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Abstract
Changes from dyke to sill propagation in the shallow crust are often caused by dissimilar layer properties. However, most 
previous studies have not considered the influence of glacial loading and unloading on dyke and sill deflection processes. 
Here, we attempt to collectively explore mechanical (layer stiffness) and geometrical (dyke dip, layer thickness) realistic 
parameters subject to two different magma overpressure values (namely 5 MPa and 10 MPa) that promote dyke-sill tran-
sitions in both non-glacial and glacial settings. To do this, we use as a field example, the Stardalur laccolith: a multiple 
stacked-sill intrusion located in SW Iceland. The laccolith lies near the retreating Langjökull glacier and was emplaced at 
the contact between a stiff lava layer and a soft hyaloclastite layer. We initially model two different stratigraphic crustal 
segments (stratigraphy a and b) and perform sensitivity analyses to investigate the likely contact opening due to the Cook-
Gordon debonding and delamination mechanism under different loading conditions: magma overpressure, regional horizontal 
extension, glacial vertical load and a thin elastic layer at the stratigraphic contact. Our results show that contact opening 
(delamination) occurs in both non-glacial and glacial settings when the dissimilar mechanical contact is weak (low shear 
and tensile stress, zero tensile strength). In non-glacial settings, stiff layers (e.g., lavas) concentrate more tensile stress than 
soft layers (e.g., hyaloclastites/breccia) but accommodate less total (x–y) displacement than the surrounding host rock (e.g., 
soft hyaloclastites) in the vicinity of a dyke tip. Yet, a thicker hyaloclastite layer in the stratigraphy, subject to higher magma 
overpressure (Po = 10 MPa), may encourage dyke-sill transitions. Instead, in glacial domains, the stress conditions imposed 
by the variable vertical pressure of the ice cap result in higher tensile stress accumulation and displacement in stiff layers 
which they primarily control sill emplacement.
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Introduction

Dyke propagation is associated with magma transport from 
the source to the surface (Anderson 1951; Pollard 1987; 
Rubin 1995; Menand and Tait 2002; Gudmundsson 2011a, 
2020; Tibaldi 2015; Acocella 2021). This is often the case 
when the maximum principal compressive stress, sigma 1, 
is vertical, which favours the vertical propagation of magma, 
and occurs in geologic settings such as slow-spreading rifts 
(Macdonald 1982; Forslund and Gudmundsson 1991; Gud-
mundsson 2011b; Pedicini et al. 2023). Still, under specific 
mechanical conditions, magma can stall in the heterogene-
ous and anisotropic crust, forming intrusive bodies such 
as sills, laccoliths and plutons (Jaeger 1959; Pollard and 
Johnson 1973: Petford et al. 2000; Acocella 2000). Magma 
intrusions have been extensively studied so far based on their 
surficial deformation fingerprints (Pollard 1973; Pollard and 
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Holzhausen 1979; Fialko et al. 2001); however, the mechan-
ics of their emplacement are still unclear.

Sills are bedding-parallel extension fractures (planar 
sheet intrusions) filled by magma (Gilbert 1877). They 
can be distinguished from lava flows in the field based 
on their well-developed columnar joints, roof and bottom 
chilled selvedges (glassy margins) formed at the contact 
with the host rock and their low vesicularity (Gudmunds-
son 2011a, 2020; Barnett and Gudmundsson 2014; Tibaldi 
2015; Acocella 2021). Their emplacement in brittle crustal 
segments was initially explained by the neutral buoyancy 
rule (Francis 1982; Corry 1988), which suggests that when 
an extension fracture (e.g., a dyke) crosscuts a dissimilar 
contact and meets a layer with the same density, it deflects 
along the contact forming a sill. However, field observa-
tions (Gudmundsson 1995; 2012; Burchardt 2008; Brown-
ing and Gudmundsson 2015; Drymoni et al. 2020; 2022; 
2023a; 2023b), 3D seismic analyses (Thomson and Hut-
ton 2004; Hansen et al. 2004; Hansen and Cartright 2006; 
Thomson 2007; Galerne et al. 2008; Magee et al. 2013), 
analogue experiments (Kavanagh et al. 2006; Menand 2008) 
and analytical models (Maccaferri et al. 2010, 2011) have 
shown that dykes can penetrate host rock layers and feed 
eruptions, even if their magma has a similar density to the 
country rock. Hence, we must investigate other causes for 
dyke-sill transitions, such as stress controls (Gudmundsson 
1990; Watanabe et al. 1999; Pinel and Jaupart 2000, 2004; 
Valentine and Krogh 2006; Menand et al. 2010; Mathieu 
et al. 2015; Walker et al. 2017; Stephens et al. 2018; Walker 
and Gill 2020; Greiner et al. 2023), pore fluid pressure 
(Gressier et al. 2010), rheology contrast between ductile and 
brittle layers (Parsons et al. 1992; Thomson and Schofield 
2008; Galland et al. 2019), rigidity contrast of the contacts 
(Rivalta et al. 2005; Kavanagh et al. 2006; 2015), lithologi-
cal discontinuities (Gretener 1969; Barnett and Gudmunds-
son 2014), or stress rotation around pre-existing fractures 
(Drymoni 2020; Drymoni et al. 2021). Coupled methodolo-
gies, such as pairing geological observations with numerical 
modelling provide a better understanding of sill formation, 
showing their mechanical evolution into magma chambers 
(Hardee 1982; Coleman et al. 2004; Barnett and Gudmunds-
son 2014), and their thermal evolution in the layered crust 
(Cashman et al. 2017; Annen et al. 2006).

This is a compound article (Part II) with our previous 
work (Drymoni et  al. 2023c) which aim to collectively 
explore, using finite element method (FEM) numerical 
modelling, the mechanical and geometrical conditions that 
dictate the emplacement of sills in the shallow crust in non-
glacial and glacial settings. In Part I, we explored how the 
magma overpressure, the local stress field (extension or 
compression), the presence (or not) of a very weak contact 
influence dyke to sill deflection. We also modelled unload-
ing scenarios subject to glacier thickness variations. Our Part 

II delves into the Cook-Gordon debonding and delamination 
mechanism. In the first part, we modelled realistic dyke-sill 
transitions and attempted to simulate mechanically the scat-
tered flower structure geometry of the Stardalur laccolith 
(Tibaldi and Pasquaré 2008). Specifically, we identified the 
conditions that influence the relative distance between the 
dyke and the opening contact, i.e., how close to the contact 
the sill was going to be emplaced. We designed a series of 
sensitivity tests to investigate the range of dyke pathways 
under realistic geologic conditions. In detail, we explored in 
non-glacial settings how different layered sequences (deeper 
or shallower crustal segments), layer stiffness and thickness, 
and dyke inclination encouraged or discouraged the forma-
tion of a sill closer to a mechanically weak contact. Finally, 
we modelled how glacier retreat, using glacier width vari-
ations, controls dyke-sill transitions in glacial settings. We 
answer the following questions: (1) Which mechanism con-
trolled the emplacement of the Stardalur laccolith? (2) How 
do different realistic geometrical and mechanical parameters 
collectively affect the opening of a dissimilar contact in 
non-glacial and glacial settings? and (3) How do dyke-sill 
transitions respond to glacial settings with variable glacier 
widths? Our overall results aim to provide valuable insights 
on dyke-sill deflection processes in non-glacial and glacial 
settings around the world.

Sill emplacement in composite volcanoes

Sills in composite volcanoes are formed by dykes which 
have originally stalled along dissimilar contacts due to the 
heterogeneity and anisotropy of the shallow crust (Gud-
mundsson 2011a). Mechanically, they propagate perpendicu-
lar to the minimum principal compressive stress (σ3) when 
the horizontal compressive stress is vertical (Anderson 1951; 
Roberts 1971; Gudmundsson 2011b) despite the presence 
of layered rocks. This can effectively take place at divergent 
plate boundaries where rapid dyke propagation (high Po) 
occurs in stratified layers (Parsons et al. 1992).

Analytical models on physical failure conditions subject to 
static loads (He and Hutchinson 1989; Hutchinson and Suo 
1992; Hutchinson 1996; Roham et al. 2004), along with field 
observations (Gudmundsson 2011a), have shown that when 
a dyke meets a contact, it may follow three possible pathways 
based on its mechanical interaction with the heterogeneous 
host rock, namely, (1) the dyke stalls at the contact (Fig. 1a), 
(2) the dyke deflects (kinks) or opens symmetrically or asym-
metrically along a contact or a pre-existing fracture (Fig. 1b, 
c) and (3) the dyke crosscuts the contact and propagates 
through the layered succession (Fig. 1d). A sill can be formed 
at the first three cases (Gudmundsson and Løtveit 2012). 
The aforementioned dyke pathways depend on the energy 
release ratios of the final outcome (propagation/deflection) 
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and the interfacial deflected cracks, the fracture toughness 
(KC) between the material of the host rock and the interface 
(contact) (Evans and Zok 1994; Wang and Xu 2006), the host 
rock geology and magma dynamics (Schofield et al. 2012).

In a general notation, if a dyke intersects a stiff (top)/soft 
(bottom) layered contact, dyke deflection or arrest is more 
common. On the contrary, if a dyke crosses a soft (top)/stiff 
(bottom) layered contact, then dyke propagation is almost 
possible (Kavanagh et al. 2006, 2018; Gudmundsson 2020; 
Forbes Inskip et al. 2020; Drymoni et al. 2020). This is 
mainly associated with the mechanical properties of the host 
rock and the mechanisms that control the pathway of the 
dyke. Hence, sill formation can occur via three mechanical 
concepts, which can act simultaneously or not: (1) stress bar-
riers, (2) elastic mismatch and (3) Cook-Gordon debonding 
and delamination as explained below.

Mechanical concepts of sill formation and lateral 
propagation

Stress barriers

A temporary stress barrier is a mechanical condition encour-
aged by the dissimilar properties of the host rock (Gud-
mundsson 2020). Specifically, the contrasting stiffness (i.e., 
Young’s modulus) between the upper and the bottom layer 
of a contact where Eupper > Ebottom can rotate the stress field 
ahead of the dyke tip (σ1 becomes horizontal) and a dyke can 
be stalled. In rift zones, previous dyke injections or graben 
subsidence induce compressional regimes that make stiff 
(high Young’s modulus) layers (e.g., lava deposits) tem-
porary stress barriers (Gudmundsson 1995; Roman et al. 
2004; Geshi et al. 2012; Kusumoto et al. 2013; Tibaldi et al. 
2022; Drymoni et al. 2023c). Similarly, soft (low Young’s 
modulus) layers, such as pyroclastic deposits, tend to con-
centrate the horizontal compressive stress especially in areas 
under local extension (Gudmundsson and Brenner 2001) and 
become stress barriers as well. Stress barriers can generate 
asymmetric sills (after the initial arrest) if the overpressure 
of the dyke (Po) overcomes the tensile strength (To) of the 

contact and its vertical stress (which is equal to σ3 in arrested 
contacts), so as to lift the overburden (Gudmundsson 2012). 
Yet, similar stress rotations can effectively produce from 
stress effects of previous dyke intrusions that carry overpres-
sure ‘residual’ stresses. The latter encourage locally hori-
zontal compression, which is finally restored through plate 
movements (Gudmundsson 2020).

Elastic mismatch

Elastic mismatch is a mechanism associated with the 
mechanical properties of the contact (i.e., Young’s modulus) 
and particularly the critical elastic strain energy or mate-
rial toughness (GIC) of the adjacent layers. It usually occurs 
in composite materials (He and Hutchinson 1989; Freund 
and Suresh 2003), and it is mechanically described as an 
energy concept in mixed fracture modes (Sun and Jin 2012). 
It usually encourages dyke-arrest concepts when the elastic 
mismatch between two adjustment layers increases (García 
2014). However, this mechanism can promote dyke-arrest 
scenarios or dyke-sill transitions equally if operating col-
lectively with other mechanisms such as the Cook-Gordon 
debonding and delamination mechanism (Gudmundsson 
2020; Clunes et al. 2021). In the second case, the dyke 
propagates as a mixed mode fracture; hence, the deflection 
condition is expressed from Eq. (1) (Gudmundsson 2011a):

where Gd is the energy release rate for deflection and Gp is 
the energy release rate for propagation at the contact; ΓD 
is the critical elastic strain energy or material toughness at 
the contact (or discontinuity) and is the material toughness 
above the layer. Ψ is the relative proportion of the fracture 
modes in each case study (e.g., mode I and mode II fracture), 
which is associated with the critical stress intensity factor 
(or material toughness) Kc.

However, the relative energy release rate (Gd) relates 
to the mechanical properties of the discontinuities and 
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Fig. 1  Dyke (magma-filled fracture) pathways in a layered domain. a 
Dyke arrest, b interface debonding ahead of a dyke tip, c kinking or 
deflection of a dyke at a mechanically dissimilar contact and d dyke 

propagation. E1: Young’s modulus of the bottom layer, E2: Young’s 
modulus of the top layer, EC: Young’s modulus of the contact
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especially the Dundurs elastic mismatch parameter (α) (Dun-
durs 1969). Analytical (He et al. 1994) models and analogue 
(Kavanagh et al. 2017) and natural-material experiments 
(Forbes Inskip et al. 2020) show that when the stiffness ratio 
of the contact equals 1 and the Dundurs parameter α equals 
0, then dyke-sill deflection occurs only if the material tough-
ness of the contact is 26% less than that of the layer above 
(Gudmundsson 2011a; Barnett and Gudmundsson 2014). 
Further experimental (Kim et al. 2006) and analogue studies 
(Kavanagh et al. 2006) have also explored deflection condi-
tions since they are usually found at contacts between a stiff 
(top)/soft (bottom) layer.

Cook‑Gordon debonding and delamination

The Cook-Gordon debonding and delamination mechanism 
is often identified in engineering concepts of composite 
materials (Cook and Gordon 1964; Gordon 1976; Gupta 
et al. 1992; Martinez and Gupta 1994; Lee et al. 1996; 
Majumdar et al. 1998; Leguillon et al. 2001; Barber et al. 
2002). Dynamic crack-propagation experiments in layered 
(Xu and Rosakis 2003) and viscoelastic materials (Gori et al 
2018) or biomaterial interfaces (Rosakis et al. 1998) have 
shown that apart from dynamic intralayer or interfacial fail-
ure criteria, crack propagation may occur without the frac-
ture to penetrate the contact (Wang and Xu 2006). This can 
be satisfied when a vertical fracture (e.g., a dyke) with high 
tensile stress (σ3) concentration at its tip approaches a very 
weak (in tension and shear) mechanically dissimilar contact 
(tensile strength (To) close to zero) (Gudmundsson 2011a). 
This occurs when the tensile stress that acts parallel to the 
dyke tip becomes almost 20% of its perpendicular expres-
sion (usually around 2–3 MPa), or the dyke overpressure 
increases predominantly (i.e., 20–30 MPa). Those condi-
tions occasionally rupture the host rock ahead of the dyke 
tip and assist in fracture growth (Gudmundsson 2020). The 
open contact progressively transitions into a mixed mode or 
a shear mode (mode II) as it propagates away from the centre 
of the delamination due to the increasing interfacial shear 
stress (τ). Finally, the delamination generates mode I micro-
cracks behind the crack tip, until the bottom layer, which 
is still under tension (at the horizontal level), to fragment 
(Rosakis et al. 2000; Xu and Rosakis 2003). This mechanism 
may explain the formation of sills and dyke-arrest scenarios 
(Gudmundsson 2003; Barnett and Gudmundsson 2014) in 
the shallow crust when the energy criterion (Eq. 1) cannot 
successfully predict the probability of crack deflection or 
propagation (Ahn et al. 1998; Lee et al. 2004; Wang and 
Xu 2006). The crack pathway is collectively controlled by 
the magma overpressure (Po) and the tensile strength (To) of 
the contact. In case of deflection, the magma overpressure 
is higher than the sum of the tensile strength of the contact 
and the vertical stress (σ3 for bedding parallel fractures). 

However, if the magma overpressure cannot overcome the 
previous sum, dyke arrest may occur.

Sill (lateral) propagation

An important condition for the lateral propagation of a 
sill and the subsequent formation of a pluton (inflation) is 
that the system is able to acquire sufficient pressure (Pol-
lard and Johnson 1973; Corry 1988; Cruden and Weinberg 
2018). During a sill’s incipient conditions, most frequently, 
it deforms in an elastic or elastic–plastic manner, and the 
surrounding host rock deforms subject to its length-scale 
growth. Specifically, if the lateral extension is less than the 
sill’s vertical thickness, the surrounding deformation fol-
lows elastic conditions. However, if the sill expands later-
ally, overburden bending can be observed atop the sill (Pol-
lard and Johnson 1973; Rubin 1993). If the sill is partially 
molten (ductile condition), propagation in the horizontal 
plane occurs when the margins of the sill rupture due to 
lateral stretching. Therefore, the maximum extension usually 
creates blunt terminations. Yet, if brittle conditions arise, 
fractures at the margins of sills develop due to tensile split-
ting (Pollard and Johnson 1973).

Nowadays, field observations of sills have revealed more 
mechanisms of sill propagation. Some of them introduce the 
fluidization (Schofield et al. 2012) or the shear failure (Merle 
and Donnadieu 2000; Abdelmalak et al. 2012; Spacapan 
et al. 2017) of the host rock. In the first model, the magmatic 
heat can increase the pore fluid pressure in the surround-
ing host rock activating its fluidization through which the 
magma can be transported laterally (Schofield et al. 2012). 
In the second model, highly viscous magmas may generate 
shear stresses that rupture and deform the host rock (Merle 
and Donnadieu 2000; Abdelmalak et al. 2012; Spacapan 
et al. 2017). After its formation, a sill can vertically inflate 
and subject to roof lifting or floor depression a laccolith or 
a lopolith can be formed (Cruden 1998).

Magma chamber/laccolith formation

Sills are found in nature in a range of sizes and geometries 
(Smallwood and Maresh 2002; Tibaldi et al. 2008; Tibaldi 
and Pasquaré 2008; Burchardt 2008; Morgan et al. 2008; 
Gudmundsson and Løtveit 2012, Magee et al. 2016, 2017; 
Gudmundsson et al. 2018, 2020), and their emplacement 
has been studied through analogue experiments (Xu et al. 
2003; Xu and Rosakis 2003; Rivalta et al. 2005; Galland et al. 
2009) and analytical (Gudmundsson 1990; Pinel and Jaupart 
2004; Bunger and Cruden 2011) and numerical (Gautneb 
et al. 1989; Grosfils et al. 2015; Barnett and Gudmundsson 
2014, Haug et al. 2018; Walker and Gill 2020; Browning 
et al. 2021) modelling. Depending on their size (geometry 
and dimensions), degree of concordance and emplacement 
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rate, intrusive bodies are classified into different types (Cru-
den and McCaffrey 2001; Menand 2008; Galland et al. 2018). 
The difference between strata-concondant sills and laccoliths 
depends on their dissimilar width-scale growth and composi-
tion. A sill grows laterally (bedding-parallel), whereas lac-
coliths are usually felsic intrusions which primarily extend 
their vertical dimension (thickness) (Schmiedel et al. 2017). 
A conceptual model that interprets the formation of laccoliths 
(e.g., stacked sills) has been proposed by Morgan (2018). 
The latter follows Pascal’s principle, and it is based on the 
Henry Mountains intrusions in Colorado Plateau. The model 
introduced two stages of magma emplacement. In the first 
place, the sill expands horizontally until its lateral propaga-
tion becomes sufficient to overcome the lithostatic pressure. 
When the previous conditions are met, then the intrusion 
begins to inflate, and stacked sills/upward expansion occurs. 
In a later stage, laccoliths can continue to grow, forming plu-
tons (Fedotov 1981; Menand 2008; Galland et al. 2018).

Analytical models (Smith and Shaw 1975; Petraske 
et al. 1978; Fedotov 1981; Hardee 1982), field observa-
tions (Tibaldi and Pasquaré 2008), analogue experiments 
(Kavanagh et al. 2015) and geochronological data (Coleman 
et al. 2004; Glazner et al. 2004; Menand 2008; Michel et al. 
2008) have shown that repetitive mafic magma intrusions 
that are emplaced atop or below already-formed sills, under 
specific conditions, can be taken as incipient conditions for 
the development of magma chambers. Still, the coalescence 
of smaller, nearby liquid-phase sills to develop into a magma 
chamber has also been proposed as an option (Gudmundsson 
2011b). For that to occur, the rate of dyke injection should 
be high (as it commonly happens in rift zones) and the time 
needed for a sill to solidify must be long, implying originally 
thicker sill intrusions (Annen 2009).

The Stardalur laccolith‑geological constraints

The Stardalur laccolith is located nearby the Langjökull 
glacier (approximately 25 km × 50 km in size) in the Esja 
peninsula proximal to the western volcanic rift zone. The 
laccolith’s structural analysis has been reviewed by previ-
ous studies (Fridleifsson 1977; Pasquarè and Tibaldi 2007; 
Tibaldi and Pasquaré 2008; Drymoni et al. 2023c). Briefly, 
the geology of the research area is composed of basaltic 
lavas, hyaloclastites, volcano/sedimentary breccias and flu-
vial deposits (Plio-Pleistocene), cut by several magmatic 
intrusions and covered by lavas younger than 0.8 Ma old. 
The magmatic intrusions include dykes, inclined sheets 
and a major intrusive body, a multiple-sill laccolith, nested 
within a swarm of centrally dipping sheets. The laccolith is 
emplaced at the dissimilar mechanical contact between stiff 
lavas (top) and soft hyaloclastites/breccias (bottom) (Fig. 2). 
Further field implications can be found in Part I (Drymoni 
et al. 2023c).

FEM numerical modelling

To unravel the volcanotectonic processes responsible for 
the formation of the Stardalur’s stacked-sill structure, 
we used an FEM numerical method and especially the 
software COMSOL Multiphysics® (v6.1) (www. comsol. 
com). The structural mechanics module allowed us to 
investigate dyke to sill deflection in the shallow elastic 
crust and explore the displacements, stresses and strains 
in a solid mechanics’ interface. We designed linear elastic 
(isotropic) material models and defined distinct material 
properties for the host rock layers. Since our study focused 
on dyke propagation and specifically the deflection at a 
mechanical dissimilar contact, we developed a steady-state 
analysis. In our models, we hypothesize that subject to suf-
ficient fluid pressure, the magma can debond and delami-
nate (open) a weak (soft) contact and then propagate at the 
open contact between dissimilar layers. This refers to the 
conditions of failure in a composite material (García 2014) 
which leads to the separation of its layers at a contact and 
may act as a proxy and satisfy the mechanical concept of 
dyke-sill transition in the shallow crust.

Physics‑based model setups and material properties

We designed two-dimensional plane strain physics-based 
models based on three conceptual settings (Fig. 3a–c) to 
simulate dyke-sill transitions in non-glacial and glacial 
regimes. Although three-dimensional models contain more 
realism and can greatly account for depth, they are compu-
tationally expensive (Depree et al. 2010). Since our stud-
ied process relies on boundary conditions that do not alter 
in one dimension, the use of 2D analysis is preferred as a 
matter of simplification. The first two non-glacial settings 
(Fig. 3a, b) were accommodated in a 1500 m × 1400 m 
rectangle domain to replicate dyke-sill deflection in the 
mesoscale (m to several km). The third setting was hosted 
in a 25 km × 25 km box domain since we wanted to explore 
how glacier retreat, using glacier width variations, controls 
dyke-sill transitions in glacial settings (Fig. 3c).

For the non-glacial setting, we fastened only the bot-
tom corners of the model setups to avoid rotation. For the 
glacial setting instead, we applied fixed constraint condi-
tions by fastening both the bottom and top corners as well 
as the two margins of the glacier to allow it to deform 
(and the contact to open) without the glacier to dislocate 
or slip from the free top surface. For all our models, we 
designed the dykes further away from the margins to avoid 
translation and side effects (Browning et al. 2021) and 
exaggerated the top and bottom layers to allow the dyke 
to move in the vertical axis. Finally, we performed a fine 

http://www.comsol.com
http://www.comsol.com


 Bulletin of Volcanology           (2024) 86:43    43  Page 6 of 20

triangular user-defined, extremely fine mesh with a maxi-
mum element size of 15 m and a minimum element size 
of 0.03 m, respectively.

To study the non-glacial setting, we designed two-layered 
domains based on our field observations (Fig. 2b). Previous 
studies (Tibaldi and Pasquaré 2008) allowed us to investi-
gate how the complex, local, heterogeneous and anisotropic 
crustal segment could encourage or discourage the forma-
tion of the Stardalur laccolith. In specific, our main aim was 
to examine whether the laccolith could have been equally 
emplaced in both localities (a and b) if the deflected dykes 
could have followed different pathways. Our secondary aim 
was to understand if the emplacement of the laccolith was 
mainly controlled by the mechanical properties of the layers 
(e.g., stiffness of the hyaloclastite), the overpressure (Po) 
of the dyke, or if other geometrical parameters could have 
influenced the opening of the contact (e.g., thickness of the 
hyaloclastite, dip of the dyke) in the same degree.

We assigned a range of stiffness (Young’s modulus) val-
ues for the different stratigraphic units based on literature 

data (Gudmundsson 2011a). In specific, for the deeper 
geological units which serve as basement lithologies, we 
used Eh = 30 GPa, and for the Stardalur and post-Starda-
lur lavas, we used El = 10 GPa. To examine the effect of 
a soft or a comparatively stiff layer, we used two different 
orders of magnitude for the hyaloclastite/breccia deposits, 
namely Eh = 0.5 GPa and 5 GPa, respectively. We modelled 
a very soft 10-m-thick (ds)  lava(top)/hyaloclastite(bottom) con-
tact with stiffness (Ec) equal to 0.001 GPa, density equal to 
ρ = 2000 kg  m−3, Poisson’s ratio (v) equal to 0.25, and mesh 
element (lne) equal to 2 using the thin elastic layer node. 
Based on the bibliography, the term ‘soft’ refers to an elastic 
contact with low Young’s modulus (stiffness) (Shull 2002) 
while the term ‘weak’ refers to the mechanical properties 
of the contact (low fracture resistance or fracture toughness 
response) (Rosakis 2002).

We performed sensitivity tests and explored the effect of 
the dip of the dyke and the thickness of the hyaloclastite on 
dyke-sill deflection. Particularly, we altered the geometry of 
the dyke and modelled namely a vertical (90°) dyke and an 

Fig. 2  A Geological map of 
Iceland modified from Árna-
dóttir et al. (2023) indicating 
the location of the main plate 
boundaries and volcanic zones, 
the current size of the glaciers 
and the Stardalur laccolith. b 
Schematic illustration of the 
crustal segment in which the 
Stardalur laccolith is emplaced, 
modified from Tibaldi and 
Pasquaré (2008). Highlighted 
are the different stratigraphic 
segments (stratigraphy A and B) 
based on which the numerical 
models have been designed. 
WVZ, western volcanic zone; 
NVZ, northern volcanic zone
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inclined (45°) sheet. In addition, we changed the thickness of 
the hyaloclastite, and we modelled three different orders of 
magnitude namely 1 m, 10 m and 100 m based on our field 
observations (Fig. 2). In the analysis, although pre-existing 
fractures (faults and dykes) can be found in the shallow crust 
and have been shown to influence the paths of propagat-
ing sheet intrusions (Greiner et al. 2023), here, we do not 
account for dyke-fault interactions (Drymoni et al. 2021) or 
their effects (Corti et al. 2023) in dyke-sill transition. Also, 
we do not account for the debonding of the contact since 
the latter refers to the conditions that allow the physical, 
chemical, or mechanical forces that hold the bonds together 
to break (Rosakis 2002; Srinivasan and Idapalapati 2021).

For the glacial scenario, we modelled dyke-sill transition 
concepts for two different glacier widths equal to 25 km and 
5 km, respectively. We modelled a glacier thickness (CT) 

equal to 580 m for a 25-km-wide glacier which represents 
the current size of the nearby Langjökull glacier (Björns-
son et al. 2006). Also, we modelled a glacier thickness (CT) 
equal to 100 m to mimic a future scenario where the same 
glacier will be 5 km wide. For all the glacial models, we 
used the simplest stratigraphic setting, represented by stra-
tigraphy A in Fig. 2b.

We imported a 1-m-thick dyke at the centre of the first 
two non-glacial settings, and a 5-m-thick dyke at the glacial 
setting. We modelled the dykes as cavities without internal 
material properties. Based on analytical solutions (Drymoni 
et al. 2020) if the stiffness of the crust is 5 GPa, then a 
5 MPa dyke overpressure refers to a 1.68-m-thick dyke and 
a 10 MPa dyke overpressure refers to a 2.32-m-thick dyke, 
respectively. Here, the different thickness of the cavities 
served only its graphic representation in the models; instead, 
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the magma overpressure at their boundaries was equal to 
5 MPa and 10 MPa, respectively. Finally, the depth of the 
stratigraphy was designed based on the schematic illustration 
in Fig. 2b, and the location of the dykes was set arbitrarily 
at the centre of the domain.

We performed a sensitivity analysis to explore the maxi-
mum distance of the dyke tip required to open a dissimilar 
mechanical contact by trial and error via the following steps: 
(1) we designed several ‘reconnaissance’ models in which 
we gradually changed the location (static model snapshots) 
of the dyke tip (in Y-axis) closer to the dissimilar mechani-
cal contact. In every model, we recorded the total (x–y) 
displacement values until we finally obtained the highest 
calculated value which was recorded when the dyke tip-
contact distance was almost zero; (2) we reran the models, 
as explained before, and obtained the location of the dyke 
tip (distance from the contact and/or depth of the dyke tip) 
where the contact opened; and (3) we used the same meth-
odology for all the final model comparisons.

Numerical analysis

We designed four boundary loading conditions to replicate 
the physical processes which encourage or discourage the 
delamination (opening) of the soft contact in a non-glacial 
and glacial setting. The conditions were gradually built up 
in the models and were namely (a) a magma overpressure 
load (Po) performed as a pressure load at the boundaries 
of the dyke cavity, to simulate the internal, net pressure of 
the dyke; (b) a thin elastic layer performed as a boundary 
load at the lava/hyaloclastite contact, to mimic a very soft 
contact capable to delaminate; (c) a vertical boundary load, 
applied as a pressure load, to replicate the glacier’s imposed 

weight (compressional setting) at the top free surface; and 
(d) a horizontal boundary load, performed as a pressure load 
perpendicular to the Y-axis domain margins, to represent the 
extensional regime induced by glacier rebound. The thin 
elastic layer acted as a boundary load, which had a very 
low Young’s modulus value (E). The steady-state study is 
explained in detail in Part I (Drymoni et al. 2023c).

We assigned a constant magma overpressure equal to 
Po = 5 MPa to all our models, but for the sensitivity analy-
ses where we explored the effects of magma overpressure 
on dyke-sill deflection, we modelled two different values, 
namely 5 MPa and 10 MPa. The selected values could gen-
erate the minimum amount of tensile stress (σ3) needed to 
open the contact (Gudmundsson 2020). We applied a verti-
cal pressure boundary load equal to P = 5 MPa to model the 
vertical load of the glacier. Finally, we applied a horizontal 
extension (Fext) equal to 5 MPa at the vertical margins of the 
domains to model the extensional regime induced by glacier 
rebound (Stewart et al. 2010).

We designed a tensile stress surface (in MPa), which 
showed the accumulation of tensile stress (σ3) around the 
dyke tip and at its vicinity. We modelled two arrow sur-
faces, which showed the orientation of two of the principal 
compressive stresses (σ1 and σ2), hence the magma propaga-
tion pathway (which is parallel to σ1), ahead of the dyke tip. 
In addition, we designed a total x–y displacement surface 
(in km due to the glacier size) that allowed us to observe 
the scenario of contact opening (or not) in each model. The 
opening of the contact was visible as a white area, which 
subject to higher magma overpressure values or the dyke 
tip-contact distance became thicker at the centre above the 
dyke tip and faded away at its margins. All the models and 
modelling parameters are summarised in Table 1.

Table 1  A summary of all the different models presented in this study. Bold entries represent tensile stress and displacement surfaces while the 
italic entries represent displacement surfaces

Models

Boundary loads and studied parameters Stratigraphy A No ice cap With ice cap
1. Ehyaloclastite vS tip-contact distance 

for a given dyke overpressure 
(Po = 5 MPa) (vertical dyke, inclined 
sheet) (Fig. 4)

1. An ice cap subject to width adjust-
ments for a given dyke overpressure 
(Po = 5 MPa) (vertical dyke, inclined 
sheet) in non-glacial and glacial set-
tings (Fig. 8)

2. Tip-contact distance vS dyke overpres-
sure (Po = 5 MPa and 10 MPa) (vertical 
dyke) (Fig. 5)

Stratigraphy B 3. Ehyaloclastite vS tip-contact distance 
for a given dyke overpressure 
(Po = 5 MPa) (vertical dyke, inclined 
sheet) (Fig. 6)

4. Whyaloclastite vS Ehyaloclastite vS dyke 
overpressure (Po = 5 MPa and 10 MPa) 
(vertical dyke) (Fig. 7)
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Results

Stratigraphy A

In the first suite of models, we explored how the stiffness 
of the hyaloclastite controlled the opening of the contact 
when the dyke tip-contact distance was (1) 40 m and (2) 
8 m, respectively. In the first model (Fig. 4a), where the 
hyaloclastite was soft and the dyke tip was deeper in the 
domain, we observed moderate tensile stress concentra-
tion (3–6 MPa) around the dyke tip while the principal 
compressive stress (σ1) remained (almost) vertical at the 

vicinity of the dyke tip. The model in Fig. 4b showed mod-
erate values (0.6 m) of displacement around the dyke, and 
no contact opening occurred at the soft contact ahead. In 
the next run, we increased the stiffness of the hyaloclastite 
by one order of magnitude (Fig. 4c). The tensile stress 
concentration increased inside the comparatively stiff 
layer. The arrow surfaces (σ1 and σ2) showed no stress 
rotations at the vicinity of the dyke tip. The displacement 
values (Fig. 4d) decreased around the dyke showing that 
a stiffer material could accommodate less (x–y) displace-
ment in similar loading conditions. Yet, the soft contact 
did not open.
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Fig. 4  COMSOL models showing the tensile stress concentration (a, 
c, e, g, I, k, m, o) (in MPa) and (x–y) displacement magnitude (b, d, 
f, h, j, l, n, p) (in m) around a dyke tip subject to dissimilar host rock 
mechanical properties (stratigraphy a). The magma overpressure is 
constant (Po = 5 MPa), the red arrows show σ1, and the black arrows 

show σ2. The dashed boxes indicate the location and size of the con-
tact opening. The crosses indicate no contact opening while the ticks 
indicate opening of the weak contact. The figure snapshots show only 
a part of the models
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We moved the dyke tip shallower, at a depth where the 
contact could delaminate. When the hyaloclastite was soft 
(Fig. 4e), the tensile stress concentration increased ahead 
of the dyke tip and the σ1 arrows rotated (around 45°). The 
displacement values (Fig. 4f) increased around the dyke 
(0.8–1.4 m), and the soft contact opened. In the next runs, 
we increased the stiffness of the hyaloclastite (Eh = 5 GPa) 
(Fig. 4g). Although the results were similar to the previous 
runs, the displacement values around the dyke decreased 
(0.2–0.4 m) and the contact did not open.

In the next round, we tested the effect of an inclined sheet 
in the same stratigraphic sequence. For the inclined sheet 
models, we showed larger parts of the models to fit the lat-
eral size of contact opening. We explored how the stiffness 
of the hyaloclastite controlled the opening of the contact 
when the dyke tip-contact distance was (1) 40 m and (2) 
30 m, respectively. Our models did not develop stress rota-
tions in any of the studied concepts (Fig. 5i, k, m, o), and 
the tensile stress concentration was similar to the previous 
runs (Fig. 4j, l, n, p). The displacement models (Fig. 4j, 
n) showed that when the hyaloclastite was soft, the con-
tact could open once the dyke tip was deeper in the domain 
(Fig. 4b). In addition, contact opening became longer in the 
X-axis opposite to the acute angle of the dip while the dyke 
tip got shallower (Fig. 4n). However, when the hyaloclastite 
layer became stiffer, in both studied depths (40 m and 30 m, 
respectively), the contact did not open (Fig. 4l, p).

Tip‑contact distance vs contact delamination subject 
to different overpressure  (Po) values

We studied the opening of a soft lava/hyaloclastite contact 
induced by a dyke tip that it was located along the y-y′ axis 
subject to different overpressure conditions. We used the 
simplest model setup (stratigraphy a), and we captured six 
models (displacement snapshots). The dyke was set in arbi-
trary Y-axis positions to investigate the theoretical depth of 
the dyke tip that could open the soft contact ahead. In the 
first group of models (Fig. 5a–f), the stiffness of the top 
lava layer was El = 10 GPa, the stiffness of the bottom hya-
loclastite layer was Eh = 0.5 GPa, and the stiffness of the 
contact was Ec = 0.0001 GPa. The magma overpressure (Po) 
was 5 MPa and remained constant during the static runs. We 
progressively moved the dyke closer to the soft contact and 
observed that it opened when the dyke tip-contact distance 
was 24 m. The maximum displacement around the dyke 
increased gradually while the dyke-tip was approaching the 
soft contact and reached its highest value which was equal 
to 1.6 m. In the next runs (Fig. 5g–l), we kept the same 
material properties for the dissimilar layers and the contact 
but increased the magma overpressure (Po = 10 MPa). The 
models showed that the contact opened when the dyke was 
now deeper in the domain (tip-contact distance was 33 m). 

The maximum displacement was proportional to the over-
pressure increase and equal to 3.2 m.

Stratigraphy b

We reran the previous model suites using the second strati-
graphic setup (stratigraphy b). The soft contact was now 
deeper in the domain (tip-contact distance was 30 m). In 
the first model, where the hyaloclastite was soft (Fig. 6a), 
the tensile stress (4–10 MPa) was concentrated in the soft 
layer, and no stress rotations were observed in it. When 
we increased the stiffness of the hyaloclastite (Eh = 5 
GPa) (Fig. 6c), the layer concentrated more tensile stress 
(9–10 MPa) than before. In both cases, the models indicated 
that the displacement around the dyke tip was low (up to 
1.6 m) and the contact did not open (Fig. 6b, d). We moved 
the dyke tip closer to the contact (tip-contact distance was 
20 m) (Fig. 6e, g). The tensile stress accumulation around 
the dyke tip was similar to the previous runs (Fig. 6a, c). 
However, the displacement models (Fig. 6f, h) showed that 
the contact could open only if the hyaloclastite was soft.

In the next round, we tested the emplacement of an 
inclined sheet in the domain. The tensile stress accumula-
tion around the inclined sheet was similar to the previous 
runs (Fig. 5i, k). When the tip of the inclined sheet was 
deeper (tip-contact distance was 50 m), the contact did not 
open regardless of the stiffness of the hyaloclastite. Finally, 
we moved the tip closer to the contact (tip-contact distance 
was 20 m). The tensile stress accumulation was similar to 
the previous runs (Figs. 5m, o and 6m, o). The displacement 
models showed that the soft hyaloclastite layer encouraged 
the opening of the contact at this depth (Fig. 6n).

Layer thickness vs layer stiffness subject to different 
magma overpressure  (Po) values

In this set of models, we explored how the thickness and the 
stiffness of the hyaloclastite layer collaboratively controlled 
the opening of the soft contact subject to different magma 
overpressure values. In the first four runs (Fig. 7a, b, e, f), we 
modelled a very thin hyaloclastite layer (Wh = 1 m) with soft 
and comparatively stiff mechanical properties, respectively, 
subject to two different magma overpressure values, namely 
5 MPa and 10 MPa. The results showed that the contact 
opened only when the layer was soft (Eh = 0.5 GPa) and the 
overpressure was high (Po = 10 MPa).

In the next four runs (Fig. 7c, d, g, h), we increased the 
thickness of the hyaloclastite by one order of magnitude 
(Wh = 10 m). Interestingly, the results showed that the soft 
contact opened when the hyaloclastite was stiff, and the 
magma overpressure was high (Po = 10 MPa). In specific, 
when the hyaloclastite was soft, the displacement increased 
around the dyke margins (1.5–2.5 m) but not around the dyke 
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tip and the contact. Finally, we reran the models (Fig. 7i, j, 
k, l) and increased the thickness of the hyaloclastite by two 
orders of magnitude (Wh = 100 m). Our results highlighted 
that the soft contact opened when the magma overpressure 
was high regardless of the stiffness of the hyaloclastite. 

Especially, when the hyaloclastite was soft the opening was 
larger. These results suggested that the magma overpressure 
highly controlled the opening of a mechanically weak con-
tact. Still, the thickness of the soft layer played a fundamen-
tal role in the process when the dyke permeated a soft and 
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Fig. 5  COMSOL models showing six displacement snapshots (in m) 
of a dyke in different y-y′ locations for 5 MPa (a–f) and 10 MPa (g–l) 
magmatic overpressure, respectively. The crosses indicate no contact 

opening while the ticks indicate opening of the soft contact. The fig-
ure snapshots show only a part of the models



 Bulletin of Volcanology           (2024) 86:43    43  Page 12 of 20

several meters thick layer. However, when the soft layer was 
thin, the stiffness of the hyaloclastite controlled the opening 
of the contact instead.

Glacier retreat due to glacier width adjustments

In this section, we explored how glacier retreat subject to 
width variations influences the propagation pathway of a 
dyke in the shallow crust. In the first model suites, we inves-
tigated how the stiffness of the hyaloclastite layer, subject to 
a wide (25 km) and a short (5 km) glacier, promoted (or not) 
dyke-sill transitions below an ice cap. All models (Fig. 8a–d) 
showed variable displacement values around the dyke tip 

and at its vicinity. In detail, a very wide glacier cap induced 
higher displacement values in the host rock when the hyalo-
clastite was soft (Fig. 8a, i); however, contact opening was 
not encouraged. When the glacier was shorter (5 km), the 
amount of displacement decreased, and the contact opened 
when the stiffness of the hyaloclastite was soft (Fig. 8c, g). 
This is at odds with similar model results in a non-glacial 
domain (Fig. 8e–h), which showed that the presence of a soft 
contact encouraged contact opening regardless of the hyalo-
clastite stiffness. We finally tested the effect of an inclined 
sheet in the same setting. The results showed that, regardless 
of the width of the ice cap, contact opening was discour-
aged in similar depths (Fig. 8i–l), in contrast to non-glacial 
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Fig. 6  COMSOL models showing the tensile stress concentration (a, 
c, e, g, i, k, m, o) (in MPa) and (x–y) displacement magnitude (b, 
d, f, h, j, l, n, p) (in m) around a dyke tip subject to dissimilar host 
rock mechanical properties (stratigraphy b). The magma overpressure 
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tact opening. The crosses indicate no contact opening while the ticks 
indicate opening of the soft contact. The figure snapshots show only a 
part of the models
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settings (Fig. 8m–p). Those results indicate that the width 
of a glacier may affect the dyke-sill transitions in volcano-
tectonic regimes especially when vertical dykes advance 
towards the surface. However, the inclined sheet models 
were insensitive in similar glacier settings (Fig. 8i–l).

Discussion

Which mechanism controlled the emplacement 
of the Stardalur laccolith?

Although dyke propagation commonly occurs in the shallow 
crust, dyke-sill transitions are also likely in rift zones. This 
is mainly due to the heterogeneity and anisotropy of the host 

rock that generate stress barriers or dissimilar boundaries 
(contacts) which either stop or change the pathway of a ver-
tical dyke (Gudmundsson 2020). Those outcomes are con-
trolled by three mechanisms, namely the stress barrier, elas-
tic mismatch and Cook-Gordon debonding and delamination 
mechanisms, which can act individually or collectively in 
depth, promoting sill formation (Gudmundsson 2011a).

Our Part II is focused on exploring the mechanical and 
geometrical parameters that encourage (or not) dyke-sill 
transitions in non-glacial and glacial domains. To do this, we 
used a field example, the Stardalur laccolith in SW Iceland, 
which offered ideal field conditions and the models helped 
us gain valuable insights into dyke emplacement processes 
in a more realistic perspective. The laccolith composed of 
stacked sills and had no signs of dyke rupture at its roof. The 
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intrusion was emplaced at the contact between two dissimi-
lar layers, namely a lava (top) and a hyaloclastite (bottom) 
and had an approximate vertical thickness, based on field 
observations, equal to 150 m.

We suggest that the emplacement of the Stardalur lac-
colith was primarily induced by the Cook-Gordon debond-
ing and delamination mechanism, though a collective out-
come between the elastic mismatch and the Cook-Gordon 
mechanism cannot be ruled out. This is because the lac-
colith is very shallow, a case in which the Cook-Gordon 
mechanism can easily operate (Gudmundsson 2020). The 
prime boundary loading condition used in our models was 
the overpressure (Po) of the dyke. Here, we modelled two 
values, namely, 5 MPa and 10 MPa to replicate moderate 
and high magma overpressure conditions, respectively. In 

all our models, the tested boundary conditions generated 
sufficient values of tensile stress (σ3 ≥ 0.5 MPa) around the 
dyke/inclined sheet to satisfy the fracture criterion (Amadei 
and Stephansson 1997). Particularly, high values of magma 
overpressure encouraged the opening of the mechanically 
weak contact. This highlights not only the necessity of a thin 
elastic layer for debonding and delamination to occur (Rosa-
kis et al. 2000; Xu and Rosakis 2003; Wang and Xu 2006), 
but also how important are the roles of magma overpressure 
and the mechanical properties of the host rock (especially 
the layering) on dyke propagation in the shallow crust. Still, 
those parameters can become secondary in glacial condi-
tions when a dyke propagates below a large ice cap. An ice 
cap not only overprints the local stress conditions below it 
(Stewart et al. 2000), but the vertical pressure withholds the 
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Fig. 8  COMSOL models showing the total (x–y) displacement (in 
km) around a vertical dyke and an inclined sheet subject to constant 
overpressure values (Po = 5 MPa), different layer stiffness, in a glacial 

(a–d, i–l) and non-glacial setting (e–h, m–p). The figure snapshots 
show only a part of the models
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opening of the contact at similar depths since practically the 
broad stress field becomes compressional (Andrew and Gud-
mundsson 2007). Nevertheless, our study showed that dyke-
sill transitions may equally occur during glacier unloading.

How do different realistic geometrical 
and mechanical parameters collectively affect 
the opening of a dissimilar contact in non‑glacial 
and glacial settings?

To allow strict model comparisons between the studied set-
tings, we replicated identical models using the same bound-
ary loading conditions (e.g., overpressure, thin elastic layer 
boundary load, vertical and horizontal pressure load) by iso-
lating a mechanical or geometrical parameter in each run. 
Finally, we focused on showing a selected part of each model 
to allow for a more efficient comparison between different 
models.

Layer stiffness

The abrupt changes in the mechanical properties of the rocks 
and especially the Young’s modulus (stiffness) may alter 
the pathways of advancing dykes or inclined sheets in the 
crust (Gudmundsson 2011a, b, 2020; Kavanagh et al. 2006; 
Philipp et al. 2013; Drymoni et al. 2020). When a fracture 
propagates from a soft to a stiff layer, it often becomes 
arrested or deflected at it. In our models, we explored further 
than before (Part I, Drymoni et al. 2023c) the effect of the 
stiffness of a layer in dyke-sill emplacement in non-glacial 
and glacial settings. We modelled hyaloclastite deposits 
with Young’s moduli over two different orders of magni-
tude, namely 0.5 GPa and 5 GPa, which implied soft and 
comparatively stiff mechanical conditions, respectively. In 
a non-glacial setting, a comparatively stiff hyaloclastite con-
centrates more tensile stress (σ3) than a soft one but a soft 
hyaloclastite promotes dyke-sill transitions compared to a 
comparatively stiff one. When the layer is very thin (1 m), 
the opening is greatly controlled by the stiffness of the layer 
regardless of the depth of the soft contact in the crustal set-
ting. Still, when the overpressure is moderate (Po ≤ 5 MPa), 
dyke-sill transitions can be revoked. Finally, in a glacial set-
ting, a soft hyaloclastite layer concentrates higher amounts 
of displacement, encourages dyke-sill transitions, and pro-
motes larger contact opening. However, in case the ice cap 
is wide (25 km), contact opening is discouraged regardless 
of the stiffness of the hyaloclastite.

Dyke dip

Previous studies have modelled the stresses and displace-
ments around vertical dykes (Drymoni et al. 2020, 2021) 
and inclined sheets (Gudmundsson and Brenner 2001; 

Burchardt 2008; Browning and Gudmundsson 2015; 
Bazargan and Gudmundsson 2020; Drymoni et al. 2021, 
2023a, b, c) in dissimilar mechanical contacts showing 
that inclined sheets promote higher surface stresses and 
displacements. Similarly, inclined sheets are more prone 
to feed sills. Here, we studied the effect of a vertical 
dyke and an inclined sheet in dyke-sill transitions in 
non-glacial and glacial settings. The numerical results 
proposed that inclined sheets tend to open asymmetric 
sills when the dyke-tip is deeper in the crust compared 
to vertical dykes. Instead, in glacial settings, inclined 
sheets discourage contact opening regardless of the width 
of the ice cap.

Layer thickness

Previous studies (Geshi et al. 2012, Forbes Inskip et al. 
2020; Drymoni et al. 2020) have shown that thick, stiff 
layers (increased by a factor of ten) or layer inclination 
(Clunes et al. 2021, 2023) can promote stress rotations 
and arrest dykes or deflect them into sills. We tested the 
effect of the thickness of a layer in three different orders 
of magnitude, namely 1 m, 10 m and 100 m, in non-gla-
cial conditions. The results highlighted the importance of 
this geometrical parameter especially in higher orders of 
magnitude. When the thickness of the hyaloclastite is hun-
dreds of metres, dyke-sill deflection is always encouraged 
despite the stiffness of the layer. Still, in lower orders of 
magnitude (1–10 m), the stiffness of the layer plays a more 
critical role in contact opening.

Crustal segment /depth of a soft contact

Soft contacts can locally rotate the stress field and pro-
duce dyke-sill transitions as shown from experiments 
(Kavanagh et al. 2017). Yet, the nature of sill propagation 
is debated between fracture toughness weak boundaries 
(Menand and Tait 2002) and viscosity dominated pro-
cesses (Chanceaux and Menand 2016). In our models, we 
showed that the opening of a contact, hence, the dyke-sill 
transition, is always dependent to the presence of a soft 
contact in both non-glacial and glacial settings, an obser-
vation that is in agreement with dynamic crack propaga-
tion experiments (Rosakis et al. 2000). Here, we modelled 
two different stratigraphic sequences (stratigraphy a and b) 
based on our field observations. Our results were inconclu-
sive regarding the effect of the depth of the contact in the 
stratigraphy in non-glacial settings because the opening 
of the contact was primarily controlled by the stiffness of 
the layer. More advanced models should be designed to 
explore this parameter further.
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Dyke tip‑contact distance

We designed models to obtain indications on the conditions 
that affect the opening of a mechanically weak contact ahead 
of a dyke tip subject to different dyke tip-contact distance 
and magma overpressure values. Our models imply that 
higher overpressure values (Po ≥ 10 MPa) encourage the 
opening of the contact when the distance between the dyke 
and the soft contact is larger.

How do dyke‑sill transitions respond to glacial 
settings with variable glacier widths?

Previous numerical models in Iceland have shown that the 
large volumes of the lava shields that were generated dur-
ing the late-glacial (close to the end of the Weischelian) era 
induced an increased accumulation of tensile stresses around 
the deep-seated magma chambers. As such they increased 
their fracture porosity and eventually their sizes (Gudmunds-
son 1986; Andrew and Gudmundsson 2007). Yet, during the 
glaciation peaks (e.g. Weischelian era), the glacier-induced 
compressive regime should have overprinted the crustal 
local stresses in depth, and only after the deglaciation stage, 
dyke propagation must have been encouraged (Andrew and 
Gudmundsson 2007).

In our physics-based modelling study, we test how the 
width of the ice cap encourages (or not) dyke-sill transi-
tions in the shallow crust. Specifically, our study models the 
scenario where fractures (vertical dykes or inclined sheets) 
may stall below an ice cap during glacier retreat. In detail, 
we attempt to examine the conditions that encourage the 
mechanical deflection of magma at a more local scale and 
explore the conditions that promote sill emplacement in het-
erogeneous domains during deglaciation. Our models show 
that a vertical dyke may open a soft contact ahead of its 
tip when the glacier is short (5-km length) and the bottom 
contact layer is soft. On the contrary, an inclined sheet fails 
to replicate the previous outcome. This is at odds with the 
previous theory, which highlights that shorter glaciers in 
regional scales tend to promote dyke propagation since ten-
sional stresses commonly increase around shallow magma 
chambers and dyke injection can be prominent (Andrew 
and Gudmundsson 2007). Our study focuses on dyke to sill 
deflection in shallow heterogeneous crustal segments and 
not on the conditions for magma chamber rupture and dyke 
injection during deglaciation. We also underscore that our 
static, elastic models attempt to gain insights into processes 
that occur at the mesoscale and serve as a comparative effort 
to identify the controlling parameters for dyke-sill transition 
during glacier retreat. Finally, those processes can have simi-
lar effects with modelling the effect of topography exerted 
by a volcanic edifice. There, analogue (Kervyn et al. 2009), 
analytical (Maccaferri et al. 2010, 2011) and numerical 

(Urbani et al. 2017) studies have shown that the loading 
stress field alters or stops the propagation pathway of a dyke 
below an edifice and promotes deflection (or lateral propaga-
tion) away from the volcano summit.

Conclusions

Our Part II suggests the following conclusions most of which 
can have a more general significance:

In non‑glacial settings

1. Stiff layers concentrate more tensile stress than soft lay-
ers but accommodate less amount of (x–y) displacement.

2. Inclined sheets promote contact opening further away 
from a soft contact compared to vertical dykes. When 
the tip of the inclined sheet gets gradually shallower, the 
opening increases laterally opposite to the acute angle of 
the dip, forming asymmetric sills.

3. Stiff layers tend to discourage sill emplacement regard-
less of the dyke dip.

4. Dyke-sill transitions occur regardless of the depth of a 
soft contact.

5. The thickness of a soft layer may encourage dyke-sill 
transitions. When the magma overpressure is moderate 
(Po = 5 MPa) and the soft layer is thin, sill emplacement 
is controlled by the stiffness of the layer. However, when 
the overpressure of the magma and the thickness of the 
soft layer both increase, the thickness may encourage the 
opening of the contact. Hence, very thin layers are not 
sensitive enough to contact opening.

In glacial settings:

1. The stiffness of the layers, apart from the stress condi-
tions imposed by the ice cap, may also control the open-
ing of a soft contact.

2. Wide ice caps tend to discourage contact opening 
whereas shorter ice caps may promote sill emplacement 
under specific conditions.

3. Vertical dykes can form sills easier than inclined sheets.

Recap and final remarks

In Part I, we explored how and under which conditions the 
Stardalur laccolith in SW Iceland could have been emplaced. 
We tested different boundary loading conditions to investi-
gate the mechanics of dyke-sill transition in a heterogeneous 
setting. In non-glacial settings, sills may form due to stiff-
ness contrasts between dissimilar layers in the country rock. 
Similarly, in compressional regimes implied by pre-existing 
fractures, stress barriers occur and encourage sill formation. 
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Finally, during glacier retreat (glacier thinning) and under 
specific mechanical conditions, dyke to sill deflection can 
still take place and magma may stall in the shallow crust.

In Part II, we performed several sensitivity analyses to 
investigate further how close to the contact dyke-sill transi-
tions may happen in non-glacial settings. Our results showed 
that inclined sheets can open a soft contact further away 
from it and deeper in the crust than vertical dykes. Mean-
while, higher magma overpressure values encourage the 
opening of a contact further away from it (deeper in the 
crust). Furthermore, the stiffness and thickness of the soft 
layer (hyaloclastite) below the contact are both important 
factors for dyke-sill transitions. Finally, we examined how 
dyke-sill transitions respond to glacial settings with variable 
glacier widths. Comparisons with identical models in non-
glacial (volcanotectonic) settings demonstrate that although 
the conditions for dyke-sill transitions may be satisfied in 
glacial domains, this is not equally encouraged in volcano-
tectonic ones and vice versa. Our results suggest that magma 
storage in the shallow crust could be encouraged during gla-
cier unloading under specific mechanical conditions.
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