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Abstract
The problem of detecting network structures plays a central role in distributed computing. One of the fundamental problems
studied in this area is to determine whether for a given graph H , the input network contains a subgraph isomorphic to H or not.
We investigate this problem for H being a clique K� in the classical distributed CONGEST model, where the communication
topology is the same as the topology of the underlying network, and with limited communication bandwidth on the links.
Our first and main result is a lower bound, showing that detecting K� requires Ω(

√
n/b) communication rounds, for every

4 ≤ � ≤ √
n, and Ω(n/(�b)) rounds for every � ≥ √

n, where b is the bandwidth of the communication links. This result is
obtained by using a reduction to the set disjointness problem in the framework of two-party communication complexity. We
complement our lower bound with a two-party communication protocol for listing all cliques in the input graph, which up
to constant factors communicates the same number of bits as our lower bound for K4 detection. This demonstrates that our
lower bound cannot be improved using the two-party communication framework.

Keywords CONGEST model · Subgraph detection · Lower bounds · Two-party communication · Set-disjointness

1 Introduction

We study the problem of detecting network structures in a
distributed environment, which is a fundamental problem
in modern computing. Our focus is on the subgraph detec-
tion problem, in which for a given graph H , one wants to
determine whether the network graph G contains a subgraph
isomorphic to H or not. We investigate this problem for H
being a clique K� for � ≥ 4.

The nowadays classical distributed CONGEST model (see,
e.g., [21]) is a variant of the classical LOCAL model of dis-
tributed computation (where in each round network nodes
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can send through all incident links messages of unrestricted
size)with limited communication bandwidth. The distributed
system is represented as a network (undirected graph) G =
(V , E) with n = |V | nodes, where network nodes execute
distributed algorithms in synchronous rounds, and the nodes
collaborate to solve a graph problem with input G. Further,
every node has a unique identifier from {0, . . . , poly(n)}. In
any single round, all nodes can:

(i) perform an unlimited amount of local computation,
(ii) send a possibly different b-bit message to each of their

neighbors, and
(iii) receive all messages sent to them.

We measure the complexity of an algorithms by the number
of synchronous rounds required.

In accordance with the standard terminology in the lit-
erature, we assume b = O(log n); we note though that our
analysis generalizes to other settings of b in a straightforward
manner. (We note that in our lower bound for detecting K4

and K� in Sect. 2, to ensure full generality of presentation, we
will make the analysis parameterized by the message size b,
in which case we will refer to such model of distributed com-
putation as CONGESTb, the CONGEST model with messages
of size b.)
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Our goal is, for a given network G = (V , E) and � ≥ 4,
to solve the subgraph detection problem for a clique K�, that
is, to design an algorithm in the CONGEST model such that

(i) if G contains a copy of K�, then with high probability1

at least one node outputs 1, and
(ii) if G does not contain any copy of K�, then with high

probability no node outputs 1.

Since standard success probability amplification techniques
cannot easily be applied for the subgraph detection problem
in theCONGESTmodel, our problemdefinition requires algo-
rithms to succeed with high probability. The lower bounds
given in this paper however also apply to algorithms that
succeed with only constant probability (e.g., 2

3 ).
The subgraph detection problem is a local problem: it can

be solved efficiently solely on the basis of local information.
In particular, in the CONGEST model, the problem of find-
ing K� in a graph can be trivially solved in O(n) rounds,
or in fact, in O(maxu∈V degG(u)) rounds, where degG(u)

denotes the degree of node u in G. Indeed, if each node
sends its entire neighborhood to all its neighbors, then after-
wards, each nodewill be aware of all its neighbors and of their
neighbors. Therefore, in particular, each node will be able to
detect all cliques it belongs to. Since for each node u, the
task of sending its entire neighborhood to all its neighbors
can be performed in O(degG(u)) rounds in the CONGEST
model, the total number of rounds for the entire network is
O(maxu∈V degG(u)) = O(n) rounds. In view of this simple
observation, the main challenge in the clique K� detection
problem is whether this task can be performed in a sublinear
number of rounds.

1.1 Our results

In this paper, we give the first non-trivial lower bound for the
complexity of detecting a clique K� in theCONGESTbmodel,
for � ≥ 4. In Theorem 4, we prove that every algorithm in
the CONGESTb model that with probability at least 2

3 detects

K�, for � ≥ 4 and � = O(
√
n), requires Ω

(√
n
b

)
rounds.

Further, if � = ω(
√
n), thenΩ

( n
�b

)
rounds are required. We

are not aware of any other non-trivial (super-constant) lower
bound for this problem in the CONGESTb model.

We complement our lower bound with a two-party com-
munication protocol for listing all cliques in the input graph
(see Theorem 6), which up to constant factors communicates
the same number of bits as our lower bound for K4 detection.
This demonstrates that our lower bound is essentially tight in

1 We say that an event occurs with high probability (in short w.h.p.) if
the probability of it happening is at least 1 − 1

n .

this framework, and cannot be improved using the two-party
communication approach.

1.2 Techniques: framework of two-party
communication complexity

Our main results, the lower bound of clique detection in
Theorem 4 and the upper bound in Theorem 6, rely on the
two-party communication complexity framework and the use
of a tight lower bound for the set disjointness problem in this
framework.

We consider the classical two-party communication com-
plexity setting (cf. [19]) in which two players, Alice and Bob,
each have some private input X and Y . The players’ goal is
to compute a function f(X ,Y ), and the complexity measure
used is the number of bits Alice and Bob exchange to com-
pute f(X ,Y ). In the two-party communication problem of
set disjointness, Alice’s input is X ∈ {0, 1}n and Bob holds
Y ∈ {0, 1}n , and their goal is to compute

DISJn(X ,Y ) :=
n∨

i=1

Xi ∧ Yi .

In a seminal work, Kalyanasundaram and Schnitger [17]
showed that in any randomized communication protocol, the
players must exchangeΩ(n) bits to solve the set disjointness
problem with constant success probability.

Theorem 1 [17] The randomized two-party communication
complexity of set disjointness is Ω(n). That is, for any con-
stant p > 1

2 , any randomized two-party communication
protocol that computesDISJn(X ,Y )with probability at least
p, has two-party communication complexity Ω(n).

Our main result, the lower bound for detecting K� in the
CONGEST model, relies on a reduction from the two-party
communication problem of set disjointness. The two-party
communication framework, and, in particular, the two-party
set disjointness problem, have been frequently used in the
past to construct lower bounds for the CONGEST model, see,
e.g., [5,9,12,14,18]. A typical approach relies on a construc-
tion of a special graph G = (V , E) with some fixed edges
and some edges depending on the input ofAlice andBob.One
partitions the nodes of G into two disjoint sets VA and VB .
Let C be the (VA, VB)-cut, that is, the set of edges in G with
one endpoint in VA and one endpoint in VB . Let EA be the
edge set of G[VA] (subset of E on vertex set VA) and EB be
the edge set of G[VB]. We consider a scenario where Alice’s
input is represented by the subgraphGA = (V , EA∪C) ⊆ G
and Bob’s input is represented by GB = (V , EB ∪ C) ⊆ G.
We denote this way of distributing the vertex and edge sets
as the static vertex partition model. A non-static vertex par-
tition model was considered for example in [22] and will be
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discussed further below. From now on, we refer to the static
vertex partition model simply by vertex partition model. In
order to learn any information about the structure ofG[A]\C
and G[B] \ C, and hence about the input of the other player,
Alice and Bob must communicate through the edges of the
cut C. Therefore, in order to obtain a lower bound for a prob-
lem in the CONGESTb model, one wants to construct G to
ensure that

• it has some property (in our case, contains a copy of K�) if
and only if the corresponding instance of set disjointness
is such that DISJn(X ,Y ) = 0, and

• in order to determine the required property, one has to
communicate a large part of (essentially the entire graph)
G[A] through C.

With this approach, if the cut C has size |C|, and the private
inputs of Alice and Bob (edges in G[A] \ C or G[B] \ C) are
of size s, one can apply Theorem 1 to argue that the round
complexity of any distributed algorithm in the CONGESTb
model for a given problem isΩ( s

|C|·b ). The central challenge
is to ensure that for the encoded set disjointness instance of
size s and the cut of size |C|, the ratio s

|C| is as large as possible.
For example, Drucker et al. [9] incorporated a similar

approach to obtain a lower bound for the subgraph detec-
tion problem in a broadcast variant of the CONGESTb model
(in fact, even for a (stronger) broadcast variant of the CON-
GESTED CLIQUE model), where nodes are required to send
the samemessage through all their incident edges. The lower
bound construction requires sending Ω(n2) bits through the
cut of sizeO(n2), but the fact that in the broadcast variant of
theCONGESTbmodel every node is required to send the same
message via all incident edges, at most O(n b) bits can be
transmitted through the cut, yielding a lower bound ofΩ( nb ).
(In particular, for the broadcast variant of the CONGESTb
model, Drucker et al. [9, Theorem 15] proved that detecting
a clique K�, � ≥ 4, requires Ω

( n
b

)
rounds.) Note however

that in the (non-broadcast) CONGESTb model, this construc-
tion does not give any not-trivial bound, since s

|C| = O(1).
The main building block for our lower bound is the

construction of (Ω(n2),O(n3/2))-lower-bound graphs (see
Sect. 3.1 for the precise definition) that can be used to encode
a set disjointness instance of size s = Ω(n2) such that the
cut is of size |C| = O(n3/2). By incorporating these bounds
in the framework described above, this construction leads to
the first non-trivial lower bound ofΩ

(√
n
b

)
for the subgraph

detection problem in the CONGESTb model for the clique
K4. This construction can also be extended to detect larger
cliques, yielding the lower bound of Ω( n

(�+√
n)b

) for detect-
ing any K� with � ≥ 4.

Since these are the first superconstant lower bounds for
detecting a clique (with � ≥ 4) in the CONGEST model and

since only very recently we have seen that K3, K4, K5 can
be detected in o(n) rounds [6,7,10,15], the next goal is to
understand to what extent these bounds could be improved
and whether the existing approach could be used for that

task. Do we need Ω(
√
n
b ) communication rounds to detect

any clique K� (with � ≥ 4, � = O(
√
n)) in the CONGESTb

model, or maybe we need substantially more rounds? While
we do not know the answer to this question, and in fact,
this question is the main open problem left by this paper,
we can prove that any better lower bound would require a
significantly different approach, going beyond the two-party
communication framework in the vertex partition model.

Indeed, let us consider the vertex partition model in the
two-party communication framework, as defined above. The
input consists of an undirected G = (V , E)with an arbitrary
vertex partition V = VA ∪̇ VB . We consider a scenario where
Alice is given the subgraphGA = (V , EA∪C) ⊆ G and Bob
is given GB = (V , EB ∪ C) ⊆ G, where C is the (VA, VB)-
cut in G. The arguments in our construction of lower-bound
graphs in Theorem 5 imply that for some inputs, any two-
party communication protocol in the vertex partition model
for the problem of listing all cliques in a given graph with
n nodes requires communication of Ω(

√
n |C|) bits between

Alice and Bob.We will prove in Sect. 4 (Theorem 6) that this
lower bound is asymptotically tight in the two-party commu-
nication framework in the vertex partition model. We show
that there is a two-party communication protocol in the ver-
tex partition model for listing all cliques that communicates
O(

√
n |C|) bits, where C is the set of shared edges between

Alice and Bob. This shows that we cannot obtain stronger
lower bounds for the K�-detection problem, for � = O(

√
n),

in the CONGEST model using the two-party communication
framework in the vertex partition model.

In [22], a non-static version of the two-party vertex parti-
tion model was considered for proving lower bounds in the
CONGEST model for problems such as minimum spanning
tree. In the non-static version, the partitioning of the vertex
set between Alice and Bob evolves as the algorithm pro-
gresses. Our two-party communication protocol shows that
our lower bound in the static vertex partitioning model is
optimal up to constant factors. While we do not believe that
stronger lower bounds for the clique detection problem can
be proved in a non-static vertex partitionmodel, the existence
of our two-party communication protocol does not rule out
this possibility.

1.3 Related works

As a fundamental primitive in networks analysis, subgraph
detection and listing in the CONGEST model has been
recently receiving attention from multiple authors, focusing
mainly on randomized complexity. However, despite major
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efforts, until very recently relatively little has been known
about the complexity of the subgraph detection problem.

For a very long time we did not know whether one can
detect any K� in a sublinear number of rounds in the CON-
GEST model. In a recent breakthrough in this area, Izumi
and Le Gall [15] considered the subgraph detection prob-
lem for the smallest interesting subgraph H , the triangle K3,
and showed that one can detect a triangle in Õ(n2/3) rounds
in the CONGEST model. Further, they also showed that the
related problem of finding all triangles (triangle listing) can
be solved in Õ(n3/4) rounds.Very recently, these resultswere
improved by Chang et al. [7] and then by Chang and Saranu-
rak [6], who showed that both triangle detection and listing
can be solved in Õ(n1/2) and Õ(n1/3) rounds, respectively.

Regarding lower bounds for K3, it is known that random-
ized single round algorithms for triangle detection require
messages of size Ω(Δ) [12], and deterministic ones require
messages of sizeΩ(Δ log n) [1]. No non-trivial lower bound
on the number of rounds for the triangle detection problem
is known in the CONGESTb model, for any b ≥ 2, though
it is known (cf. [15,20]) that the more complex triangle
listing problem requires Ω(n1/3/ log n) rounds in both the
CONGEST and the CONGESTED CLIQUE models. It can also
be shown that the problem of listing all triangles such that
each node v learns all triangles that it is part of significantly
harder than the general triangle listing problem and requires
Ω(n/ log n) rounds [15, Proposition 4.4].

Before our paper has been made available, no sublinear
rounds CONGEST algorithms for detecting or listing cliques
K� have been known for any � ≥ 4. While there is a trivial
lower bound of a constant number of rounds and one can
easily solve the problem in O(n) rounds in the CONGEST
model, no sublinear upper bounds nor superconstant lower
bounds have been known. However, very recently, building
on the ideas from Chang et al. [7], Eden et al. [10] presented
the first sublinear rounds algorithms for the next two small-
est cliques, K4 and K5. They gave randomized algorithms
that detect and list copies of K4 and K5 in O(n5/6+o(1)) and
O(n21/22+o(1)) rounds, respectively.

While rather disappointingly, we do not know how to
extend any of these upper bounds to other cliques K� with
� ≥ 6, the previously mentioned works for triangle detec-
tion raise hope that detecting cliques K� could potentially be
solved in a sublinear number of rounds for all � ≥ 3. Further-
more, even for K3, we do not even know whether detecting
a triangle K3 can be solved in a polylogarithmic or even a
constant number of rounds in the CONGESTmodel (the lower
bound of Ω(n1/3/ log n) rounds in the CONGESTED CLIQUE
model [15,20] holds only for a more complex problem of
detecting all triangles).

Even et al. [11] noted that the problem of detecting trees
is significantly simpler and designed a randomized color-

coding algorithm that detects any constant-size tree on �

nodes in O(��) rounds.
As for lower bounds for the subgraph detection problem

in the CONGESTmodel, until very recently, the only hardness
results known in the literature have been for cycles. For any
fixed � ≥ 4, there is a polynomial lower bound for detect-
ing the �-cycle C� in the CONGEST model [9], where it has
been shown that detecting C� requires Ω(ex(n,C�)/ log n)

rounds, where ex(n,C�) is the Turán number for cycles, that
is, the largest possible number of edges in a C�-free graph
over n vertices. In particular, for odd-length cycles (of length
5 or more), the lower bound of [9] is Ω(n/ log n), and it
is Ω(

√
n/ log n) for � = 4. Very recently, Korhonen and

Rybicki [18] improved the lower bound for all even-length
cycles to Ω(

√
n/ log n). Further, Gonen and Oshman [14]

extended these lower bounds for C�-freeness to some related
classes of graphs, though still with some cyclic underlying
structure. (As mentioned above, we note that Drucker et al.
[9] presented lower bounds for other graphs, but this was
in a broadcast variant of the CONGESTED CLIQUE model,
where nodes are required to send the same message on all
their edges. In particular, for the broadcast variant of the
CONGESTED CLIQUE model, Drucker et al. [9] proved that
detecting a clique K�, � ≥ 4, requires Ω(n/ log n) rounds.)

The only lower bound for the subgraph detection problem
for H significantly other than cycles, is a very recent work
of Fischer et al. [12], who demonstrated that the subgraph
detection problem is hard even for some subgraphs H of
constant size. In particular, for any constant � ≥ 2, there
is a graph H with a constant number of vertices and edges
such that the problem of finding H in a network of size n

requires time Ω(n2− 1
� /b) in the CONGEST model, where b

is the bandwidth of each communication links.
There has also been some recent research for the determin-

istic subgraph detection problem in the CONGESTmodel. For
example, Drucker et al. [9] designed an O(

√
n) round algo-

rithm for C4 detection, and Even et al. [11] and Korhonen
and Rybicki [18] obtained path and tree detection algo-
rithms requiring only a constant number of rounds. Korhonen
and Rybicki [18] considered also deterministic subgraph
detection (for paths, cycles, trees, pseudotrees, and on d-
degenerate graphs) in theweaker broadcast CONGESTmodel,
where nodes send the same message to all neighbors in each
communication round. In the CONGESTED CLIQUE model,
deterministic subgraph detection algorithms were given by
Dolev et al. [8] and Censor-Hillel et al. [4].

We summarize earlier and new results in Table 1.

1.3.1 Property testing of H-freeness

Since there have been so few positive results for the original
subgraph detection problem, recently there have been some
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Table 1 Prior (randomized) results for the problem of detecting a given
subgraph H , or for listing all copies of H , in the CONGEST model (less
relevant results (upper bounds) for the CONGESTED CLIQUEmodel are

omitted; note that lower bounds for CONGESTED CLIQUE hold also for
CONGEST and lower bounds for broadcast CONGESTED CLIQUE do not
imply any bounds for CONGEST)

Paper Time bound Problem Model

[11] O(��) Detecting a tree on � nodes CONGEST

folklore O(n) Detecting K�, � ≥ 3 CONGEST

[15] Õ(n2/3) Detecting triangle (K3) CONGEST

[15] Õ(n3/4) Triangle listing (K3) CONGEST

[7] Õ(n1/2) Triangle detection and listing (K3) CONGEST

[6] Õ(n1/3) Triangle detection and listing (K3) CONGEST

[10] O(n5/6+o(1)) K4 detection and listing CONGEST

[10] O(n21/22+o(1)) K5 detection and listing CONGEST

[12] Ω(n2− 1
� / log n) Detecting some H of size O(�) CONGEST

[9] Ω(n/ log n) Detecting C�, � ≥ 5, � odd CONGEST

[9,18] Ω(
√
n/ log n) Detecting C�, � ≥ 4, � even CONGEST

[15,20] Ω(n1/3/poly-log(n)) Triangle listing (K3) CONGESTED CLIQUE

[9] Ω(n/ log n) Detecting K� for � ≥ 4 Broadcast CONGESTED CLIQUE

Theorem 4 Ω(n/((
√
n + �) log n)) Detecting K� for � ≥ 4 CONGEST

advances in a relaxationof this problem, a closely related (and
significantly simpler) problem of testing subgraphs freeness
in the framework of property testing for distributed compu-
tations (see, e.g., [2,11]). In the property testing setting, an
algorithm has to decide, with probability at least 2

3 , if the
input graph is (a) H -free (i.e., does not contain a subgraph
isomorphic to H ) or (b) ε-far from being H -free (that is, the
goal is to distinguish whether the input graph G is H -free or
oneneeds tomodifymore than ε|E(G)| edges ofG to obtain a
graph that is H -free); in the intermediate case, the algorithm
can perform arbitrarily (see e.g., [4,11] for more details).
Property testing of H -freeness in the CONGEST model has
received a lot of attention lately (see, e.g., [2,3,11–13]). In
particular, it has been shown [11] that testing H -freeness can
be done in O(1/ε) round in the CONGEST model for any
constant-size graph H containing an edge (x, y) such that
any cycle in H contains at least one of x, y. This implies
testing in O(1/ε) rounds of any cycle Ck , and of any sub-
graph H on five (or less) vertices except K5. Further, for any

� ≥ 5, K�-freeness can be tested inO((ε · |E(G)|) 1
2− 1

�−2 /ε)

rounds [11]. For trees, testing if the input graph is T -free for
a tree T on � vertices can be done in O(�1+�2/ε�) rounds in
the CONGEST model [11].

1.4 Outline

Webegin in Sect. 2.1 with a definition of lower-bound graphs
and then, in Sects. 2.2, 2.3, we show how to combine lower-
bound graphs and the lower bound for set disjointness to
prove the hardness of clique detection. A construction of
(Ω(n2),O(n3/2))-lower-bound graphs is given in Sect. 3.

Section 4 provides our upper bound, a two-party communi-
cation protocol in the vertex partition model for listing all
cliques. Section 5 gives some final conclusions.

2 Lower bound (clique detection needs
˜Ä(

√
n) rounds)

In this section we prove our hardness results showing that
any algorithm in the CONGESTb model that detects a K�

with probability at least 2
3 requires Ω(

√
n/b) rounds, for

every � = O(
√
n) and � ≥ 4, and requires Ω( n

�b ) rounds
if � = ω(

√
n) (Theorems 3 and 4); or in short, Ω( n

(�+√
n)b

)

rounds, for every � ≥ 4. Our lower bound for the complexity
of detecting K� in the CONGEST model relies on a reduction
to the two-party communication complexity lower bound for
the set disjointness problem (cf. Theorem 1 in Sect. 1.2),
which we implement with the help of lower-bound graphs
(cf. Sect. 2.1).

2.1 Lower-bound graphs

Our reduction to the two-party communication complexity
lower bound for the set disjointness problem relies on anotion
of a lower-bound graph (cf. Fig. 1).

Definition 1 Let G = (A, B, E) be a bipartite graph with
|A| = |B| = n and let k,m be integers. Then G is called a
(k,m)-lower-bound graph if |E | ≤ m and there exist bipar-
tite graphs HA = (A, EA) and HB = (B, EB) with EA =
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HA G HB G′ G′

e1 f1 x1 y1

e4 e2 f2 f4 x4 x2 y2 y4

e3 f3 x3 y3

Fig. 1 Left Example of a (4, 12)-lower-bound graph G = (A, B, E).
The dotted edges are the edges of the associated graphs HA and HB .
Observe that HA and HB form cycles of length 4, which are bipartite.
For 1 ≤ i ≤ 4, observe that the graph G∪{ei , fi } contains one K4 con-
sisting of the edges ei , fi and the edges of the subgraph of G induced
by the vertices incident to ei and fi (which forms a K2,2). For every

i 	= j , the graph G ∪ {ei , f j } does not contain a K4. Center Graph G ′
as in the proof of Theorem 2 obtained from the set disjointness instance
with X = (1, 0, 0, 1) and Y = (0, 1, 1, 1). Graph G ′ contains a K4
if and only if the set disjointness instance evaluates to 0. Right The
highlighted edges form a K4

{e1, . . . , ek}, EB = { f1, . . . , fk}, and |EA| = |EB | = k on
vertex sets A and B, respectively, so that:

1. The graphG∪{ei , fi } contains a K4, for every 1 ≤ i ≤ k,
and

2. the graph G ∪ {ei , f j } does not contain a K4, for every
1 ≤ i, j ≤ k with i 	= j .

2.2 Using lower-bound graphs and set disjointness
to prove the hardness of clique detection

With the notion of lower-bound graphs at hand, we can
formalize our reduction to the two-party communication
complexity lower bound for set disjointness to obtain the
following central theorem.

Theorem 2 Let G be a (k,m)-lower-bound graph. Then
detecting a K4 in the CONGESTb model with probability at
least 2

3 requires Ω
( k
mb

)
rounds.

Proof Let A be an algorithm in the CONGESTb model for
K4 detection, that is, such that with probability at least 2

3 , if
G contains a K4 then at least one node outputs 1 and if G
contains no copy of K4 then no node outputs 1.We will show
that A can be used to solve the two-party set disjointness
problem for instances of size k.

Consider a set disjointness instance (X ,Y ) of size k. Let
G = (A, B, E) be a (k,m)-lower-bound graph, and let
HA = (A, EA) and HB = (B, EB) with EA = {e1, . . . , ek}
and EB = { f1, . . . , fk} be the associated graphs to G as in
Definition 1. Alice constructs the set E ′

A ⊆ EA such that for
every i with Xi = 1, the edge ei is included in E ′

A. Similarly,
Bob constructs the set E ′

B ⊆ EB such that for every i with
Yi = 1, the edge fi is included in E ′

B .

We first argue that the graph G ′ := G ∪ (E ′
A ∪ E ′

B) con-
tains a K4 if and only if DISJn(X ,Y ) = 0. Indeed, since by
Definition 1, the graphs HA and HB are bipartite (and thus
the subgraphs G ′[A] and G ′[B] are bipartite too), any copy
of K4 in G ′ must consist of two vertices from A and two
vertices from B.

Suppose first that G ′ contains a K4 and let a1, a2 ∈ A and
b1, b2 ∈ B be the vertices incident to this K4. Since a1 and a2
are connected, this implies that a1, a2 are the endpoints of an
edge from EA. Let ei ∈ EA be this edge. Furthermore, since
b1 and b2 are connected, b1, b2 are necessarily the endpoints
of an edge from EB . Let f j ∈ EB be this edge. Since G is
a lower-bound graph, by Definition 1 we obtain that i = j .
Hence, since Alice and Bob included ei and f j = fi in G ′,
we have Xi = Yi = 1 and thus DISJn(X ,Y ) = 0.

Next, suppose that G ′ does not contain a K4. Then, for
every 1 ≤ i ≤ k, Alice and Bob have not both included the
edges ei and fi (since otherwise there would be a K4). This
implies that for every 1 ≤ i ≤ k, Xi ∧Yi = 0 holds and thus
DISJn(X ,Y ) = 1.

The simulation of A on G ′ is executed as follows. Sup-
pose thatA runs in r rounds. Alice simulates vertices A and
Bob simulates vertices B. In round i , Alice sends all mes-
sages from A with destinations in B to Bob, and Bob sends
all messages from B with destinations in A to Alice. Since
the cut between A and B is of size at most m, Alice and
Bob exchange messages with overall at most mb bits per
round. Thus, overall they communicate at most rmb bits.
Since the algorithm allows them to solve set disjointness, by
Theorem 1, we have rmb = Ω(k). Thus,A requires Ω( k

mb )

rounds. ��
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Fig. 2 Extension of our lower
bound for K4 detection to K�

detection, for � ≥ 5. We add a
clique K�−4 on � − 4 new
vertices to the graph G ′ and
connect every vertex of the
clique to every other vertex of
G ′. Then the resulting graph
contains a clique on � vertices if
and only if the encoded set
disjointness instance evaluates
to 0, i.e., xi = yi = 1, for some
i

K�−4

xi yi

HA HB

In Theorem 5 in Sect. 3, we prove the existence of a
(Ω(n2),O(n3/2))-lower-bound graph. By combining The-
orem 5 with Theorem 2, we obtain the following main result.

Theorem 3 Every algorithm in the CONGESTb model that
detects a K4 with probability at least 2

3 requires Ω(
√
n/b)

rounds.

2.3 Detection of K� for � ≥ 5

The lower bound construction given in Theorem 2 can be
extended to the task of detecting K�, for � ≥ 5 (see also
Fig. 2). To this end, we add a clique on � − 4 new nodes
to graph G ′ (from the proof of Theorem 2) and connect
each of these nodes to every vertex in A ∪ B. Observe
that this increases the cut between A and B by n(� − 4)
edges. For � = O(

√
n), there are only O(n3/2) additional

edges, which implies that the same lower bound as for K4

holds. If � = ω(
√
n), then the number of additional edges

is significant, since the size of the cut increases by more
than a constant factor. In this case, the round complexity is
Ω( n2

n(�−4)b ) = Ω( n
�b ). Similarly as before, the encoded set

disjointness instance evaluates to 0 if and only if G ′ con-
tains a clique of size �. We thus conclude with the following
theorem.

Theorem 4 Every algorithm in the CONGESTb model that
detects K�, for � ≥ 4 and � = O(

√
n), with probability

at least 2
3 requires Ω(

√
n/b) rounds. If � = ω(

√
n), then

Ω(n/(� b)) rounds are required.

3 Lower-bound graph construction

In this section,we construct ourmain technical tool and prove
the existence of a (Ω(n2),O(n3/2))-lower-bound graph,
see Definition 1. We will show in Theorem 5 that Algo-
rithm 1 below constructs a (Ω(n2),O(n3/2))-lower-bound
graph with high probability (observe that a non-zero proba-
bility already suffices to prove the existence of such a graph).

3.1 Construction of ((n2),O(n3/2))-lower-bound
graphs

Weproceed as follows.We start our constructionwith a bipar-
tite random graph G = (A, B, E) with |A| = |B| = n,
where every potential edge ab between a ∈ A and b ∈ B
is included with probability p = 1√

n
. Observe that for any

a1, a2 ∈ A (a1 	= a2) and b1, b2 ∈ B (b1 	= b2), the proba-
bility that G[{a1, a2, b1, b2}] is isomorphic to a K2,2 is p4.

We therefore expect G to contain
(n
2

)2
p4 copies of K2,2, and

we prove in Lemma 1 below that, with high probability, the
actual number of copies of K2,2 does not deviate significantly
from its expectation. Let K denote the set of copies of K2,2

in G.

In the peeling phase, we greedily compute a subsetH ⊆ K
such that at the end, the graph induced by the edges ofH is a
(Ω(n2),O(n3/2))-lower bound graph. When inserting a set
K = {a1, a2, b1, b2} ∈ K into H, we make sure that the
following three properties are fulfilled:

1. We ensure that we will never add a K ′ = {a′
1, a

′
2, b

′
1, b

′
2}

such that either {a1, a2, b′
1, b

′
2} or {a′

1, a
′
2, b1, b2} form a

K2,2 later on. To this end, when inserting K into H, for
every K ′ ∈ K that contains the same pair of A-vertices
(or B-vertices), we add its pair of B vertices (resp. pair
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of A vertices) to set FB (resp. FA), indicating that this is
a forbidden pair. Then, when inserting an element of K
into H, we make sure that its pairs of A and B vertices
are not forbidden.

2. We make sure that the insertion of K will not prevent too
many other sets K ′ from being inserted into H. To this
end, we guarantee that there are at most six other sets
in K that share the same pair of A vertices and at most
six other sets that share the same pair of B vertices. We
prove in Lemma 2 that most K ∈ K fulfill this property.

3. It is required that the graphs GA and GB as defined in
Item 4 of Definition 1 are bipartite.We therefore partition
the sets A and B randomly into subsets A′ and A \ A′,
and B ′ and B \ B ′, and only add K toH if exactly one of
its A vertices is in A′ and one of its B vertices is in B ′.

In the last step of the algorithm, we assemble graph H as
the union of the edges contained in the copies of K2,2 inH.

3.2 Analysis of Algorithm 1

Our analysis relies on some basic properties of the struc-
ture of subgraphs of random graphs (for a more complete
treatment of related problems, see, e.g., [16, Chapter 3]).
We prove three high probability claims about the construc-
tion in Algorithm 1: that the random graph G contains many
copies of K2,2 (Lemma 1), that only a small fraction of pairs
of A vertices are contained in more than six copies of K2,2

(Lemma 2), and finally that the resulting graph H contains
Ω(n2) copies of K2,2 (Lemma 3). With these three claims at
hand, we will complete the analysis to prove in Theorem 5
that with high probability, the output of Algorithm 1 is a
(Ω(n2),O(n3/2))-lower-bound graph.

We begin with a proof that in Algorithm 1, the random
graph G contains many copies of K2,2.

Lemma 1 Suppose that p ≥ 1
n . Then there is a constant C

such that

P

[
|K| ≤ 9

10

(
n

2

)2

p4
]

≤ C · 1

n2 p
.

Proof We will compute the expectation and the variance of
|K| and then use Chebyshev’s inequality to bound the prob-
ability that |K| deviates substantially from its expectation.

LetX be the family of all sets {a1, a2, b1, b2}witha1, a2 ∈
A, a1 	= a2, b1, b2 ∈ B, b1 	= b2, and for X ∈ X let χ(X)

be the indicator variable of the event “G[X ] is isomorphic to
K2,2”. Then:

E|K| =
∑
X∈X

P [χ(X) = 1] = |X |p4 =
(
n

2

)2

p4 ,

since K2,2 contains 4 edges. To bound the varianceV|K|, we
use the identity V|K| = E|K|2 − (E|K|)2:

E|K|2 = E

( ∑
X∈X

χ(X)

)2

= E

∑
X ,Y∈X

χ(X) · χ(Y )

=
∑

X ,Y∈X
E(χ(X) · χ(Y )) .

We distinguish the following cases:

– |X ∩ Y | = 0. Then, E(χ(X) · χ(Y )) = p8. Observe that

there are t0 = (n
2

)2(n−2
2

)2
such pairs.

– |X ∩ Y | = 1. Then, E(χ(X) · χ(Y )) = p8. There are
t1 = 4

(n
2

)2(n−2
2

)(n−2
1

)
such pairs.

– |X∩Y | = 2 and the intersection consists of either two A-
vertices or two B-vertices. Then, E(χ(X) · χ(Y )) = p8

and there are t2,1 = 2 · (n2
)2(n−2

2

)
such pairs.

– |X ∩Y | = 2 and the intersection consists of one A-vertex
and one B-vertex. Then, E(χ(X) ·χ(Y )) = p7 and there
are t2,2 = 4 · (n

2

)2 · (n − 2)2 such pairs.
– |X ∩ Y | = 3. Then, E(χ(X) · χ(Y )) = p6. There are
t3 = 4 · (n

2

)2 · (n − 2) such pairs.
– |X ∩ Y | = 4. Then, E(χ(X) · χ(Y )) = p4. There are
t4 = (n

2

)2 such pairs.

A quick sanity check shows that t0+ t1+ t21+ t22+ t3+ t4 =(n
2

)4. We thus obtain:

V|K| = E|K|2 − (E|K|)2 = p8(t0 + t1 + t2,1)

+ p7t2,2 + p6t3 + p4t4 −
(
n

2

)4

p8

≤ p7t2,2 + p6t3 + p4t4 = O(p7n6) ,

where the last equality holds for every p ≥ 1
n . We apply

Chebyshev’s inequality and obtain:

P

[∣∣∣|K| − E|K|
∣∣∣ ≥ 1

10
E|K|

]
≤ 100V|K|

(E|K|)2 = C · 1

n2 p
,

for some constant C . ��
Next, we prove that only a small fraction of pairs of A

vertices are contained in more than six copies of K2,2.

Lemma 2 Let p = 1√
n
. For every constant δ > 0, with high

probability, there are at most (1 + δ)n2/10 pairs of distinct
vertices a1, a2 ∈ A with |K({a1, a2})| > 6.

Proof Let a1, a2 ∈ A, a1 	= a2 be arbitrary vertices. Let
B({a1, a2}) ⊆ B be the set of vertices b such that a1b, a2b ∈
E . Observe that |K({a1, a2})| = (|B({a1,a2})|

2

)
. By linearity of

expectation, E|B({a1, a2})| = np2 = 1.
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Let X be the family of all sets of vertices {a1, a2} ⊆ A
with a1 	= a2. Partition now X into disjoint subsets such
that X = X1 ∪ X2 ∪ · · · ∪ Xn−1, where |Xi | = n/2 and,
for every 1 ≤ i ≤ n − 1, all elements of Xi are pairwise
disjoint (such a partitioning corresponds to partitioning the
complete graph Kn into n − 1 perfect matchings). For a pair
of vertices P ∈ X , let χ(P) be the indicator variable of
the event “|B(P)| ≥ 5”. Recall that E|B(P)| = np2 = 1
(since p = 1/

√
n). Hence, by Markov’s inequality, we have

P[χ(P) = 1] ≤ 1
5 .

For every 1 ≤ i ≤ n−1we haveE
∑

P∈Xi
χ(P) ≤ 1

5
n
2 =

n
10 . Observe further that for every P, Q ∈ Xi , P 	= Q, the
random variables B(P) and B(Q) are independent. Thus, by
a Chernoff bound (for μ = n

10 ):

P

⎡
⎣

∣∣∣∣∣∣
∑
S∈Xi

χ(S) − μ

∣∣∣∣∣∣
≥ δμ

⎤
⎦ ≤ 2 exp

(
−μδ2/3

)
= e−Θ(n) ,

for any constant δ. Thus, applying the union bound for every
1 ≤ i ≤ n − 1, with high probability, at most (1 + δ) n

10 ·
(n − 1) ≤ (1+ δ)n2/10 pairs of vertices are both connected
to at least 5 vertices of B. Hence, at most (1+ δ)n2/10 pairs
of vertices {a1, a2} are such that K({a1, a2}) >

(4
2

) = 6. ��
In the next lemma, we show that our resulting graph H

contains Ω(n2) copies of K2,2.

Lemma 3 With high probability, the number of copies of K2,2

in H is |H| = Ω(n2).

Proof By Lemma 1, we have |K| ≥ 9
40 (n − 1)2 with high

probability. Let K′ ⊆ K be the subset of sets {a1, a2, b1, b2}
with K({a1, a2}) ≤ 6 and K({b1, b2}) ≤ 6. By Lemma 2,
with high probability, |K′| ≥ |K| − 2 · (1+ δ)n2/10, for any
small constant δ.

Let K′′ ⊆ K′ be the subset of sets {a1, a2, b1, b2} with
|{a1, a2} ∩ A′| = |{b1, b2} ∩ B ′| = 1. Observe that every
set X ∈ K′ is included in K′′ with probability 1

4 . Thus, by a
Chernoff bound, |K′′| ≥ |K′|/8 with high probability.

We argue next that the insertion of any set K ∈ K′ can
block at most 2 ·62 = 72 other sets ofK′ from being inserted
into H. Consider thus a set K = {a1, a2, b1, b2} ∈ K′ that
is added toH. This inserts at most six pairs {a3, a4} into FA

and six pairs {b3, b4} into FB , since K({a1, a2}) ≤ 6 and
K({b1, b2}) ≤ 6. Since each pair in FA or in FB can block at
most another six sets of K′, overall at most 2 · 62 = 72 sets
of K′ can be blocked by the insertion of K into H. Hence:

|H| ≥ |K′′|
72

≥ |K′|
8 · 72 ≥ (|K| − 2 · (1 + δ)n2/10)

8 · 72
≥

( 9
40 (n − 1)2 − (1 + δ)n2/5

)

8 · 72 = Ω(n2) ,

for δ < 1
8 . ��

With Lemmas 1–3 at hand, we are now ready to complete
the analysis and show that the graph H fulfills Definition 1
of a lower bound graph.

Theorem 5 With high probability, the output of Algorithm 1
is a (Ω(n2),O(n3/2))-lower-bound graph. In particular, for
every n ∈ N, there exists a (Ω(n2),O(n3/2))-lower-bound
graph.

Proof We need to check that the output graph H of Algo-
rithm 1 with p = 1√

n
fulfills Definition 1. First, observe that

graph G hasO(n2 p) = O(n3/2) edges with high probability
(by a Chernoff bound), and hence H also hasO(n3/2) edges.

We now show that graphs HA = (A, EA) and HB =
(B, EB) with EA = {e1, . . . , ek} and EB = { f1, . . . , fk}
as in Definition 1 exist, where k = |H|. To this end, let
H = {K1, K2, . . . , Kk} and for every Ki = {a1, a2, b1, b2},
let ei = a1a2 and fi = b1b2. Observe that HA and HB are
bipartite, since by construction every ei connects a vertex
from A′ to a vertex from A \ A′, and every fi connects a
vertex from B ′ to a vertex from B \ B ′.

Next, we show that the graphs HA and HB fulfill the two
items of Definition 1. To this end, first observe that for every
1 ≤ i ≤ k the graph G ∪ {ei , fi } with ei = a1a2 and
fi = b1b2 contains a K4: Since Ki = {a1, a2, b1, b2}, the
subgraph G[{a1, a2, b1, b2}] is isomorphic to K2,2 which in
turn implies that G[{a1, a2, b1, b2}] ∪ {ei , fi } is isomorphic
to a K4.

Next, for the sake of a contradiction, assume that there
exists a 1 ≤ i, j ≤ k with i < j (the case i > j is similar
and omitted) so that the graph G ∪ {ei , f j } contains a K4.
Then, by construction of Algorithm 1, when Ki was inserted
intoH, the edge f j was declared to be forbidden and inserted
in FB . It is thus impossible that K j was inserted into H at a
later stage.

Last, by Lemma 3 we have k = |H| = Ω(n2) which
completes the proof of this theorem. ��

4 Two-party communication protocol for
listing cliques

We consider a two-party communication protocol in the ver-
tex partition model for listing all cliques (of all sizes) in
a given graph. The input consists of an undirected graph
G = (V , E)with an arbitrary vertex partition V = VA ∪̇ VB .
Let C be the (VA, VB)-cut, EA be the edge set of G[VA], and
EB be the edge set of G[VB]. We consider a scenario where
Alice is given the subgraph GA = (V , EA ∪ C) ⊆ G and
Bob is given GB = (V , EB ∪ C) ⊆ G. The objective is for
Alice and Bob to detect all cliques (of all sizes) of G and to
minimize the number of bits communicated.

We show that in such framework, there is a two-party
communication protocol for listing all cliques (of all sizes)
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that uses O(
√
n |C|) bits of communication, where C are the

edges shared by Alice and Bob. This shows that we cannot
improve our lower bounds for the K�-detection problem, for
� = O(

√
n), in the CONGEST model (cf. Theorem 4) using

the two-party communication framework in the vertex parti-
tion model.

Observe that without any communication between the two
players, Alice can detect every clique that contains at most
one vertex of VB , and, similarly, Bob can detect every clique
that contains at most one vertex of VA (in particular, listing
all triangles does not require any communication). Our task
is hence to detect every clique consisting of at least two VA

vertices and at least two VB vertices. We consider two cases:

1. Suppose that |C| ≥ n3/2. Then Alice sends all edges EA

to Bob by encoding all entries in the adjacency matrix of
G[VA], which requires at most n2 ≤ √

n|C| bits. Since
Bob then knows the entire graph G, he can detect all
cliques.

2. Suppose that |C| < n3/2. For any vertex v ∈ V , let dv

be the number of edges of C incident to v, let V≤√
n ⊆

{v ∈ VA : dv ≤ √
n}, and let V>

√
n = VA \ V≤√

n . We
first show how to detect every clique that contains at least
one vertex of V≤√

n . Then, we show how to detect every
clique that does not contain any vertex of V≤√

n .

(a) For every v ∈ V≤√
n , Bob sends the induced sub-

graphGB [ΓG(v)∩VB] (its adjacencymatrix) toAlice
(observe that Bob knows the set V≤√

n without com-
munication). This requires at most

√
n |C| bits, since

∑
v∈V≤√

n

d2v ≤ √
n

∑
v∈V≤√

n

dv ≤ √
n |C| .

Alice can thus detect any clique that contains at least
one vertex of V≤√

n .

(b) Observe that |V>
√
n| ≤ |C|√

n
. Alice sends the entire

subgraph GA[V>
√
n] (again, its adjacency matrix) to

Bob. This requires at most
√
n |C| bits, since

|V>
√
n|2 ≤

( |C|√
n

)2

≤ |C| · |C|
n

≤ √
n|C| ,

using the assumption |C| ≤ n3/2. Bob can thus detect
every clique that does not contain any vertex of V≤√

n .

We thus obtain the following theorem:

Theorem 6 There is a two-party communication protocol in
the vertex partition model for listing all cliques (of all sizes)
that communicates O(

√
n |C|) bits, where C is the set of

shared edges between Alice and Bob.

5 Conclusions

In this paper, we give the first non-trivial lower bound for
the problem of detecting a clique K�, for � ≥ 4, in the clas-
sical distributed CONGEST model. We show that detecting
K� requires Ω( n

(�+√
n)b

) communication rounds, for every

� ≥ 4, where b is the bandwidth of the communication
links.Our lower bound is complemented by amatching upper
bound obtained by a two-party communication protocol in
the vertex partition model for listing all cliques of all sizes.
This demonstrates that our lower bound cannot be improved
using the two-party communication framework.

We leave as a great open question whether the true com-
plexity of K� detection in the CONGEST model is �̃(

√
n),

for � = O(
√
n), or one needs substantially more rounds.

Since the two-party communication approach used in our
lower bound cannot be improved further, we do not have
any intuition whether the lower bound is tight, or could be
improved significantly. On the other hand, the very recent
Õ(

√
n)-communication rounds algorithm for detecting a tri-

angle [7] raises some hopes that maybe also K4 could be
detected in Õ(

√
n) rounds.
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