as well
as any possibility of inserting a character between them. To
resolve this, we introduce a unique id i ∈ I for each inserted
character. We reserve distinct dense subsets for the sort keys
of each such unique id.

Protocol 3 New version of the Insert Algorithm
modify insert(σ : �, k : N)

l := α(rankα(S \ R, k)) or 	 if k = 0
u := α(rankα(S \ R, k + 1)) or
 if k = |S \ R|
i := create-unique-id()

α := �(l, i, u)

broadcast(insert (α, σ))

In Protocol 3, we give an updated version of the inser-
tion algorithm. The function create-unique-id creates a new
globally unique id. This can be achieved by assigning a
unique id to each peer and keeping and incrementing a
counter on each peer, the unique id of the character would be
formed by the pair of peer id and counter. The function

� : (A ∪ {	}) × I × (A ∪ {
}) → A

is used to generate a new sort key, with the unique id as
an additional argument. As before, the first argument (lower
bound) may be the special value 	 to facilitate the creation
of a sort key for the beginning of the string. And, similarly,
the last argument (the upper bound) may be the special value

 to facilitate insertion at the end of the string.

Note that we require� to have at least the following prop-
erties:

Condition 1 If l < u then l < �(l, i, u) < u.

Condition 2 If l < u, l ′ < u′ and �(l, i, u) = �(l ′, i ′, u′)
then i = i ′.

Thefirst property ensures that the newly computed sort key
is actually between the sort keys of the adjacent characters.

8 This is why we use rational numbers in the example as they are a
well-known dense totally ordered set.

The second implies that for distinct unique ids the generated
sort keys will be distinct, for any predecessor and successor.

We can give an example for a function fulfilling conditions
1, and 2 in the case where the identifiers are natural numbers
strictly between 0 and b, i.e., I = {1, . . . , b−1}. LetQb,i be
the rational numbers with a finite b-ary representation ending
with i ∈ I:

Qb,i :=
{

b−k(i + bj)
∣∣k ∈ N, j ∈ Z

}

and let θ be an injective function from the rational numbers
to the natural numbers.9 We can then define the following
function � on A := Q ∩ (0, 1), the set of rational numbers
between 0 and 1:

� : (A ∪ {0}) × I × (A ∪ {1}) → A
�(l, i, u) := argmin

x∈Qb,i ∩(l,u)

θ(x)

i.e. if we order the rational numbers according to the enumer-
ation induced by θ , then�(l, i, u) is the first rational number
in the sequence that has a finite b-ary representation ending
in i and whose value is strictly between l and u.

Note that we identified 	 with 0 (representing the begin-
ning of the string) and
 with 1 (representing the ending of
the string), while the sort keys are rational numbers strictly
between 0 and 1.Wedon’t give a proof that this indeedworks,
since we will see below that we need an additional property
for � which narrows down the possible definitions for �

further. But the curious reader may verify that the candidate
sets for each i are disjoint but all are dense in Q.

3.4 Avoiding transfer of sort keys

The above scheme has the drawback that the bit size of the
sort keys can grow linearlywith the number of edit operations
and, since they are part of the transferred operations, the same
is true for the message sizes per edit operation. To fix that,
we are making a second change to the scheme. Instead of
transferring the sort keys themselves, we send the unique ids
(from the previous section) of each character, as well as the
unique id of its immediate predecessor and successor at the
time it was created. Additionally, we require that � is a pure
function, used by all peers. This allows every peer to compute
the sort keys themselves.

Consider for example the characters in Table 2. We would
assign them the sort keys:

• αp = �(, i1,
)

• αa = �(αp, i2,
)

• αe = �(αp, i3, αa)

9 Sagher [26] presents an example of such a function.

123

150 E. Karayel, E. Gonzàlez

Table 2 Characters with predecessors and successor identifiers

Predecessor Identifier Successor Symbol

	 i1
 p

i1 i2
 a

i1 i3 i2 e

The identifier of a character, as well as the identifiers of its
predecessor/successor, i.e., the identifiers of the character
that were preceding/succeeding it at the time it was created,
are immutable and using the function� it is possible to com-
pute the sort keys of each character recursively.

Note that the unique ids do not have to be order-preserving
and can be constructed inway that they only have logarithmic
size with respect to the number of participating peers and edit
operations.

Protocol 4 Deferred Computation of Sort Keys
init

S ← ∅ : (I × A × �) set
R ← ∅ : I set

query view() : � list
w := sortα

({
c ∈ S

∣∣i(c) /∈ R
})

return σ(w1) · · · σ(w|w|) � Symbols of w

modify insert(σ : �, k : N) � Insert σ at position k
l := i(rankα(S \ R, k)) or 	 if k = 0
u := i(rankα(S \ R, k + 1)) or
 if k = |S \ R|
i := create-unique-id()
broadcast(insert (l, i, u, σ))

modify delete(k : N) � Delete the k-th character
i := i(rankα(S \ R, k))

broadcast(delete i)

integrate insert(l : I ∪ {	}, i : I, u : I ∪ {
}, σ : �))
αl := α

(
find

{
c ∈ S

∣∣i(c) = l
})

or 	 if l =	
αu := α

(
find

{
c ∈ S

∣∣i(c) = u
})

or
 if u =

S ← S ∪ {(i, �(αl , i, αu), σ }

integrate delete(i : I)
R ← R ∪ {i}

In Protocol 4 we summarize the new scheme. In it, a char-
acter is represented by a triple in a peer’s state; in particular:

• The identifier i(c) ∈ I
• A sort key α(c) ∈ A (as in the previous scheme)
• The symbol σ(c) ∈ � (as in the previous scheme)

The keen reader will notice that the scheme could fail
if insert messages are delivered out-of-order. In particular,
when the insert message m1 for the referenced sort key of

an insert message m2 has not been delivered to a peer, the
integration of m2 will not succeed.

3.5 Semantic causal delivery

One way to ensure that such a failure does not happen is to
delay the integration of messages whose dependencies have
not been received yet. The authors of WOOT have coined
the term semantic causal delivery to refer to this delivery
mechanism. Indeed it is a weaker form of causal delivery,
which would imply a message is only delivered to a peer
if all messages that were present during its creation were
already delivered.

Since the latter set subsumes the dependencies, causal
delivery will automatically imply semantic causal delivery,
but not vice versa.

Note that since there is never a dependency on a delete
message, and the insert messages already have a unique id
associated to them, we denote by deps(m) the set of insert
messages a message depends on (more precisely the ids of
the inserted characters). In Protocol 5 we depict a possible
mechanism to ensure semantic causal delivery, where mes-
sages whose dependencies have not been received yet are
buffered, until their dependencies are integrated. For the dis-
cussion in the following sections, we will assume that some
mechanism is employed to ensure semantic causal delivery—
or potentially a stronger delivery notion.

Protocol 5 Semantic Causal Delivery
function deps(m : message) : I set

if m = insert(l, i, u, σ) then
return {l, u} \ {	,
}

else if m = delete i then
return {i}

end if

procedure receive(m : message)
B ← B ∪ {m}
while ∃m′ ∈ B . deps(m′) ⊆ {

i(c)
∣∣c ∈ S

}
do

B ← B \ {m′}
integrate(m′)

end while

3.6 Acyclic dependency graph

The dependency relation between messages above is acyclic
during a run of the framework. To see this, note that amessage
can only depend on messages already integrated by a peer.
In fact it is a consequence of the fact the state graph of a
distributed message-passing algorithm is acyclic—when we
associate the messages with the states on which they were
generated, we can see that the dependency relation is a sub-

123

Strong eventual consistency of the collaborative editing framework WOOT 151

Peer A

Peer B m1

m2

Receive Event Broadcast Event

Fig. 2 The causal relationship of messages is a subrelation of the
happened-before relation

relation of Lamport’s acyclic happened-before relation. In
Fig. 2 we illustrate the case of a message m2 dependent on
m1, which also implies that the state creating m1 must have
happened before the state creatingm2. Note that the converse
is not necessarily true, i.e., a message may not semantically
depend on all the messages that were created or integrated
before it.

3.7 Interleaving anomalies

In Sect. 3.3 we described the minimum requirements on �.
The conditions ensure intention preservation, i.e., that the
character appears at the place it was inserted. But for concur-
rent insertion at the same place, the order is unspecified. For
example, if two peers concurrently insert a character with
symbol x and y between a and b the result, after all mes-
sages are received may be “axyb” or “ayxb”. A well known
anomaly [11] is the situation where entire words are inserted
in the same spot concurrently. Consider for example the con-
current insertion of “pea” and “nut” at position 7 in “I like s”
Agoodoutcomewould be “I like peanuts” or “I like nutpeas”;
a careless definition of � could assign sort keys resulting in
something like “I like pneauts”.

We solve the issue in two steps. First, similarly to Oster
et al. [21], we require that the unique identifiers (not the
sort keys) associated to each character form a total order
themselves. We cannot require the order to be monotone
with respect to the ordering of the characters (that’s what
the sort keys are there for), but we want to make sure that the
unique identifiers generated by distinct peers do not inter-
leave, i.e., identifiers generated by peer A should never be
ordered between identifiers generated by peer B10. The sec-
ond step is to add an additional constraint to the function �,
requiring that the sort keys preserve the order on the identi-
fier, if it does not violate Condition 1:

10 This can be easily achieved by creating identifiers of the form (p,n)
where p is a unique identifier associated to the peer, and n is a local
counter on the peer. Then the tuples can be endowed with the lexico-
graphic order of the product space.

x

s
y

p
αp=Ψ(x,i1,y)

a
αa=Ψ(αp,i2,y)

e
αe=Ψ(αp,i3,αa)

n
αn=Ψ(x,j1,y)

u
αu=Ψ(αn,j2,y)

t
αt=Ψ(αu,j3,y)

Fig. 3 Sort keys associated with the concurrent insertion of ’pea’ and
’nut’

Condition 3 If l < �(l ′, i ′, u′) < u, l ′ < �(l, i, u) < u′
and i < i ′ then �(l, i, u) < �(l ′, i ′, u′).

Given two characters that are to be inserted within each
other’s boundaries, we require that the order of the identifiers
is respected. The condition is non-trivial, but it can be derived
from Oster et al. [21, Theorem 3], under the assumption that
there is a sort-key mapping �.

Let us see how this avoids the “pneauts” outcome:We call
the sort key of the second space (resp. s symbol) in “I like s”
x (resp. y). The identifiers from thefirst peer generating “pea”
are called i1, i2 and i3. The identifiers from the second peer
generating “nut” are called j1, j2 and j3. We assume i1 <

i2 < i3 < j1 < j2 < j3. The first peer types “pa” and inserts
the “e” between those in the last step, so that i2 is associated
with “a” and i3 is associated with “e”. In Fig. 3 we present
the associated sort keys to each of the symbols.

Using Condition 1 we can easily deduce that:

x < αp < αe < αa < y

x < αn < αu < αt < y

Since x < αp < y and x < αn < y we can conclude
using Condition 3 that αp and αn are ordered with respect
to the order chosen between i1 and j1, i.e., αp < αn . Using
Condition 3 again forαa andαn , wherewehaveαp < αa < y
and αp < αn < y, we can determine that αa < αn , which
implies: αp < αe < αa < αn < αu < αt .

123

152 E. Karayel, E. Gonzàlez

3.8 Avoiding the computation of sort keys

The keen readermay have noticed that, in the example above,
there was no need to refer to a concrete instantiation of the
function �: we could order the entered symbol just by using
conditions 1 and 3 as rules. We will see that this is always
possible, and that leads to the last change to the framework
we are building.

Instead of computing the sort key of a character, we keep
the characters in a sequence according to the order induced
by the sort keys. The state of a peer is a sequence of char-
acters: w1, . . . , w|w|. For each character wk , we remember
the identifiers of the predecessor and successor characters
l(wk), u(wk) (the characters that were adjacent to the char-
acter when it was created), as well as the character’s identifier
i(wk) and symbol σ(wk). This information is being stored,
so that we canmake sure the preconditions of Condition 3 are
met. Note that we never remove characters from the sequence
but just mark them as deleted, by replacing the characters
symbol with ⊥. The integration algorithm for an insert mes-
sage becomes the following:

Given a new received characterwnew to be inserted,we can
look up the positions l and u of the preceding and succeeding
characters in the sequence, for whichwe know the identifiers.

l = idxw(l(wnew))

u = idxw(u(wnew))

Note that idxw(i) denotes the position of a character in a
peer’s state w with identifier i . Note also that l(wnew) (resp.
u(wnew)) may be 	 (resp.
). Thus, we define idxw() := 0
and idxw(
) := |w| + 1 for completeness. Due to Condi-
tion 1, we know that the sort key of the new character has
to be between the sort keys of wl and wu . In the easiest
case, these two would already be adjacent (i.e. u = l + 1)
and we can just insert the new character after wl . If not, we
need to narrow down the position further using Condition 3.
This is possible for a subset Tw(l, u) of the characters strictly
between wl and wu whose dependencies are outside of the
range wl and wu , i.e., both the position of the predecessor
(resp. successor) ofwt for t ∈ Tw(l, u) needs to be less (resp.
greater) than or equal to l (resp. u), which implies:

α(l(wt)) ≤ α(i(wl)) < α(i(wnew))

< α(i(wu)) ≤ α(u(wt))

Similarly we have:

α(l(wnew)) ≤ α(i(wl)) < α(i(wt))

< α(i(wu)) ≤ α(u(wnew))

In those cases, we can use Condition 3 to conclude that
α(wnew) < α(wt) or α(wnew) > α(wt) depending on

Start: p e a s

nl u

Step 1: p e a s

l’ u’

Step 2: p e a s

l’ u’

Result: p e a n s

Fig. 4 Example of the insertion of the character with symbol ‘n‘ after
the characters ‘p‘,‘e‘ and ‘a‘ from the previous example in Sect. 3.7. In
the first step the integration algorithm determines the possible position
for the new character using its predecessor and successor. After that
the position is further narrowed down, using identifier comparisons
with characters whose dependencies are outside the target range. The
characters that are in L in each iteration step are depicted in dark gray.
The positions of the narrowed bounds for the next step are depicted
using the arrows with the labels l ′ and u′

whether i(wnew) < i(wt) or i(wnew) > i(wt) for each
wt ∈ Tw(l, u). Note that Tw(l, u) cannot be empty: Since
the dependency graph is acyclic, we can choose a minimal
element according to the dependency relation from the set of
characters strictly between wl and wu , which by definition
cannot have a dependency between wl and wu (otherwise it
would not be a minimal element). Also, we can apply Condi-
tion 3 between pairs of elements in Tw(l, u), which implies
that the identifiers in Tw(l, u) will be strictly increasing with
the position of the character. This leads to an integration
algorithm where a consecutive pair of elements in Tw(l, u)

(enclosing the identifier i(wnew)) is chosen to narrow down
l and u.11

11 In the case where the identifiers of all elements in Tw(l, u) are
larger (resp. smaller) than i(wnew), the lower bound (resp. upper bound)
remains l (resp. u) while the upper bound (resp. lower bound) becomes
the first (resp. last) index in Tw(l, u).

123

Strong eventual consistency of the collaborative editing framework WOOT 153

Protocol 6 The WOOT Framework
init

w ← [] : (I ∪ {	} × I × I ∪ {
} × � ∪ {⊥}) list

query view() : � list
w′ := filter(λc.σ (c) �= ⊥)w

return σ(w′
1)σ (w′

2) . . . σ (w′
|w′ |)

modify insert(σ : �, k : N)
w′ := filter(λc.σ (c) �= ⊥)w

l := i(w′
k) or 	 if k = 0

u := i(w′
k+1) or
 if k = ∣∣w′∣∣

i := create-unique-id()
broadcast(insert (l, i, u, σ))

modify delete(k : N)
w′ := filter(λc.σ (c) �= ⊥)w

i := i(w′
k)

broadcast(delete i)

integrate insert(lid : I ∪ {	}, i : I, uid : I ∪ {
}, σ : �)
l ← idxw(lid)
u ← idxw(uid)

while u − l �= 1 do
T := {

k
∣∣idxw(l(wk)) ≤ l < k < u ≤ idxw(u(wk))

}
L := T ∪ {l, u}
(l, u) ← min{(l ′, u′)|u = u′ ∨ i ≤ i(wu′) where

l ′ and u′ are consecutive in L}
end while
w ← w1 . . . wl (lid, i, uid, σ) wu . . . w|w|

integrate delete(i : I)
k := idxw(i)
c′ := (l(wk), i(wk), u(wk),⊥)

w ← w1 . . . wk−1 c′ wk+1 . . . w|w|

In Protocol 6we present the resulting framework, which is
theWOOTframework as described byOster et al. In Fig. 4we
depict the integration of the character ’n’ from the example of
Sect. 3.7 using the integration algorithm.To summarize, if the
function� fulfills conditions 1, 2 and 3 then the frameworks
in Protocol 4 and Protocol 6 behave identically, exchanging
the same set of messages, for the same modifications and
providing the same view. While the internal state of Proto-
col 6 keeps the sequence of characters ordered according the
sort keys implicitly, Protocol 4 explicitly computes them.

4 The function�

As seen in the previous section, it is possible to simulate
WOOTwith the sort-key based Protocol 4, under the assump-
tion that for any totally ordered identifier space I we can
construct a sort key space and a function � fulfilling Condi-
tions 1, 2 and 3. In this section, we prove that this is indeed
possible.We start by constructing such a sort key space under
the assumption that I is finite. To extend to the infinite case,
we then use the compactness theorem. We omit Condition 2

in the intermediate results, but we conclude at the end of this
section that Condition 2 follows fromConditions 1 and 3.We
would like to note that this is a novel result, not previously
mentioned in publications to the best of our knowledge.

Proposition 1 Let b ≥ 2 and I := { 1
b , . . . , b−1

b

}
be the set

of rational numbers with denominator b strictly between 0
and 1. Then there exists a totally ordered setA and a function
� with domain

{
(l, i, u)

∣∣l < u ∈ A ∪ {	,
} , i ∈ I} ⊆ A∪
{	} × I × A ∪ {
} and range A fulfilling conditions 1 and
3.

Proof Wedenote byQb the set of rational numberswith finite
b-ary expansion, i.e., Qb := {

x ∈ Q
∣∣∃k ∈ N . bk x ∈ Z

}
.

Note that Qb is a ring, it is closed with respect to addi-
tion, negation, multiplication. It is also closed under division
by b. With db(x), we denote the length of that expansion,
i.e., db : Qb → N where db(x) := min

{
k ∈ N

∣∣ bk x ∈ Z
}
.

Note that db(x) = 0 if and only if x ∈ Z, moreover
db(x + y) ≤ max(db(x), db(y)) for all x, y ∈ Qb. And
db(bx) = db(x) − 1 if db(x) > 0 for all x ∈ Qb.

We denote by �x� (resp. �x�) the largest integer (resp.
smallest integer) smaller or equal (resp. larger or equal) to x .
Let μl(x) := bx − �bl� and νu(x) := bx − �bu� + 1, then

0 ≤ μl(l) < 1 (1)

0 < νu(u) ≤ 1 (2)

for all l, u ∈ Qb. Additionally, we can conclude using the
properties about db we established:

max(db(μl(l)), db(μl(u))) = max(db(l), db(u)) − 1 (3)

max(db(νu(l)), db(νu(u))) = max(db(l), db(u)) − 1 (4)

if max(db(l), db(u)) > 0 for all l, u ∈ Qb. We write
μ−1

l , ν−1
u for the inverse of μl and νu , i.e.,

μ−1
l (x) = x + �bl�

b

ν−1
u (x) = x + �bu� − 1

b

observing that μ−1
l (μl(x)) = x and ν−1

u (νu(x)) = x .
Definition of �: Finally, we can define � using recur-

sion on the length of the expansion of l and u, i.e.,
max(db(l), db(u)):

�(l, i, u) :=

⎧
⎪⎨
⎪⎩

i if l < i < u,

μ−1
l (�(μl(l), i, μl(u)) if i ≤ l, and

ν−1
u (�(νu(l), i, νu(u)) if i ≥ u

for i ∈ I and l, u ∈ Qb such that l < u, l < 1 and
u > 0. To provide an intuition for the function �, we refer

123

154 E. Karayel, E. Gonzàlez

to Fig. 5. We split the rational numbers between 0 and 1
into b equal-sized intervals. The identifiers correspond to the
endpoints of the intervals that are strictly between 0 and 1.
During each recursion step, an interval is scaled to the range
between 0 and 1. Note that we define � on a larger domain{
(l, i, u)

∣∣l < u ∈ Qb, l < 1, u > 0, i ∈ I}
than stated in the

proposition. (This is necessary, since the recursion relies on
the extended domain, for example when b = 4:

�

(
2

4
,
1

4
, 1

)
= μ−1

1
4

(
�

(
0,

1

4
, 2

))
= 9

16
.

See also the second example in Fig. 5. On the other hand,
if � fulfills conditions 1 and 3, this will remain true for any
restriction of it.) In the case that max(db(l), db(u)) = 0 we
can conclude l ≤ 0 from the fact that l < 1 and integer, and
similarly that u ≥ 1 and thus l < i < u, i.e., �(l, i, u) is
directly defined, i.e.,

�(l, i, u) = i and l < i < u

if max(db(l), db(u)) = 0. (5)

Otherwise, we can conclude from (3) and (4) that the value
�(l, i, u) is either also directly defined or in terms of argu-
ments with smaller max(db(l), db(u)). That those are still in
the domain follow from the monotony of μl , νu as well as
the inequalities (1), (2). Note that since i ∈ Qb and that the
application of both μ−1

l , ν−1 preserve membership in Qb,
we can deduce that the range of � is in Qb.

As before we identify 0 with 	, the sort key associated
to the beginning of the string, and 1 with
, the sort key
associated with the end of the string. The set of sort keys is
A = Qb ∩ (0, 1).

Range of �: We first show that

0 < �(l, i, u) < 1 (6)

l < �(l, i, u) < u. (7)

on the domain of � using induction on max(db(l), db(u)).
If max(db(l), db(u)) = 0 we have �(l, i, u) = i using (5)
confirming both (6) and (7). For the induction step let us
assume the statements are true if max(db(l), db(u)) = n.
And let max(db(l), db(u)) = n + 1. We consider the three
cases from the definition of � separately:

• Case l < i < u: Then �(l, i, u) = i and both (6) and (7)
follow by definition.

• Case i ≤ l: Then �(l, i, u) = μ−1
l (�(μl(l), i, μl(u))),

and we can using the induction hypothesis conclude
μl(l) < �(μl(l), i, μl(u)) < μl(u) which implies
(7). Also using the induction hypothesis we have 0 <

0
4

1
4

2
4

3
4

4
4

0
4

1
4

2
4

3
4

4
4

0
4

1
4

2
4

3
4

4
4

0
4

1
4

2
4

3
4

4
4

0
4

1
4

2
4

3
4

4
4

0
4

1
4

2
4

3
4

4
4

Example evaluation of Ψ when u < i using 2 recur-
sions; the dashed lines represent rescaling by νu and
νu′ :

l uΨ l, 3
4 , u

l′ = νu(l) u′ = νu(u)Ψ l′, 3
4 , u′

νu′ (l′) νu′ (u′)Ψ νu′ (l′), 3
4 , νu′ (u′)

Example evaluation of Ψ when i < l using 1 recur-
sion; here μl (represented by the dashed lines) is ap-
plied to rescale the range between 2

4 and 3
4 to 0 and

1:

l uΨ l, 1
4 , u

μl(l) μl(u)Ψ μl(l), 1
4 , μl(u)

Example evaluation of Ψ when l < i < u:

l uΨ l, 2
4 , u

Fig. 5 Example evaluations of � with no, one and two recursions for
b = 4

�(μl(l), i, μl(u)) < 1 which implies

b−1�bl� < �(l, i, u) < b−1(�bl� + 1),

from which (6) follows using 0 < i ≤ l < 1.
• Case u ≤ i : Then �(l, i, u) = ν−1

u (�(νu(l), i, νu(u)))

and we can again using the induction hypothesis con-
clude νu(l) < �(νu(l), i, νu(u)) < νu(u) which implies
(7). Also using the induction hypothesis we have 0 <

123

Strong eventual consistency of the collaborative editing framework WOOT 155

�(νu(l), i, νu(u)) < 1 which implies

b−1(�bu� − 1) < �(l, i, u) < b−1�bu�,

from which (6) follows using 0 < u ≤ i < 1.

Monotonicity of �: Next we show that

�(l, i, u)<�(l, i ′, u) for i<i ′, l<u, l < 1

and u > 0 (8)

using induction on max(db(l), db(u)).
If max(db(l), db(u)) = 0 we can conclude �(l, i, u) =

i < i ′ = �(l, i ′, u). For the induction step let us assume
the statements are true when max(db(l), db(u)) = n. And let
max(db(l), db(u)) = n + 1. We consider 6 separate cases:12

• Case i < i ′ ≤ l < u: Then

�(l, i, u) = μ−1
l (�(μl(l), i, μl(u))

< μ−1
l (�(μl(l), i ′, μl(u))) = �(l, i ′, u)

where the equalities are by definition and the inequality
follows from the induction hypothesis.

• Case i ≤ l < i ′ < u: Note that l < i ′ implies
�bl� < bi ′ which implies �bl� + 1 ≤ bi ′ since both
sides of the inequality are integer. Using (6) we can
now conclude: �(l, i, u) = μ−1

l (�(μl(l), i, μl(u))) <

b−1(1 + �bl�) ≤ b−1(bi ′) = i ′ = �(l, i ′, u).
• Case i ≤ l < u ≤ i ′: If �bl� = �bu� − 1, we have

μl(x) = νu(x) and the result follows using the induction
hypothesis analogous to the first case. Otherwise, �bl� <

�bu� − 1 and thus �bl� + 1 ≤ �bu� − 1, since both sides
of the inequality are integer. We can use (6) arriving at

�(l, i, u) = μ−1
l (�(μl(l), i, μl(u)))

< b−1(1 + �bl�) ≤ b−1(�bu� − 1)

< ν−1
u (�(νu(l), i ′, νu(u))) = �(l, i ′, u).

• Case l < i < i ′ < u: We have �(l, i, u) = i < i ′ =
�(l, i ′, u).

• Case l < i < u ≤ i ′: We have i < u implying
bi < �bu� and since both sides of the inequality are
integer. We have bi ≤ �bu� − 1, hence using (6) we
can conclude �(l, i, u) = b−1(bi) ≤ b−1(�bu� − 1) <

ν−1
u (�(νu(l), i ′, νu(u))) = �(l, i ′, u).

12 These are all possible ways i and i ′ can be in the ranges:

1. smaller or equal to l,
2. strictly between l and u, or
3. larger or equal to u.

For two arbitrary variables, there would be nine cases, but since i < i ′,
three of those are eliminated.

• Case l < u ≤ i < i ′: Can be shown using the induction
hypothesis analogous to the first case.

Stability of �: Next we show that

l ≤ l ′ < �(l, i, u) < u′ ≤ u

→ �(l, i, u) = �(l ′, i, u′) (9)

using induction on max(db(l), db(u)). In the case where
max(db(l), db(u)) = 0, we can conclude �(l, i, u) = i
and thus l ′ < i < u′ which implies �(l ′, i, u′) = i . For
the induction step let us assume the statements are true if
max(db(l), db(u)) = n. And let max(db(l), db(u)) = n + 1.
We consider the three cases from the definition of �(l, i, u):

• Case l < i < u: Then we have �(l, i, u) = i and
hence l ′ < i < u′ due to the assumption which implies
�(l ′, i, u′) = i .

• Case i ≤ l: Then we have �bl� = �bl ′� since �bl ′� ≤
bl ′ < b�(l, i, u) = �(μl(l), i, μl(u))+�bl� < �bl�+1
which implies �bl ′� ≤ �bl� since the left and right hand
sides are integers. On the other hand �bl� ≤ �bl ′� follows
directly from l ≤ l ′, i.e., �bl� = �bl ′�. Using that we can
rely on the induction hypothesis, to conclude�(l, i, u) =
�(l ′, i, u′).

• Case u ≤ i : Then we have �bu� = �bu′�, since �bu′� ≥
bu′ > b�(l, i, u) = �(νu(l), i, νu(u)) + �bu� − 1 >

�bu� − 1 which implies �bu′� ≥ �bu� since the left and
right hand sides are integers. On the other hand �bu′� ≤
�bu� follows directly from u′ ≤ u, i.e., �bu′� = �bu�.
Like in the previous case, we can rely on the induction
hypothesis to conclude �(l, i, u) = �(l ′, i, u′).

We have already shown that � fulfills Condition 1 in (7). To
show Condition 3, let us assume l ′ < �(l, i, u) < u′ and
l < �(l ′, i ′, u′) < u then:

�(l, i, u) = �(max(l ′, l), i,min(u′, u))

< �(max(l ′, l), i ′,min(u′, u)) = �(l ′, i ′, u′)

where the inequality follows from (8) and the equalities from
(9). ��

It is easy to extend the previous result to arbitrary totally
ordered finite identifier sets:

Proposition 2 Let I be a finite totally ordered set. Then there
exists a totally ordered set A and a function � : A ∪ {	
} × I × A ∪ {
} → A fulfilling conditions 1 and 3.

Proof Let b = |I| + 1 and I ′ := { 1b , . . . , b−1
b }, then we can

define a strict monotone function between I and I ′

φ(x) =
∣∣{y ∈ I∣∣y < x

}∣∣ + 1

b
.

123

156 E. Karayel, E. Gonzàlez

By Proposition 1, there is a totally ordered setA and a func-
tion � ′ : X → A fulfilling conditions 1 and 3, where
X = {

(l, i, u)
∣∣l < u ∈ A, i ∈ I} ⊂ A∪{	}×I ×A∪{
}.

We can define �(l, i, u) = � ′(l, φ(i), u) when l < u and
arbitrarily13 set �(l, i, u) = 1/b if l ≥ u. ��
Proposition 3 Let I be a totally ordered set. Then there exists
a totally ordered setAand a function � : A∪{	}×I×A∪{

} → A fulfilling conditions 1 and 3.

Proof To extend the result from Proposition 2 to the infinite
case, we use the compactness theorem [16, §2.1]: Let us
assume that I is an infinite totally ordered set. We introduce
a languageLwith two constant symbols	 and
, one relation
symbol < and an infinite set of 2-ary function symbols �i

for each element of I. Consider the following infinite set of
first order sentences:

∀a, b . a < b → ¬a = b (10)

∀a, b . a < b → ¬b < a (11)

∀a, b . a = b → ¬a < b (12)

∀a, b, c . a < b ∧ b < c → a < c (13)

∀a, b . a < b ∨ b < a ∨ a = b (14)

∀a . (< a∨ 	= a) ∧ (a <
 ∨a =
) (15)

∀l, u . l < u → l < �i (l, u) < u for all i ∈ I (16)

∀l, u, l ′, u′ . l ′ < �i (l, u) < u′ ∧ l < �i ′(l
′, u′) < u →

�i (l, u) < �i ′(l
′, u′) for all i < i ′ ∈ I (17)

The sentences (10-15) express that< is a strict total order and
that the constants 	 (resp.
) are the smallest (resp. largest)
elements in that order. Note that (16) and (17) constitute
infinite sets of first order sentences. If the set of sentences
has a model, it is easy to see that there is a totally ordered set
A and a function� fulfilling Condition 1 and 3. (Note thatA
would be identified with the elements of the model excluding
the values associated to 	,
 and �(l, i, u) would be the
value associated with the value of �i (l, u)). To show that
(10-17) have a model, we rely on the compactness theorem,
which is asking us to check whether any finite subset of those
sentences have a model. For such a finite subset F , there will
be a finite subset I of I such that the sentences (10-15) and
the restriction of (16) and (17) to the sentences associated
with the identifiers in I are a superset of F . For I we can
rely on the previous result on finite identifier spaces to find
a model, which implies using the compactness theorem, that
this theorem is true even if the identifier space is infinite. ��
Theorem 1 Let I be a totally ordered set. Then there exists a
totally ordered setA and a function � : A∪{	}×I×A∪{

} → A fulfilling conditions 1, 2 and 3.

13 Since the antecedents of both conditions 1 and 3 imply l < u.

Proof Because of Proposition 3, we only need to show that
Condition 2 is true. Let l, l ′ ∈ A ∪ {	} and u, u′ ∈ A ∪ {
}
such that l < u, l ′ < u′ and:

�(l, i, u) = �(l ′, i ′, u′) (18)

We show that i = i ′ by contradiction. Let us hence assume
that i �= i ′, which implies either i < i ′ or i > i ′ since I is
totally ordered. We can then infer using Condition 1 and (18)
that l, l ′, i, i ′, u, u′ fulfill the premise of Condition 3 and
hence:

• i < i ′ would imply �(l, i, u) < �(l ′, i ′, u′)
• i > i ′ would imply �(l, i, u) > �(l ′, i ′, u′)

Both conclusions are in conflict with (18). Hence, the
assumption that i �= i ′ must have been false. ��

5 Strong eventual consistency of WOOT

Section 3 gave an informal derivation of the WOOT Frame-
work and its consistency as a sequence of simulation
arguments. We identified that Theorem 1 should imply that
WOOT is strongly eventually consistent.However, a rigorous
proof of the implication requires a large number of lemmas
and definitions.14 We decided to use Isabelle/HOL to carry
out the rigorous proof to avoid subtle flaws in the arguments.
The resultingmachine-checked proof [10] was open-sourced
to the Archive of Formal Proofs (AFP)[1].

In this section, we describe the exact distributed execution
model and the results we have verified in Isabelle/HOL and
give a brief overview of the proof. Definitions, assumptions
and theorems are accompanied by footnotes that reference
the corresponding entities in the formalized proof.

5.1 Distributed system

To rigorously express the consistency properties, we need to
formally define the distributed execution model used in the
proof.We followed themodelling laid out byGomes et al. [8]
and Raynal [24, Chapter 6] for distributed message-passing
algorithms, but refined it for the case of the WOOT frame-
work. Let P be a finite set of peer identifiers.15 Similarly
to Shapiro et al. [27, §2], we assume the participating peers
are non-Byzantine. Wemodel an execution of the framework
as sequences of events for each peer,16 where an event can
either be a broadcast event and or the reception of a message,

14 We neededmore than 100 lemmas and 60 definitions across 66 pages
in [10].
15 assumes fin_peers [10, §4.7]
16 fixes events [10, §4.7]

123

Strong eventual consistency of the collaborative editing framework WOOT 157

Peer A

Peer B

Peer C

Receive Event Broadcast Event

Fig. 6 Example execution of the framework

and we call this sequence the history of the peer h(p).17 We
write h(p)i = broadcast(m) if the i-th event of peer p was
broadcasting the message m and h(p)i = receive(m, q, j) if
it was the reception of the message m broadcast at the j-th
event of peer q. Figure 6 provides an example of such his-
tories. Indices for histories start from 0 and we will use the
notation |h(p)| for the number of events.

An event can be uniquely identified by a pair comprised
of a peer identifier p ∈ P and its index in the history of that
peer; we call such a tuple an event id.18

In Raynal [24, Chapter 7], peers can also have internal
events and, instead of broadcast events that disseminate a
message to all peers, messages are directed to individual
peers. We omit these cases for simplicity. Another difference
is in the assumption that all messages are distinct. Since in
the WOOT framework it is possible for two peers to send the
same message,19 we avoid that requirement and instead use
3-tuples for receive events, capturing the event index and peer
the message originated from. In this way, the links between
a broadcast event and its corresponding reception events are
still represented.

Note that while we assume event indices count successive
events for the samepeer, there is no synchronicity assumption
between indices from distinct peers. The only ordering of
event ids between peers is induced by the causality implied
bymessage transmission. To that end, we introduce a relation
on the event ids20, the happened-immediately-before relation

17 datatype (’p, ’s) event
18 type_synonym ’p event_id
19 This happenswhen two peers delete the same character concurrently.
20 More commonly in other work, this relation is defined between
events. However because of the assumptions that messages are not dis-
tinct, and thus it is possible to have the same broadcast event multiple
times, we instead define the relation on event ids.

→hib.21 The relation (p, i) →hib (q, j) holds if i < |h(p)|,
j < |h(q)| and either:

• p = q and j = i + 1, i.e., they are successive events on
the same peer, or

• there exists m such that h(q) j = receive(m, p, i), i.e.,
the latter event is the reception of a message sent by the
former event.

The transitive closure of→hib is the happened-before rela-
tion →hb, which was introduced by Lamport [13] to order
events of asynchronous distributed systems.

Histories which describe an actual execution of a dis-
tributed algorithm fulfill additional conditions. For example,
a peer can only receive a message from another peer if the
latter broadcast that message. We summarize the assump-
tions about histories of a distributed system in the following
condition:

Condition 4 (Distributed Execution)

• If a message m was received from peer q event j ,
that event must be a broadcast event, e.g., if h(p)i =
receive(m, q, j) then h(q) j = broadcast(m).22

• A broadcast event will deliver a message to each peer at
most once, i.e., for all p and i, j < |h(p)|, if there exists
m, q, k such that h(p)i = h(p) j = receive(m, q, k)

then i = j . In practice, if the network communication
mechanism does not guarantee at-most-once delivery,
this condition can also be simulated by keeping track of
all received messages in the implementation. Note that
we do not yet require that a message will be received at
all by all peers.23

• The happened-immediately-before relation →hib is
acyclic. This is equivalent to the fact that the happened-
before relation→hb is a strict partial order. This condition
about the execution of distributed systems is a con-
sequence of the fact that the distributed system runs
on physical machines and that events cannot cause
themselves. See for example Lamport [13, §The Partial
Ordering].24

We will write R(p, i)25 to denote the set of messages
received by a peer before event i , i.e.,

R(p, i) := {
m

∣∣∃q, k, j < i .h(p) j = receive(m, q, k)
}

21 fun happened_immediately_before [10, §4.7]
22 assumes send_correct [10, §4.7]
23 assumes at_most_once [10, §4.7]
24 assumes acyclic_happened_before [10, §4.7]
25 fun received_messages [10, §4.7]

123

158 E. Karayel, E. Gonzàlez

For results where we need to assume that all broadcast
messages will be delivered to each peer, we introduce the
eventual delivery condition:

Condition 5 (Eventual Delivery) A message will be deliv-
ered to all peers, i.e., for all p, q ∈ P and j < |h(p)|, if
h(p) j = broadcast(m) then m ∈ R(q, |h(q)|).

The following condition expresses the semantic deliv-
ery condition we introduced in Sect. 3.5, i.e., a message
is not received before its dependencies are. If the underly-
ing communication protocol does not meet this condition, an
implementation can buffermessages until their dependencies
are received. See Protocol 5 for an example implementation
of such an algorithm.

Condition 6 (Semantic Causal Delivery) A message will
only be delivered to a peer if its dependencies have already
been delivered to it, i.e., for all p ∈ P and j < |h(p)|, if
h(p) j = receive(m, q, k) then for each i ′ ∈ deps(m) there
exists an m′ ∈ R(p, j) such that i(m′) = i ′. Here we refer
to the function deps26 which is defined in Protocol 5.27

In addition to events, we also associate a sequence s(p)

of states to each peer p ∈ P . Similarly to the notation for
history, wewrite |s(p)| for the number of states and index the
states starting from 0. Whenever a peer receives a message,
it will update its state using the corresponding integration
algorithm for the type of message it received as described in
Protocol 6. Similarly, a broadcast message is created using
one of the modify algorithms described in Protocol 6.

To be able to express properties about the histories of
states, we represent the integration and modification algo-
rithms in Protocol 6 as mathematical functions. For the
integration algorithms, if m is a message and s a preceding
state then integrate(m, s)28 returns the new state after inte-
grating the message into state s. Depending on the type of
message, this is the result of applying the algorithm integrate
insert or integrate delete. In cases where the integration
algorithm fails or does not terminate, the resulting state is ⊥
and we define integrate(m,⊥) = ⊥.

Both modification algorithms modify insert and modify
delete read but do not modify the state and their last state-
ment is a broadcast. We introduce functions that return the
message that would be broadcast by them. Given a state s, we
define the function create-insert(i, σ, k, s),29 which returns
the message that would be broadcast by the algorithm mod-
ify insert(σ, k) if the state of the peer were s and the unique

26 fun deps [10, §4.7]
27 assumes semantic_causal_delivery [10, §4.7]
28 fun integrate [10, §4.6]
29 fun create_insert [10, §4.5]

id returned by the create-unique-id function were i . Simi-
larly, create-delete(k, s)30 returns the message that would be
broadcast bymodify delete(k) if the state of the peer were s.

In the following,we summarize the conditions that express
that each peer implements Protocol 6.

Condition 7 (Peers execute WOOT Protocol)

1. The number of states is exactly one larger than the number
of events, i.e., |s(p)| = |h(p)| + 1. This is because we
use s(p)0 for the initial state of a peer, before any event
has happened on the peer.

2. Each peer’s initial state is the empty string, i.e., s(p)0 = ε.
3. If a peer receives a message, the resulting state is the out-

put of applying the integration algorithm for that message
on the previous state, i.e., s(p)i+1 = integrate(m, s(p)i)

if there exist m, q, j such that h(p)i = receive(m, q, j).
4. In the case of a broadcast event, the state of the peer

remains the same, i.e., s(p)i+1 = s(p)i if there exists
m such that h(p)i = broadcast(m). Deferring the update
of the state allows us to simplify the correctness proof: we
canmodel the broadcast event as transmitting themessage
to all peers including the source peer itself; its state will
be updated when it receives its own message. An actual
implementation would usually introduce a separate code
path to update the peer’s own state. See also Fig. 6 and
Sect. 3.1.31

5. In the case of a broadcast event, either the message was
created by applying the modify insert or modify delete
algorithm on the state s(p)i , i.e., if h(p)i = broadcast(m)

then s(p)i �= ⊥ and either:

• there exists n < |s(p)i |+1 and σ ∈ � such that m =
create-insert((p, i), n, σ, s(p)i), or

• there exists n < |s(p)i | such that
m = create-delete(n, s(p)i).

Note that, this means we are assuming a peer which
reached the failure state will not broadcast any more mes-
sages.32

We would like to note a simplification made regarding the
unique identifier. In the description of Protocol 6, we define
the create-unique-id procedure to be an arbitrary algorithm
that returns unique identifiers. In the above conditions,weuse
the combination of peer id and event index as the unique id
for newly created characters (see Condition 7 Clause 5). This
is a valid implementation for create-unique-id, but imple-
mentations could of course choose other methods to create
unique identifiers.

30 fun create_delete [10, §4.5]
31 fun state [10, §4.7]
32 assumes send_correct [10, §4.7]

123

Strong eventual consistency of the collaborative editing framework WOOT 159

5.2 Results

With the definitions in this section, we have verified the
following two theorems using the Isabelle/HOL interactive
theorem prover.

Theorem 2 (No failure33) During the distributed execution
of the WOOT framework with semantic causal delivery, the
integration algorithms will never fail, i.e., if the conditions
4, 6 and 7 are met, then for all p ∈ P and i < |s(p)| we
have s(p)i �= ⊥.

Proof Verified in [10, §6]. ��
We recall the definition of Strong Convergence from

Sect. 1 and Shapiro et al. [27, §2.2]:

Definition 1 A CRDT is strongly convergent if any pair of
peers who have received the same set of messages will be in
equal states, i.e., for all p, q ∈ P , i < |h(p)| , j < |h(q)|, if
R(p, i) = R(q, j) then s(p)i = s(q) j .

Theorem 3 (Strong Convergence34) During the execution of
the WOOT framework with semantic causal delivery, if two
peers have received the same set of messages they will be in
the same state, i.e., if the conditions 4, 6 and 7 are met then for
all p, q ∈ P , i < |h(p)| , j < |h(q)| if R(p, i) = R(q, j)
then s(p)i = s(q) j .

Proof Verified in [10, §6]. ��
We recall the definition of Eventual Consistency from

Sect. 1 and Shapiro et al. [27, §2.2]:

Definition 2 A CRDT is eventually consistent when, if after
some point no further updates are made at any peer, then the
peers will eventually reach the same final state, i.e., there is
a state s such that for all p ∈ P: s(p)|s(p)|−1 = s.

Except for trivial cases, an operation-based CRDT can
only be eventually consistent if all messages are actually
delivered. On the other hand, strong convergence can be
proved even without that assumption. If we additionally
assume eventual delivery, we can conclude that the WOOT
framework is eventually consistent:

Corollary 1 If the WOOT framework is executed with seman-
tic causal delivery and eventual delivery, then it is eventually
consistent, i.e., if the conditions 4, 5, 6 and 7 are met, then
there is a state s such that for all p ∈ P: s(p)|s(p)|−1 = s.

Proof Note that |h(p)| = |s(p)|−1.Under the assumption of
eventual delivery, we can prove that all peers will eventually

33 theorem no_failure [10, §6]
34 theorem strong_convergence [10, §6]

have received the same set of messages, i.e., R(p, |h(p)|) =
R(q, |h(q)|) for all p, q ∈ P .

We start by proving that R(p, |h(p)|) ⊆ R(q, |h(q)|).
For m ∈ R(p, |h(p)|), there exist r , i and j such that
receive(m, r , j) = h(p)i . From Condition 4, we have
h(r) j = broadcast(m), and from Condition 5, we can con-
clude m ∈ R(q, |h(q)|). Inclusion in the reverse direction
R(q, |h(q)|) ⊆ R(p, |h(p)|) can be proven analogously.
Using Theorem 3 we conclude that s(p)|h(p)| = s(q)|h(q)|.
This is true for any pair p, q ∈ P , implying the corollary. ��

We recall the definition for strong eventual consistency
from Sect. 1 and Shapiro et al. [27, §2.2]:

Definition 3 A CRDT is strongly eventually consistent if it
is eventually consistent and it is strongly convergent.

Theorem 4 If the WOOT framework is executed with seman-
tic causal delivery and eventually delivery, then it is strongly
eventually consistent.

Proof Follows from Theorem 3 and Corollary 1. ��

5.3 Details

In the following, we describe the high-level approach (and
the reasoning behind it) to prove Theorems 2 and 3 in our
formalization [10] using Isabelle/HOL.

Usually, eventual consistency of a CRDT can be proven
by checking that any pair of operations commute, i.e., given
two messages, the successive integration of them to a given
starting state will lead to the same resulting state irrespective
of the order of integration. In that scenario, a general theorem
about CRDTs (see Shapiro et al. [27, Theorem 2.2]) implies
strong eventual consistency for the CRDT at hand.

In some cases, such as in theWOOT framework or RGAs,
integration operations are partial functions where the state
needs to satisfy a precondition to enable integration of a
received message. An integration operation will fail if the
precondition is not satisfied when it is invoked. For such
CRDTs, in addition to consistency, we also need to prove
such failureswill not occur during the execution of the frame-
work. For example, Gomes et al. [8] establish that the insert
operation for RGAs will not fail because the dependency of
an element will already be in the array as a consequence of
causal delivery.

Interestingly, a proof of non-failure for WOOT must nec-
essarily establish consistent ordering of characters between
the participating peers. This can be seen by considering
examples where two peers that have a permutation of each
other’s state will not be able to create messages that can be
successfully integrated into the other peers state. However,
invariants that imply consistent ordering of the characters
between peers can be found. This makes it more favorable in

123

160 E. Karayel, E. Gonzàlez

the case of WOOT to directly show consistency from these
established invariants, instead of verifying commutativity of
operations.

To describe the invariant we establish during the execu-
tion of the WOOT framework, we first define the notion of
consistent sets of messages. Let A be a sort key space and
let � : (A∪ {	}) × I × (A∪ {
}) → A be a map fulfilling
conditions 1, 2 and 3. We have seen in Sect. 4 that such a
space and function exists. Then we can define consistent sets
of messages:

Definition 4 (Consistent Sets of Messages35) Let M be a set
of messages, consisting of the insert messages Minsert and
delete messages Mdelete. We say such a set of messages is
consistent, if:

1. Each message has a distinct identifier, i.e., i is injective
on Minsert.

2. The dependencies of each message in the set are met, i.e.,
deps(m) ⊆ {

i(m)
∣∣m ∈ Minsert

}
for all m ∈ M .

3. Let→dep be the relation36 induced by the deps function on
the insert messages, i.e., for m1, m2 ∈ Minsert, m1 →dep

m2 iff i(m1) ∈ deps(m2). This relation →dep is well-
founded.

4. There exists a function α from the identifiers in Minsert to
the sort key space A, i.e., α : i(Minsert) → A, such that:

α() < α(
),

α(l(m)) < α(u(m)) and

α(i(m)) = � (α(l(m)), i(m), α(u(m)))

for all m ∈ Minsert.

Roughly, a set of messages is consistent if it would be pos-
sible to inductively associate sort keys to each insert message
(i.e., created character) according to the scheme described in
Protocol 4. See also Fig. 3.

In addition to that, we introduce a relation between sets
of messages and states of peers. The state of a peer consists
of characters whose symbols are replaced by ⊥ if they were
deleted but are otherwise identical to the corresponding insert
message. The state corresponding to a set of insert messages
is a sequence of such characters, with the ordering induced
by the sort key function. More precisely:

Definition 5 (Association37) Let M be a consistent set of
messages, where M = Minsert ∪ Mdelete, and s be a sequence

35 definition consistent [10, §5.3]
36 fun depends_on [10, §5.3]
37 definition is_associated_string [10, §5.3]

of characters. Let d be a function defined on Minsert by:

d(l, i, u, σ) =
{

(l, i, u, σ) if i /∈ Mdelete

(l, i, u,⊥) otherwise.

Then we say s and M are associated if:

• Minsert and s represent the same set of characters, up to
possible substitutions of symbols with ⊥ due to delete
messages, i.e., |s| = |Minsert| and

{s1, · · · , s|s|} = {d(m)|m ∈ Minsert} .

• For all α fulfilling the conditions of Clause 3 of Defi-
nition 4, the sequence α(i(s1)), · · · , α(i(s|s|)) is strictly
increasing.

Observe that, given a consistent set of messages, there
can be at most one state associated to it.38 A key result we
establish is that the integration algorithm commutes with set
insertions under that relation:

Proposition 4 If both M and M ∪ {m} are consistent sets of
messages, s is the state associated to M, and either:

• m /∈ M, or
• m is a delete message

then integrate(m, s) is the state associated to M ∪ {m}.39

Proof Verified in [10, §5.6]. ��
The arguments of the proof rely on the insights we estab-

lished in Sect. 3.8. Note that the above result in particular
implies that the integration algorithm will not fail. Since the
starting state (the empty sequence) is associated with the
empty set,40 it is possible to prove using induction and Propo-
sition 4 that, with the semantic causal delivery condition, a
peer that receives a consistent set of messages will be in the
state associated to the received set.

Having established that, we proceed [10, §5.7] by prov-
ing that all the messages broadcast during the execution of
the WOOT framework are a consistent set, using induction
according to some causal ordering of the events.41 It should
be noted that during induction, we use Proposition 4 and thus
use the fact that the messages broadcast so far, according

38 lemma associated_string_unique [10, §5.3]
39 proposition integrate_insert_commute [10, §5.6]
40 lemma empty_associated [10, §5.3]
41 More precisely, since the events are partially ordered according to
the →hb relation, we choose an arbitrary total order that is an extension
of it. This can be done using topological sorting. In general, there may
be many possible such extensions.

123

Strong eventual consistency of the collaborative editing framework WOOT 161

Peer A

Peer B

Peer C

A B

D

C

Receive Event Broadcast Event

Fig. 7 Example induction step, where the creation of message D keeps
the set of messages consistent

to the chosen causal ordering, must be consistent. In Fig. 7
we depict an example induction step: Assuming the set of
messages generated by the events left of the dashed line,
i.e., the messages A, B and C , are consistent, we want to
show that including the message D preserves consistency.
Because the induction proceeds according to the happened-
before relation, the peer can only have received a subset of
the messages—that were already shown to be consistent. In
the depicted example, these are A and C . Because of the
semantic causal delivery condition, such a subset must itself
be consistent. Hence the state of the second peer, when it cre-
ates message D is the state associated to the messages A, C .
To complete the induction step, we rely on the following
proposition:

Proposition 5 Let M be a consistent set of messages and N
be a consistent subset of M and let s be the state associated
to N and m be a message, such that either

• there exists n < |s| + 1, σ ∈ � and m = create-
insert(i, n, σ, s), where i is an identifier distinct from all
identifiers in M, or

• there exists n < |s| and m = create-delete(n, s).

Then M ∪ {m} is consistent.42

Proof Verified in [10, §5.4]. ��

6 Formalization in Isabelle/HOL

This section gives a brief overview of the machine-checked
proof [10] we open-sourced in the Archive of Formal Proofs

42 lemma create_insert_consistent and
lemma create_delete_consistent [10, §5.4]

(AFP)[1]. The AFP is a refereed publication containing for-
mal documents verified by Isabelle. Contrary to ordinary
publications, it is being updated with each release of Isabelle,
and results are always checked with its most recent release.
Authors can improve and add additional content to their
entries provided the updates can be verified. All prior ver-
sions are accessible. Another distinctive feature of the AFP
is that it allows entries to be used as a library, i.e., an entry can
depend and use results established by previously published
entries.

Our entry uses the Certification Monads [28] library to
express partial functions. These are used for example to
handle illegal indices during array lookups andmissing iden-
tifiers during find operations in sequences, or to capture
non-termination cases.43 Partial functions return an error
result in these cases, which can then be propagated. Hence,
whenwe prove that an algorithmwill not return an error state,
it implies that such runtime errors will not happen.

We also use the Data Type Order Generator [29] library to
automatically derive total orders for data types, for example
during the construction of the sort key space.

We organized the AFP entry such that all necessary defi-
nitions are summarized in Sections 1 to 4 (18 pages) with
thorough explanations. Section 5 (36 pages) contains the
actual proof, but readers who are only interested in the results
can skip it.44 The resulting Theorems 2 and 3 of this docu-
ment are presented in Section 6 of the AFP entry.

As mentioned before, Sect. 5 of this document includes
footnotes that link the definitions and assumptions to the cor-
responding definitions and assumptions in the AFP entry.
We would also like to refer to the documentation of
Isabelle/HOL [18] for an introduction to its semantics and
syntax.

In the following subsections, wemention notablemethods
we used while formalizing the proof, including notions that
are uncommon in standard formal mathematics such as type
parameters or sum types.

6.1 The function�

Proposition 3 is represented using 2 propositions in our AFP
entry [10, §5.1]:

• proposition psi_elem
• proposition psi_preserve_order

43 This may happen during the while-loop in the integration algorithm
for insert messages in Protocol 6, where we return an error if u − l does
not decrease during an iteration.
44 Any intermediate definitionswithinSection5 are not (neither directly
nor indirectly) used in the statement of the resulting theorems.

123

162 E. Karayel, E. Gonzàlez

Instead of using the compactness theorem, we prove the
propositions constructively. It was however not easy to
present that version of the proof in Sect. 4 as it uses case
distinctions with more than 25 separate cases. In Isabelle,
the case distinctions result in goals that are automatically
resolved. We would like to note that the existence of a con-
structive version is interesting for possible implementations
of Protocol 4.

6.2 Types

Since Isabelle’s type system allows the construction of new
types based on existing types, we use that mechanism to
abstract over the set of symbols and identifiers. Type parame-
ters are indicated using a prime prefix, and type constructors
are suffix operators in Isabelle. For example the type of a
WOOT character is:

(’I, ’�) woot_character
where ’I denotes the type of identifiers and ’� denotes the
type of symbols. Then the type of a list of characters, i.e., a
state of a peer is:

(’I, ’�) woot_character list
In cases where we use special elements such as 	,
 or ⊥,
the representation in Isabelle uses a sum type. For example,
when to include the special state⊥ denoting the failure of the
integration algorithm, the formalization uses the sum type:

error + (’I, ’�) woot_character list
This means the result of the integrate function is either an
error or a sequence of characters. To extend types with
the special 	 and
 elements, we use the type constructor
extended, defined by:

dataype ’I extended
= Begin ()
| InString ’I ((1[[-]]))
| End (
)

We can read this as an element of ’I extended is either 	,

or [[i]] where i is an element of ’I. The terms in parenthesis,
such as 	 and
, denote abbreviations; they make the formal
document more concise and closer to the notation in this
manuscript.

6.3 Locales

Locales are parametric theories, where a number of theo-
rems can be shown for a common set of assumptions and
definitions. A good use case for locales are algebraic struc-
tures such as groups, rings or fields. Locales can extend each
other, for example the locale for a field would extend the
locale for a ring.

We use locales to model the distributed system. In partic-
ular, we fix a finite set of peers and history of events, and

establish their assumptions, such as semantic causal delivery
or the absence of causal cycles. For technical reasons, we use
two locales:

• dist_execution_preliminary
• dist_execution

The first one establishes the assumption that the set of peers
is finite and introduces definitions such as the sequence of
received messages for a given state:

fun received_messages where
received_messages (i,j) =
[m. (Receive _ m) ← (take j (events i))]

This corresponds to our definition of R for received mes-
sage in Sect. 5 (only with the slight difference that messages
are returned in the order they were received by the peer).
The second locale extends the first locale and introduces the
remaining assumptions, as described inConditions 4, 6 and 7.
Interestingly, we could express Clauses 1 to 4 of Condition 7
using a single definition. We recall that we required that the
starting state of a peer is the empty sequence and that the state
is updated by application of the integrate algorithm when-
ever a message is received. In the Isabelle formalization, we
could express these constraints using the foldM function:

fun state where
state i = foldM integrate [] (received_messages i)

In Section 9 of the AFP entry, we define an example exe-
cution of the framework consisting of histories of 3 peers
where each peer broadcasts a message, and show that it is an
example instance for the distributed-execution locale, i.e.,
that those fulfill the assumptions of it. Note that this implies,
that the assumptions are consistent.

7 Conclusion

Wehave shown thatWOOT is strongly eventually consistent.
This property was an open conjecture in the original presen-
tation of the framework in 2006. The fact that the general
convergence proof was missing had also been mentioned by
Kumawat and Khunteta [12, §3.10]. To achieve this result
we relied on an association of sort keys to the characters.
The proof is verified using the interactive theorem prover
Isabelle/HOL.

Havingmachine-checked our proof, we have strong confi-
dence in its correctness. By open-sourcing our formalization
and framework and having it accepted in the Archive of For-
mal Proofs [10], our work is accessible, reproducible and
available in a long-term maintained way to the community.

A key insight we could derive about WOOT is that it can
be simulated by a specific instance of a broad class of algo-

123

Strong eventual consistency of the collaborative editing framework WOOT 163

rithms, parameterized by the function � (See Protocol 4).
We think it is worthwhile to investigate how properties of
� are related to properties of the CRDT, for example with
respect to interleaving anomalies. This also implies the exis-
tence of an implementation by explicitly computing the sort
keys. That would allow an integration algorithm with a run-
time of O(n log n)with the same behaviour, compared to the
O(n2) worst-case performance of WOOT (where n is the
number of previous insert operations on the document). A
second insight we contribute is that the communication-cost
of sort-key based protocols could be significantly improved
by performing a program transformation that defers some of
the computation to the integration site. We think that simi-
lar modifications could also improve performance properties
of other distributed data structures. It would be interesting to
develop a formal theory of how program transformations can
be defined on CRDTs and which conditions are required to
preserve convergence and consistency properties. We found
that the conventional commutativity argument, commonly
used to show convergence of CRDTs, does not work with
theWOOT framework. Insteadwe showed consistency using
induction over the events of the distributed system. An inter-
esting question for further work is whether there may be
stronger fundamental theorems for CRDTs that could apply
for WOOT and similar cases.

Acknowledgements Special thanks to Cornelius Diekmann for provid-
ing a lot of insightful suggestions and expertise on Isabelle/HOL and to
the anonymous reviewers for their careful review and many insightful
suggestions and comments.

Declarations

Conflict of Interest The authors have no competing interests to declare
that are relevant to the content of this article.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Archive of Formal Proofs. https://isa-afp.org. Accessed 11 Nov
2021

2. Ahmed-Nacer, M., Ignat, C.-L., Oster, G., Roh, H.-G., Urso, P.:
Evaluating CRDTs for real-time document editing. In: Proceedings

of the 11th ACM Symposium on Document Engineering, pp. 103–
112 (2011)

3. Briot, L., Urso, P., Shapiro,M.: High responsiveness for group edit-
ing CRDTs. In: Proceedings of the 19th International Conference
on Supporting Group Work, pp. 51–60. ACM, New York (2016)

4. Brown, R., Cribbs, S., Meiklejohn, C., Elliott, S.: Riak DT map: A
composable, convergent replicated dictionary. In: Proceedings of
the First Workshop on Principles and Practice of Eventual Consis-
tency. ACM, New York (2014)

5. Dallaway, R.: WOOT Model for Scala and JavaScript via Scala.js.
https://github.com/d6y/wootjs. Accessed 13 Nov 2021

6. Ellis, C.A., Gibbs, S.J.: Concurrency control in groupware sys-
tems. In: Proceedings of the 1989 ACM SIGMOD International
Conference on Management of Data, vol. 18, pp. 399–407 (1989)

7. Emanouilov, V.: Collaborative Rich Text Editor. https://github.
com/kroky/woot. Accessed: 13 Nov 2021

8. Gomes, V.B.F., Kleppmann, M., Mulligan, D.P., Beresford, A.R.:
Verifying strong eventual consistency in distributed systems. Pro-
ceedings of the ACM on Programming Languages 1(OOPSLA)
(2017). Article 109

9. Kaplan, R.: A Real Time Collaboration Toy Project Based on
WOOT. https://github.com/ryankaplan/woot-collaborative-editor.
Accessed 13 Nov 2021

10. Karayel, E., Gonzà lez, E.: Strong eventual consistency
of the collaborative editing framework WOOT. Archive of
Formal Proofs (2020). http://isa-afp.org/entries/WOOT_Strong_
Eventual_Consistency.html Formal proof development

11. Kleppmann, M., Gomes, V.B.F., Mulligan, D.P., Beresford, A.R.:
Interleaving anomalies in collaborative text editors. In: Proceedings
of the 6th Workshop on Principles and Practice of Consistency for
Distributed Data. ACM, New York (2019). Article 6

12. Kumawat, S., Khunteta,A.:A survey on operational transformation
algorithms: challenges, issues and achievements. Int. J. Comput.
Appl. 3(12), 30–38 (2010)

13. Lamport, L.: Time, clocks, and the ordering of events in a dis-
tributed system. Commun. ACM 21(7), 558–565 (1978)

14. Letia, M., Preguiça, N., Shapiro, M.: Consistency without concur-
rency control in large, dynamic systems. SIGOPS Oper. Syst. Rev.
44(2), 29–34 (2010)

15. Li, D., Li, R.: An admissibility-based operational transforma-
tion framework for collaborative editing systems. Comput. Supp.
Cooper. Work (CSCW) 19(1), 1 (2010)

16. Marker, D.: Model Theory: An Introduction, edition1st edn. Grad-
uate Texts in Mathematics, vol. 217. Springer (2002)

17. Nédelec, B., Molli, P., Mostefaoui, A., Desmontils, E.: LSEQ: an
adaptive structure for sequences in distributed collaborative edit-
ing. In: Proceedings of the 2013 ACM Symposium on Document
Engineering, pp. 37–46

18. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: A Proof
Assistant for Higher-Order Logic. Lecture Notes in Computer Sci-
ence, vol. 2283, 1st edn. Springer (2002)

19. Olson, T.: Real Time Group Editor without Operational Transfor-
mation. https://github.com/TGOlson/woot-haskell. Accessed 13
Nov 2021

20. Oster, G., Urso, P., Molli, P., Imine, A.: Real time group editors
without operational transformation. Technical Report RR-5580,
INRIA (2005)

21. Oster, G., Urso, P., Molli, P., Imine, A.: Data consistency for
P2P collaborative editing. In: Conference on Computer Supported
Cooperative Work (CSCW), pp. 259–268. ACM (2006a)

22. Oster, G., Molli, P., Urso, P., Imine, A.: Tombstone transforma-
tion functions for ensuring consistency in collaborative editing
systems. In: International Conference on Collaborative Comput-
ing:Networking,Applications andWorksharing (CollaborateCom)
(2006b). IEEE

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://isa-afp.org
https://github.com/d6y/wootjs
https://github.com/kroky/woot
https://github.com/kroky/woot
https://github.com/ryankaplan/woot-collaborative-editor
http://isa-afp.org/entries/WOOT_Strong_Eventual_Consistency.html
http://isa-afp.org/entries/WOOT_Strong_Eventual_Consistency.html
https://github.com/TGOlson/woot-haskell

164 E. Karayel, E. Gonzàlez

23. Preguiça, N., Marques, J.M., Shapiro, M., Letia, M.: A com-
mutative replicated data type for cooperative editing. In: 29th
International Conference on Distributed Computing Systems, pp.
395–403 (2009). IEEE

24. Raynal, M.: Distributed Algorithms forMessage-Passing Systems.
Springer (2013)

25. Roh, H.-G., Jeon, M., Kim, J.-S., Lee, J.: Replicated abstract data
types: building blocks for collaborative applications. J. Parall. Dis-
trib. Comput. 71(3), 354–368 (2011)

26. Sagher,Y.: Counting the rationals.Am.Math.Mon. 96(9), 823–823
(1989)

27. Shapiro, M., Preguiça, N., Baquero, C., Zawirski, M.: Conflict-
free replicated data types. In: Stabilization. Safety, and Security of
Distributed Systems, pp. 386–400. Springer (2011)

28. Sternagel, C., Thiemann, R.: Certification monads. Archive of
Formal Proofs (2014). https://isa-afp.org/entries/Certification_
Monads.html Formal proof development

29. Thiemann, R.: Generating linear orders for datatypes. Archive of
Formal Proofs (2012). https://isa-afp.org/entries/Datatype_Order_
Generator.html Formal proof development

30. Weiss, S.,Urso, P.,Molli, P.:Wooki: a P2Pwiki-based collaborative
writing tool. In: Web Information Systems Engineering – WISE
2007, pp. 503–512. Springer

31. Weiss, S., Urso, P., Molli, P.: Logoot: A scalable optimistic replica-
tion algorithm for collaborative editing on P2P networks. In: 29th
IEEE InternationalConferenceonDistributedComputingSystems,
pp. 404–412 (2009)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://isa-afp.org/entries/Certification_Monads.html
https://isa-afp.org/entries/Certification_Monads.html
https://isa-afp.org/entries/Datatype_Order_Generator.html
https://isa-afp.org/entries/Datatype_Order_Generator.html

	Strong eventual consistency of the collaborative editing framework WOOT
	Abstract
	1 Introduction
	2 Related work
	3 Deriving WOOT
	3.1 2P-Set
	3.2 Sort keys
	3.3 Avoiding collisions
	3.4 Avoiding transfer of sort keys
	3.5 Semantic causal delivery
	3.6 Acyclic dependency graph
	3.7 Interleaving anomalies
	3.8 Avoiding the computation of sort keys

	4 The function Psi
	5 Strong eventual consistency of WOOT
	5.1 Distributed system
	5.2 Results
	5.3 Details

	6 Formalization in Isabelle/HOL
	6.1 The function Psi
	6.2 Types
	6.3 Locales

	7 Conclusion
	Acknowledgements
	References

