
Distrib. Comput. (2018) 31:343–365
https://doi.org/10.1007/s00446-017-0309-z

Terminating distributed construction of shapes and patterns
in a fair solution of automata

Othon Michail1

Received: 2 April 2016 / Accepted: 7 August 2017 / Published online: 23 August 2017
© The Author(s) 2017. This article is an open access publication

Abstract In this work, we consider a solution of automata
(or nodes) that move passively in a well-mixed solution with-
out being capable of controlling their movement. Nodes can
cooperate by interacting in pairs and every such interaction
may result in an update of their local states. Additionally,
the nodes may also choose to connect to each other in order
to start forming some required structure. Such nodes can be
thought of as small programmable pieces of matter, like tiny
nanorobots or programmable molecules. The model that we
introduce here is a more applied version of network con-
structors, imposing physical (or geometric) constraints on
the connections that the nodes are allowed to form. Each node
can connect to other nodes only via a very limited number
of local ports. Connections are always made at unit distance
and are perpendicular to connections of neighboring ports,
whichmakes themodel capable of forming 2D or 3D shapes.
We provide direct constructors for some basic shape con-
struction problems, like spanning line, spanning square, and
self-replication. We then develop new techniques for deter-
mining the computational and constructive capabilities of our
model. One of the main novelties of our approach is that of
exploiting the assumptions that the system is well-mixed and
has a unique leader, in order togive terminating protocols that
are correct with high probability. This allows us to develop

Supported in part by the project “Foundations of Dynamic Distributed
Computing Systems” (FOCUS) which is implemented under the
“ARISTEIA” Action of the Operational Programme “Education and
Lifelong Learning” and is co-funded by the European Union
(European Social Fund) and Greek National Resources. A preliminary
version of the results in this paper has appeared in [32].

B Othon Michail
Othon.Michail@liverpool.ac.uk

1 Department of Computer Science, University of Liverpool,
Ashton Street, Liverpool L69 3BX, UK

terminating subroutines that can be sequentially composed
to form larger modular protocols. One of our main results is
a terminating protocol counting the size n of the system with
high probability. We then use this protocol as a subroutine
in order to develop our universal constructors, establishing
that it is possible for the nodes to become self-organized with
high probability into arbitrarily complex shapes while still
detecting termination of the construction.

Keywords Distributed network construction · Pro-
grammable matter · Shape formation · Well-mixed solution ·
Homogeneous population · Distributed protocol · Inter-
acting automata · Fairness · Random schedule · Structure
formation · Self-organization · Self-replication

1 Introduction

Recent research in distributed computing theory and practice
is taking its first timid steps on the pioneering endeavor of
investigating the possible relationships of distributed com-
puting systems to physical and biological systems. The first
main motivation for this is the fact that a wide range of phys-
ical and biological systems are governed by underlying laws
that are essentially algorithmic. The second is that the higher-
level physical or behavioral properties of such systems are
usually the outcome of the coexistence, which may include
both cooperation and competition, and constant interaction
of very large numbers of relatively simple distributed entities
respecting such laws. This effort, to the extent that its per-
spective allows, is expected to promote our understanding of
the algorithmic aspects of our (distributed) natural world and
to develop innovative artificial systems inspired by them.

Ulam’s and von Neuman’s Cellular Automata (cf., e.g.,
[40]), essentially a distributed grid network of automata,

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00446-017-0309-z&domain=pdf
http://orcid.org/0000-0002-6234-3960

344 O. Michail

have been used as models for self-replication, for model-
ing several physical systems (e.g., neural activity, bacterial
growth, pattern formation in nature), and for understanding
emergence, complexity, and self-organization issues. In the
young area of DNA self-assembly and DNA computation
(starting with the works of Adleman [6] and Winfree [44]),
it has been already demonstrated that it is possible to (algo-
rithmically) self-assemble DNA strands so that they carry
out computations as they grow some structures. Recently, an
interesting theoreticalmodelwas proposed, theNubotmodel,
for studying the complexity of self-assembled structureswith
active molecular components [43]. This model is “inspired
by biology’s fantastic ability to assemble biomolecules that
form systemswith complicated structure and dynamics, from
molecular motors that walk on rigid tracks and proteins that
dynamically alter the structure of the cell during mitosis,
to embryonic development where large-scale complicated
organisms efficiently grow from a single cell”. Population
Protocols of Angluin et al. [1] were originally motivated by
highly dynamic networks of simple sensor nodes that cannot
control their mobility. It was soon realized that their proba-
bilistic version is formally equivalent to a restricted version of
stochastic chemical reaction networks (CRNs), which model
chemistry in awell-mixed solution (see, e.g., [41]).Moreover,
the Network Constructors extension of population protocols
[33], showed that a population of finite-automata that inter-
act randomly like molecules in a well-mixed solution and
that can establish bonds with each other according to the
rules of a common small protocol, can construct arbitrarily
complex stable networks [33] (but without any physical geo-
metric considerations). Also recently a system was reported
that demonstrates programmable self-assembly of complex
2-dimensional shapes with a thousand-robot swarm, called
the Kilobot [38]. This was enabled by creating small, cheap,
and simple “autonomous robots designed to operate in large
groups and to cooperate through local interactions and by
developing a collective algorithm for shape formation that
is highly robust to the variability and error characteristic of
large-scale decentralized systems”.

1.1 Our approach

We imagine here a “solution” of automata (also called nodes
or processes throughout the paper), a setting similar to that of
Population Protocols and Network Constructors. Due to its
highly restricted computational nature and its very local per-
spective, each individual automaton can practically achieve
nothing on its own. However, when many of them cooper-
ate, each contributing its meager computational capabilities,
impressive global outcomes become feasible. This is, for
example, the case in the Kilobot system, where each individ-
ual robot is a remarkably simple artifact that can performonly
primitive locomotion via a simple vibrationmechanism. Still,

when a thousand of them work together, their global dynam-
ics may resemble the complex collective behavior of some
living organisms. Fromour perspective, cooperation involves
the capability of the nodes to communicate by interacting in
pairs and tobind to eachother in an algorithmically controlled
way. In particular, during an interaction, the nodes can update
their local states according to a small common program that
is stored in their memories andmay also choose to connect to
each other in order to start forming some required structure.
Later on, if needed, they may choose to drop their connec-
tion, e.g., for rearrangement purposes. We may think of such
nodes as small programmable pieces of matter. For example,
they could be tiny nanorobots or programmable molecules
(e.g., DNA strands). Naturally, such elementary entities are
not (yet) expected to be equippedwith some internalmobility
mechanism. Still, it is reasonable to expect that they could
be part of some dynamic environment, like a boiling liquid
or the human circulatory system, providing an external (to
the nodes) interaction mechanism, which motivates the idea
of regarding such systems as a solution of programmable
entities. We model such an environment by imagining an
adversary scheduler operating in discrete steps and select-
ing in every step a pair of nodes to interact with each other.

Our main focus in this work, building upon the findings
of [33], is to further investigate the cooperative structure for-
mation capabilities of such systems. Our first main goal is
to introduce a more realistic and more applicable version
of network constructors by adjusting some of the abstract
parameters of the model of [33]. In particular, we introduce
some physical (or geometric) constraints on the connec-
tions that the processes are allowed to form. In the network
constructors model of [33], there were no such imposed
restrictions, in the sense that, at any given step, any two pro-
cesses were candidates for an interaction, independently of
their relative positioning in the existing structure/network.
For example, even two nodes hidden in the middle of distinct
dense components could interact and, additionally, there was
no constraint on the number of active connections that a node
could form (could be up to the order of the system). This was
very convenient for studying the capability of such systems to
self-organize into abstract networks and it helped show that
arbitrarily complex networks are in principle constructible.
On the other hand, this is not expected to be the actual
mechanism of at least the first potential implementations.
First implementations will most probably be characterized
by physical and geometric constraints. To capture this in
our model, we assume that each device can connect to other
devices only via a very limited (finite and independent of
the size of the system) number of ports, usually four or six,
which implies that, at any given time, a device has only a
bounded number of neighbors. Moreover, we further restrict
the connections to be always made at unit distance and to be
perpendicular to connections of neighboring ports. Though

123

Terminating distributed construction of shapes and patterns in a fair solution of automata 345

such a model can no longer form abstract networks, it may
still be capable of forming 2-dimensional or 3-dimensional
shapes. This is also in agreement with natural systems, where
the complexity and physical properties of a system are rarely
the result of an unrestricted interconnection between entities.

It can be immediately observed that the universal con-
structors of [33] do not apply in this case. In particular, those
constructors cannot be adopted in order to characterize the
constructive power of the model considered here. The reason
is that they work by arranging the nodes in a long line and
then exploiting the fact that connections are elastic, allowing
any pair of nodes of the line to interact independently of the
distance between them. In contrast, no elasticity is allowed in
the more local model considered here, where a long line can
still be formed but only adjacent nodes of the line are allowed
to interact with each other. As a result, we have to develop
new techniques for determining the computational and con-
structive capabilities of our model. The other main novelty
of our approach concerns our attempt to overcome the inabil-
ity of such systems to detect termination due to their limited
global knowledge and their limited computational resources.
For example, it can be easily shown that deterministic termi-
nation of population protocols can fail even in determining
whether there is a single a in an input assignment, mainly
because the nodes do not know and cannot store in their
memories neither the size of the network nor some upper
bound on the time it takes to meet (or to influence or to be
influenced by) every other node. To overcome the storage
issue, we exploit the ability of nodes to self-assemble into
larger structures that can then be used as distributed memo-
ries of any desired length. Moreover, we exploit the common
(and natural in several cases) assumption that the system is
well-mixed, meaning that, at any given time, all permissi-
ble pairs of node-ports have an equal probability to interact,
in order to give terminating protocols that are correct with
high probability. This is crucial not only because it enables
us to improve eventual stabilization to eventual termination
but, most importantly, because it enables us to develop ter-
minating subroutines that can be sequentially composed to
form larger modular protocols. Such protocols are more effi-
cient, more natural, and more amenable to clear proofs of
correctness, compared to existing protocols that are based on
composing all subroutines in parallel and “sequentializing”
them eventually by perpetual reinitializations. To the best of
our knowledge, [34] is the only work that has considered
this issue but with totally different and more determinis-
tic assumptions. Several other papers [1,2,33] have already
exploited a uniform random interactionmodel, but in all cases
it has been used to analyze the expected time to convergence
of stabilizing protocols and not for maximizing the correct-
ness probability of terminating protocols, as we do here.

In Sect. 2, we discuss further related literature. Section 3
formally defines the model under consideration and brings

together all definitions and basic facts that are used through-
out the paper. In Sect. 4, we provide direct (stabilizing)
constructors for some basic shape construction problems.
Section 5 introduces our technique for counting the size n
of the system with high probability. The result of that section
(i.e., Theorem 1) is of particular importance as it underlies all
sequential composition arguments that follow in the paper. In
particular, the protocol of Sect. 5 is then used as a subroutine
in our universal constructors, establishing that it is possible
to construct with high probability arbitrarily complex shapes
(and patterns) by terminating protocols. These universality
results are discussed in Sect. 6. Finally, in Sect. 7 we con-
clude and give further research directions that are opened by
our work.

2 Further related work

Population protocols Our model for shape construction is
strongly inspired by the Population Protocol model [1] and
the Mediated Population Protocol model [30]. In the former,
connections do not have states. States on the connections
were first introduced in the latter. The main difference to our
model is that in those models the focus was on the compu-
tation of functions of some input values and not on network
construction. Another important difference is that we allow
the edges to choose between only two possible states which
was not the case in [30]. Interestingly, when operating under
a uniform random scheduler, population protocols are for-
mally equivalent to a restricted version of stochastic chemical
reaction networks (CRNs) which model chemistry in a well-
mixed solution (see, e.g., [41]). “CRNs are widely used to
describe information processing occurring in natural cel-
lular regulatory networks, and with upcoming advances in
synthetic biology, CRNs are a promising programming lan-
guage for the design of artificial molecular control circuitry”
[12,21]. However, CRNs and population protocols can only
capture the dynamics ofmolecular counts and not of structure
formation. Our model then may also be viewed as an exten-
sion of population protocols and CRNs aiming to capture the
stable structures that may occur in a well-mixed solution.
From this perspective, our goal is to determine what stable
structures can result in such systems (natural or artificial),
how fast, and under what conditions (e.g., by what underly-
ing codes/reaction-rules). Most computability issues in the
area of population protocols have now been resolved. Finite-
state processes on a complete interaction network, i.e., one in
which every pair of processes may interact, (and several vari-
ations) compute the semilinear predicates [3]. Semilinearity
persists up to o(log log n) local space but not more than this
[13]. If, additionally, the connections between processes can
hold a state from a finite domain (note that this is a stronger
requirement than the on/off that the present work assumes)

123

346 O. Michail

then the computational power dramatically increases to the
commutative subclass ofNSPACE(n2) [30].Other important
works include [25] which equipped the nodes of population
protocols with unique identifiers (abbreviated “uids” or “ids”
throughout) and [10] which introduced a (weak) notion of
speed of the nodes that allowed the design of fast converg-
ing protocols with only weak requirements. For introductory
texts see [8,31].
Algorithmic self-assembly There are already several mod-
els trying to capture the self-assembly capability of natural
processeswith the purpose of engineering systems and devel-
oping algorithms inspired by such processes. The research
area of “algorithmic self-assembly” belongs to the field of
“molecular computing”. The latter was initiated by Adleman
[6], who designed interacting DNA molecules to solve an
instance of theHamiltonian path problem.Themodel that has
guided the study in algorithmic self-assembly is the Abstract
Tile Assembly Model (aTAM) [39,44] and variations.

Recently, the Nubot model was proposed [43], which
was another important influence for our work. That model
aims at “motivating engineering of molecular structures
that have complicated active dynamics of the kind seen
in living biomolecular systems”. It tries to “capture the
interplay between molecular structure and dynamics”. “Sim-
ple molecular components form assemblies that can grow”
(exponentially fast, by successive doublings) “and shrink,
and individual components undergo state changes and move
relative to each other”. The main result of [43] was that any
computable shape of size ≤ n × n can be built in time poly-
logarithmic in n, plus roughly the time needed to simulate a
TM that computes whether or not a given pixel is in the final
shape. One of the main differences between the Nubot model
and our model is that in the former the nodes are equipped
with an active actuationmechanism (see also [14] for another
study of active self-assembly). This means that nodes (repre-
sentingmonomers there) are capable of firing transition rules
that apart from changing their state can also change their rel-
ative position to neighboring nodes. This core characteristic
brings theNubotmodel closer to reconfigurable robotics (see,
e.g., [5]) and active programmable matter (see, e.g., [15,36])
models. In contrast, reconfiguration in our model is passive,
meaning that all mobility is controlled by the environment
and the nodes can only “decide” whether to connect or dis-
connect whenever they are given the opportunity to interact.

Another type of self-assembly model that is close to the
model studied in this paper, is the model of signal passing
tiles [26,37]. Their main similarities are that signal-passing
tiles are also passive and they can control connection and
disconnection (via glues) as in our model. Still there are
some important differences that set our model apart from
the signal-passing tiles model. The most crucial one, is that
in signal-passing tiles (and in the vast majority of algorithmic
self-assembly models) there is an unlimited supply of tiles

and any global parameter of the target configuration, such as
its size n, must be somehow explicitly encoded in advance
(as input), e.g., by assigning to each tile a number of glues
that depends on n or, as in [14], by starting from an initial
line of length log n. In contrast, in our model n is always
the number of nodes in the system, their number remaining
unmodified throughout the execution, and, additionally, the
nodes do not know n in advance and have to coordinate in
order to compute it and become capable of constructing a
sufficiently large shape (i.e., one that depends on the size of
the system). Other important differences are the existence
of various types of glues in signal-passing tile assembly and
also temperature and strength parameters that determine sta-
bility of a configuration, whereas in our model stability only
depends on the local states of nodes and their position in the
configuration. See [20] for an introductory text to algorithmic
self-assembly.
Distributed network construction To the best of our knowl-
edge, classical distributed computing has not considered the
problem of constructing an actual communication network
from scratch. From the seminal work of Angluin [7] that ini-
tiated the theoretical study of distributed computing systems
up to now, the focus has been more on assuming a given
communication topology and constructing a virtual network
over it, e.g., a spanning tree for the purpose of fast dis-
semination of information. Moreover, these models assume
most of the time unique identities, unbounded memories,
and message-passing communication. Additionally, a pro-
cess always communicates with its neighboring processes
(see [9,29] for all the details). An exception is the area of
geometric pattern formation by mobile robots (cf. [16,42]
and references therein). A great difference, though, to our
model is that in mobile robotics the computational entities
have complete control over their mobility and thus over their
future interactions. That is, the goal of a protocol is to result
in a desired interaction pattern while in our model the goal
of a protocol is to construct a structure while operating under
a totally unpredictable interaction pattern.
Programmable matter Programmable matter refers to any
type of matter that can algorithmically change its physical
properties (see, e.g., [24,35]). There is a recent growing inter-
est in the theory and algorithms for programmable matter
systems. The network constructors model [33] and its geo-
metric variant studied in this paper, may be viewed asmodels
for programmable matter operating in a dynamic environ-
ment. The Amoebot model, a programmable matter model
inspired by the behavior of amoeba, was proposed in [15,18]
(see also [17,19] for somemore recent studies). Another very
recent study considered spherical programmablemattermod-
ules that can rotate or slide relative to neighboring modules
[36], trying to capture transformation mechanisms that are
feasible by current technology. As already mentioned above,
the core characteristic that distinguishes the present model is

123

Terminating distributed construction of shapes and patterns in a fair solution of automata 347

py

px

p−x

p−y

py

px

p−x

p−y

py

px

p−x

p−y
p−z

pz
py

px

p−x

p−y

p−z

pz

2D

3D

Fig. 1 The top figure depicts the 2D version of the model. Each node
has four ports and consecutive ports are perpendicular to each other.
Two nodes are interacting, the left one via its px port and the right one
via its p−x port. The interaction can occur because the distance between
the nodes is unit and the corresponding ports are totally aligned (in a
straight line). The bottom figure depicts the 3D version of the model.
The only difference is an extra z dimension

the fact that all dynamicity is passive and the only actuation
controlled by the program is the activation/deactivation of
connections whenever some adversarially controlled condi-
tions are met.

3 The model

The system consists of a population V of n distributed pro-
cesses (finite-state machines), called nodes when clear from
context. Every node has a bounded number of ports which
it uses to interact with other nodes. In the 2-dimensional
(2D) case, there are four ports py , px , p−y , and p−x , which
for notational convenience are usually denoted u, r , d, and l,
respectively (for up, right, down, and left, respectively). Sim-
ilarly, in the 3-dimensional (3D) case there are 6 ports py , pz ,
px , p−y , p−z , and p−x (see Fig. 1). Throughout this work,
we denote by j̄ the port “opposite” to port j , that is, if j ≡ pi
then j̄ ≡ p−i . Neighboring ports are perpendicular to each
other, forming local axes. For example, in the 2-dimensional
case, u ⊥ r , r ⊥ d, d ⊥ l, and l ⊥ u. An important remark
is that the above coordinates are only for local purposes and
do not necessarily represent the actual orientation of a node
in the system. A node may be arbitrarily rotated so that, for
example, its x local coordinate is aligned with the y global
coordinate of the system or it is not aligned with any global
coordinate. Nodes may interact in pairs, whenever a port of
one node w is at unit distance and in straight line (w.r.t. to
the local axes) from the port of another node v. For example,
it could be the case that, at some point during execution, the
axis of the u port of w becomes aligned with the axis of the l

port of another node v and the distance between them is one
unit. Then w and v interact and, apart from updating their
local states, they can also activate the connection between
their corresponding ports. In a future pairwise interaction,
they can again deactivate the connection if required.

Definition 1 A 2D (or 3D) protocol is defined by a 4-tuple
(Q, q0, Qout , δ), where Q is a finite set of node-states, q0 ∈
Q is the initial node-state, Qout ⊆ Q is the set of output
node-states, and δ : (Q × P) × (Q × P) × {0, 1} → Q ×
Q × {0, 1} is the transition function, where P = {u, r, d, l}
(P = {py, pz, px , p−y, p−z, p−x }, respectively, for the 3D
case) is the set of ports and {0, 1} is the set of edge-states.
When required, also a special initial leader-state L0 ∈ Q
may be defined.

If δ((a, p1), (b, p2), c) = (a′, b′, c′), we call (a, p1),
(b, p2), c → (a′, b′, c′) a transition (or rule). A transition
(a, p1), (b, p2), c → (a′, b′, c′) is called effective if a 	= a′
or b 	= b′ or c 	= c′ and ineffective otherwise. When we
present the transition function of a protocol we only present
the effective transitions.

Let E = {{(v1, p1), (v2, p2)} : v1 	= v2 ∈ V and p1, p2 ∈
P} be the set of all unordered pairs of node-ports (cf. [33]
for more details on unordered interactions).1 A configura-
tion C is a pair (CV ,CE), where CV : V → Q specifies the
state of each node and CE : E → {0, 1} specifies the state
of every possible pair of node-ports (i.e., of every edge). In
particular, an edge in state 0 is called inactive and an edge in
state 1 is called active. The initial configuration is always the
one in which all nodes are in state q0 (apart possibly from
a unique leader in state L0) and all edges are inactive. Exe-
cution of the protocol proceeds in discrete steps. In every
step, a pair of node-ports (v1, p1)(v2, p2) is selected by an
adversary scheduler and these nodes interact via the corre-
sponding ports and update their states and the state of the
edge joining them according to the transition function δ.

Every configuration C defines a set of shapes G[A(C)],
where A(C) = C−1

E [1]; i.e., the network induced by the
active edges of C . Observe that not all possible A(C) are
valid given our geometric restrictions, that connections are
made at unit distance and are perpendicular whenever they
correspond to consecutive ports of a node. For example, if
(v1, r)(v2, l) ∈ A(C) then (v1, l)(v2, r) /∈ A(C). In gen-
eral, A(C) is valid if any connected component defined by
it (when arranged according to the geometric constraints) is
a subnetwork of the 2D grid network with unit distances.
A valid A(Ct−1) also restricts the possible selections of the
scheduler at step t ≥ 1. In particular, (v1, p1)(v2, p2) ∈ E
can be selected for interaction (or is permitted) at step t iff
A(Ct−1)∪{(v1, p1)(v2, p2)} is valid. Observe that any edge
1 To simplify notation, an unordered pair {a, b} will typically be
denoted by ab.

123

348 O. Michail

that is active before step t is trivially permitted at step t . From
now on, we call a 2D (3D) shape any connected subnetwork
of the 2D (3D) grid network with unit distances.

Throughout the paper we restrict attention to configura-
tions C in which A(C) is valid. We write C → C ′ if C ′ is
reachable in one step from C (meaning via a single interac-
tion that is permitted onC). We say thatC ′ is reachable from
C and write C � C ′, if there is a sequence of configurations
C = C0,C1, . . . ,Ct = C ′, such that Ci → Ci+1 for all i ,
0 ≤ i < t . An execution is a finite or infinite sequence of
configurations C0,C1,C2, . . ., where C0 is the initial con-
figuration and Ci → Ci+1, for all i ≥ 0. We only consider
fair executions, sowe require that for every pair of configura-
tionsC andC ′ such thatC → C ′, ifC occurs infinitely often
in the execution then so does C ′. In most cases, we assume
that interactions are chosen by a uniform random scheduler
which in every step selects independently and uniformly at
random one of the permitted interactions. The uniform ran-
dom scheduler is fair with probability 1. In this work, with
high probability (abbreviated “w.h.p.” throughout) means
with probability at least 1 − 1/nc for some constant c ≥ 1.

We define the output of a configuration C as the set of
shapes Gout (C) = (Vs, Es) where Vs = {u ∈ V : CV (u) ∈
Qout } and Es = A(C) ∩ {(v1, p1)(v2, p2) : v1 	= v2 ∈ Vs
and p1, p2 ∈ P}. In words, the output shapes of a config-
uration consist of those nodes that are in output states and
those edges between them that are active. Throughout this
work, we are interested in obtaining a single shape as the
final output of the protocol (see, for an example, the black
nodes and the connections between them in Fig. 7d on page
21). As already mentioned, our main focus will be on ter-
minating protocols. In this case, we assume a set Qhalt such
that Qout ⊆ Qhalt ⊆ Q and, for all qhalt ∈ Qhalt , every rule
containing qhalt is ineffective. In contrast, in stabilizing pro-
tocols there is no Qhalt and states in Qout may have effective
interactions which we guarantee (by design) to cease even-
tually resulting in the stabilization of the final shape.

Definition 2 We say that an execution of a protocol on n
processes constructs (stably constructs) a shape G, if it ter-
minates (stabilizes, resp.) with output G.

Every 2D shape G has a unique minimum 2D rectan-
gle RG enclosing it. RG is a shape with its nodes labeled
from {0, 1}. The nodes of G are labeled 1, the nodes in
V (RG) \ V (G) are labeled 0, and all edges are active. It
is like filling G with additional nodes and edges to make
it a rectangle (in fact, this process can be carried out by
a protocol). The dimensions of RG are defined by hG ,
which is the horizontal distance between a leftmost node
and a rightmost node of the shape (x-dimension), and vG ,
which is the vertical distance between a highest and a lowest
node of the shape (y-dimension). Let also max_dimG :=
max{hG, vG} and min_dimG := min{hG, vG}. Then RG

can be extended by max_dimG − min_dimG extra rows or
columns, depending on which of its dimensions is smaller,
to yield a max_dimG × max_dimG square SG enclosing
G (we mean here a {0, 1}-node-labeled square, as above, in
which G can be identified). Observe, that such a square is
not unique. For example, if G is a horizontal line of length
d (i.e., hG = d and vG = 1) then it is already equal to RG

and has to be extended by d − 1 rows to become SG . These
rows can be placed in d distinct ways relative to G, but all
these squares have the same size max_dimG ×max_dimG

denoted by |SG |.
A 2D (3D) shape language L is a subset of the set of

all possible 2D (3D) shapes. We restrict our attention here to
shape languages that contain a unique shape for each possible
maximum dimension of the shape. In this case, it is equiv-
alent, and more convenient, to translate L to a language of
labeled squares. In particular, we define in this work a shape
languageLbyproviding for everyd ≥ 1 a singled×d square
with its nodes labeled from {0, 1}.2 Such a square may also
be defined by a d2-sequence Sd = (s0, s1, . . . , sd2−1) of bits
or pixels, where s j ∈ {0, 1} corresponds to the j-th node as
follows:We assume that the pixels are indexed in a “zig-zag”
fashion, beginning from the bottom left corner of the square,
moving to the right until the bottom right corner is encoun-
tered, then one step up, then to the left until the node above
the bottom left corner is encountered, then one step up again,
then right, and so on (see the directed path in Fig. 7b on page
21). The shape Gd defined by Sd , called the shape of Sd , is
the one induced by the nodes of the square that are labeled 1
and throughout this work we assume that max_dimGd = d.

For simulation purposes, we also need to introduce appro-
priate shape-constructing Turing Machines (TMs). We now
describe such a TM M : M’s goal is to construct a shape on
the pixels of a

√
n × √

n square, which are indexed in the
zig-zag way described above. M takes as input an integer
i ∈ {0, 1, . . . , n − 1} and the size n or the dimension

√
n of

the square (all in binary) and decides whether pixel i should
belong or not to the final shape, i.e., if it should be on or off,
respectively.3 Moreover, in accordance to our definition of a

2 Observe that we have intentionally restricted attention to unary lan-
guages as we want to focus on deterministic construction, in the sense
that for any given “input-size” (here d) wewant the population to always
produce the same output shape.
3 If the TM is not provided with the size of the square, then it can only
compute uniform/symmetric shapes that are independent of n. Such a
shape could for example be one that has every even pixel on and every
odd pixel off. But such shapes rarely satisfy the connectivity condition.
For example, it is not clear how to activate all the leftmost pixels of the
square by a uniform TM, because such a TM should somehow guess
that pixel 2

√
n−1 should be accepted without knowing n and given that

all pixels in [1, 2√n− 2] must be rejected. So, it seems more natural to
consider TMs that apart from the pixel index are also provided with n or√
n (if the latter is more convenient) in binary. Now, it is straightforward

how to resolve the acceptance of only the leftmost pixels of the square.

123

Terminating distributed construction of shapes and patterns in a fair solution of automata 349

shape, the construction of the TM, consisting of the pixels
that M accepts (as on) and the active connections between
them, should be connected (i.e., it should be a single shape).

Definition 3 We say that a shape language L = (S1, S2,
S3, . . .) is TM-computable or TM-constructible in space
f (d), if there exists a TM M (as defined above) such that,
for every d ≥ 1, when M is executed on the pixels of a
d × d square results in Sd (in particular, on input (i, d),
where 0 ≤ i ≤ d2−1, M gives output Sd [i]), by using space
O(f (d)) in every execution.4

Definition 4 We say that a protocol A constructs a shape
languageLwith useful space g(n) ≤ n, if g(n) is the greatest
function for which: (i) for all n, every execution of A on n
processes constructs a shape G ∈ L5 of order6 at least g(n)

(provided that such a G exists) and, additionally, (ii) for all
G ∈ L there is an execution ofA on n processes, for some n
satisfying |V (G)| ≥ g(n), that constructs G.7 Also, we say
that A constructs L with waste n − g(n).

4 Some basic constructions

We give in this section protocols for two very basic shape
construction problems, the spanning line problem and the
spanning square (or

√
n×√

n square) problem. In both prob-
lems, for any number of nodes n, the n nodes must end up
organized in a desired shape from a given shape-language.
In the spanning line problem, the nodes must end up with an
active line that is spanning and straight and in the spanning
square problem the nodes must end up with an active square-
grid spanning the population. These constructions not only
serve as first expositions of the model in action, but are also
very useful because they organize the nodes in a way that
is convenient for TM simulations that exploit the whole dis-
tributed memory as a tape. Keep in mind that the protocols
of this section are stabilizing (that is, eventually the output
shape stops changing) and not terminating. Our technique

Footnote 3 continued
The TM every time accepts the input-pixel i iff i = 2k

√
n−1, for some

k ≥ 1, or i = 2k
√
n, for some k ≥ 0. Observe that 2k

√
n can always

be computed because the TM is also provided with
√
n in its input.

4 We should mention that part of the ideas related to the pixel-encoding
and the TM operating on pixels have been inspired by similar construc-
tions of Woods et al. [43].
5 G is the shape of a labeled square S ∈ L in case L is defined in terms
of such squares.
6 By “order” of a shape, we mean the number of nodes of the shape.
7 By “greatest function” g(n), we mean that for all functions f (n)

that satisfy the above properties and all n, it holds that g(n) ≥ f (n).
Intuitively, g(n) is a complete description of the guaranteed size of the
shapes thatA constructs; in practice, it is often sufficient to characterize
g(n) asymptotically.

that allows for terminating constructions will be introduced
in Sect. 5.

4.1 Global line

Webegin by presenting a protocol for the spanning line prob-
lem. Assume that there is initially a unique leader in state Lr

(we typically use capital ‘L’ for the states of a leader to dis-
tinguish from the left port ‘l’) and all other nodes are in state
q0. A protocol that constructs a spanning line is described
by the effective rules (Li , i), (q0, j), 0 → (q1, L j̄ , 1) for all

i, j ∈ {u, r, d, l}, where j̄ denotes the port opposite to port j .
In words, initially the leader (i.e., Lr) waits to meet a q0 via
its right port. Assume that it meets port j of a q0. Then the
connection between them becomes activated and the leader
takes the place of the q0, leaving behind a q1. Moreover, the
new leader is now in state L j̄ indicating that it is nowwaiting
to expand the line towards the port that is opposite to the one
that is already active, which guarantees that a straight line
will be formed.

We could even have a simplified version of the form
(L , r), (q0, l), 0 → (q1, L , 1). This is a little slower, because
now an effective interaction, and a resulting expansion of the
line, only occurs when the r port of the leader meets the l
port of a q0.

4.2
√
n × √

n Square

We now give two protocols for the spanning square problem.
We assume for simplicity that the square root of n is integer.
We again assume that there is a pre-elected unique leader,
which is initially in state Lu and all other nodes are in state
q0. The code of our first protocol for the spanning square
problem is given in Protocol 1.

We now describe the idea that Protocol 1 implements.
The protocol first constructs a 2 × 2 square. When it is
done, the leader is at the bottom right corner and is in state
Ld . This can only cause the attachment of a free q0 from
below, via rule (Ld , d), (q0, u), 0 → (q1, Ll , 1). When this
occurs, the leader moves on the new node, updates its state
to Ll , and tries to move to the left. This will occur by the
attachment of another free node from the left this time, via
rule (Ll , l), (q0, r), 0 → (q1, Lu, 1). When this occurs, the
leader moves on the new node, updates its state to Lu , and
tries to move up. But this time the up movement cannot suc-
ceed because the leader is below the bottom left corner of the
square. Instead, the leader activates the connection with that
corner, via rule (Lu, u), (q1, d), 0 → (Ll , q1, 1), and tries to
move another step left. When it succeeds, it tries to move up
again, which can now occur, via rule (Lu, u), (q0, d), 0 →
(q1, Lr , 1), because the leader has moved outside the left
boundary of the 2×2 square. In general, whenever the leader

123

350 O. Michail

Protocol 1 Square

Q = {Lu , Lr , Ld , Ll , q0, q1}, L0 = Lu (i.e., the initial leader-state
is in this case Lu)
δ:

// an Li -leader will move one step in the i direction,

// adding one node to the perimeter of the square;

// then it will try to change direction, clockwise

(Lu , u), (q0, d), 0 → (q1, Lr , 1)

(Lr , r), (q0, l), 0 → (q1, Ld , 1)

(Ld , d), (q0, u), 0 → (q1, Ll , 1)

(Ll , l), (q0, r), 0 → (q1, Lu , 1)

// changing of direction cannot succeed as long as the

// leader has not managed to go beyond the boundary

// of the square; the leader restores its previous direction

(Lu , u), (q1, d), 0 → (Ll , q1, 1)

(Lr , r), (q1, l), 0 → (Lu , q1, 1)

(Ld , d), (q1, u), 0 → (Lr , q1, 1)

(Ll , l), (q1, r), 0 → (Ld , q1, 1)

// All transitions that do not appear have no effect

is at the left (the up, right, and down cases are symmetric)
of the already constructed square it tries to move to the right
in order to walk above the square. If it does not succeed, it
is because it has not yet moved over the upper boundary, so
it activates the edge to the right, takes another step up and
then tries again to move to the right. In this way, the leader
always grows the square perimetrically and in the clockwise
direction, i.e., following a spiral trajectory in the grid.

We next use turning marks to simplify and speed up
the turning process. The unique leader begins in state L2

d .
Now, instead of always trying to turn, the leader turns only
when it meets special marks left by the previous phase near
the corners of the square. When it meets such a mark, the
leader introduces the new corner and a new mark adjacent
to that corner to be found during the next phase, and then
makes a turn (see Fig. 2). A difference to the previous proto-
col is that now several of the nodes of the new perimeter
may remain disconnected for a while from their internal
neighbors (i.e., those belonging to the internal perimeter
constructed in the previous phase). However, rules of the
form (q1, i), (q1, ī), 0 → (q1, q1, 1) guarantee that these
nodes eventually become connected. A disadvantage of this
approach is that the structuremay be less “rigid” than the pre-
vious one as long as several (q1, q1) connections are not yet
established. The protocol is formally presented in Protocol
2.

A drawback of Protocol 2 is that the construction is never
a true square but rather a square with four protruding turning
marks (so, we here need

√
n − 4 to be integer for a complete

such construction). An alternative that circumvents this is the

Protocol 2 Square2

Q = ({Li , L1
i , L

2
i , L

3
i , L

4
i : i ∈ {u, r, d, l}} \ {L1

l }) ∪ {Lend , q0, q1},
L0 = L2

d
δ:

// adding the turning marks of the 2 × 2 square

(L2
d , d), (q0, u), 0 → (L1

u , q1, 1)

(L2
l , l), (q0, r), 0 → (L1

r , q1, 1)

(L2
u , u), (q0, d), 0 → (L1

d , q1, 1)

(L2
r , r), (q0, l), 0 → (Lend , q1, 1)

// constructing the 2 × 2 square

(L1
u , u), (q0, d), 0 → (q1, L

2
l , 1)

(L1
r , r), (q0, l), 0 → (q1, L

2
u , 1)

(L1
d , d), (q0, u), 0 → (q1, L

2
r , 1)

// end of the present phase at the bottom right corner

(Lend , d), (q0, u), 0 → (q1, Ll , 1)

// trying to grow the square perimetrically, Li either

// suceeds and continues to be Li or meets a turning

// mark and becomes L3
i

(Ll , l), (q0, r), 0 → (q1, Ll , 1)

(Ll , l), (q1, r), 0 → (q1, L
3
l , 1)

(Lu , u), (q0, d), 0 → (q1, Lu , 1)

(Lu , u), (q1, d), 0 → (q1, L
3
u , 1)

(Lr , r), (q0, l), 0 → (q1, Lr , 1)

(Lr , r), (q1, l), 0 → (q1, L
3
r , 1)

(Ld , d), (q0, u), 0 → (q1, Ld , 1)

(Ld , d), (q1, u), 0 → (q1, L
3
d , 1)

// adding a new turning mark to the present corner

(L3
l , l), (q0, r), 0 → (q1, L

4
d , 1)

(L3
u , u), (q0, d), 0 → (q1, L

4
l , 1)

(L3
r , r), (q0, l), 0 → (q1, L

4
u , 1)

(L3
d , d), (q0, u), 0 → (q1, L

4
r , 1)

(L4
d , d), (q0, u), 0 → (Lu , q1, 1)

(L4
l , l), (q0, r), 0 → (Lr , q1, 1)

(L4
u , u), (q0, d), 0 → (Ld , q1, 1)

(L4
r , r), (q0, l), 0 → (Lend , q1, 1)

// activating missing internal edges of the square

(q1, i), (q1, ī), 0 → (q1, q1, 1), for all i ∈ {u, r, d, l},
where ī denotes the opposite port of i

(Lu , r), (q1, l), 0 → (Lu , q1, 1)

(Lr , d), (q1, u), 0 → (Lr , q1, 1)

(Ld , l), (q1, r), 0 → (Ld , q1, 1)

(Ll , u), (q1, d), 0 → (Ll , q1, 1)

following. The leader constructs the perimeter of the present
phase by walking on the perimeter drawn by the previous

123

Terminating distributed construction of shapes and patterns in a fair solution of automata 351

8

910
11

12

13

14

15 16 17 18
19

20

21

22

23

1

2

3 4
5

6

7
L2
d

Lend

1st Phase 2nd Phase

Lend

Fig. 2 The first two phases of Protocol 2. Gray nodes indicate the
starting point of each phase. Edge labels indicate the order by which
the square grew during the phase. The nodes labeled Lend are the points
at which each of the phases ends. The unlabeled solid edges of Phase
2 indicate the shape that pre-existed from Phase 1. The nodes attached
at “times” 1, 3, 5, 7 of Phase 1 and 11, 15, 19, 23 of Phase 2 are the
turning marks that will be exploited for easier turning by the leader in
the subsequent phase. Dotted edges are edges that have not be activated
yet but will for sure be activated eventually resulting in a more “rigid”
structure

phase. For example, while walking up the left border of the
square it attaches nodes to the left of the border, thus con-
structing a new left border. In this way, the leader just needs
to find a special state on the corner of the previous phase (or
the absence of the corner) in order to determine that turning
is required.

Finally, though the constructions in this sectionwere based
on a pre-elected unique leader, we should mention that this
assumption is not necessary for solving the above problems.
However, the protocols that do not require a leader are more
complicated and do not serve as good first expositions of the
model.

5 Probabilistic counting

In this section, we consider the problem of counting n. In
particular, we assume a uniform random scheduler and we
want to give protocols that always terminate but still w.h.p.
count n correctly. The importance of such protocols is fur-
ther supported by the fact that we cannot guarantee anything
much better than this. In particular, observe that if we require
a population protocol to always terminate and additionally to
always be correct, thenwe immediately obtain an impossibil-
ity result. It is easy to see this by imagining a system in which
a unique leader interacts with the other nodes (there are no
interactions between non-leaders and no connections are ever
activated). Any fair execution s1 of a protocol in a population
of size n in which the leader outputs n and terminates can
appear as an “unfair” prefix of a fair execution s′ = s1s2 on a
population of size n′ > n. This is a contradiction because in

s′ the leader must again terminate and output n even though
n′ 	= n. The main reason is that |s1| is finite and independent
of n; it only depends on the maximum “depth” of a chain of
rules of the protocol leading to termination. This implies that
in s′ the leader terminates before interacting with all other
nodes.

In Sect. 5.1, we present a population protocol with a pre-
elected unique leader, that solvesw.h.p. the counting problem
and always terminates. To the best of our knowledge, this
is the first protocol of this sort in the relevant literature.
All probabilistic protocols that have appeared so far, like
those in [1,2], are not terminating but stabilizing and the
high probability arguments concern their time to conver-
gence. Additionally, this protocol is crucial because all of
our generic constructors, that are developed in Sect. 6, are
terminating by assuming knowledge of n (stored distribut-
edly on a line of length log n). They obtain access to this
knowledge w.h.p. by executing the counting protocol as a
subroutine. Finally, knowing n w.h.p. enables us to develop
protocols that exploit sequential composition of (terminat-
ing) subroutines, which makes them much more natural and
easy to describe than the protocols in which all subroutines
are executed in parallel and perpetual reinitializations is the
only means of guaranteeing eventual correctness (the latter
is the case, e.g., in [25,30,33], but not in [34] which was the
first extension to allow for sequential composition based on
some non-probabilistic assumptions). Then in Sect. 5.2 we
comment on the possibility of dropping the unique leader
assumption and leave this as an interesting open problem.
Finally, in Sect. 5.3 we establish that if the nodes have unique
ids then it is possible to solve the problem without a unique
leader.

5.1 Fast probabilistic counting with a leader

Keep in mind that in order to simplify the discussion, a sort
of population protocol is presented here. So, there are no
ports, no geometry, and no activations/deactivations of con-
nections. In every step, a uniform random scheduler selects
equiprobably one of the n(n − 1)/2 possible node pairs, and
the selected nodes interact and update their states according
to the transition function. The only difference from the clas-
sical population protocols is that a distinguished pre-elected
leader node has unbounded local memory (of the order of n).
In Sect. 6.1, we will adjust the protocol to make it work in
our model, using constant memory on every node, including
the leader.

Counting-Upper-Bound protocol There is initially a unique
leader l and all other nodes are in state q0. Assume that l
has two n-counters in its memory, initially both set to 0. So,
the state of l is denoted as l(r0, r1), where r0 is the value
of the first counter and r1 the value of the second counter,

123

352 O. Michail

j
i

q0
q0

q0
q0

q0

q1

q1

q1

q1

q0

q0

q0

q0

r1

q2

q2

r0

q0

q0

q0

Fig. 3 A configuration of the system (excluding the leader). The num-
ber of q0s remaining is denoted by i . The number of q1s introduced so
far is denoted by j . The value of the counter r1 is equal to the number
of q1s encountered so far by the leader, which is in turn equal to the

number of q2s introduced. The value of the counter r0 is equal to the
number of q0s encountered, which is equal to the number of q1s and
q2s introduced

0 ≤ r0, r1 ≤ n. The rules that capture the core operations of
the protocol are of the form

(l(r0, r1), q0) → (l(r0 + 1, r1), q1), if r1 < r0

(l(r0, r1), q1) → (l(r0, r1 + 1), q2), if r1 < r0 and

(l(r0, r1), ·) → (halt, ·) if r0 = r1.

It is worth reminding that, for the time being, we have dis-
regarded edge-states and, therefore, the rules of the protocol
only specify how the states of the nodes are updated. Observe
that r0 counts the number of q0s in the population while r1
counts the number of q1s. Initially, there are n − 1 q0s and
no q1s. Whenever l interacts with a q0, r0 increases by 1 and
the q0 is converted to q1. Whenever l interacts with a q1, r1
increases by 1 and the q1 is converted to q2. The process ter-
minates when r0 = r1 for the first time. We also give to r0 an
initial head start of b, where b can be any desired constant.
So, initially we have r0 = b, r1 = 0 and i = #q0 = n−b−1,
j = #q1 = b (this can be easily implemented in the protocol
by having the leader convert b q0s to q1s as a preprocessing
step).

So, in Counting-Upper-Bound we have two competing
processes, one counting q0s and the other counting q1s, the
first one begins with an initial head start of b and the game
ends when the second catches up the first. We now prove that
when this occurs the leader will almost surely have already
counted at least half of the nodes.

Theorem 1 Theaboveprotocol halts in every executionafter
an expected number of O(n2 log n) interactions. Moreover,
when this occurs, w.h.p. it holds that r0 ≥ n/2.

Proof Recall that the scheduler is a uniform random one,
which, in every step, selects independently and uniformly at

random one of the n(n − 1)/2 possible interactions. Recall
also that the random variable i denotes the number of q0s
and j denotes the number of q1s in the current configuration,
where initially i = n − b − 1 and j = b. Observe also that
all the following hold: j = r0 − r1, r0 ≥ r1, because every
conversion of a q1 to q2 must have been first counted by r0
as a conversion of a q0 to q1, r1 = (n − 1) − (i + j), and
r0 + r1 is equal to the number of effective interactions (see
Fig. 3).

We focus only on the effective interactions (we also dis-
regard the halting interaction), which are always interactions
between l and q0 or q1. Given that we have an effective inter-
action, the probability that it is an (l, q0) is pi j = i/(i+ j) and
the probability that it is an (l, q1) is qi j = 1−pi j = j/(i+ j).
This random process may be viewed as a random walk (r.w.)
on a line with n + 1 positions 0, 1, . . . , n where a particle
begins from position b and there is an absorbing barrier at
0 and a reflecting barrier at n. The position of the particle
corresponds to the difference r0 − r1 of the two counters
which is equal to j . Observe now that if j ≥ n/2 then
r0 − r1 ≥ n/2 ⇒ r0 ≥ n/2, so it suffices to consider a
second absorbing barrier at n/2. The particle moves forward
(i.e., to the right) with probability pi j and backward with
probability qi j (see Fig. 4). This is a “difficult” random walk
because the transition probabilities not only depend on the
position j but also on the sum i+ j which decreases in time. In
particular, the sum decreases whenever an (l, q1) interaction
occurs, in which case a q1 becomes q2. That is, whenever the
random walk returns to some position j of the line, its tran-
sition probabilities have changed (because every leaving and
returning involves at least on step to the left, which decreases
the sum). Observe also that, in our case, the duration of the
random walk can be at most n − b, in the sense that if the

123

Terminating distributed construction of shapes and patterns in a fair solution of automata 353

0 b n/2

qij = 1− pij pij

j

Fig. 4 A random walk modeling of the probabilistic process that the
Counting-Upper-Bound protocol implements. A particle begins from
position b. The position j of the particle corresponds to the difference
between r0 and r1. Forwardmovement corresponds to an increment of r0
and backwardmovement corresponds to an increment of r1. Absorption
at 0 corresponds to r1 becoming equal to r0 and thus to termination
(and to failure if this occurs before r0 ≥ n/2 holds). Absorption at n/2
corresponds to r0 becoming at least n/2 (before being absorbed at 0)
and thus to success

particle has not been absorbed after n−b steps then we have
success. The reason for this is that n−b effective interactions
imply that r0 + r1 = n, but as r0 ≥ r1, we have r0 ≥ n/2. In
fact, r0 ≥ n/2 ⇔ j + r1 ≥ n/2. We are interested in upper
bounding P[failure] = P[reach 0 before r0 ≥ n/2 holds],
which is in turn upper bounded by the probability of reaching
0 before reaching n/2 and before n−b effective interactions
have occurred (this is true because, in the latter event, we
have disregarded some winning conditions like, for exam-
ple, guaranteed winning in (n/2) + r1 effective interactions,
in which case we have winning in only (n/2) + r1 effective
interactions and j having become at most (n/2)− r1). It suf-
fices to bound the probability of reaching 0 before n effective
interactions have occurred.

Thus, we have r0 + r1 ≤ n but r1 ≤ r0 ⇒ 2r1 ≤ r0 + r1,
thus 2r1 ≤ n ⇒ r1 ≤ n/2 ⇒ (n − 1) − (i + j) ≤ n/2 ⇒
i + j ≥ (n/2) − 1. And if we set n′ = (n/2) − 1 we have
i + j ≥ n′. Moreover, observe that when r0 + r1 = n + 1
we have n + 1 = r0 + r1 ≤ 2r0 ⇒ r0 ≥ n/2. In summary,
during the first n effective interactions, it holds that i + j ≥
n′ = (n/2) − 1 and when interaction n + 1 occurs it holds
that r0 ≥ n/2, that is, if the process is still alive after time n,
then r0 has managed to count up to n/2 and the protocol has
succeeded. Now, i + j ≥ n′ implies that pi j ≥ (n′ − j)/n′
and qi j ≤ j/n′ so that now the probabilities only depend on
the position j . This new walk is the well-studied Ehrenfest
random walk coming from the theory of brownian motion
[22] and by results in [27] it is immediate to obtain that its
recurrence time is exponential in n, thus, we do not expect
the walk to return to 0 and fail in only n effective steps.
In the sequel, we turn this into the desired high probability
argument.8

8 Imagine gas molecules that move about randomly in a container
which is divided into two halves symmetrically by a partition. A hole
is made in the partition to allow the exchange of molecules between
the subcontainers. Suppose there are n molecules in the container.
Think of the partitions as two urns, I and II, containing balls labeled
1 through n. Molecular motion can be modeled by choosing a number
between 1 and n at random and moving the corresponding ball from
the urn it is presently in to the other. This is a historically important

We will reduce the Ehrenfest walk to one in which the
probabilities do not depend on j . We first further restrict our
walk, this time to the prefix [0, b] of the line. In this part, it
holds that j ≤ b which implies that pi j ≥ (n′ − b)/n′ and
qi j ≤ b/n′. Now we set pi j = p = (n′ − b)/n′ and qi j =
q = b/n′. Observe that thismay only increase the probability
of failure, so the probability of failure of the new walk is an
upper bound on the probability of failure of our original walk.
Recall that initially the particle is on position b. Imagine now
an absorbing barrier at 0 and another one at b. Whenever the
r.w. is on b − 1 it will either return to b before reaching 0 or
it will reach 0 (and fail) before returning to b. So, we now
have a r.w. with b + 1 positions, where positions 0 and b are
absorbing and due to symmetry it is equivalent to assume that
the particle begins fromposition 1,moves forwardwith prob-
ability p′ = q, backward with probability q ′ = p, and it fails
at b. Thus, it is equivalent to bound P[reach b before 0 (when
beginning from position 1)]. This is the probability of win-
ning in the classical ruin problem analyzed, e.g., in [23] page
345. If we set x = q ′/p′ = p/q = (n′ − b)/b we have that:

P[reach b before 0] = 1 − xb − x

xb − 1
= x − 1

xb − 1

≤ x

xb − 1
≈ 1

xb−1

≈ 1

nb−1 .

Thus, whenever the original walk is on b−1, the probabil-
ity of reaching 0 before reaching b again, is at most 1/nb−1.
Now assume that we repeat the above walk n times, i.e., we
place the particle on b−1, play the game, then if it returns to
b we put again the particle on b−1 and play the game again,
and so on. From Boole-Bonferroni inequality, we have that:

P[fail at least once] ≤
n∑

m=1

P[fail at repetition m]

≤
n∑

m=1

1

nb−1 = n

nb−1

= 1

nb−2 .

Footnote 8 continued
physical model, known as the Ehrenfest model of diffusion, introduced
in [22] in the early days of statisticalmechanics to study thermodynamic
equilibrium. So, the probability of failure of our counting protocol is
asymptotically equivalent to the probability that urn I becomes empty
in the first n steps assuming that it initially contains b balls. This walk
has been studied by Kac in [27] who, among other things, proved that
the mean recurrence time is ((R + k)!(R − k)!/(2R)!)22R ([27], page
386). If we set k = −R so that the initial position is R+k = 0, then this
evaluates to 22R = 2n/2, because 2R is the total length of the line. This
shows that, even if we begin from position 0 instead of b, the recurrence
time is expected to be huge and we do not expect the walk to return to
0 and fail in only n effective steps.

123

354 O. Michail

In summary, even if the protocol was restricted to disre-
gard counter differences that are greater than b, still with
probability at least 1−1/nc (for constant c = b−2) the pro-
tocol has not terminated after at least n effective interactions,
which in turn implies that the leader has counted at least half
of the nodes.

For the Counting-Upper-Bound protocol to terminate, it
suffices for the leader to meet every other node twice. This
takes twice the expected time of a meet everybody (cf. [33]),
thus the expected running time of Counting-Upper-Bound is
O(n2 log n) (interactions). ��

Remark 1 When theCounting-Upper-Bound protocol termi-
nates, w.h.p. the leader knows an r0 which is between n/2
and n. So any subsequent routine can use directly this esti-
mation and pay in an a priori waste which is at most half of
the population. In practice, this estimation is expected to be
much closer to n than to n/2 (in all of our experiments for up
to 1000 nodes, the estimation was always close to (9/10)n
and usually higher). On the other hand, if we want to deter-
mine the exact value of n and have no a priori waste then we
can have the leader wait an additional large polynomial (in
r0) number of steps, to ensure that the leader has met every
other node w.h.p. (observe, e.g., that the last unvisited node
requires an expected number of Θ(n2) steps to be visited).

5.2 On dropping the leader assumption

An immediate question is whether the unique leader assump-
tion of Theorem 1 can be dropped. Though we have not yet
managed resolve this issue, we will describe a possible strat-
egy for proving that this is not possible. In any case, we leave
this as a challenging open problem.

The strategy would aim at showing that any protocol in
which all nodes begin from the same state, may have some
node terminate with (at least) constant probability, having
participated in only a constant number of interactions. This
would then imply that with constant probability the protocol
terminates without having estimated any non-constant func-
tion of n. In the sequel, we describe this potential strategy in
more detail.

Nodes again have a set of states Q andwe also assume that
they have unbounded private local memories. These mem-
ories are for internal purposes only and their contents are
not communicated to other nodes. For example, a node u
could maintain |Q| counters, each counting the number of
times the corresponding state has been encountered so far
by u. We focus on protocols that always terminate (i.e for
every n ≥ n0, for some finite n0) and we want them to com-
pute something w.h.p., e.g., the node that first terminates to
know an upper bound on n w.h.p.. Let now A be a proto-
col as above. To establish the aforementioned impossibility,
it would be sufficient to prove that, as n grows, there is (at

least) a constant probability that some node terminates hav-
ing interacted only a constant number of times.

First of all, observe that a protocol, apart from the usual
transition function δ : Q × Q → Q × Q that updates the
communicating states, has also a function γ : Q × S → S
that updates the internal memory based on the encountered
states. We focus on deterministic γ and, in this case, the
internal state from S after k interactions only depends on the
observed sequence Qk of encountered states (because the
initial state q0 is always the same for all nodes). Every proto-
col A that always terminates, essentially defines a property
LA ⊆ Q∗ consisting of those observed sequences that make
a node terminate (the remaining sequences do not cause ter-
mination). Moreover, as the protocol does not know n, an
s0 ∈ LA of minimum length has length that is independent
of n (it could only be a function of |Q|). Observe that for
every population size n, if s0 is observed by some node u as
a prefix of its interaction pattern (i.e., in its first |s0| inter-
actions) then u terminates while having participated in only
|s0| interactions, which is a constant number independent of
n. So, for an impossibility of dropping the leader it suffices to
prove that, for every n � n0 and every such fixed s0, there is
(at least) a constant probability that some node observes s0.
This could be further broken down into proving the following
set of arguments, provided that n � n0:

1. With constant probability a configuration is reached, in
which every state q ∈ Q has multiplicity Θ(n) (that is,
appears on Θ(n) distinct nodes).9

2. With constant probability the multiplicities of all states
remain Θ(n) for Θ(n) steps.

3. While (2) holds, with constant probability one of the
Θ(n) nodes, let it be u, whose state is q0, interacts |s0|
times.

If the above were true, then it would follow that u may
observe s0 with constant probability, in which case u will
terminate having interacted only a constant (i.e., |s0|) number
of times. The reason for this is that in its i th interaction, for
all 1 ≤ i ≤ |s0|, u observes the i th state of s0, let it be qi ,
with probability (#qi in the population)/Θ(n). As, by (2),
the numerator is also Θ(n), for all qi ∈ Q, the resulting
probability is constant.

5.3 Counting without a leader but with UIDs

Wenow assume that nodes have unique ids from a universeU
and that initially they do not know the ids of other nodes nor
n. The goal is again to count n w.h.p.. All nodes execute the
same program and no node can initially act as a unique leader,

9 This seems to already follow from a result in [21], and, actually, not
only with constant probability that we require here, but w.h.p..

123

Terminating distributed construction of shapes and patterns in a fair solution of automata 355

because nodes do not know which ids from U are actually
present in the system. Nodes have unbounded memory but
we try to minimize it, e.g., if possible, store only up to a con-
stant number of other nodes’ ids. We show that under these
assumptions, the counting problem can be solved without the
necessity of a unique leader.

The idea is to have the node umax with the maximum id in
the system to perform the same process as the unique leader
in the protocol with no ids of Theorem 1. However, as ini-
tially all nodes have to behave as if they were the maximum,
we must also ensure that umax is not affected and that no
other node ever terminates (with sufficiently large probabil-
ity) early, giving as output a wrong count.

Informal description Every node u has a unique id idu
and tries to simulate the behavior of the unique leader of
the protocol of Theorem 1. In particular, whenever it meets
another node for the first time it wants to mark it once and
the second time it meets that node it wants to mark it twice,
recording the number of first-meetings and second-meetings
in two local counters. The problem is that now many nodes
may want to mark the same node. One idea, of course, could
be to have a node remember all the nodes that have marked
it so far but we want to avoid this because it requires a lot
of memory and communication. Instead, we allow a node
to only remember a single other node’s id at a time. Every
node tries initially to increase its first-meetings counter to b
so that it creates an initial b head start of this counter w.r.t.
the other. Every node that succeeds starts executing its main
process. The main idea is that whenever a node u interacts
with another nodewhose id is greater than idu or that has been
marked by an id greater than idu , u becomes deactivated and
stops counting. This guarantees that only umax will forever
remain active.Moreover, every node u always remembers the
maximum id that hasmarked it so far, so that the probabilistic
counting process of a node u can only be affected by nodes
with id greater than idu and as a result no one can affect the
counting process of umax . Protocol 3 puts all these together
formally and Theorem 2 shows that this process correctly
simulates the counting process of Theorem 1, thus providing
w.h.p. an upper bound on n.

Theorem 2 Whenanode u inProtocol 3 halts, w.h.p. it holds
that u = umax and that 2 · count1u ≥ n.

Proof We first show that umax simulates the probabilistic
process of the unique leader l of Theorem 1. Recall that in
the protocol of Theorem 1, all other nodes are initially q0
and when l meets a q0 it makes it q1 and when it meets a
q1 it makes it q2, every time counting in the corresponding
counter. First, observe that umax is never deactivated, i.e.,
activeumax = 1 forever, because it never interacts with a
greater id nor with a node that belongs to a greater id than its
own. It suffices to show that when umax meets a node for the
first time it marks it once (simulating a q0 to q1 conversion),

when it meets a node for the second time it marks it twice
(simulating a q1 to q2 conversion), and that no other node can
ever alter the nodes marked by umax . When umax interacts
with a node v for the first time, then either belongsv =⊥
or ⊥	= belongsv < max_id. So, in this case it marks v

once by setting markedv ← 1, belongsv ← max_id, and
records this by increasing count1umax by one. From now on,
no other active node w 	= umax can ever affect the state of
v, because for every such w it holds that idw < belongsv =
max_id and the only effect in this case is the deactivation of
w. The second time that umax interacts with v, it still holds
that belongsv = idumax (= max_id) and markedv = 1, and
umax marks v for a second time by setting markedv ← 2
and records this by incrementing count2umax by one. Again,
v still belongs tomax_id and no other node can ever affect its
state. We conclude that if we were only interested in umax ’s
output then, by Theorem 1, this would w.h.p. be an upper
bound on n.

However, observe that not only umax but also the other
nodes execute a similar process and it could be the case that
one of them terminates early (and before umax) giving as
output a wrong count. We now show that this is not the case.
Take any node w with idw < max_id. Observe that if there
were no nodes with id greater than idw then w would sim-
ply execute the process described for umax . However, in the
presence such nodes, some nodesmay bemarked by a greater
id before w counts them and others may be marked after w

has counted them once but before counting them twice. Still,
we shall show that none of these increases the probability of
early termination of w (where termination of w occurs when
count1w = count2w first becomes satisfied). Consider the
partition of V \ {w} into the sets Sw,0, Sw,1, and Sw,2 of
nodes which w has not marked yet, has marked once, and
has marked twice, respectively. The counting process of w

can only be affected when a node v in any of these sets is
marked by an id greater than idw: (i) If v ∈ Sw,2 then w has
already counted v both in count1w and count2w, therefore
marking v does not affect w’s counting at all. (ii) If v ∈ Sw,1

then v is a node that has been counted in count1w but not
yet in count2w. Marking v in this case does not speed up
termination, as it only decreases the probability of count2w

to increase (and recall that count2w is always trying to catch
up count1w). (iii) If v ∈ Sw,0 then marking v indeed slows
down the rate of grow of count1w b, because a node that
could contribute to count1w and has not been counted yet
is no longer available. However, notice that every such v

will from now on forever satisfy belongsv > idw, because
belongsv can only increase, therefore every interaction of
w with such a v will result in the deactivation of w. This
implies that the “success” events of w (those correspond-
ing to a count1w increment) have now been partitioned into
count1w increment events and w deactivation events. So, if
w ever fails to increment count1w due to an interference of

123

356 O. Michail

Protocol 3 Counting with UIDs
Require: Every node u has a unique id idu and maintains a (belongs,marked) pair, a (count1, count2) pair, and a variable active, where

belongs ∈ U ∪ {⊥} initially ⊥, marked ∈ {0, 1, 2} initially 0, count1, count2 ∈ N≥0 initially count1 = count2 = 0 and active ∈ {0, 1}
initially 1. All nodes know a predetermined constant b > 0. The following is the code for every interaction of u, v with idu > idv .

1: if activev = 1 then
2: activev ← 0
3: end if
4: if activeu = 1 then
5: if belongsv =⊥ or ⊥	= belongsv < idu then
6: belongsv ← idu
7: markedv ← 1
8: count1u ← count1u + 1
9: end if
10: if ⊥	= belongsv > idu then
11: activeu ← 0
12: end if
13: if belongsv = idu and markedv = 1 and count1u ≥ b then
14: markedv ← 2
15: count2u ← count2u + 1
16: if count1u = count2u then
17: u halts and outputs 2 · count1u
18: end if
19: end if
20: end if

some u with idu > idw on some v ∈ Sw,0, the effect is the
deactivation of w, which prevents w from continuing with
unfavorable probabilities. In other words, the only event that
could negatively affect w’s counting, deactivates w and, in
this case, w cannot terminate early any more. ��

6 Generic constructors

In this section, we give a characterization for the class of con-
structible 2D shape languages. In particular, we establish that
shape constructing TMs (defined in Sect. 3), can be simulated
by our model and therefore we can realize their output-shape
in the actual distributed system. To this end, we begin in
Sect. 6.1 by adapting the Counting-Upper-Bound protocol
of Sect. 5 to work in our model. The result is, again w.h.p., a
line of length Θ(log n) with a unique leader, containing n in
binary. Then, in Sect. 6.2 the leader exploits its knowledge of
n to construct a

√
n×√

n square. In the sequel (Sect. 6.3), it
simulates the TM on the square n distinct times, one for each
pixel of the square. Each time, the input provided to the TM
is the index of the pixel and

√
n, both in binary. Each simula-

tion decides whether the corresponding pixel should be on or
off. When all simulations have completed, the leader releases
in the solution, in a systematic way, the connected shape con-
sisting of the on pixels and the active edges between them.
The connections of all other (off) pixels become deactivated
and the corresponding nodes become free (isolated) nodes in
the solution.

6.1 Storing the count on a line

We begin by adapting the Counting-Upper-Bound protocol
of Theorem1 towork in ourmodel. In particular, the obtained
protocol does not require the leader to have large local mem-
ory. Instead, it stores the r0 and r1 counters distributedly
throughout the execution and when the protocol terminates
the final correct count is stored in binary on an active line of
length log n.
Counting-on-a-Line protocol The probabilistic process that
is being executed is essentially the same as that of the
Counting-Upper-Boundprotocol.Again theprotocol assumes
a unique leader that forever controls the process. A difference
now is that every node has four ports (in the 2D case). The
leader operates as a TM that stores the r0 and r1 counters in
binary, in a distributed tape that it controls. The i th cell of the
tape has three components, one storing the i th bit of r0, the
other storing the i th bit of r1, and the third one storing the i th
bit of an r2 counter that will be discussed in the sequel. We
say that the tape is full, if the bits of all r0 components of the
tape are set to 1. The tape of the TM is the active line that the
leader has formed so far, each node in the line implementing
one cell of the tape. Initially the tape consists of a single cell,
stored in the memory of the unique leader node.

As in Counting-Upper-Bound, the leader first tries to
obtain an initial advantage of b for the r0 counter. To achieve
the advantage, the leader does not count the q1s that it inter-
acts with until it holds that r0 ≥ b. Observe that the initial
length of the tape is not sufficient for storing the binary

123

Terminating distributed construction of shapes and patterns in a fair solution of automata 357

representation of b.10 In the sequel, together with the other
operations of the protocol, we also describe how the leader
handles such overflows.

Whenever it meets the left port of a q0 from its right port,
if its tape is not full yet, it switches the q0 to q1, leaving it free
to move in the solution, and increases the r0 counter by one.
To increase the counter, it freezes the probabilistic process
(that is, during freezing it ignores all interactions with free
nodes), and starts moving on its tape, which is a distributed
line attached to its left port. After incrementing the counter,
the leader keeps track of whether the tape is now full and then
it moves back to the right endpoint of the line to unfreeze and
continue the probabilistic process.

On the other hand, if the tape is full, it binds the encoun-
tered q0 to its right by activating the connection between
them (thus increasing the length of the tape by one), then it
reorganizes the tape, it again increases r0 by one, and finally
moves back to the right endpoint to continue the probabilistic
process. This time, the leader also records that it has bound
a q0 that should have been converted to q1. This debt is also
stored on the tape in another counter r2. Whenever the leader
meets a q2, if r2 ≥ 1, it converts q2 to q1 and decreases r2 by
one. So, q2s may be viewed as a deposit that is used to pay
back the debt. In this manner, the q0s that are used to form
the tape of the leader are not immediately converted to q1
when first counted. Instead, the missing q1s are introduced
at a later time, one after every interaction of the leader with
a q2, and all of them will be introduced eventually, when a
sufficient number of q2s will become available.

Finally, whenever the leader interacts with the left port of
a q1 from its right port, it freezes, increases the r1 counter
by one (observe that r0 ≥ r1 always holds, so the length of
the tape is always sufficient for r1 increments), and checks
whether r0 = r1. If equality holds, the leader terminates,
otherwise it moves back to the right endpoint and continues
the process.

Correctness is captured by the following lemma.

Lemma 1 Counting-on-a-Line protocol terminates in every
execution. Moreover, when the leader terminates, w.h.p. it
has formed an active line of length log n containing n in
binary in the r0 components of the nodes of the line (each
node storing one bit).

Proof We begin by showing that the probabilistic process
of the Counting-Upper-Bound protocol is not negatively
affected in the Counting-on-a-Line protocol. This implies
that the high probability argument of Theorem 1 holds also
for Counting-on-a-Line (in fact it is improved).

First of all, observe that the four ports of the nodes intro-
duce more choices for the scheduler in every step. However,

10 Of course, b is constant so, in principle, it could be stored on a single
node, however we prefer to keep the description as uniform as possible.

these new choices, if treated uniformly, result in the same
multiplicative factor for both the “positive” (an (l, q0) inter-
action) and the “negative” (an (l, q1) interaction) events, so
the probabilities of the process are not affected at all by this.
Moreover, neither the debt affects the process. The reason is
that the only essential difference w.r.t. to the process is that
the conversion of some counted q0s to the corresponding q1s
is delayed. But this only decreases the probability of early
termination and thus of failure.

It remains to show that not even a single q1 remains forever
as debt, because, otherwise, some executions of the protocol
would not terminate. The reason is that the protocol cannot
terminate before converting all the q1s plus the debt to q2.
To this end, observe that the line of the leader has always
length �lg r0� + 1, thus r2 ≤ �lg r0�, because the debt is
always at most the length of the line excluding the initial
leader. So, at least r0 − �lg r0� nodes have been successfully
converted fromq0 toq1 which implies that there is an eventual
deposit of at least r0 − �lg r0� nodes in state q2. These q2s
are not immediately available, but they will for sure become
available in the future, because every interaction of the leader
with a q1 results in a q2. Finally, observe that r0 − �lg r0� ≥
�lg r0� holds for all r0 ≥ 1 (to see this, simply rewrite it
as r0/2 ≥ �lg r0�). Thus, r0 − �lg r0� ≥ r2, which means
that the eventual deposit is not smaller than the debt, so the
protocol eventually pays back its debt and terminates. ��

6.2 Constructing a
√
n × √

n square

We now show how to organize the nodes into a spanning
square, i.e., a

√
n×√

n one. As we did in Sect. 4.2, we again
assume for simplicity that

√
n is integer. Observe that now

the leader has n stored in its line. The present construction
exploits this knowledge and this makes it essentially differ-
ent than the constructions of Sect. 4.2. Moreover, knowledge
of n allows the protocol to terminate after constructing the
square and to know that the square has been successfully
constructed, a fact that was not the case in the stabilizing con-
structions of Sect. 4.2. The following protocol assumes that
the guarantee of Lemma 1 is provided somehow and based
on this assumption we will show that it works correctly in
every execution (this is in contrast to the high probability
argument of Lemma 1). This means that given the guaran-
tee, the protocol that constructs the square is always correct.
Of course, if we take the composition of Counting-on-a-Line
that provides the guarantee and the protocol that constructs
the square based on the guarantee, the resulting protocol is
again correct w.h.p., however we still allow the possibility
that some other deterministic (even centralized) preprocess-
ing provides the required guarantee.
Square-knowing-n protocol The initial leader L first com-
putes

√
n on its line by any plausible algorithm (observe that

the available space for computing the square root is expo-

123

358 O. Michail

nential in the binary representation of n, which is the input
to the algorithm, because, if needed, the leader can expand
its line up to length n). In principle, it is not necessary to use
additional space, because the leader can execute one after
the other the multiplications 1 · 1, 2 · 2, 3 · 3, . . . in binary
until the result becomes equal to n. Each of these operations
can be executed in the initial log n space of the line of the
leader. The time needed, though exponential in the binary
representation of n, is still linear in the population size n.
Now that the leader also knows

√
n, it expands its line to the

right by attaching free nodes to make its length
√
n. Then

it exploits the down ports to create a replica of its line. The
replica has also length

√
n and has its own leader but in a

distinguished state Ls . This new line plays the role of a seed
that starts creating other self-replicating lines of length

√
n.

In particular, the seed attaches free nodes to its down ports,
until all positions below the line are filled by nodes and addi-
tionally all horizontal connections between those nodes are
activated. Then it introduces a leader Lr to one endpoint of
the replica and starts deactivating the vertical connections to
release the new line of length

√
n. These lineswith Lr leaders

are totally self-replicating, meaning that their children also
begin in state Lr . The initial leader L waits until the up ports
of a non-seed replica r become totally aligned with the down
ports of the square segment that has been constructed so far.
So, initially it waits until a replica becomes attached to the
lower side of its own line. When this occurs, it activates all
intermediate vertical connections to make the construction
rigid and increments a row-counter by one (initially 0) and
moves to the new lowest row. If at the time of attachment r
was in themiddle of an incomplete replication, then therewill
be nodes attached to the down ports of r . L releases all these
nodes, by deactivating the active connections of r to them,
and then waits for another non-seed replica to arrive. When
the row-counter becomes equal to

√
n − 1, the leader for the

first time accepts the attachment of the seed to its construc-
tion and when the seed is successfully attached the leader
terminates. This completes the construction of the

√
n×√

n
square. See Figs. 5 and 6 for illustrations.

The reason for attaching the seed last, and in particular
when no further free nodes have remained, is that otherwise
self-replication could possibly cease in some executions.
Observe also that we have allowed the L-leader to accept the
attachment of a replica to the square segment even though
the replicamay be in themiddle of an incomplete replication.
This is important in order to avoid reaching a point at which
some free lines are in the middle of incomplete replications
but there are no further free nodes for any of them to com-
plete. For a simple example, consider the seed and a replica r
and

√
n free nodes (all other nodes have been attached to the

square segment). It is possible that
√
n − 1 of the free nodes

become attached to the seed and the last free node becomes
attached to r . We have overcome this deadlock by allowing

Lt

Lt
s

(a)

(b)

(c)

original line

seed replica

i i i i i i i e

eiiiii

i i i i i i i e

eiL6
siiiiie

L

L

L1
s

i eiiiii i

i

ei
iiii

i

Fig. 5 a Several free nodes have already been attached to the original
line. Some of them have already activated some horizontal connections
forming some segments of the replica. b The leader (L ′) of the original
line remains blocked while the leader (L6

s) of the replica has detected
that the replica is ready for detachment. It has already detached the
three rightmost nodes and keeps moving to the left until it reaches the
left endpoint and detaches the whole replica. c The seed replica has
been released in the solution. The leader (Lt) of the original line has
waken up and is restoring the nodes of its line to their original states.
When it finishes (that is, when it will have traversed the whole line and
have returned to the left endpoint), it will go to state Lstart to start the
square formation process. Similarly, the leader (Lt

s) of the seed replica
is setting the nodes of its line to their normal i and e states, so that they
start accepting the attachment of other nodes in order to create non-seed
replicas

L to accept the attachment of r to the square segment. When
this occurs, the free node will be released and eventually it
will be attached to the last free position below the seed.

We now give, in Protocol 4, one of the possible protocols
for the replication process of the original leader’s line that
creates the seed. The other replication processes, i.e., of Ls to
Lr and of Lr to Lr , are almost identical to this one. Without
loss of generality we assume that the original leader’s line
has state L on its left endpoint, e on its right endpoint, and
every other internal node of the line is in state i . All other
(free) nodes are in state q0.

We additionally show that, in principle, the lines do not
need a leader in order to successfully self-replicate. We give
such a protocolwhich is “more parallel” and has amuchmore
concise description than the previous one. We now assume
that one line has e on both of its endpoints and i on the
internal nodes, and every (free) node is in state q0. The code is
presented in Protocol 5. The protocol works as follows. Free
nodes are attached below the nodes of the original line.When
anode is attachedbelowan internal node i both become i1 and

123

Terminating distributed construction of shapes and patterns in a fair solution of automata 359

Lr

Ls
seed replica

replicas

L

Lr

Lr Lr

LrLr

free nodes

square segment

√
n

original line

Lr

Fig. 6 The seed at the top has created another replica which has just
been released in the solution. Below it, some additional replicas appear.
One of them is in the middle of a replication that has not completed yet.
There are also several nodes that are still free. At the bottom appears
the square segment that has been constructed so far. The original line of
the L-leader is the one at the top of the rectangle. The other rows below
it have been formed by replicas that have been attached to the segment
in previous steps. The L-leader keeps waiting at the bottom left corner
for new replicas to arrive. One such has just arrived and will be attached
to the segment

when a node is attached below an endpoint e, both become
e1. Moreover, adjacent nodes of the replica connect to each
other and every such connection increases their index. In
fact, their index counts their degree. An internal node of the
replica can detach from the original line only when it has
degree 3, that is, when, apart from its vertical connection,
it has also already become connected to both a left and a
right neighbor on the replica. On the other hand, an endpoint
detaches when it has a single internal neighbor. It follows
that the replica can only detach when its length (counted
in number of horizontal active connections) is equal to that
of the original line. To see this, assume that a shorter line
detaches at some point. Clearly, such a line must have at
least one endpoint that corresponds to an internal node i j of
the replica. But this node is an endpoint of the shorter line,
so its degree is less than 3, i.e., j < 3, and we conclude that
it cannot have detached.

Lemma 2 There is a protocol (described above) that when
executed on n nodes (for all n with integer

√
n) w.h.p. con-

structs a
√
n × √

n square and terminates.

Proof From Lemma 1, when the leader in Counting-on-a-
Line protocol terminates, w.h.p. it has formed an active line
of length log n containing n in binary in the r0 components
of the nodes of the line. Then the leader computes

√
n on

its line and expands its line to make its length
√
n. Next

the leader creates the seed replica by executing the routine

Protocol 4 Line-Replication

Q = {L , L ′, L j
s , Lt

s , L
t ′
s , Lt ′′

s , Lt , Lt ′ , Lt ′′ , Lstart , i, i ′, e, e′}, j ∈
{1, 2, . . . , 7}
δ:

// attaching nodes below the original line

(L , d), (q0, u), 0 → (L ′, L1
s , 1)

(i, d), (q0, u), 0 → (i ′, i ′, 1)
(e, d), (q0, u), 0 → (e′, e′, 1)

// connecting attached nodes with each other

// horizonally to form the replica line

(i ′, r), (i ′, l), 0 → (i ′, i ′, 1)
(i ′, r), (e′, l), 0 → (i ′, e′, 1)

// the leader of the replica starts moving along its line

// activating any missing connections on the way

(L1
s , r), (i

′, l), 0 → (e′, L2
s , 1)

(L2
s , r), (i

′, l), · → (i ′, L2
s , 1)

// once it reaches the right endpoint it starts to detach

// the replica from the original line by dectivating one

// after the other all vertical connections while moving

// to the left

(L2
s , r), (e

′, l), · → (i ′, L3
s , 1)

(L3
s , u), (e′, d), 1 → (L4

s , e
′, 0)

(i ′, r), (L4
s , l), 1 → (L5

s , e
′, 1)

(L5
s , u), (i ′, d), 1 → (L6

s , i
′, 0)

(i ′, r), (L6
s , l), 1 → (L5

s , i
′, 1)

// once it reaches the left endpoint it deactivates the

// last remaining vertical connection and the replica is

// separated from the original line

(e′, r), (L6
s , l), 1 → (L7

s , i
′, 1)

(L7
s , u), (L ′, d), 1 → (Lt

s , L
t , 0)

// the leaders of the two lines restore the local states

// of all nodes to their default values to enable further

// replications

(xt , r), (i ′, l), 1 → (e′, xt ′ , 1), x ∈ {L , Ls}
(xt

′
, r), (i ′, l), 1 → (i ′, xt ′ , 1), x ∈ {L , Ls}

(xt
′
, r), (e′, l), 1 → (xt

′′
, e, 1), x ∈ {L , Ls}

(i ′, r), (xt ′′ , l), 1 → (xt
′′
, i, 1), x ∈ {L , Ls}

(e′, r), (Lt ′′
s , l), 1 → (Ls , i, 1)

(e′, r), (Lt ′′ , l), 1 → (Lstart , i, 1)

described in Protocol 4. The seed replica keeps creating new
self-replicating replicas. All these replications are performed
bya routine essentially equivalent toProtocol 4.Every replica
is a line of length

√
n and will be eventually attached to

the square-segment to form another row of the square. First
observe that the seed may only be attached to the square,

123

360 O. Michail

Protocol 5 No-Leader-Line-Replication

Q = {q0, e, e1, i, i1, i2, i3}
δ:

(i, d), (q0, u), 0 → (i1, i1, 1)

(e, d), (q0, u), 0 → (e1, e1, 1)

(i j , r), (ik , l), 0 → (i j+1, ik+1, 1) for all j, k ∈ {1, 2}
(i1, r), (e1, l), 0 → (i2, e2, 1)

(i2, r), (e1, l), 0 → (i3, e2, 1)

(e1, r), (i1, l), 0 → (e2, i2, 1)

(e1, r), (i2, l), 0 → (e2, i3, 1)

(i3, u), (i1, d), 1 → (i, i, 0)

(e2, u), (e1, d), 1 → (e, e, 0)

when the square has already obtained
√
n − 1 rows. This

implies that replications do not cease before the square has
been successfully constructed. Additionally, any non-seed
replica r can be attached to the square-segment (whenever
the l leader is in the state of waiting for new attachments)
independently of whether r is in the middle of an incomplete
replication. The reason is that attachment occurs via the up
ports of r while replication takes place via the down ports of
r . If this occurs, then the nodes of the incomplete replication
are simply released as free nodes. So, assume that there are k
nodes that are either free or part of an incomplete replication.
We only have to prove that as long as k ≥ √

n then eventually
another replica has to be formed. If not, then for an infinite
number of steps it holds that k ≥ √

n. Moreover, every non-
seed replica in a finite number of steps becomes attached to
the square-segment and releases any nodes of an incomplete
replication. Thus, in a finite number of steps, every one of
the k ≥ √

n nodes is either free or part of an incomplete
replication of the seed. Clearly, given that the seed does not
cease self-replication and given that there are enough nodes
to fill the

√
n replication positions of the seed, in a finite

number of steps (due to fairness) all these positions should
have been filled and a replica should have been created. Thus,
the assumption that no further replication occurs violates the
fairness condition. ��

6.3 Simulating a TM

We now assume as given (from the discussion of the previous
section) a

√
n×√

n square with a unique leader L at the bot-
tom left corner. However, keep in mind that, in principle, the
simulation described here can begin before the construction
of the

√
n×√

n square is complete. The only difference in this
case, is that the two processes are executed in parallel and if
at some point the TM needs more space, it has to wait until it
becomes available. The square may be viewed as a TM-tape
of length n traversed by the leader in a “zig-zag” fashion, first

moving to the right until the bottom right corner is encoun-
tered, then one step up, then to the left until the node above the
bottom left corner is encountered, then one step up again, then
right, and so on. To simplify this process, wemay assume that
a preprocessing has marked appropriately the turning points
(see Fig. 7b). The tapewill be used to simulate a TMM of the
form described in the Sect. 3. The n pixels of the square are
numbered according to the above zig-zag process beginning
from the bottom left node, each node corresponding to one
pixel. The space available to the TM is exponential in the
binary representation of the input (i, n) (or (i,

√
n)), because

i ≤ n−1 and therefore the length of its binary representation
|i | = O(log n), thus |(i, n)| = O(log n), but the available
space is Θ(n) = Θ(2log n) = Ω(2|(i,n)|) (still it is linear in
the size of the whole shape to be constructed).

The protocol invokes n distinct simulations of M , one
for each of the pixels i ∈ {0, 1, . . . , n − 1} beginning from
i = 0 and every time incrementing i by one. The leader
maintains the current value of i in binary, in a pixel-counter
pixel stored in the O(log n) leftmost cells of the tape.11

Recall that the leader knows n from the procedures of the
previous sections. So, wemay assume that the tape also holds
in advance n and

√
n in binary (again in the leftmost cells).

Initially pixel = 0 and the leader marks the 0th node, that
is, the bottom left corner of the square. Then it simulates
M on input (pixel,

√
n). When M decides, if its decision is

accept, the leader marks the node corresponding to pixel as
on, otherwise it marks it as off. Then the leader increments
pixel by one, marks the node corresponding to the new value
of pixel (which is the next node on the tape), clears the tape
from residues of the previous simulation, invokes another
simulation of M on the new value of pixel, and marks the
corresponding node as on or off according to M’s decision.
The process stops when pixel = n, in which case no further
simulation is executed. Alternatively, the leader can detect
termination by exploiting the fact that the last pixel to be
examined is the one corresponding to the upper left or right
corner of the square (depending on whether

√
n is even or

odd), which can be detected.
When the above procedure ends, the leader starts walking

the tape in the opposite direction until it reaches the bottom
left corner. In the way, it passes a release signal to every
node it goes through. A node enters the release phase exactly
when the leader departs from that node, apart from the bottom
left corner which enters the release phase when the leader
arrives. When two nodes that are both in the release phase
interact, if at least one of them is off and their connection is

11 When we refer to the tape, we mean the line produced by traversing
the square in a zig-zag way beginning from the bottom left node, as
described above. So the “leftmost”, here, corresponds to the leftmost
nodes of the line, e.g., the left part of the bottom row of the square, and
should not be confused with the nodes on the leftmost column of the
square.

123

Terminating distributed construction of shapes and patterns in a fair solution of automata 361

L

(a)
L

(b)
L

(c)
L

(d)

Fig. 7 a The
√
n×√

n square has just been constructed. b The virtual
tape on the square. The arrows show the direction in which the tape is
traversed from left to right (opposite arrows for the opposite direction
are not shown). The two endpoints of the tape are marked as black here
and the turning points are marked as gray. These facilitate the leader
to detect and choose the right action, e.g., turn left twice (equivalently,
follow the up port and then the left port) when it arrives at the bottom
right corner and wishes to continue on the second row. The indices of
the pixels that the procedure assumes follow the order of the tape, that
is, the first position of the tape corresponds to pixel 0, the second to

pixel 1,..., the last position of the tape to pixel n−1. c The shape, which
looks like a star, has been formed on the square. It consists of the pixels
that the TM M decided to be on, which are colored black here. All other
white pixels are the off pixels. The simulations have completed and the
leader has just reached the upper right corner and now it starts releas-
ing the shape. To improve visibility, the edges that will eventually be
deactivated appear as dotted here. d Releasing is almost complete. The
leader has reached the bottom left corner and has updated all nodes to
the release phase. Any connection involving at least one off node (i.e.,
a white one) will be eventually deactivated

active, they deactivate the connection. Clearly, the only nodes
that will remain connected in the solution are the on nodes
forming the desired connected 2-dimensional shape that M
computes. If we additionally require the leader to knowwhen
all deactivations have completed and terminate, then we can
either (i) have the leader deactivate them itself while moving
backwards, also ensuring that it does not remain on a node
that will be released, or (ii) have the leader repeatedly explore
the final connected shape until it detects that all potential
deactivations have occurred.

The following theorem states the lower bound implied by
the construction described in this section.

Theorem 3 Let L = (S1, S2, . . .) be a connected 2D shape
language, such that L is TM-computable in space d2. Then
there is a protocol (described above) that w.h.p. constructsL.
In particular, for all d ≥ 1, whenever the protocol is executed
on a population of size n = d2, w.h.p. it constructs Sd and
terminates. In the worst case, when Gd (that is, the shape of
Sd) is a line of length d, the waste is (d − 1)d = O(d2) =
O(n).

123

362 O. Michail

Proof We have to show that for every n = d2, when the pro-
tocol is executed on d2 nodes constructs Gd . From Lemma
2, we have a subroutine that terminates having w.h.p. con-
structed a d × d square with a unique leader on the bottom
left node. Next, the leader can easily organize the square
into a tape of length d2 that has d stored in binary in its
leftmost cells. Moreover, L is computable, so, by Defini-
tion 3, there is a TM M that when executed on the pixels
of a d × d square constructs Sd . The protocol simulates
M on the pixels of such a d × d square thus the result is
Sd , which is an on/off labeled d × d square the on pixels
of which form Gd . To perform the simulation, the protocol
just feeds M with (i, d) = (0, d), (1, d), . . . , (d2 − 1, d),
one at a time, simulates M on input (i, d) in space Θ(d2),
marks the corresponding pixel as on or off according to M’s
decision, and moves on to the next input. When i = d2,
the square contains Gd and the leader releases Gd by one
of the terminating approaches described above and termi-
nates. Observe that, given the guarantees of Lemma 2, the
procedure described here is always correct. So, the proba-
bility of failure of the whole protocol is just the probability
of failure of the initial counting subroutine, thus the pro-
tocol succeeds w.h.p.. Finally, the waste is always equal to
the number of pixels of the d × d square that are not part
of Gd . Observe now that the waste can never be more than
(d−1)d, because if it was at least (d−1)d+1 = d2−d+1,
then the size of Gd (i.e., the useful space) would be at most
d2 − (d2 − d + 1) = d − 1. But then, connectivity of Gd

implies that max_dimGd ≤ d − 1, which contradicts the
assumption that max_dimGd = d. Thus, the worst possible
waste is indeed (d −1)d = O(d2) = O(n). Notice that here
thewaste of the protocol is equal to thewaste of the simulated
TM: the protocol just provides the maximum square that fits
in the population and the TM determines which nodes will
be part of the final shape and which will be thrown away as
waste. ��
Remark 2 It is worth mentioning that if the system designer
knew n in advance, then he/she could preprogram the nodes
to simulate a TM that constructs a specific shape of size n, for
example the TM corresponding to the Kolmogorov complex-
ity of the shape (which is in turn the Kolmogorov complexity
of the desired binary pixel sequence (s0, s1, . . . , sn−1)).
However, in this work we consider systems in which n is
not known in advance, so the natural approach is to pre-
program the nodes with a TM that can work for all n. The
protocol must first compute n (w.h.p.) and then simulate the
TM on input n to construct a shape of the appropriate size.
For example, it could be a TM constructing a star, as in Fig.
7c, such that the size of the star grows as n grows.

Remark 3 The above results can be immediately modified to
refer to patterns instead of shapes. In fact, observe that the√
n × √

n square that has been labeled by off and on by the

d

d

k x
y

z

Fig. 8 The constructed d × d square lies in dimensions x and y. We
can think as its “bottom left” corner, its leftmost node in the figure.
Every internal intersection point of the square is also a node, but we
have not drawn these nodes here to improve visibility. “Below” it, in
dimension z, are the d2 lines of length k each. The protocol executes a
distinct simulation of the TM on each of these lines. In particular, on the
line attached to pixel i , for all 0 ≤ i ≤ d2 − 1, the protocol simulates
the TM on input (i, d)

TM is already such a (computed) 0/1 pattern. The generic
idea to extend this is to keep the same constructor as above
and simulateTMs that for every pixel output a color froma set
of colors C. Then the resulting square with its nodes labeled
from C is the desired computed pattern and no releasing is
required in this case.

6.4 Parallelizing the simulations

We now present two approaches for parallelizing the simu-
lations, instead of executing them sequentially one after the
other.

6.4.1 Approach 1

One approach is to construct a 2D shape in 3D space, by using
the 3D version of our model (that is, the one with 6 ports).
The idea is to construct a square as before and have each node
in the square to grow its own line in the third dimension to
carry out the TM simulation for that node (see Fig. 8).

6.4.2 Approach 2

We now show how to achieve a similar parallelism while
avoiding the use of a third dimension. Now the unique leader
that knows n, instead of constructing a square, constructs a
spanning line of length d2, say in the x dimension. This line
corresponds to a linear expansion of the pixels of the d × d
square of the previous construction.Moreover, the leader cre-
ates a seed of length k−1 as before, to partition the rest of the
nodes into lines of length k−1, this time in the y dimension.
Each such line will be attached below one of the nodes of the
x-line. As before, when all y-lines have been attached, the
leader initializes their memories with (i, d), where i is the
index of the corresponding pixel (the index of each pixel is
now its distance from the left endpoint of the x-line, begin-

123

Terminating distributed construction of shapes and patterns in a fair solution of automata 363

L
d1 2

3

4 5

(a)
1

2

3

4

5

(b)

Fig. 9 aAs inFig. 8,d2 lines of length k−1each, are hangingbelow the
d2 pixels. The difference now is that the pixels have been arranged lin-
early in dimension x . So, the whole construction is now 2-dimensional.
The pixels have been partitioned into equal segments of length d each
(see the black vertical delimiters). The numbers represent the indices
of the segments counted from left to right. The arrows leaving above
or below the segments, indicate which side of the segment should look
“downwards” in the square that will be constructed. For example, seg-
ment 1 can remain as it is, while segment 2 has to be rotated so that its

upper side attaches to the upper side of segment 1. Every segment has
been marked by a black and a gray node placed at an appropriate posi-
tion. b The segments have been released in the solution, and now they
have to gather together in order to form the square. Each segment knows
the correct orientation, i.e., whether it should use its up or down ports,
and also it can detect its predecessor row by exploiting the marking. In
particular, it attaches to a row if its black mark is above the gray mark
of the other row when their orientation is correct and their endpoints
are totally aligned

ning from 0 and ending at d2 − 1). Then all simulations
of M are executed in parallel and eventually each one of
them sets its x-pixel to either on or off. When all simula-
tions have ended, the leader releases the auxiliary memories
(i.e., the y-lines) and then partitions the x-line into consec-
utive segments of length d by placing appropriate marks on
the boundary nodes (see Fig. 9a). Each segment corresponds
to a row of the d × d square to be constructed. In particu-
lar, segment i ≥ 1 counting from left corresponds to row i
(rows being counted bottom-up). Observe that, in the way
the pixels have been indexed, segment 2 should match with
its upper side the upper side of segment 1 (that is, segment 2
should rotate 180◦), segment 3 should match with its lower
side the lower side of segment 2, and so on. In general, if i is
even, segment i should match with its upper side to the upper
side of segment i −1 and, if i is odd, segment i should match
with its lower side the lower side of segment i−1. The leader
marks appropriately the nodes of each segment to make them
aware of the orientation that they should have in the square.
Moreover, it assigns a unique key-marking to each segment
so that segment i can easily and locally detect segment i −1.
In particular, if i is odd, it marks nodes i and i −1 of the seg-
ment counting from left to right (for segment 1 it only marks
the leftmost node), and, if i is even, it marks nodes i and
i − 1 of the segment counting from right to left. In this man-
ner, given that segments respect the correct orientation and
provided that attachment is only performed when their end-
points match, every segment i uniquely matches to segment
i − 1 because the first mark of i is uniquely aligned with the
second mark of i − 1 (see Fig. 9b). Then the leader releases
all segments, one after the other, and it remains on the last
segment. The segments are free to move in the solution until

they meet their counterpart, and when this occurs the two
segments bind together. Eventually, the d × d square is con-
structed and every pixel is in the correct position (the position
corresponding to its index counting in a zig zag fashion as in
the previous sections). The leader periodically walks on its
component to detect when it has become equal to the desired
square. When this occurs, it initiates as before the releasing
phase to isolate the final connected shape consisting of the
on pixels.

Remark 4 In all the above constructions the unique leader
assumption can be dropped in the price of sacrificing ter-
mination. In this case, the constructions become stabilizing
by the reinitialization technique, as in [33], but should be
carefully rewritten.

7 Conclusions and further research

There are several interesting open problems related to the
findings of this work. A possible refinement of the model
could be a distinction between the speed of the scheduler and
the internal operation speed of a component. For example,
a connected component will operate in synchronous rounds,
where in each round a node observes its neighborhood and its
own state and updates its state based on what it sees. Nodes
can of course update also the state of their local connections
and we may assume that a connection is formed/dropped if
both nodes agree on the decision (another possibility is to
allow a link change state if at least one of the nodes say
so). This distinction between two different “times”, though
ignored so far in the literature, is very natural because a con-
nected component should operate at a different speed than

123

364 O. Michail

it takes for the scheduler to bring two nodes (e.g., of dif-
ferent components, or an isolated node and a node of some
component) into contact.

It would be also interesting to consider for the first time
a hybrid model combining active mobility (that is, mobil-
ity controlled by the protocol) and passive mobility (that is,
mobility controlled by the environment as in this paper). For
example, it could be a combination of the Nubot model and
the model presented in this work. Another very intriguing
problem is to give a proof, or strong experimental evidence,
of whether the unique leader assumption is necessary for
solving counting w.h.p. (see Sect. 5.2). If true, it would imply
that there is no analogue of Theorem 1 if all processes are
identical. A possibility left open then would be to achieve
high probability counting with f (n) leaders. There is also
work to be done w.r.t. analyzing the running times of our
protocols and our generic constructors and proposing more
efficient solutions. Also it is not yet clear whether the pro-
tocol of Sect. 5.1 is the fastest possible nor that its success
probability or the upper bound on n that it guarantees cannot
be improved; a proof would be useful. Moreover, it is not
obvious what is the class of shapes and patterns that the TMs
considered here compute. Of course, it was sufficient as a first
step to draw the analogy to such TMs because it helped us
establish that our model is quite powerful. However, still we
would like to have a characterization that gives some more
insight to the actual shapes and patterns that the model can
construct.

It would be also important to develop models (e.g., varia-
tions of the one proposed here) that take other real physical
considerations into account. In this work, we have restricted
attention on some geometric constraints. Other properties of
interest could be weight, mass, strength of bonds, rigid and
elastic structure, collisions, and the interplay of these with
the interaction pattern and the protocol. Moreover, in real
applications mere shape construction will not be sufficient.
Typically, we will desire to output a shape/structure that opti-
mizes some global property, like energy and strength, or that
achieves a desired behavior in the given physical environ-
ment. The latter also indicates that the construction and the
environment that the construction inhabits cannot be studied
in isolation. Instead, the twowill constantly affect each other,
the optimal output will highly depend on the optimality that
the environment allows and also the environment may highly
and continuously affect the construction process. The capa-
bility of the environment to affect the construction process
suggests many robustness issues. Imagine an environment
that can at any given time break an active link with some
(small) probability (a similar question was also posed to the
author during his talk at PODC ’14 by some attendee, who
the author would like to thank). Under such a perpetual set-
back no construction can ever stabilize. However, we may

still be able to have a construction that constantly exists in
the population by evolving and self-replicating.

In the same spirit, it would be interesting to develop rou-
tines that can rapidly reconstruct broken parts. For example,
imagine that a shape has stabilized but a part of it detaches,
all the connections of the part become deactivated, and all its
nodes become free. Canwe detect and reconstruct the broken
part efficiently (and without resetting the whole population
and repeating the construction from the beginning)? What
knowledge about the whole shape should the nodes have to
be able to reconstruct missing parts of it? Finally, it would be
interesting to study in depth the shape self-replication prob-
lem in ourmodel in 2 and 3 dimensions (possibly by adjusting
known techniques on replication [4,11,26,28]). Some of our
preliminary results, show that replication of 2D shapes in
two dimensions is possible by “squaring” the original shape,
then copying one column at a time, and shifting the copy
of the column to the right to create a replica to the right of
the original shape. It is worth mentioning that several related
problems have been studied in the literature of algorithmic
self-assembly, so future work in distributed network/shape
construction will greatly benefit from taking into account
those developments, trying to adjust them where not directly
applicable, and from highlighting the differences and simi-
larities between the various related models originating from
different research areas.

Acknowledgements The author would like to thank Dimitrios Amax-
ilatis and Marios Logaras for implementing (in Java) the probabilistic
counting protocol of Sect. 5.1 and experimentally verifying its correct-
ness and also David Doty for a few fruitful discussions on the same
protocol at the very early stages of this work. Finally, the author would
like to thank the anonymous reviewers of this article and of its prelim-
inary version. Their thorough reading and comments have helped the
author to improve his work substantially.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

References

1. Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.:
Computation in networks of passively mobile finite-state sensors.
Distrib. Comput. 18, 235–253 (2006)

2. Angluin, D., Aspnes, J., Eisenstat, D.: Fast computation by popula-
tion protocols with a leader. Distrib. Comput. 21, 183–199 (2008)

3. Angluin, D., Aspnes, J., Eisenstat, D., Ruppert, E.: The computa-
tional power of population protocols. Distrib. Comput. 20, 279–304
(2007)

4. Abel, Z., Benbernou, N., Damian, M., Demaine, E.D., Demaine,
M.L., Flatland, R., Kominers, S.D., Schweller, R.: Shape replica-
tion through self-assembly and RNase enzymes. In: Proceedings

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Terminating distributed construction of shapes and patterns in a fair solution of automata 365

of the Twenty-First Annual ACM-SIAM Symposium on Discrete
Algorithms, pp. 1045–1064. SIAM (2010)

5. Aloupis, G., Benbernou, N., Damian, M., Demaine, E.D., Flatland,
R., Iacono, J., Wuhrer, S.: Efficient reconfiguration of lattice-based
modular robots. Comput. Geom. 46, 917–928 (2013)

6. Adleman, L.M.: Molecular computation of solutions to combina-
torial problems. Science 266, 1021–1024 (1994)

7. Angluin, D.: Local and global properties in networks of processors.
In: Proceedings of the 12th Annual ACM Symposium on Theory
of Computing (STOC), pp. 82–93. ACM (1980)

8. Aspnes, J., Ruppert, E.: An introduction to population protocols.
In: Garbinato, B.,Miranda, H., Rodrigues, L. (eds.)Middleware for
Network Eccentric andMobile Applications, pp. 97–120. Springer,
Berlin (2009)

9. Attiya, H., Welch, J.: Distributed Computing: Fundamentals, Sim-
ulations, and Advanced Topics, vol. 19. Wiley, New York (2004)

10. Beauquier, J., Burman, J., Clement, J., Kutten, S.: On utilizing
speed in networks of mobile agents. In: Proceedings of the 29th
ACM SIGACT-SIGOPS Symposium on Principles of Distributed
Computing (PODC), pp. 305–314. ACM (2010)

11. Chalk, C., Demaine, E.D., Demaine,M.L.,Martinez, E., Schweller,
R., Vega, L., Wylie, T.: Universal shape replicators via self-
assembly with attractive and repulsive forces. In: Proceedings of
the 28th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pp. 225–238. SIAM (2017)

12. Chen, H.-L., Doty, D., Soloveichik, D.: Deterministic function
computation with chemical reaction networks. Nat. Comput. 13,
517–534 (2014)

13. Chatzigiannakis, I., Michail, O., Nikolaou, S., Pavlogiannis, A.,
Spirakis, P.G.: Passively mobile communicating machines that use
restricted space. Theor. Comput. Sci. 412, 6469–6483 (2011)

14. Chen, M., Xin, D., Woods, D.: Parallel computation using active
self-assembly. Nat. Comput. 14, 225–250 (2015)

15. Derakhshandeh, Z., Dolev, S., Gmyr, R., Richa, A.W., Scheideler,
C., Strothmann, T.: Brief announcement: amoebot—a new model
for programmable matter. In: Proceedings of the 26th ACM Sym-
posium on Parallelism in Algorithms and Architectures (SPAA),
pp. 220–222. ACM (2014)

16. Das, S., Flocchini, P., Santoro, N., Yamashita, M.: Forming
sequences of geometric patterns with oblivious mobile robots. Dis-
trib. Comput. 28, 131–145 (2015)

17. Derakhshandeh, Z., Gmyr, R., Richa, A.W., Scheideler, C., Stroth-
mann, T.: Universal shape formation for programmable matter. In:
Proceedings of the 28th ACM Symposium on Parallelism in Algo-
rithms and Architectures (SPAA), pp. 289–299. ACM (2016)

18. Dolev, S., Gmyr, R., Richa, A.W., Scheideler, C.: Ameba-inspired
self-organizing particle systems. arXiv preprint arXiv:1307.4259
(2013)

19. Di Luna, G.A., Flocchini, P., Santoro, N., Viglietta, G., Yamauchi,
Y.: Shape formation by programmable particles. arXiv preprint
arXiv:1705.03538 (2017)

20. Doty, D.: Theory of algorithmic self-assembly. Commun. ACM 55,
78–88 (2012)

21. Doty, D.: Timing in chemical reaction networks. In: Proceedings of
the 25th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pp. 772–784 (2014)

22. Ehrenfest, P., Ehrenfest-Afanassjewa, T.: Über zwei bekannte ein-
wände gegen das boltzmannsche h-theorem. Phys. Zeit. 8, 311–314
(1907)

23. Feller, W.: An Introduction to Probability Theory and Its Applica-
tions, vol. 1, 3rd edn. Wiley, New York (1968). (Revised Printing)

24. Goldstein, S.C., Campbell, J.D., Mowry, T.C.: Programmable mat-
ter. Computer 38, 99–101 (2005)

25. Guerraoui, R., Ruppert, E.: Names trump malice: tiny mobile
agents can tolerate byzantine failures. In: 36th International Col-

loquium on Automata, Languages and Programming (ICALP),
Volume 5556 of LNCS, pp. 484–495. Springer (2009)

26. Hendricks, J., Patitz, M.J., Rogers, T.A.: Replication of arbi-
trary hole-free shapes via self-assembly with signal-passing tiles.
In: International Conference on Unconventional Computation and
Natural Computation, pp. 202–214. Springer (2015)

27. Kac, M.: Random walk and the theory of brownian motion. Am.
Math. Mon. 54(7), 369–391 (1947)

28. Keenan, A., Schweller, R., Zhong, X.: Exponential replication of
patterns in the signal tile assembly model. Nat. Comput. 14, 265–
278 (2015)

29. Lynch, N.A.: Distributed Algorithms, 1st edn. Morgan Kaufmann
Inc, San Francisco (1996)

30. Michail, O., Chatzigiannakis, I., Spirakis, P.G.: Mediated popula-
tion protocols. Theor. Comput. Sci. 412, 2434–2450 (2011)

31. Michail, O., Chatzigiannakis, I., Spirakis, P.G.: New models for
population protocols. In: Lynch, N.A. (ed.) Synthesis Lectures on
Distributed Computing Theory. Morgan & Claypool, San Rafael
(2011)

32. Michail, O.: Terminating distributed construction of shapes and
patterns in a fair solution of automata. In: Proceedings of the
34th ACM Symposium on Principles of Distributed Computing
(PODC), pp. 37–46. ACM (2015)

33. Michail, O., Spirakis, P.G.: Simple and efficient local codes for
distributed stable network construction. Dist. Comput. 29(3), 207–
237 (2016). doi:10.1007/s00446-015-0257-4v

34. Michail, O., Spirakis, P.G.: Terminating population protocols via
some minimal global knowledge assumptions. J. Parallel Distrib.
Comput. (JPDC) 81, 1–10 (2015)

35. Michail, O., Spirakis, P.G.: Elements of the theory of dynamic
networks. Commun. ACM (2017). https://livrepository.liverpool.
ac.uk/3006836/ (To appear)

36. Michail, O., Skretas, G., Spirakis, P.G.: On the transformation
capability of feasible mechanisms for programmable matter. In:
Proceedings of the 44th International Colloquium on Automata,
Languages and Programming (ICALP), pp. 136:1–136:15 (2017)

37. Padilla, J.E., Patitz, M.J., Schweller, R.T., Seeman, N.C., Sum-
mers, S.M., Zhong, X.: Asynchronous signal passing for tile
self-assembly: fuel efficient computation and efficient assembly
of shapes. Int. J. Found. Comput. Sci. 25, 459–488 (2014)

38. Rubenstein, M., Cornejo, A., Nagpal, R.: Programmable self-
assembly in a thousand-robot swarm. Science 345, 795–799 (2014)

39. Rothemund, P.W.K., Winfree, E.: The program-size complexity of
self-assembled squares. In: Proceedings of the 32nd Annual ACM
Symposium on Theory of Computing (STOC), pp. 459–468 (2000)

40. Schiff, J.L.: Cellular Automata: A Discrete View of theWorld, vol.
45. Wiley, New York (2011)

41. Soloveichik, D., Cook, M., Winfree, E., Bruck, J.: Computation
with finite stochastic chemical reaction networks. Nat. Comput. 7,
615–633 (2008)

42. Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots:
formation of geometric patterns. SIAM J. Comput. 28, 1347–1363
(1999)

43. Woods, D., Chen, H.-L., Goodfriend, S., Dabby, N., Winfree, E.,
Yin, P.: Active self-assembly of algorithmic shapes and patterns
in polylogarithmic time. In: Proceedings of the 4th Conference on
Innovations in Theoretical Computer Science, pp. 353–354. ACM
(2013). Full version: arXiv preprint arXiv:1301.2626

44. Winfree, E.: Algorithmic self-assembly of DNA. PhD thesis, Cal-
ifornia Institute of Technology, June (1998)

123

http://arxiv.org/abs/1307.4259
http://arxiv.org/abs/1705.03538
http://dx.doi.org/10.1007/s00446-015-0257-4v
https://livrepository.liverpool.ac.uk/3006836/
https://livrepository.liverpool.ac.uk/3006836/
http://arxiv.org/abs/1301.2626

	Terminating distributed construction of shapes and patterns in a fair solution of automata
	Abstract
	1 Introduction
	1.1 Our approach

	2 Further related work
	3 The model
	4 Some basic constructions
	4.1 Global line
	4.2 sqrtntimessqrtn Square

	5 Probabilistic counting
	5.1 Fast probabilistic counting with a leader
	5.2 On dropping the leader assumption
	5.3 Counting without a leader but with UIDs

	6 Generic constructors
	6.1 Storing the count on a line
	6.2 Constructing a sqrtntimessqrtn square
	6.3 Simulating a TM
	6.4 Parallelizing the simulations
	6.4.1 Approach 1
	6.4.2 Approach 2

	7 Conclusions and further research
	Acknowledgements
	References

