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Abstract
The Late-Miocene Torfufell central volcano (ToCV), situated between the now extinct Snæfellsnes-Húnaflói rift zone and 
the presently active rift in North Iceland, provides an excellent opportunity to recreate the construction history of a vol-
canic edifice. We present new U–Pb zircon ages from six silicic units of the ToCV. The results range from 7.15 ± 0.12 to 
6.76 ± 0.02 Ma, taken here to represent a ~ 400 kyr time-span for silicic activity at the volcano. Before that, the central volcano 
had produced basaltic lavas for 600–800 kyr, implying that it was active for ~ 1–1.2 Myr. A stratigraphically documented ~ 1 
Myr hiatus above the volcano is contemporaneous with, but shorter than, a major unconformity in the Flateyjarskagi pen-
insula, considered to result from a major rift relocation in North Iceland. The new U–Pb ages show that silicic volcanism 
at the ToCV took place 1–2 Myr earlier than assumed previously and nearly synchronously with the rift relocation. As the 
age progression of the ToCV and the neighboring 5–6 Ma Tinná central volcano conflicts with the generally established 
geotectonic framework of central N-Iceland, we propose that these two volcanoes were formed at a leaky transform zone 
that developed to accommodate the rift relocation, with the ToCV formed at its junction with the embryonic rift zone, thus 
marking the initiation of the presently active rift in North Iceland. Since then, the two volcanoes have drifted away from the 
rift system due to plate spreading and migration of the plate boundary relative to the Iceland mantle plume.

Keywords Volcano geology · Geochronology · Iceland · Torfufell · Eyjafjörður · U–Pb zircon age

Introduction

Iceland is situated at the intersection of the Mid-Atlantic 
Ridge (MAR) and the Iceland mantle plume and is con-
structed by ridge/plume interaction (e.g., Schilling 1973; 
Vink 1984). Today, volcanism in Iceland is confined to vol-
canic zones, each delineated by discrete volcanic systems 
(e.g., Jakobsson et al. 2008). The volcanic zones are further 

subdivided into rift-zones, oblique rift-zones (or “leaky” 
transform zones), propagating rifts and intra-plate belts (e.g., 
Einarsson 2008). Approximately 30 active volcanic systems 
are identified within the volcanic zones, and each system 
features either an elongate fissure swarm, a localized central 
volcano, or both (e.g., Thordarson and Höskuldsson 2008; 
Hjartarson and Sæmundsson 2014). The fissure swarms trend 
subparallel to the respective volcanic zone and typically con-
sist of monogenetic fissures erupting only basaltic magmas, 
while the central volcanoes are polygenetic (composite) and 
erupt basaltic to silicic magmas. While a typical lifetime of 
a volcanic system has been estimated around 0.5–1.5 Myr 
(Jakobsson et al. 1978; Jakobsson 1979; Sæmundsson 1978; 
1979), a lifespan of 2.3–2.4 Myr was evaluated in a recent 
study for a fossilized volcanic system in East Iceland fea-
turing both a fissure swarm and a central volcano, where 
the central volcano within the system was active for ~ 1 Myr 
(Askew et al. 2020). However, central volcanoes in Iceland 
appear to have potentials for longer lifetimes than that, as 
longevities of silicic magmatism within individual central 
volcanoes have been recorded to reach > 1 Myr (Flude et al. 
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2008) and ≥ 1.5 Myr (Banik et al. 2018), with ≥ 2.8 Myr doc-
umented as the longest lifespan of silicic activity within an 
Icelandic central volcano (Carley et al. 2017). Comparably, 
lifespans of composite volcanoes in other geodynamic set-
tings, such as subduction zones and extensional basins, are 
commonly estimated around 1–1.3 Myr or less (e.g., Hildreth 
2007; Tatsumi et al. 2020; Karaoğlu et al. 2010).

Arrangement of the rift zones in Iceland is explained by 
the west-northwestward migration of the mid-ocean ridge 
system in the North Atlantic relative to the Iceland mantle 
plume, which has induced repeated eastward relocations of 
the onshore part of MAR-rift segments that are accommo-
dated by transform zones. The present distribution of the 
rifting segments in Iceland is established by three princi-
pal rift zones (Fig. 1a); the ~ N-S trending Northern Vol-
canic Zone (NVZ) in the north and two subparallel NE-SW 
trending branches in the south—the Eastern and Western 
Volcanic Zones (EVZ and WVZ) (e.g., Sæmundsson 1979; 
Einarsson 2008). These three segments exemplify different 
stages in the evolution of a rift axis across Iceland, where the 
southern part of the EVZ is propagating through older crust 
to the SW, the WVZ is waning and receding, and the NVZ 
may be referred to as an established (or steady-state) rift as 
it accommodates the full spreading rate in North Iceland 
(e.g., Einarsson 2008). The division between the NVZ and 
the EVZ is nevertheless arbitrary, as these two domains form 
a single continuous structural identity. Two major transform 
zones cross Iceland with W-E and WNW-ESE trends: the 
Tjörnes fracture zone (TFZ) in the north and the South Ice-
land seismic zone (SISZ) in the south (e.g., Sæmundsson 
1979; Jóhannesson 1980). The NVZ is offset towards East 
from the WVZ along the transverse Mid-Iceland Belt (MIB) 
which has been described as a “leaky” transform fault (e.g., 
Óskarsson et al. 1985), i.e., comprising a small component 
of opening (extension), sufficient to induce local volcan-
ism, although evidence of strike-slip movement in this belt 
is not apparent (e.g., Hjartardóttir and Einarsson 2021). 
The extension component has been proposed to be caused 
by the opposite sense of rotation of crustal blocks to the N 
and S (Karson 2017). Intra-plate volcanism occurs in the 
Snæfellsnes and Öræfi Volcanic Belts (SVB and ÖVB), with 
the former representing renewed volcanism through crust 
formed in the now extinct Snæfellsnes-Húnaflói rift zone 
(SHRZ) (Harðarson et al., 1997; Sæmundsson 1979) and the 
latter considered as an embryonic rift (e.g., Thordarson and 
Höskuldsson 2002). These intra-plate volcanic zones, along 
with the propagating part of the EVZ, are typified by alkalic 
and/or transitional magmatism while the rift zone magmas 
are tholeiitic (e.g., Jakobsson et al. 2008).

In North Iceland, the last major rift relocation took place 
when the northern segment of the SHRZ shifted eastward 
and a new rift axis initiated at the NVZ. The classically 
quoted timing of the relocation, ~ 6–7 Ma (e.g., Sæmundsson 

1979; Jóhannesson 1980), appears to be further supported 
by new 40Ar/39Ar ages from lavas within the Tjörnes sedi-
mentary sequence (Hall et al. 2023). The proposed align-
ment of the palaeo SHRZ runs along the axis of a syncline 
(Fig. 1a, b, c), interpreted to be induced by subsidence due 
to loading of erupted material, causing the volcanic succes-
sions to dip towards the then active rift (Sæmundsson 1974; 
1979; Jóhannesson 1980; Harðarson et al. 2008). A major 
discontinuity (unconformity/hiatus) is recorded within the 
basaltic lava dominated stratigraphical succession along 
the Flateyjarskagi peninsula, west of the NVZ (Fig. 1b, c). 
This unconformity is interpreted to have formed because of 
the rift relocation, where lava flows beneath the hiatus were 
formed in the SHRZ and lavas above the hiatus were formed 
in the NVZ (Sæmundsson 1974). Campaigns undertaken to 
constrain the timing and length of this hiatus indicate that 
it spans the time from ~ 10 to ~ 6 Ma in the north while the 
time gap decreases towards the south where it spans the time 
from ~ 7 to ~ 5 Ma (Jancin et al. 1985; Cotman 1979). These 
age determinations, along with a number of other datings 
in central North Iceland (Aronson and Sæmundsson 1975; 
Sæmundsson et al. 1980; Everts, 1975; Kristjánsson et al. 
1992; Fig. 1b, c), were obtained by the K–Ar method which, 
although certainly useful, has proved to be problematic in 
Iceland, mostly due to low concentrations of  K2O in Icelan-
dic basalts in combination with problems arising from the 
mobility of K and resulting sensitivity to the thermal history 
of the rock. These limitations are largely overcome by the 
more recent 40Ar/39Ar technique (e.g., Lee 2015) which is 
now considered an optimal method for dating Icelandic rocks 
(e.g., Sigmarsson et al. 2012). This superseding method has 
been applied to numerous regional basaltic dykes in central 
North Iceland, dated in particular to provide spatio-tempo-
ral constraints on the ~ 6–7 Ma rift relocation (Garcia et al. 
2003). A number of basaltic lavas have also been dated by the 
40Ar/39Ar method in the central north region, including lavas 
in Mt. Hólafjall (Supakulopas 2018; Fig. 1b, c; Fig. 2) that 
provided indications of a major hiatus in the present study 
area. Age determinations of silicic portions of several of 
the fossilized and excavated central volcanoes in the central 
north region of Iceland have furthermore been published, i.e., 
K–Ar ages from two adjacent volcanoes in the Flateyjarskagi 
peninsula (Jancin et al. 1985), 40Ar/39Ar ages from rhyolite 
lavas within the Tinná (Hjartarson 2003) and Torfufell (Supa-
kulopas 2018) central volcanoes, and U–Pb zircon ages from 
intrusive units of the Víðidalur and Laxárdalur central volca-
noes (Carley et al. 2020).

The age data mentioned, compiled in Fig. 1b and c, have 
contributed significantly to the understanding of the vol-
cano-tectonic evolution of central North Iceland, not least 
by providing constraints on the Flateyjarskagi hiatus and 
timing of the last major rift relocation in the region. How-
ever, a closer look at these ages shows that the distribution 
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Fig. 1  a Generalized geological map of Iceland (modified from Hjar-
tarson & Sæmundsson 2014; Thordarson and Höskuldsson 2008), 
highlighting active and fossil central volcanoes and active volcanic 
zones. See text for abbreviations. The approximate center of the Ice-
land mantle plume, as depicted by Wolfe et  al. (1997), is indicated 

with a gray, dotted circle. b, c Published radiometric ages from cen-
tral N-Iceland (compilation aided by Hopper et  al. 2014), with fea-
tures related to the ~ 6–7  Ma rift relocation indicated (i.e., syncline 
axis, anticline crestline and unconformity); b data sorted by age and 
rock type; c data sorted by reference and dating method
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does not follow a straightforward progression away from 
the NVZ as assumed for mid-ocean ridge spreading centers. 
The ages record a general younging to the west, from 12 
to 7–7.5 Ma, in the direction away from the Flateyjarskagi 
unconformity and towards the SHRZ syncline, while lavas 
above the unconformity are 4–5 Ma. Very young ages are 
recorded in the Skagafjörður region (Everts 1975; Hjartarson 
2003) which have been interpreted as recommenced vol-
canism, long after extinction of the SHRZ, while lavas of 
Quaternary age in the Eyjafjörður region have been assumed 
to be remains of large regional lava flows reaching tens of 
kilometers out from the NVZ (Guillou et al. 2010). In the 
Eyjafjörður region (west of the Flateyjarskagi unconform-
ity), a general younging is implied by lava ages from the 
coastline (i.e., the northernmost Tröllaskagi and Flateyjar-
skagi peninsulas) and into the land which appears to be non-
existent in the western part of the central North region. This 
younging in the Eyjafjörður region may possibly, at least 
to some extent, be explained by the general SE dipping of 
the strata pile (as measured by Jancin et al. 1985) below the 

Flateyjarskagi unconformity. The apparently non-existent 
younging from the coastline into the land in the western 
part of the central North region is unexplained, although it 
should be noted that in the west, the age data is scarcer than 
in the east while a large part of the available dates are from 
dykes instead of lavas. A relatively wide range of ages is 
recorded in some locations, especially in the Flateyjarskagi 
peninsula, which may largely be explained by sampling at 
different stratigraphic levels, while some may possibly be 
explained by inaccuracy in the K–Ar method.

The primary objective of this study is to address the tim-
ing and longevity of silicic  (SiO2 ≥ 65 wt%) magmatism 
and volcanism within the Late-Miocene Torfufell central 
volcano (ToCV), located in the region of the Eyjafjörður 
fjord, by the Tröllaskagi peninsula’s southern end (Figs. 1c 
and 2), between the presently active NVZ and the northern 
segment of the palaeo SHRZ. This is a key area in the evolv-
ing understanding of rift transfer in North Iceland, allow-
ing us to explore a potential continuation of the Flateyjar-
skagi unconformity to the south and to examine an inferred 

Fig. 2  Sampling sites, shown on a geological map, in compari-
son with 40Ar/39Ar ages in Mt. Hólafjall from Supakulopas (2018). 
Location of the study area is indicated with a blue box on the small 
image of Iceland. The geological map is based on original field-
work, integrated with data from previous authors (stratigraphic and 

polarity profiles in Mt. Hólafjall from Kristjánsson et  al. 2004 and 
Supakulopas 2018; landslide outlines from Pétursson 1997; dykes/
faults based on magnetic surveys from Flóvenz and Tómasson 1992). 
Basemap: Topography, lakes, rivers, roads and farms sourced from 
the National Land Survey of Iceland
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relation of the ToCV with the neighboring Tinná central 
volcano (TiCV), previously considered to be of similar age 
and potentially the same volcano (e.g., Hjartarson 2003; 
2005). As the ToCV is dissected by rivers and glaciers, it 
provides an excellent opportunity to recreate the construc-
tion history of a volcanic edifice. Contrary to basaltic lavas 
that may flow tens of kilometers to be observed far away 
from the eruptive fissure, central volcanoes are localized fea-
tures, abundantly comprising rocks with restricted spreading 
such as silicic intrusions and rhyolite lavas of high viscosity 
and inability to flow long distances, thus providing ages at 
or very close to the eruptive site. Accordingly, addressing 
the timing of silicic magmatism of ancient volcanic cent-
ers provides geometric relationships that can significantly 
improve our understanding of the geodynamic evolution of 
Iceland. Of particular interest are the rhyolites of the Tröl-
laskagi peninsula which—being situated between the NVZ 
and the northern segment of the palaeo SHRZ—may hold 
the key to a more refined comprehension of rift transfer in 
North Iceland.

This paper details new U–Pb zircon ages from six silicic 
formations belonging to the ToCV via secondary ion mass 
spectrometry (SIMS; five formations) and chemical abra-
sion–isotope dilution thermal ionization mass spectrometry 
(CA-TIMS; one formation) methods. The SIMS method is a 
high-spatial resolution in situ technique and was employed 
in an early stage of the study to obtain, in one batch, a reli-
able idea about the age of the volcano and its chronological 
evolution. The CA-TIMS method is a mineral-dissolution 
technique that results in higher attainable precision than the 
SIMS method and was employed in a later phase to provide 
accurate age data for the youngest outcropping rhyolite lava 
and thereby a more precise conception of the absolute lon-
gevity of rhyolite activity at the volcano and, simultaneously, 
better constraints on the duration of a time gap in the strata 
pile, indicated by earlier research and supported but abridged 
by the SIMS age data. The present study was conducted syn-
chronously with field mapping and palaeomagnetic meas-
urements in the study area, with corollary sampling and 
whole-rock geochemical analyses (detailed separately). In 
the present paper, we couple the six new U–Pb zircon ages 
with these observations, as well as with the abovementioned 
40Ar/39Ar ages from the study area (by Supakulopas 2018), 
to address the development and life-span of the ToCV and 
the volcano-tectonic evolution of central North Iceland.

Geological background

The region of the Eyjafjörður fjord is composed of sequences 
of Neogene flood basalts, commonly interbedded with thin 
layers of lithified sediments which are typically distinctively 
red and consisting largely of weathered, wind-blown tephra 

mixed with ancient soils (Sæmundsson 1979; Sæmundsson 
et al. 1980; Roaldset 1983). As the originally sub-horizon-
tal lava pile now tilts regionally a few degrees to the south 
(SW in the northern part, turning to SE in the southern part; 
Sæmundsson et al. 1980), the oldest lavas occur near the 
mouth of the fjord while strata from Early Pleistocene are 
present in the south at the head of the valley Eyjafjarðardalur. 
Several Miocene central volcanoes have been identified in 
the region (e.g., Hjartarson and Sæmundsson 2014). Two of 
these, the Torfufell and Tinná central volcanoes, are ~ 15 km 
apart and have been proposed to be related and hence of 
similar age, 5–6 Ma (e.g., Hjartarson 2003; 2005), while 
Jóhannesson (1991) suggested a higher age for the ToCV 
than the TiCV, i.e., 6–7 Ma. A stratigraphically constrained 
ToCV rhyolite yielding 40Ar/39Ar age of 7.12 ± 0.10 Ma in 
Mt. Hólafjall (Supakulopas 2018) indicated an even greater 
age than both proposals.

The present study area is approximately 40 km south of 
the largest town in North Iceland, Akureyri (Fig. 1a and 
Fig. 2). The main features of the bedrock in the area are 
illustrated in small-scale geological maps of Iceland (e.g., 
Hjartarson and Sæmundsson 2014), delineating silicic vol-
canic formations—centered in Mt. Torfufell and enveloped 
by basaltic lavas—just beneath the boundary between the 
Miocene and Pliocene periods. Stratigraphic profiling and 
palaeomagnetic measurements have demonstrated the stra-
tigraphy of Mt. Hólafjall in the eastern part of the area in 
more detail (Kristjánsson et al. 2004; Supakulopas 2018). 
Although only partly covering the ToCV, the study by Supa-
kulopas (2018) indicated a ~ 1.5 Ma hiatus between the rhyo-
lite lavas of the ToCV and the overlying basalts.

Field mapping and sample selection

The present study was a part of a field mapping (includ-
ing stratigraphic and geomagnetic profiling) and geochemi-
cal investigation in the area around Mt. Torfufell (detailed 
separately). The field observations demonstrate that tec-
tonic uplift and glacial erosion has exposed extrusive rocks 
and shallow intrusions of the ToCV. Outcropping silicic 
and intermediate extrusive units belonging to the volcano 
are thickest in the northern part of Mt. Torfufell (Fig. 2), 
where they form a ~ 400-m-thick succession. The lower-
most ~ 30–60 m of this pile are composed of andesite and 
dacite lavas, which are overlain by thicker rhyolite lavas. 
Different palaeomagnetic polarities and sediments and 
individual basaltic to andesitic lavas separating the rhyo-
lite lavas manifest that these are several discrete formations. 
Below the silicic/intermediate extrusive formations is a 
200–300-m-thick stack of basaltic lavas, featuring unusu-
ally thin (individual layers typically < 5 m) ā´a lavas. This 
stack is separated from the silicic/intermediate volcanic 
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products in several outcrops by a notable tephra-, smectite-, 
and fossil-bearing sediment horizon. According to our geo-
chemical data, the composition of these unusually thin ā´a 
lavas is rather evolved and more evolved than underlying 
plateau basalts (~ 50–52 compared to ~ 48–49 wt%  SiO2; 
samples 24072017–0 to -3 and 20180903–1 in Table S1 of 
the Supplementary Material), indicating longer residence 
time of the magma in the shallow crust. Such unusually thin, 
phenocryst-free basaltic lava flows have been observed to 
be abundantly erupted from Icelandic central volcanoes 
(Sæmundsson 1979) and interpreted to be abnormally thin 
as they were erupted onto a sloping landscape resulting from 
the buildup of central volcanism (Walker 1963). Therefore, 
we have a reason to assume that these thin ā´a lavas below 
the silicic/intermediate extrusive portion of the ToCV are 
sourced from the central volcano and erupted during its early 
phases. Later activity at the central volcano was typified by 
effusive and explosive rhyolitic eruptions and less frequent 
and smaller basaltic andesite to dacite events, ceasing with 
a Plinian eruption. The silicic volcanism was accompanied 
by silicic intrusions that are exposed at shallow levels (up 
to ~ 300 m below the base of the silicic/intermediate lavas), 
with evidence of magma ascending through transgressive 
sills and erupting through sub-vertical dykes as well as sub-
cylindrical conduits. Basaltic lavas were formed concur-
rently with the rhyolites and continued to flow alongside 
the volcanic edifice after the end of silicic activity, eventu-
ally burying the highest rhyolitic peaks. A swarm of basaltic 
dykes is recorded north of the central volcano (north of the 
map in Fig. 2), but no clear evidence has been observed of 
whether this dyke swarm belongs to the volcanic system 
of the ToCV or not. While dykes belonging to this swarm 
generally trend NNE-SSW, similar to the regional trend of 
basaltic dykes in the Tröllaskagi peninsula (Sæmundsson 
et al. 1980), silicic dykes are concentrated in the northern 
part of Mt. Torfufell, most often striking from ENE-WSW 
to ESE-WNW. Our strike and dip measurements indicate 
that the entire strata succession of the study area is dipping 
gently (from ~ 5 to 11°) towards southeast, while steeper (up 
to ~ 16°) and more southerly dips (SSE to SSW) are locally 
indicated in the central zone of the volcanic complex, i.e., in 
the northern and western slopes of Mt. Torfufell.

Six silicic rock samples from the ToCV were selected, 
on grounds of the geological mapping and in terms of strati-
graphic relations, for U–Pb zircon dating by the SIMS and 
CA-TIMS methods. Four of the selected samples are from 
volcanic formations, located at different stratigraphic lev-
els, including samples marking both the base and the top of 
silicic volcanic products as observed in outcrops. Three of 
these volcanic formations were formed in effusive eruptions 
(i.e., lavas) while one is the result of an explosive event (i.e., 
ignimbrite). The remaining two samples are from intrusive 
units; one of these is from a sill while the other is from the 

interiors of a volcanic conduit (plug). Sampling sites are pre-
sented in Fig. 2 in comparison with previously published age 
data from the study area. Descriptions of the six host sam-
ples and their stratigraphic levels are presented in Table 1. 
Our geochemical data, available from 5 of the host samples, 
indicate that they span a compositional range from ~ 65 to 
75%  SiO2. In order to provide background information on 
the geochemistry of the ToCV, we introduce geochemi-
cal analysis results of 27 additional rock samples from the 
study area (Tables S1 and S2 of the Supplementary Material; 
detailed separately by Árnadóttir et al., In Prep.). These sam-
ples, mostly collected from the central volcano itself while 
a few are obtained from enveloping lavas, demonstrate that 
the rhyolites of the ToCV are mildly alkalic, i.e., they have 
a transitional character towards alkaline rocks, and tend to 
have high silica contents. The geochemical data show strong 
similarities with the neighboring TiCV, and a comparison 
with data from the neovolcanic zones of Iceland indicates 
that basalt to rhyolite products belonging to these two vol-
canoes are in general more enriched than typical rift zone 
magmas (Fig. 3).

Zircons were identified in thin sections of four of the six 
rock samples; in three samples (07072015–2, 27072017–1, 
26082015–25) as inclusions in plagioclase phenocrysts, and 
in the groundmass of one sample (10072017–3). Neverthe-
less, it turned out via mineral separation processes that all 
six host samples featured zircon crystals in different abun-
dances. The highest zircon yield was obtained from sam-
ples 10072017–3 and 24072014–4 (~ 120–150 grains per 
kg rock) while samples 07072015–2, 20190823–3, and 
26082015–25 yielded lower abundances (~ 40–70 grains 
per kg rock). The lowest yield was obtained from the dacite 
sample, 27072017–1 (~ 16 grains per kg rock). The zircons 
are commonly ~ 50–200 µm along the c-axis, elongate and 
prismatic, typically subhedral and less commonly euhe-
dral, and often with pyramidal terminations (see examples 
in Fig. 4a). Common length-to-width ratios are from 2:1 
to 3:1, while some crystals are very long (up to more than 
300 µm in length) and thin, with ratios up to 6:1. Catholu-
minescence (CL) images, available from the CA-TIMS dated 
zircons (20190823–3), do typically not show very distinct 
brightness variations or strong CL intensities within the 
crystals as would be expected for well-developed zoning 
textures indicating distinct growth regions (Fig.S4 of the 
Supplementary Material). These images do, however, imply 
zoning in a few crystals and even rounded inherited cores; 
these crystals were avoided during dating (see examples of 
dated vs. avoided crystals in Fig. 4a). Only backscattered 
electron (BSE) images are available from the SIMS dated 
zircons (Fig.S4 of the Supplementary Material), which are 
not very helpful for illustrating internal zircon textures. 
Although test line scans (from energy-dispersive X-ray 
spectroscopy (EDS) analysis using a scanning electron 
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microscope (SEM)) through cross-sections of several ran-
domly selected zircons indicate that distribution of elements 
within the crystals is rather homogeneous (see example in 
Fig. 4b), it cannot be excluded that some of the SIMS dated 
zircons have inherited domains. In order to reduce the influ-
ence of such domains, the zircon cores were avoided as much 
as possible during dating. Inclusions of other minerals are 
rather commonly observed in zircons from all samples (see 
example in Fig. 4b); these were also evaded during dating.

Analytical methods

Secondary ion mass spectrometry

U–Pb dating of zircons from host samples 20172017–1, 
26082015–25, 07072015–2, 24072017–4, and 10072017–3 
was carried out via in  situ measurements using the 
CAMECA ims 1280 in the NordSIMS facility, Swedish 
Museum of Natural History, Stockholm. Zircons were sepa-
rated from these five host samples using standard crushing, 
sieving, and density and magnetic methods by Geotrack in 
Australia. The zircon grains were mounted by hand onto 
a two-sided tape along with reference materials and then 
epoxy-casted and polished to expose grain interiors. The 
polished mount was imaged using backscattered electron 
signals in SEM (Hitachi TM3000 SEM at the University of 
Iceland) in order to carefully map the sample mount prior to 
dating, to confirm zircon identities of crystals, and to iden-
tify internal structures such as inclusions and cracks that 
were avoided during the dating. The zircon cores were also 
avoided during dating in order to exclude potential inherit-
ance as possible.

The analytical and calibration procedures generally fol-
lowed those described in Whitehouse and Kamber (2005) 
and Jeon and Whitehouse (2015), with a few differences 
noted in Supplementary Text S1. In total, 97 U–Pb analyses 

were carried out on 92 zircon grains from the five samples 
(all analyzed spots are presented in Fig.S4 of the Supple-
mentary Material) and thereof, 7 analyses were excluded, 
resulting in a total of 90 analyzed spots. Eleven grains were 
selected from sample 27072017–1 (12 spots; thereof 2 spots 
were discordant and excluded (assumed as contamination 
due to abnormally high age; 529 and > 1200 Ma)); 19 grains 
from sample 26082015–25 (21 spots; thereof 2 spots were 
discordant and excluded (assumed as contamination due to 
abnormally high age; 73 and > 1200 Ma)); 22 grains from 
07072015–2 (22 spots; no spot excluded); 21 grains from 
24072017–4 (21 spots; no spot excluded); and 19 grains 
from 10072017–3 (21 spots; thereof 3 spots were excluded 
due to outstandingly high common Pb).

Chemical abrasion–isotope dilution thermal 
ionization mass spectrometry

Zircons from host sample 20190823–3 were dated at the 
Pacific Centre for Isotopic and Geochemical Research 
(PCIGR) at the University of British Columbia (UBC) by 
CA-TIMS method. The sample was prepared at the PCIGR, 
including separation of zircon crystals from the host sam-
ple and CL SEM imaging. Zircon crystals were subjected 
to a pre-treatment combining annealing and a modified 
version of Mattinson’s (2005) chemical abrasion method 
for removing zircon domains that have lost lead from the 
interior of grains (see Supplementary Text S1). By this, the 
CA-TIMS method can isolate and analyze closed-system, 
high-quality domains within the zircon grains and exclude 
discordance due to loss of lead. The mineral-dissolution 
method furthermore samples larger volumes of material 
than the SIMS method, resulting in higher attainable preci-
sion. Prior to the chemical abrasion, 33 zircon grains were 
selected for in situ determination of trace element concentra-
tions by LA-ICPMS (the LA-ICPMS conditions are given in 
Supplementary Table S7; the method is described in Sup-
plementary Text S1). Six zircon grains were then selected 
for CA-TIMS analysis based on the LA-ICPMS results in 
combination with the prismatic morphology and the absence 
of inclusions, avoiding those crystals with rounded edges. 
U–Pb geochronology methods for isotope dilution thermal 
ionization mass spectrometry follow those previously pub-
lished by Wall et al. (2018), detailed in Supplementary Text 
S1. Chemical abrasion in concentrated HF at 190° for 12 h 
resulted in only minor dissolution of the zircon crystals.

Results

Our U–Pb zircon ages (weighted averages) range from 
7.15 ± 0.12 to 6.76 ± 0.02  Ma (error is in 2σ); that is 
Late Miocene. Weighted mean ages for each sample are 

Fig. 3  Geochemistry of the ToCV in comparison with samples from 
the neovolcanic zones in Iceland, the TiCV and the Neogene East and 
West fjords. The samples dated in this study are signified with bright 
red diamonds. Comparison data is from Clay et al. (2015), Debaille 
et  al. (2009), Fitton et  al. (1997), Flude et  al. (2010), Fowler and 
Zierenberg (2016), Guðmundsdóttir et  al. (2011), Gunnarsson et  al. 
(1998), Harðarson (1993), Hardarson and Fitton (1997), Hardarson 
et al. (1997), Hjartarson (2003), Kuritani et al. (2011), Lacasse et al. 
(2007), Larsen et  al. (1999; 2001; 2002), Maclennan et  al. (2001), 
Martin and Sigmarsson (2007), Mattsson and Óskarsson (2005), 
McGarvie et  al. (1990; 2007), Meara et  al. (2020), Nicholson et  al. 
(1991), Óladóttir et  al. (2011), Pollock et  al. (2014), Selbekk and 
Trönnes 2007, Sigvaldason (1979), Sinton et al. (2005), Slater (1996), 
Slater et  al. (2001), Viccaro et  al. (2015), and Zierenberg et  al. 
(2013). The total alkali-silica diagram (TAS; uppermost left) shows 
root names from Le Bas et al. (1986). The  TiO2 vs Zr/(P2O5 × 10,000) 
plot shows the discrimination between alkali basalts and tholeiite 
basalts after Winchester and Floyd (1976)

◂
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presented in Table 2 and Fig. 5a, while detailed results are 
listed in Tables S3-S4 and Figures S1-S4 of the Supple-
mentary Material. Results of LA-ICPMS U-(Th-)Pb and 
trace element analysis of zircons from sample 20190823–3 
are given in Tables S5-S6 of the Supplementary Mate-
rial. Very similar ages were obtained for the two intrusive 
units, showing an age of 7.00 ± 0.06 Ma for the sill (sam-
ple 07072015–2) and 7.02 ± 0.05 Ma for the volcanic plug 
(sample 24072017–4). Slightly higher ages were obtained 
for the early silicic extrusive units: 7.03 ± 0.15 Ma for the 
dacite lava (sample 27072017–1) while the highest obtained 
U–Pb mean age is the ignimbrite age, 7.15 ± 0.12 Ma (Sam-
ple 26082015–25), although located slightly higher in the 
stratigraphy than the dacite. The ages of the upper rhyo-
lite lavas are 6.85 ± 0.09 Ma for the Glerá lava (sample 
10072017–3) and 6.76 ± 0.02 Ma for the uppermost rhyo-
lite in Mt. Torfufell (sample 20190823–3). Very low 2σ and 
mean square weighted deviation (MSWD) were obtained 

for the CA-TIMS dated sample compared to the SIMS dated 
samples. Four SIMS analyses were rejected to get statisti-
cally meaningful MSWD (a value under 2) and probability 
(higher than 0.05 for 95% confidence level), 2 rejections in 
07072015–2, 1 in 27072017–1 and 1 in 26082015–25 (blue 
bars in Fig. 5a and Fig.S2 of the Supplementary Material). 
However, while MSWD is < 2 for most SIMS samples, high 
MSWDs (> 4) were obtained for two samples (26082015–25 
and 10072017–3). The weighted averages of these two sam-
ples also have zero probability, meaning that their data are 
too scattered to get a statistically grouped age—and the 
probability density plots for these two samples show more 
than one peak (while the plots for the other samples show 
a single peak), indicating that the data from each sample 
consists of more than one population (Figures S2 and S3 of 
the Supplementary Material). Since the zircons are young 
and fairly low in U, it is not reasonable to assign this to Pb 
loss, as might be the case for older and/or U-rich zircons. 

Fig. 4  a CL images of zircons from sample 20190823–3. Numbered 
zircon grains were dated with the CA-TIMS method (with red circles 
indicating location of laser ablation inductively coupled plasma mass 
spectrometry (LA-ICPMS) spots) while zircons without numbers 
(and without red circles) are examples of avoided grains. b Example 
of a random line scan test (from EDS analysis using a SEM) through 

a cross-section of a zircon dated with the SIMS method (au = arbi-
trary units). The alignment of the line scan is shown to the left. The 
large dark area inside the crystal is a spot/crater generated by the 
defocused beam during SIMS dating. A ~ 10 μm inclusion, observed 
next to the spot (indicated with an arrow) is rich in Ca and rimmed by 
Al- and Si-rich material

Table 2  Summary of U–Pb radiometric data. Ages are given as weighted averages. Detailed results are listed in Tables S3 and S4 in the Supple-
mentary Material

Sample ID Rock type Weighted average U–Pb age 
(Ma)/TuffZirc age (Ma)

2σ Method Number of dated 
grains/analyzed spots

MSWD

24072017–4 Volcanic plug 7.015  ± 0.048 SIMS 21/21 1.13
07072015–2 Silicic sill 7.002  ± 0.064 SIMS 22/22 1.5
27072017–1 Dacite lava 7.03  ± 0.15 SIMS 9/10 1.8
26082015–25 Ignimbrite 7.15/7.03  ± 0.12/ + 0.18–0.07 SIMS 17/19 4.3
10072017–3 Rhyolite lava 6.85/6.93  ± 0.091/ + 0.08–0.1 SIMS 17/18 5.1
20190823–3 Rhyolite lava 6.757  ± 0.015 CA-TIMS 6/N.A 0.98
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Instead, we rather assume that the dispersion in these two 
samples is related to recycling/mixing of older zircons into 
younger melts. To improve the situation, the data from these 
two samples were processed using the TuffZirc algorithm 
of Isoplot, which is largely insensitive to both Pb loss and 
inheritance and looks at the data statistically for a coherent 
group (Ludwig and Mundil 2002; Ludwig 2003). The ages 
calculated by TuffZirc are 7.03 + 0.18/ − 0.07 Ma for sample 
26082015–25 (95.1% conf, from a coherent group of 12) 
and 6.93 + 0.08/ − 0.1 Ma for sample 10072017–3 (93.5% 
conf, from a coherent group of 11; Fig. 5a and Fig.S3 of the 
Supplementary Material).

Discussion

The silicic samples selected for this study are from vol-
canic formations, located at different stratigraphic levels, 
and intrusive units of the ToCV. By this, we were able to 
provide geochronological data that can be interpreted to 
represent the age range of silicic magmatism and volcanism 
at the volcano. We base the timing of the initiation of the 
ToCV on Supakulopas’s (2018) 40Ar/39Ar 7.77 ± 0.15 and 
7.98 ± 0.15 Ma ages, obtained from samples collected above 
and below the stratigraphic level of the base of the pile of 
thin basaltic ā’a lavas that we assume to define the onset of 
eruptions at the central volcano (Fig. 5a). However, as these 
two ages are inconsistent to the stratigraphic order (i.e., the 
higher age was obtained for the lava that is located higher 
in the strata pile while the lower lava gave younger age), the 
estimated timing of the establishment of the edifice base 
is quite imprecise (therefore given here as ~ 7.8–8.0 Ma). 
While no age determinations are available for intermediate 
formations, correlation with Supakulopas (2018) and the 
geomagnetic time scale provides a rough estimate, indicat-
ing that intermediate volcanism began during geomagnetic 
subchron C3Br.2r (i.e., somewhere on the range from ~ 7.3 
to ~ 7.5 Ma; Ogg 2020).

Our oldest weighted average U–Pb age (7.15 ± 0.12 Ma) 
was obtained for the ignimbrite sample (26082015–25), 
which appears to be located higher in the strata pile than 
the younger dacite sample (27072017–1; 7.03 ± 0.15 Ma). 
As the MSWD for the ignimbrite sample is high (4.3), and 
as the probability density plot for this sample indicates that 
the data consists of more than one population (Fig.S3 of the 
Supplementary Material), it may be speculated that there is 
an older (~ 7.4 Ma) component in a ~ 7 Ma melt that could 
explain the higher weighted average U–Pb age, suggesting 
that the ignimbrite and the dacite were emplaced in close 
temporal proximity. The 7.03 + 0.18/ − 0.07 Ma age of the 
ignimbrite, extracted from the most-coherent population by 
the TuffZirc algorithm of Isoplot (Ludwig and Mundil 2002; 
Ludwig 2003), supports this idea (Fig. 5a and Fig.S3 of the 

Supplementary Material). The older component in the ign-
imbrite may e.g., be derived from zircon inclusions in plagi-
oclase phenocrysts, and/or from silicic lithics in the whole-
rock sample, which would imply silicic magmatism as early 
as 7.4 Ma at the ToCV. However, as Supakulopas’s (2018) 
7.12 ± 0.10 Ma 40Ar/39Ar age is from the lowermost rhyolite 
lava in Mt. Hólafjall, it can be considered to approximately 
mark the onset of silicic volcanism at the ToCV.

The two youngest weighted average ages, 6.85 ± 0.09 and 
6.76 ± 0.02, are from lavas representing late silicic volcan-
ism at the ToCV (samples 10072017–3 and 20190823–3, 
respectively). The weighted average of sample 10072017–3 
has zero probability; MSWD for this sample is high (5.1) 
and the relative probability plot indicates that the data con-
sists of more than one population (~ 7.0 and ~ 6.8 Ma; Fig-
ures S2 and S3 of the Supplementary Material). The most-
coherent group of zircon ages, determined using the TuffZirc 
algorithm of Isoplot (Ludwig and Mundil 2002; Ludwig 
2003), provided an age of 6.93 + 0.08/ − 0.1 Ma (Fig. 5a and 
Fig.S3 of the Supplementary Material). While this sample 
is not confidently assigned to the youngest rhyolite lava at 
the volcano, sample 20190823–3 is collected at the highest 
rhyolite peak and has MSWD very close to 1 (0.98), show-
ing decidedly that silicic activity continued at the ToCV 
until 6.76 ± 0.02 Ma. Field relations indicate that the rhyo-
lite activity was succeeded by regional basaltic volcanism. 
Supakulopas (2018) provided a 5.73 ± 0.14 Ma age for a 
basaltic lava onlapping a rhyolite formation in Mt. Hólafjall 
which, according to his interpretation, was formed during 
geomagnetic subchron C3Bn (~ 7.21–7.10 Ma), thereby 
identifying a ~ 1.5 Myr hiatus between these sequences 
(Fig. 5a). This hiatus is somewhat shortened by at least four 
lavas that are present between these two units, and due to the 
palaeo-landscape, the length of the hiatus may vary within 
the area, probably increasing in length at the highest rhyo-
lite peak. Nevertheless, as we date the youngest rhyolite at 
6.76 ± 0.02 Ma, it may be assumed that ~ 1 Myr passed from 
the extinction of the ToCV until basaltic lavas from nearby 
fissure swarms began to onlap the volcano.

The available age data indicate that the ToCV was active 
from ~ 7.8–8.0 to 6.76 ± 0.02 Ma, or for ~ 1–1.2 Myr, and 
that silicic magmatism and volcanism occurred during the 
last ~ 0.4 Myr of the volcano’s life-span. Consistent with 
Supakulopas’ (2018) conclusions, our age data show that 
the silicic rocks of the ToCV are 1–2 Myr older than sug-
gested by earlier researchers (e.g., Hjartarson 2003; 2005). 
The longest hiatus in the research area appears to be between 
the volcano’s uppermost rhyolites and the younger, succeed-
ing basalts. Although relatively shorter than the time gap 
recorded in the Flateyjarskagi peninsula, it may be specu-
lated if the hiatus observed above the ToCV is potentially 
an extension of this major unconformity and thereby related 
to a plate boundary shift. If so, and according to the general 
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understanding of the Flateyjarskagi unconformity, the ToCV 
would be formed in the now extinct SHRZ, while the basalt 
lavas above the hiatus would be formed in the NVZ. The 
Flateyjarskagi hiatus appears to span the time from ~ 10 
to ~ 6 Ma in the north (i.e., by the peninsula’s SE end) and 
from ~ 7 to ~ 5 Ma in the south (i.e., in the southern part of 
the Fnjóskadalur valley; Jancin et al. 1985; Cotman 1979; 
Fig. 1b, c), thus spanning the Miocene-Pliocene bound-
ary (~ 5.3 Ma), while the lavas onlapping the ToCV record 
ongoing volcanism across this boundary (Figs. 2 and 5a), at 
least until 5.05 Ma (via stratigraphic correlation with Supa-
kulopas’s (2018) 40Ar/39Ar ages). On the other hand, the 
hiatus above the ToCV may simply represent a local break 
at the end of the volcano’s active period. Assuming that the 
geodynamic setting since the volcano’s lifetime until present 
was dominated by spreading, the distance between the ToCV 
and the present NVZ (~ 70 km) is consistent with origin 
within the NVZ and a mean spreading half-rate of ~ 1 cm/
year (e.g., Árnadóttir et al. 2008). Furthermore, consider-
ing the general assumptions that regional lava dips in Ice-
land result from loading by voluminous lava flows in the 
respective volcanic zone (e.g., Pálmason 1973; Pálmason 
and Sæmundsson 1974; Walker 1960), the regional south-
east dip direction of the strata in the ToCV area might be 
taken to indicate origin within a zone that was roughly coin-
cident with the present NVZ. This would agree with the 
hiatus representing only a local break and would indicate, 
as no major hiatuses are present, that a time gap related to 
a rift relocation is non-existent in the ToCV area. If so, the 
new U–Pb zircon ages from the ToCV may be considered 
to provide timing of silicic magma erupted soon after its 
parent rift relocated, and thereby constrains on the oldest 
silicic rocks formed at the incipient rift. Similar findings 
of appreciable silicic material erupting soon after reloca-
tion of the parent rift (at ~ 5.4–3.9 Ma) are documented at 
the Hafnarfjall-Skarðsheiði central volcano in West Iceland 
which began forming nearly contemporaneously with the 
relocation of the southern segment of the SHRZ to the WVZ 
(Banik et al. 2018). However, the age progression (younging 
to the west) of the E-W aligned ToCV and the 5–6 Ma TiCV 
remains enigmatic as it conflicts with concepts of unidirec-
tional spreading. Considering the age of the main formation 

of the TiCV, ~ 5.5 Ma (Hjartarson 2003; 2005), it might be 
suggested that the TiCV originated inside the NVZ. The 
problem is that the volcano is 90 km west of the NVZ which 
would indicate a half spreading rate of 1.7 cm/year (Hjar-
tarson 2009). Therefore, the TiCV appears to have formed 
outside the NVZ and to the west of the then extinct ToCV. 
As such, the results of our study do not align with the gener-
ally established geotectonic framework (e.g., Sæmundsson 
1979; Einarsson 2008). Therefore, to provide an explanation 
for this discrepancy, we propose a new hypothesis (Fig. 5b).

At ~ 8 Ma, the center of the mantle plume was located just 
east of the ToCV (an assumption based on Steinthorsson 
et al. (1985) and Martin et al. (2011)), after having reached 
a critical distance from the northern segment of the SHRZ, 
already weakening the lithosphere, resulting in partitioned 
spreading between the SHRZ and the incipient NVZ. To 
accommodate this rearrangement, the southern end of the 
NVZ was linked with the SHRZ by a transverse zone which 
was the precursor of the MIB. Similar to the present MIB, 
we propose that this proto-MIB was leaky, i.e., comprising 
a small component of opening, producing sufficient room 
for magma to erupt. Volcanic activity at this transverse zone 
was initially most effective at the east end, at the junction 
of the proto-MIB with the incipient NVZ, approximately 
by the center of the mantle plume, then gradually migrated 
westward—away from the center—resulting in the observed 
age progression of the Torfufell and Tinná central volca-
noes. Lavas from the TiCV may have flowed from the west 
and reached the area around the ToCV and partly or totally 
covered the edifice along with lavas from the NVZ flowing 
from the east. This interpretation requires a ~ 50 km south-
ward migration of the transverse zone with time, from the 
proto-MIB to the present location of the MIB. While such 
southward advancement could probably be explained partly 
by the WNW migration of the tectonic plates relative to the 
mantle plume, it may also be a result of southward propa-
gation of the new rift zone, similar to the indicated south-
ward migration of the SISZ with propagation of the EVZ 
(e.g., Einarsson 1991; Khodayar and Franzson 2007; Karson 
2017) and northward migration of the TFZ with propagation 
of the NVZ (e.g., Karson 2017; Karson et al. 2019).

Our hypothesis does have some support from the whole-
rock geochemical data that indicate that the rock suite of 
the ToCV is transitional in nature (i.e., has a transitional 
character towards alkaline rocks) with basalts that are 
slightly higher in  TiO2 and  K2O compared to typical rift 
zone basalts and rhyolites that have higher  K2O and lower 
FeO than typical rift zone rhyolites (Fig. 3; Tables S1 and 
S2 of the Supplementary Material). A comparison with 
the neighboring TiCV shows strong similarities between 
these two central volcanoes and indicates that basalt to 
rhyolite products of both volcanoes are, in general, more 
enriched than typical rift zone magmas (Fig. 3). More 

Fig. 5  a New U–Pb zircon ages, combined with Supakulopas ‘ (2018) 
40Ar/39Ar ages and coupling of the schematic, composite stratigraphic 
column with the geomagnetic polarity time scale. The schematic 
stratigraphic column (same color legend as in Fig.  2) is based on 
original fieldwork, integrated with data by Kristjánsson et al. (2004) 
and Supakulopas (2018) from Mt. Hólafjall. The weighted average 
plots were made with Isoplot (Ludwig 2012). TuffZirc age plots for 
the two high-MSWD samples are presented in the upper right cor-
ner (generated using the TuffZirc algorithm of Isoplot by Ludwig and 
Mundil 2002; detailed in Fig.S3  of the Supplementary Material). b 
Schematic illustration of our new hypothesis; proposed to explain a 
discrepancy (younging towards west) in the ages of TiCV and ToCV

◂
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importantly, these two volcanoes feature rhyolites similar 
to rhyolites associated either with the MIB or those in the 
propagating EVZ, or even the intraplate ÖVB, while their 
basalts are similar to those from the junction of the WVZ 
with the SISZ. Nonetheless, the new hypothesis awaits 
critical testing that optimally will involve extensive struc-
tural mapping along the hypothesized proto-MIB, to seek 
evidence of potential transform-related structures that 
may be compared with future collection of isotopic data 
from zircon crystals and whole rocks of the ToCV and 
TiCV and may be indicators of petrogenetic environments 
for silicic magmas at these volcanoes (see Carley et al. 
2020). To obtain more robust geometric relationships in 
the central north region of Iceland, we consider dating of 
the remaining undated silicic centers in the region to be 
essential. Dating of additional samples from the TiCV and 
the two adjacent volcanoes in the Flateyjarskagi peninsula 
that can confidently confirm their ages would furthermore 
strengthen the dataset, and a closer look at the Víðidalur 
central volcano would be of particular interest as recent 
U–Pb zircon ages (6.3–7.3 Ma; Carley et al. 2020) docu-
ment silicic magmatism at the SHRZ concurrently with 
silicic activity at the ToCV.

Conclusions

The U–Pb zircon ages (weighted averages) presented here 
range from 7.15 ± 0.12 to 6.76 ± 0.02 Ma, indicating that 
silicic magmatism and volcanism of the Torfufell central 
volcano extended over ~ 400 kyr. Correlations with previ-
ous work predict that the life-span of the central volcano is 
about or just over 1 Myr, commencing with basaltic volcan-
ism at ~ 7.8–8.0 Ma. A ~ 1 Myr volcanic hiatus is recorded 
between the uppermost rhyolites of the central volcano 
and the succeeding basaltic lavas, from 6.76 ± 0.02 to 
5.73 ± 0.14 Ma, and although broadly contemporaneous with 
(but shorter than) the Flateyjarskagi unconformity, we pro-
pose that this hiatus represents a local break at the end of the 
volcano’s active period. The new U–Pb age data demonstrate 
that the silicic portion of the Torfufell central volcano was 
formed nearly synchronously with a major rift relocation 
in North Iceland and may provide constraints on the oldest 
silicic rocks formed at the incipient Northern volcanic zone. 
After its extinction, the Torfufell central volcano was buried 
beneath younger formations making up the lava succession 
above the hiatus. We propose that these younger lavas origi-
nated from the large Tinná central volcano in the west as 
well as from the newly formed NVZ in the east. Our results 
pertain to a key area in the evolving understanding of the 
development of crustal accretion in Iceland and underline 

the extensive room for additional high-quality radiometric 
dating on silicic activity in the central north region.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00445- 023- 01667-8.
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