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Abstract
Probabilistic forecasting of volcanic ash dispersion involves simulating an ensemble of realistic event scenarios to estimate the
probability of a particular hazard threshold being exceeded. Although the number of samples that make up the ensemble, how
they are chosen, and the desired threshold all set the uncertainty of (or confidence in) the estimated exceedance probability,
current practice does not quantify and communicate the uncertainty in ensemble predictions. In this study, we use standard
statistical methods to estimate the variance in probabilistic ensembles and use this measure of uncertainty to assess different
sampling strategies for the wind field, using the example of volcanic ash transport from a representative explosive eruption in
Iceland. For stochastic (random) sampling of the wind field, we show how the variance is reduced with increasing ensemble
size and how the variance depends on the desired hazard threshold and the proximity of a target site to the volcanic source. We
demonstrate how estimated variances can be used to compare different ensemble designs, by comparing stochastic forecasts
with forecasts obtained from a stratified sampling approach using a set of 29 Northern European weather regimes, known
as Grosswetterlagen (GWL). Sampling wind fields from within the GWL regimes reduces the number of samples needed to
achieve the same variance as compared to conventional stochastic sampling. Our results show that uncertainty in volcanic
ash dispersion forecasts can be straightforwardly calculated and communicated, and highlight the need for the volcanic ash
forecasting community and operational end-users to jointly choose acceptable levels of variance for ash forecasts in the future.

Keywords Volcanic ash · Probabilistic forecasts · Confidence intervals · Weather patterns

Introduction

A key consideration in forecasting the spatial extent and
intensity of future natural hazard events is accounting for
the variability in environmental conditions that influence
them. This is commonly investigated using a probabilistic
approach, which involves simulating sufficiently many real-
istic event scenarios, where environmental conditions are
sampled from a distribution of sufficient duration, to incorpo-
ratemuch of the likely variability (Bonadonna, 2006; Jenkins
et al., 2012). The simulation results are then aggregated
to estimate the probability of exceeding a given threshold,
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or the threshold exceeded at a given probability (Rougier,
2013). In the volcanological literature, there is no commonly
applied principle that informs the number of simulations that
is ‘sufficient’ to characterise the variability of environmental
conditions, so choices are often made on a pragmatic basis
(Bonadonna et al., 2005; Jenkins et al., 2012, 2015; Harvey
et al., 2020; Zidikheri and Lucas, 2021). Furthermore, these
predictions are often statedwithout a confidenceboundon the
prediction, which is critical given that the use of simulations
to determine hazard probabilities is an exercise in statisti-
cal estimation (Rougier, 2013). In this paper, we explore the
relationship between sample size, uncertainty, and sampling
strategies in probabilistic assessments of volcanic ash dis-
persion.

Atmospheric dispersion of volcanic ash is driven by wind
fields and atmospheric turbulence; dispersion models are
forced using measured or interpolated wind fields (typically
reported as means at regular intervals), and turbulence is
parameterised within the models. Given a historical record
of wind fields, a convenient approach is to sample the wind
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fields stochastically by randomly selecting the start date in
this record (Bonadonna et al., 2005; Jenkins et al., 2012).
If the eruption source parameters are held constant to solely
investigate the influence of the environmental forcing, then
this is termed the ‘One Eruption Scenario’ (Bonadonna,
2006). The stochastic approach assumes that, with enough
randomly selected samples, the variability in the natural
occurrence of different wind directions and velocities will
be reproduced in the wind field data used and that there are
no underlying trends in the wind behaviour which evolve
over the long term (i.e. the dataset is stationary). Stochas-
tic sampling is widely used in probabilistic assessments of
volcanic ash dispersion (e.g. Connor et al. 2001; Bonadonna
et al. 2005; Bonadonna 2006; Macedonio et al. 2008; Jenk-
ins et al. 2012, 2015; Biass et al. 2016). These studies vary
widely in the number of individual simulations that are used
to construct the ensemble, for example from 73 (Macedonio
et al., 2008) to 19,200 (Jenkins et al., 2015), and primarily
limitations on computational resources or time are the justi-
fications given for the choice of ensemble size. Quantifying
the uncertainty associated with the choice of sample size is
crucial to appropriately balance the trade-off between accu-
racy and computation.

In this paper, we introduce the use of standard statisti-
cal measures to compare results from ensembles of different
sizes. The use of stochastic simulations to create probabilis-
tic ash dispersion forecasts is guided by the idea that a larger
number of simulations will better reflect the range of envi-
ronmental conditions that control dispersion. To be concrete,
we consider estimation of the expectation of some output of
the simulator, i.e. the average of that output over all possi-
ble inputs. A natural estimator for this quantity is the sample
mean, i.e. the average of that output over a finite number of
randomly sampled inputs, requiring that number of simula-
tor runs. The sample mean of only a few outputs is typically
quite variable, in the sense that it may be quite different to the
true mean, and one way to quantify this variability is through
the variance of the sample mean: the expected squared devi-
ation of the sample mean from the true mean. In fact, the
variance of the sample mean is inversely proportional to the
sample size itself, so running more simulations will decrease
the variance of the estimator.

A typical aim of stochastic simulation is to make a pre-
diction together with some quantification of the associated
uncertainty, and in some cases, it is necessary for the uncer-
tainty to be below some prescribed level (Rougier, 2013). A
standard way to accomplish the former is to construct confi-
dence intervals, which depend explicitly on the variance of
the estimator, and the former can be addressed by drawing
sufficiently many samples such that the variance is below
the prescribed level. Presenting the results of a stochastic
method without an assessment of the uncertainty in them

provides incomplete information to end-users, as previously
emphasised for the estimation of exceedance probabilities
for natural hazards generally (Rougier, 2013) and for ash
dispersion ensembles in particular (Marzocchi et al., 2015).
Looking forward, guidance for future operational probabilis-
tic forecasts of airborne volcanic ash concentration in the
atmosphere requires their results to be stated with associ-
ated confidence intervals or variance estimates (ICAO, 2017;
WMO-IUGG, 2019).

The use of stochastic sampling of wind fields for volcanic
ash dispersion assumes that the wind fields are stationary in
time, and so the historical record for wind fields provides
an appropriate distribution for wind fields at an unspecified
future date. There is, however, an underlying structure to the
wind fields over shorter-term intervals because they occur as
a result of large-scale weather systems. This structure allows
daily conditions to be identified as belonging to one of a set
of weather patterns; for example, the weather systems over
northern Europe have been classified into a set of 29 synoptic
(1000km scale) weather regimes, named Grosswetterlagen
(James, 2007). Grouping wind fields into regimes allows an
alternative stratified sampling approach to be taken (Cochran,
1977): sample forcing data from within individual weather
regimes, then weight each resulting set of simulations by the
frequency of occurrence of that pattern. The potential bene-
fits of this approach are to reduce the number of simulations
needed to reproduce the variability of the natural wind fields,
because the number of patterns is smaller than the number of
individual different states of the wind field. Stratified sam-
pling approaches are widely used to achieve reductions in
variance in other applications (e.g. Hens and Tiwari 2012;
D’Amato et al. 2012; Da Silva Fonseca Junior et al. 2015).

In this paper, wewill demonstrate the use of variance com-
putations to compare ensemble predictions of volcanic ash
dispersion and explore the potential of stratified sampling
using weather regimes to reduce the variance in those pre-
dictions. We use a dataset of simulations made using the
dynamic ash dispersion model FALL3D (Folch et al., 2009),
to assess potential ash impacts to northwestern Europe from
a representative eruption of an Icelandic volcano. The paper
is set out as follows: we first introduce the statistical back-
ground that quantifies the relationship between the number
of samples, the estimates of exceedance probabilities, and
the variance of these estimates. We then present the data
and methods used, and in the “Results” section, we present
results comparing the variances of ensembles of different
sizes and demonstrate that stratified sampling of weather
regimes reduces the number of samples needed to achieve
a desired variance. In the “Discussion” section, we discuss
the benefits of quantifying and presentingmeasures of uncer-
tainty, and of employing a stratified sampling approach, in
probabilistic assessment of volcanic ash dispersion.
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Statistical background

This section presents the background, principles, and defi-
nitions of stochastic sampling in the context of volcanic ash
hazard assessment. We introduce the widely used method
for estimating the exceedance probability of an ash con-
centration threshold and demonstrate the calculation of its
variance for use in the construction of confidence intervals
before proceeding to illustrate the relationship between such
probabilities and their variances. We show that the number
of samples required for exceedance probability estimates is
intrinsically linked to the magnitude of the probability itself
and, hence, the threshold of interest. Furthermore, the desire
to attain some level of confidence in the estimate suggests
the need for some minimum number of simulations, indi-
cating the existence of a relationship between the threshold
of interest, the variance of its exceedance probability esti-
mate, and the computational resources required for accurate
estimation.

An ensemble is constructed by carrying out a number of
simulations whose inputs are sampled stochastically from
some distribution which is assumed to be representative of
the real world. The outputs returned by the simulator are
aggregated to construct the resulting probabilistic assess-
ment of the eruption scenario. Deterministic simulators such
as FALL3D (Folch et al., 2009) simulate the dispersion and
transportation of ash over time given wind field data and
eruption source conditions. Since no additional stochasticity
is introduced by such a simulator, by keeping the volcanolog-
ical inputs constant across simulations and drawing wind
fields from historical data, we arrive at an ensemble of sim-
ulations whose variability is dependent only upon the wind
field data. Provided that the historical record is representa-
tive of the long-term variability in wind fields, the ensemble
should encapsulate the variability of likely real-world out-
comes of the eruption scenario.

Drawing such wind field data from a historical dataset
consists of choosing a date from the historical record and
providing the corresponding wind field data to the simulator.
We can therefore view the simulator output as the application
of a function to some randomly chosen start date.

Stochastic sampling for exceedance probability
estimation

Denoting the set of possible start dates byZ , we view the start
date provided to the simulator as a randomvariable Z which is
drawn uniformly at random (i.e. with equal probability) from
Z . In the One Eruption Scenario, since the volcanological
inputs remain fixed, we then view the output of the (deter-
ministic) simulator as the result of applying some function φ

to the realised value z of Z , φ(z). The exceedance probabil-
ity of an ash concentration threshold c μg m−3, is defined as

the probability that, at the location of interest, the maximum
ash concentration that persists for more than some specified
period of time (e.g. 24h) is greater than c μg m−3. Mathe-
matically, we can view this maximum concentration as the
result of applying a second function ψ to the output of the
simulator, which we represent by ψ ◦φ (z), where ◦ denotes
the composition of functions.

The random variable X = 1 {ψ ◦ φ (Z) ≥ c}, where 1

denotes the indicator function, then represents the event of
exceedance. X has a Bernoulli distribution with success
parameter p, which depends implicitly on ψ , φ, and c: X
takes value 1 with probability p and value 0 with proba-
bility 1 − p. The expectation of X is E[X ] = p, and its
variance (its expected squared deviation from its mean) is
Var(X) = E

[
(X − E[X ])2

] = p (1 − p). The exceedance
probability is precisely p, and we aim to estimate this value
with a high degree of confidence.

Typically, a probabilistic ash hazard assessment will esti-
mate the exceedance probability of an impact threshold via
a simple Monte Carlo approach, which we hereby refer to
as the stochastic sampling approach. Given some specified
number of samples n, we sample Z1, . . . , Zn independently
and uniformly from the set Z and transform these into
independent Bernoulli samples X1, . . . , Xn , where Xi :=
1 {ψ ◦ φ (Zi ) ≥ c} for i ∈ {1, . . . , n}. We estimate p intu-
itively by the sample mean of X1, . . . , Xn ,

pnsimple := 1

n

n∑

i=1

Xi , (1)

where the superscript n indicates the estimate is computed
from n samples and the subscript that a simple Monte Carlo
approach is used. This provides an unbiased estimate of p,
meaning that the expected value of pnsimple is p. Its variance
is given by

Var
(
pnsimple

)
= 1

n2

n∑

i=1

Var(Xi ) = 1

n
p(1 − p), (2)

which we can estimate by replacing p with its estimate
pnsimple; the estimate will tend towards the true value of the
variance as n increases. We proceed to describe how to use
this variance estimate to obtain an approximate confidence
interval for p.

Confidence intervals

Given data X := (X1, . . . , Xn), a confidence interval (CI)
for a parameter is a random interval [L(X),U (X)], where
the endpoints L(X) and U (X) of the interval are themselves
random variables. A CI should be constructed to have a high
probability of containing the true value of that parameter.
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The size U (X) − L(X) of the interval therefore indicates
how much uncertainty there is in the value of the parameter.
More specifically, for a general parameter θ associated with
the distribution of X , a 100(1−α)%confidence interval for θ
is an interval [L(X),U (X)] such that the true value of θ lies
within the interval with probability at least 1 − α (DeGroot
and Schervish, 2012):

P(L(X) ≤ θ ≤ U (X)) ≥ 1 − α, (3)

whereα ∈ (0, 1) is typically small.We call the probability
that θ lies between L(X) and U (X) the coverage of the CI.

Given data x, we can compute the endpoints L(x) and
U (x) of a real, observed CI. We construct an asymptotically
exact CI for a parameter through the notion of asymptotic
normality, which we define formally in Appendix B. The
important result to note is that we can construct approxi-
mate CIs based on the standard normal distribution given
an asymptotically normal estimator. In particular, the sam-
ple mean μ̂n = 1

n

∑n
i=1 Xi is an asymptotically normal

estimator for the expected value of X , μ = E[X ], and an
accompanying estimator for its variance σ 2 = Var(X) is
σ̂ 2
n = 1

n

∑n
i=1

(
Xi − μ̂n

)2, so an approximate 100(1− α)%
CI for μ is

μ̂n ± zα/2

√∑n
i=1

(
Xi − μ̂n

)2

n
. (4)

where zα/2 := �−1 (1 − α/2) and �−1 is the inverse
cumulative distribution function of a standard normal random
variable. A traditional choice of confidence level is α = 0.05
so that zα/2 = 1.96, giving a 95% CI. Furthermore, since
Eq.1 is simply the sample mean of a Bernoulli(p) random
variable, an approximate 100(1−α)%CI for the exceedance
probability p is given by

pnsimple ± zα/2

√
pnsimple(1 − pnsimple)

n
. (5)

When probabilities are small and we want to capture and
convey the risk of a set of hazardous events, it is often bene-
ficial to view these probabilities on a logarithmic scale. In
particular, we want to visualise estimates of probabilities
of differing magnitudes, and our confidence in these esti-
mates, on the same scale. In Appendix B, we show that an
approximate 100(1−α)%CI for log pwhich is centred about

log
(
pnsimple

)
is given by

log
(
pnsimple

)
± zα/2

√√
√√1 − pnsimple

npnsimple
. (6)

Relationship between threshold and variance

When carrying out a probabilistic hazard assessment, we are
usually interested in a set of several impact thresholds rather
than a single value. It is clear that the exceedance probability
associated with a high ash concentration threshold will be
lower than that of a smaller threshold. We would therefore
expect more simulations to be required in order to observe
at least one exceedance event in our ensemble as the thresh-
old increases. In this section, we demonstrate how to choose
our ensemble size such that the lowest exceedance probabil-
ity of interest can be estimated with some desired level of
confidence.

For estimating the value of some p, we must consider a
minimal sample size n for which a sensible CI is achievable.
Suppose we have an ensemble of size 1000 and the true value
of the exceedance probability p for some threshold of interest
is 10−4. Then, the closest possible estimates wemight obtain
for p using Eq.1 are either 0 or 10−3. The former arises by
observing no exceedances in the ensemble and the latter by
observing a single exceedance in 1000 samples, providing
us with an estimate which is 10 times greater than the truth.
Furthermore, approximate 95%CI for pwould then be either
(0, 0) or (−9.6 × 10−4, 2.96 × 10−3), respectively.

A natural way to examine the relationship between the
ensemble size n and exceedance probability p is to con-
sider the expectation of the number of exceedances Yn :=∑n

i=1 Xi :

E[Yn] = E

[
n∑

i=1

Xi

]

=
n∑

i=1

E[Xi ] = np. (7)

In order to haveE[Yn] ≥ 1,wemust set n ≥ 1/p. As such,
if we have some prior belief on p for the highest threshold
of interest, we can use this relationship to set the number
of samples. If p = 10−4, then at least 10,000 samples are
needed in order to expect to observe at least one exceedance.

A single exceedance event does not provide us with much
confidence in our estimate, however. Having a higher degree
of confidence in our estimate corresponds to reducing our
variance such that our CIs centred about this estimate are
smaller. Guidance exists for choosing n such that the CI has a
desiredwidth, such as Liu andBailey (2002).We note that for
estimates of small Bernoulli probabilities p, the associated
variances p (1 − p)/n are also small, but for small n, these
variances are large when compared with the value of p itself.
It should therefore be beneficial to consider a measure of
the variance in relation to the probability itself rather than
the variance in isolation. We introduce the relative variance
of the estimate as the ratio of the variance of the estimate
and its squared expectation. For Bernoulli probabilities, this
provides a natural measure of the variability in relation to the

123

68   Page 4 of 25 Bulletin of Volcanology (2023) 85:68



scale of the probability itself:

Var

(
pnsimple

p

)

=
Var
(
pnsimple

)

p2
= 1 − p

np
. (8)

We can choose n such that the relative variance is less
than some ε ∈ (0, 1), giving n > (1 − p)/εp. Given some
domain knowledge of the exceedance probability for our
highest threshold of interest, we can then decide on a suit-
able number of simulations such that the relative variance
of our estimate is constrained. Notice that in Eq. 6, the term
within the square root is an estimate of Eq.8. Thus, choosing
n such that the relative variance is restricted directly reduces
the width of the CI for log p.

We proceed to describe an approach for further reducing
the variance of our exceedance probability estimates through
a straightforward adaptation to stochastic sampling referred
to as stratification.

Data andmethods

We compare and contrast probabilistic tephra hazard across
Europe, and at a number of key locations (Fig. 1 and Table 1),
to investigate how, where, and why hazard differs between
approaches using stochastic and targeted sampling of mete-
orological conditions. Tephra from a hypothetical Volcanic
Explosivity Index (VEI; Newhall and Self 1982 4 eruption
from Iceland is simulated. This is one of the most promi-
nent sources of tephra for northern Europe because of the
frequency of Icelandic eruptions and the predominance of
westerly winds in the region (Crosweller et al., 2012). Key

Edinburgh

Reykjavik
Faroe Islands

Bergen

BerlinHeathrow

Paris CDG

30°N

40°N

50°N

60°N

70°N

40°W 20°W 0 20°E 40°E

Fig. 1 European sites chosen for testing and the volcanic source (red
triangle) in Iceland

Table 1 Distance and bearing (degrees from north) of the European
sites in Fig. 1, relative to the volcanic source in Iceland

Location Distance (km) Bearing (◦)

Reykjavik, Iceland 160 270

Faroe Islands, UK 645 110

Edinburgh, UK 1275 130

Bergen, Norway 1300 100

Heathrow, UK 1800 135

Paris CDG, France 2120 135

Berlin, Germany 2290 110

locations were chosen for analysis here (Fig. 1 and Table 1)
because they have record of Icelandic tephra deposits (Swin-
dles et al., 2011) and to cover a range of bearings and
distances.

Volcanic source and ash dispersionmodelling

We simulated volcanic ash dispersion from Iceland to
northern Europe using the open-source dynamic three-
dimensional advection–diffusion FALL3D model version
7.0 (Folch et al., 2009). In this application, we provided
hourly reanalysis meteorological data as input to calculate
ash transport; the model interpolates to hourly outputs of
three-dimensional (latitude, longitude, and altitude) ash con-
centration and ground ash thickness. We simulated 4 days
(96h) of ash transport starting from the onset of an 8 h
eruption—this was found to be sufficiently long to capture
long-range ash transport and deposition.

We chose volcanic source conditions to be representative
of a VEI 4 size eruption as follows. The plume height was
chosen based on empirical fits of observed plume heights to
erupted volume (Jenkins et al., 2007). Ash within the plume
was assumed to follow a Suzuki distribution (Suzuki, 1983),
with parameters such that more ash is released beyond the
convective thrust region and in the upper portion of the plume
(Table 2). Eruptions were considered to last for 8 h to repre-
sent a large silicic eruption (Mastin et al., 2009). The erupted
total particle sizes followaGaussian distributionwith ten size
classes between 1 and 10 φ (0.9 μ and 0.5 mm), with a mean
of 2.5 φ (0.18 mm) and standard deviation of 4.5 φ (0.04
mm), following those derived by Folch et al. (2012) for the
2010 Eyjafjallajökull eruption in Iceland. Particle densities
of 1500 kg m−3 and 2500 kg m−3, consistent with interme-
diate magma compositions, are associated with coarse (1 φ)
and fine (6 φ) particles, respectively. The commonly used
Ganser model (Ganser, 1993) is used within the model to
calculate the terminal settling velocities of the near spheri-
cal particles through the atmosphere. The mass flow rate of
the eruption (in kg s−1) is calculated within FALL3D using
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Table 2 Overview of FALL3D model inputs for a VEI 4 eruption

Variable Model input

Plume height 19km

Eruption duration 8h

Erupted volume 0.32 kg m−3

Total mass 28.5 × 106 kg

Plume shape Suzuki source with parameters

A = 4 and λ = 1

Particle size Gaussian distribution between

distribution 1 and 10 φ with μ = 2.5φ

and σ = 4.5φ

Particle density 1500 kg m−3 (coarse particles)

2500 kg m−3 (fine particles)

Particle sphericity 0.9

Diffusion coefficients 5000 m s−2 (horizontal)

500 m s−2 (vertical)

Meteorological data 96h of reanalysis data

from ECMWF ERA-5

an empirical fit between mass flow rate and plume height
due to Mastin et al. (2009), assuming a magma density of
2500 kg m−3. Parameters used in the dispersion modelling
are summarised in Table 2.

For this study, we used a ‘One Eruption Scenario’
approach (Bonadonna, 2006) and compiled a dataset of 6000
simulation results using these initial conditions with meteo-
rological forcing data sampled from6-hourlymean data from
theECMWFERA-5dataset,where start dateswere randomly
selected between January 1997 and December 2005.

Meteorological data

The vast majority of large-scale weather variability can be
classified into a manageable number of synoptic patterns
or regimes. A weather regime is any configuration of the
weather that tends to remain relatively constant for a period
of a few days to weeks (James, 2006); they may be clas-
sified manually or using an objective classification system.
Weather regimes have been classified for the UK (Jones et al.
1993, n = 8), Europe and the north-east Atlantic (James
2006, n = 29), the Western US (Robertson and Ghil 1999,
n = 6), the Northern Hemisphere (Barnston and Livezey
1987, n = 13), South America Solman and Menendez 2003,
n = 5), and New Zealand (Kidson 2000, n = 2, across four
broad types), among others. The scale overwhich regimes are
categorised therefore varies significantly from the relatively
small island of the UK to a whole hemisphere. For an Ice-
landic eruption, we have used the Grosswetterlagen regimes
described in the following section.

Grosswetterlagen system

The widely used Grosswetterlagen (GWL) series of syn-
optic weather regimes is the only classification system
currently in use that can capture both large-scale and local
weather regime characteristics (James, 2006). The GWL
system was developed by Baur et al. (1944) and is now
maintained by the German weather service (DWD, 2015).
More recently, James (2007) produced an objective method
for classification that can be used with either the ECMWF
ERA-5 or NCEP/NCAR reanalysis data, providing GWL
classifications from 1948 to present. We obtained a dataset
of GWL regimes assigned for every daily ECMWF ERA-5
reanalysis record between January 1997 and December 2005
(Parker, Pers. Comm., 2014). The ECMWF ERA-5 reanal-
ysis catalogue contains global meteorological records at a
spatial resolution of 0.25◦, approximately 28km at the equa-
tor, for 137 hybrid sigma-pressure levels, related to altitudes
up tomore than80kmabove sea level (dataset available here).

GWL regimes typically last 4 days in duration, although
some regimes (WZ, SWZ, NEA, SEZ) are as short as 3 days
and some (WZ, WA, BM, NWZ, SWA, HNA, HNFZ) as
long as a week or more (Fig. 2). Descriptions for each GWL
regime are provided in Appendix A. Westerly regimes are
the most prevalent, although a zonal ridge of high pressure
across Central Europe (BM), similar to the weather patterns
that dispersed ash towardsmainlandEurope during theEyjaf-
jallajökull crisis in 2010, has a relatively high probability of
occurrence.

In our analysis, meteorological inputs are chosen ran-
domly from the ECMWF catalogue between 1997 and 2005
and provided to the simulator as 96h of reanalysis data
(Table 2). As GWLpatterns last 4 days on average, it is likely
that a 4-day period chosen at random from the catalogue will
contain a transition between GWL regimes. In order to sim-
plify the process of stratified sampling (which we introduce
in the following section) via GWL regimes and to ensure that
the resultant number of strata (groupings of the data) is not
excessively large, we classify each 4-day period as belonging
to the GWL classification of the first day, regardless of any
transition between regimes occurring during that period.

Stratification for variance reduction

GWL regimes represent a partitioning of the whole set of
daily wind fields into a smaller number (29) of groups with
distinctive properties.Given that this grouping is possible,we
make use of a statistical sampling technique called stratifica-
tion to reduce the variance of an estimate of an expectation
(Cochran, 1977). In our case, each GWL regime constitutes
a separate stratum, and samples can be drawn independently
from each stratum to form estimates which are then com-
bined to obtain an unbiased estimate of the expectationwhose
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variance is lower than that of the comparable stochastic sam-
pling estimate.

Given that we can assign an individual GWL regime to
each start date in the ECMWF ERA-5 reanalysis record, we
can determine the probability of occurrence of an individual
regime or its weighting within the distribution. More for-
mally, for the 29 GWL regimes, we divide the set of start
dates Z into J = 29 disjoint regions Z1, . . . ,ZJ , according
to the GWL classification for that date. Then, the follow-
ing 96h of meteorological data provided to the simulator is
regarded as belonging to that GWL classification. We then
refer to Z j as the j th stratum. If the random variable Z is
drawn uniformly at random from Z , the probability that Z
was drawn from stratum j ∈ {1, . . . , J } is the weight of
stratum j , denoted by

w j := P
(
Z ∈ Z j

)
, (9)

where the sum of these probabilities is one:
∑J

j=1 w j = 1.
The key to stratification is the fact that the populationmean

is the weighted sum of stratum means (Cochran, 1977),

p =
J∑

j=1

P
(
Z ∈ Z j

)
P
(
X = 1

∣
∣Z ∈ Z j

)
(10)

=
J∑

j=1

w j p j , (11)

where, for each j ∈ {1, . . . , J }, p j is the exceedance prob-
ability associated with stratum j :

p j := P
(
X = 1

∣∣Z ∈ Z j
)
. (12)

Stratified sampling estimates

To carry out a stratified sampling procedure, we must know
the weights w1, . . . , wJ and be able to sample directly from
each stratum. In our case, we have access to the ECMWF
ERA-5 catalogue from 1997 to 2005 alongside the GWL
classification for each date in the catalogue. We can there-
fore calculate the weights using the relative frequencies of
occurrence of each GWL regime and sample uniformly from
each stratum by choosing a start date for the simulation
from the set of dates with the corresponding weather clas-
sification. For each stratum j ∈ {1, . . . , J }, we sample n j

start dates Z j,1, . . . , Z j,n j independently and uniformly at
random from stratum j and consequently obtain n j inde-
pendent Bernoulli samples X j,1, . . . , X j,n j , where X j,i :=
1
{
ψ ◦ φ (Z j,i ) ≥ c

}
for i ∈ {1, . . . , n j }. We estimate p j by

the j th stratum sample mean:

pnj := 1

n j

n j∑

i=1

X j,i , (13)

which is an unbiased estimator of p j with variance
p j (1 − p j )/n j . The stratified sampling estimate of p is the
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weighted sum of the estimates of p j :

pnstrat :=
J∑

j=1

w j p
n
j . (14)

This is unbiased with variance given by

Var
(
pnstrat

) =
J∑

j=1

w2
j

n j
p j (1 − p j ), (15)

which we can estimate by replacing p j with pnj .

Proportional stratum allocation

Proportional allocation (Cochran, 1977) is a straightforward
way to assign the values n1, . . . , nJ . For some positivem, let
n j = �mw j�, i.e. the smallest integer greater than or equal to
mw j . The total number of samples is n =∑J

j=1 n j ≤ m+ J .
The estimator is very similar to the standard Monte Carlo

estimator Eq.1, except that the number of samples in each
regionZ j is deterministic rather than random. We obtain the
variance bound

Var
(
pnstrat

) ≤ 1

m

J∑

j=1

w j p j (1 − p j ), (16)

with equality if n = m. To compare stratified sampling with
regular stochastic sampling, it is helpful to decompose the
variance of X ∼ Bernoulli(p) into within- and between-
stratum variances as follows:

p(1 − p) =
J∑

j=1

w j p j (1 − p j ) +
J∑

j=1

w j (p j − p)2. (17)

By comparing Eq.16 with Eq.2, stratification is likely to
be beneficial if the within-stratum variances are dominated
by the between-stratum variance, since the between-stratum
variance is not present in Eq.2. That is, if samples drawn
from the same stratum are typically similar to each other,
and samples from different strata are typically distinct. An
intuitive explanation for this phenomenon is that by using
the precise stratum weights in Eq.14, one source of uncer-
tainty about p is removed and variability arises only from the
variability of estimates of the stratum probabilities p j .

In our results, we illustrate that proportional allocation
allows us to obtain low-variance estimates of exceedance
probabilities for a range of thresholds. The results indicate
that stratified sampling allows us to achieve results compara-
ble to stochastic sampling from fewer samples, thus reducing
the amount of computational resources required to obtain
high-precision estimates of exceedance probabilities.

In Appendix C, we describe an optimum stratum alloca-
tion which will always reduce the variance of the estimate,
where the stratumsample sizes are allocatedproportionally to
the weights and stratum variances if these values are known.
We describe also a variant of stratified sampling referred to
as post-stratification (Jagers et al., 1985), whereby the vari-
ance of an estimate can be reduced post-hoc if samples have
already been drawn according to random sampling, and illus-
trate an example application of this method.

Results

In this section, we present the results of our analysis. We
first present results related to simple Monte Carlo sampling
of ensemble members, for common ash dispersion metrics
as well as exceedance probabilities, and proceed to compare
the results for exceedance probabilities with those obtained
via stratified sampling of GWL regimes.

Relationship between sample size and confidence
for ash dispersionmetrics

Volcanic ash dispersion simulations are typically used to
predict ash thickness deposits, and more recently estimates
of airborne or ground-level ash concentration have become
important for impacts to aviation and infrastructure (Biass
et al., 2014; Capponi et al., 2022; Harvey et al., 2020). In this
context, probabilistic simulation will allow us to estimate the
expected value of these quantities via the sample mean and
compute an approximate CI using Eq.4.

Figure3 maps the estimated mean ash thickness from a
VEI 4 eruption from Iceland, togetherwith 95%CIs, for three
ensembles of increasing sample size. Each FALL3D simu-
lation took 3h to complete on average, run in parallel on a
high-performance computing cluster. The mean thickness is
the cumulative value of ash thickness per unit area after the
duration of the simulation, divided by the number of hours
(96h here); we estimate thicknesses in excess of 1cm proxi-
mally to less than0.1mmdistally. The thickness is shownona
logarithmic colour scale to visualise the orders-of-magnitude
difference in deposition over very long transport distances;
the CI width colour scale is the difference in logarithm thick-
ness between the upper and lower limits of the 95% CI, and
we use it here to illustrate relative differences in confidence
between different ensemble sizes.

The variation of mean ash thickness decreases with
increasing ensemble size—this can be seen from both the CI
limit maps and most easily from the CI width maps. For the
smallest ensemble (50 samples), there are orders of magni-
tude difference inmean ash thickness across northern Europe
between the upper and lower limits of the CI, but this differ-
ence is significantly reduced if ensemble size is increased to
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Fig. 3 The variation of mean ash thickness estimates with ensemble
size for simulations of a VEI 4 eruption from Iceland. Ensemble size
increases from left to right, and each column shows ash thickness maps
for the estimated maximum thickness (‘maximum thickness estimate’)
and the lower and upper limits of the 95% CI for the maximum thick-

ness (‘lower 95% limit’ and ‘upper 95% limit’, respectively). Note the
logarithmic colour scale for thickness in cm. The ‘95% CI width’ maps
indicate the size of the CI, which is the difference in logarithm thickness
values between the upper and lower limits. Ash thickness is computed
from ash deposition using the particle densities given in Table 2

500 samples. For this largest ensemble, there is only a very
small difference between the upper and lower ends of the
CI, except in the most distal locations (thousands of kilo-
metres from the source). The variation in ash thickness is
generally lowest at proximal locations and increases with
distance from the source; in proximal locations, ash deposi-
tion is dominated by larger particle sizes whose dispersion is
less affected by wind field variations because of their higher
terminal fall velocities and thus lower residence times in the
atmosphere.

In Fig. 4a, we show plots of the variation in estimated
ground-level ash concentration at some location as a func-
tion of time for ensembles of increasing size. Here, the ash
concentration is smoothed over a 24-h window, so that the
concentration at x hours from the eruption onset is the aver-
age from time x to x + 24. This is an important measure for
assessing ash impacts to human health, visibility, and infras-
tructure using filters such as generators and air conditioning
systems (Jenkins et al., 2015). On each sub-figure, the mean
for the whole set of 6000 samples provides a visual guide as
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Fig. 4 a Ground-level ash concentration estimates over time at Edin-
burgh, smoothed over a 24-h window, shown for different ensemble
sizes. Full lines and shaded regions represent the sample means and
95% CIs, respectively, obtained using the specified number of samples.
Dashed lines show the mean obtained from the whole set of 6000 sam-

ples. b Cumulative estimate (sample mean) of the peak concentration
at Edinburgh, against ensemble size, with 95% CIs. c Cumulative esti-
mate of the time from eruption onset at which the peak ground-level
ash concentration is attained, against ensemble size, with 95% CIs

to how closely the means for different sample sizes match
the mean of the whole set, which is our closest estimate of
the ‘true’ value.

The location of interest in Fig. 4 is Edinburgh, 1270km
from the volcanic source. Results using an ensemble of 10
samples (Fig. 4a) show poor agreement with the results of the
whole sample set, with the peak mean concentration occur-
ring at 64h from the eruption onset, compared to the ‘true’
peak at 20h. If only a very small sample size is used, it
is unlikely that the ensemble will adequately reproduce the
dominant trend of ash transport to the UK by northwesterly
winds. This particular ensemble is formed of simulations that

have resulted in a longer arrival time compared to themean of
the full set of 6000 samples. If a different set of 10 samples
were chosen, it is highly likely that the mean of the con-
centration values at each time, and hence the arrival times,
would be significantly different. With a larger ensemble (50–
100 samples), the peak timing is closer to that of the whole
sample size, and the confidence intervals include the whole
sample mean, but span a large range. Ensembles with greater
than 1000 samples show good agreement with the ‘true’ vari-
ation and have progressively narrower confidence intervals.
We emphasise that each sub-figure is obtained by averaging a
set of concentration values and that a different set of the same
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Fig. 5 The variation of exceedance probability estimateswith ensemble
size for simulations of a VEI 4 eruption from Iceland. The probability
of the ground-level ash concentration exceeding 500 μg m−3 for 24h
or more is estimated at each point for increasing ensemble size (left to
right). Each column shows maps of exceedance probability estimates
(‘exceedance probability estimate’) and the lower and upper limits of

the 95% confidence interval for the probability estimate (‘lower 95%
limit’ and ‘upper 95% limit’, respectively). The ‘width of 95%CI’maps
illustrate the size of the confidence interval or the difference between
the upper and lower limits, and the accompanying curves (bottom row)
illustrate these widths as a function of the exceedance probability itself
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size would result in a slightly different trajectory, but these
differences become smaller as the ensemble size increases.

Figures 4b and c provide cumulative estimates for the peak
concentration and the time at which the peak occurs, along
with 95% CIs, to illustrate how these CIs shrink with lin-
early increasing sample size. Note that the mean of the peak
concentration is not the same as the peak of the mean con-
centration (and similarly for peak times), so these estimates
do not match the peaks in Fig. 4a.

Relationship between sample size and confidence
for exceedance probabilities

For volcanic ash impact studies, the results of stochas-
tic simulations are typically presented using exceedance
probabilities for prescribed ash concentration or mass accu-
mulation thresholds (Titos et al., 2022; Jenkins et al., 2022),
for which confidence intervals can be computed. Figure5
maps the probability that the ground-level ash concentration
exceeds a value of 500 μg m−3 for 24h or more for different
ensemble sizes. As the number of samples increases, the vari-
ance is reduced in both proximal and distal locations relative
to the source.

Figures 6 and 7 illustrate the relationship between CI
widths and threshold for specific locations at different
distances from the volcanic source. The exceedance prob-
abilities are calculated using the full ensemble of 6000
simulations, so the lowest probability that can be represented
is 1/6000 or about 1.67 × 10−4. As the threshold increases,
the estimated exceedance probability Eq.1 decreases; then
the associated variance Eq.2 also decreases, and hence the
CIs shrink (most easily seen in Fig. 6b). Figure7 shows how
the variance Eq.2 and relative variance Eq.8 of the proba-
bilities vary with threshold for the same locations. As the
variance of the estimator decreases at a slower rate than the
exceedance probability estimator itself, the relative variance
increaseswith threshold and dramatically increases at around
1000 μg m−3 (Fig. 7b), where probabilities get very small
(Fig. 6b).

Figure8 displays hazard curves for each location in
Table 1, where exceedance probability is shown as a func-
tion of threshold on a double-logarithmic scale. These
plots clearly show how CI width increases relative to the
exceedance probability itself as it decreases, and these CIs
become masked when the hazard curve appears to become
vertical, as the estimate of the exceedance probability decreases
rapidly towards zero due to the finite number of samples.

Given the straightforward calculation of CIs for exceedance
probabilities described, we can also calculate how many
samples are required in order to restrict the expected size
of the CI. This is illustrated in Fig. 9, where we show the
minimum number of samples needed to expect the width
of the 95% CI to be 50% of the exceedance probability
itself (calculated through using the estimates obtained for
each threshold in Fig. 6). We note that the number of sam-
ples needed increases with threshold (and hence decreasing
exceedance probability) and also with distance from the vol-
canic source. For example, for thewidth of the 95%CI for the
probability of exceeding an ash concentration of 104 μgm−3

to be 50% of the exceedance probability itself, we require
approximately 450 samples for the proximal Reykjavik loca-
tion and approximately 37,000 samples for the distal Berlin
location.

The effect of stratified sampling on estimates

In the context of probabilistic volcanic ash dispersion, strat-
ified sampling aims to reduce the variance in an estimate
compared to that made with the same number of stochas-
tic samples or to obtain an estimate with the same variance
as an estimate constructed through stochastic sampling but
using fewer samples. In this study, we stratify our mete-
orological input data using GWL regimes. In Fig. 10, we
see how exceedance probabilities vary for different GWL
regimeswith threshold. Notice that there is greater variability
in exceedance probability between regimes at lower thresh-
olds because of the different directions of wind fields that
make up each regime.

Fig. 6 a Exceedance probability
estimates against threshold for
each location in Table 1, with
shaded regions indicating 95%
confidence intervals. b
Exceedance probability
estimates against threshold on a
logarithmic scale for the same
locations, with 95% confidence
intervals
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Fig. 7 a Sample variance of exceedance against threshold for each
location in Table 1. b Relative variance against threshold for the same
locations

Figure11 shows, as a percentage, the difference in vari-
ance of exceedance probability estimates achieved through
the use of proportional stratified sampling using GWL
regimes, as compared to stochastic sampling. For all loca-
tions and thresholds, proportional sampling from weighted
GWL regimes leads to a reduction in the variance of the esti-
mate. The greatest reduction in variance is seen for the lower
thresholds, and this benefit decreases with increasing thresh-
old as the exceedance probabilities are lower. We obtain an
indication of the percentage reduction in ensemble size that
would be required to obtain the same (or lower) variance as
the stochastic sampling estimate. For example, for thresholds

below 1000μgm−3, 5 to 17% fewer samples in the ensemble
of weighted GWL regimes (i.e. about 5000 to 5700 samples)
will give an estimate with the same or lower variance as the
set of 6000 stochastic samples. For the FALL3D simulations
presented in this study (Table 2), this corresponds to saving
up to approximately 1000h of computational time.

Discussion

In this paper, we have introduced statistical methods for
quantifying the uncertainty of probabilistic volcanic ash
hazard assessments that are widely used to inform oper-
ational decision-makers and risk managers. We have used
these approaches to show that using synoptic scale weather
regimes, where available, can reduce the number of sim-
ulations needed to compute exceedance probabilities to a
required degree of confidence, compared to purely stochas-
tic sampling of the wind fields.

When estimating the value of an expectation, a confidence
interval can be straightforwardly calculated from the sam-
ple mean and variance and the number of samples. We have
demonstrated how the use of confidence intervals can enable
comparison of the results of ensemble simulations of dif-
ferent sizes. Given that this is not computationally intensive
and does not require additional simulations to be performed,
we recommend that computing and presenting confidence
intervals becomes standard practice when communicating
the results of probabilistic volcanic ash hazard assessments.
This information provides a measure of uncertainty in the
forecast results that can be used by decision-makers, and
expressing results with confidence intervals allows the uncer-
tainty in hazard estimation to be propagated through the full
risk equation, where typically hazard is considered without
any uncertainty. We have shown results for the calculation of
confidence intervals for metrics of volcanic ash hazard and
for exceedance probabilities and provide an R package for
making these calculations whose link is provided in the Sup-
plementary Material section at the end of the paper. These
tools can also be straightforwardly implemented within or
applied to the results of software packages that make proba-
bilistic volcanic ash calculations, such as TephraProb (Biass
et al., 2016).Whilewehave focused on theOneEruptionSce-
nario and explored stochastic sampling of the forcing wind
field only, themethods can be applied in exactly the sameway
to varying eruption source parameters (the Eruption Range
Scenario; Bonadonna 2006).When considering the effects of
the wind and the source parameters together, we expect the
confidence intervals would typically be larger than we have
shown here for the One Eruption Scenario (Fig. 6), reflecting
the increased variation in the controls on ash dispersion.

Our presentation of the statistical background to confi-
dence interval calculation highlights some important conse-
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Fig. 8 Hazard curves showing exceedance probability estimates for each location in Table 1 on a double-logarithmic scale, with shaded regions
indicating 95% confidence intervals

quences for ensemble design. The exceedance probability
estimates that can be computed are directly related to the
number of samples in the ensemble. For example, if the
ensemble size is 1000, the smallest exceedance probabil-
ity that can be resolved is 1/1000 or 0.1%. This resolution
may be sufficient for some applications, such as assessment
of ash impacts to inhabited areas or agricultural land, but
may not be for potential impacts to critical infrastructure,
which can require exceedance probability thresholds of 10−4

(0.0001%) or lower (ONR, 2020). Recognising this relation-
ship between ensemble size and the exceedance probability
that can be resolved provides a first step in ensemble design:
is the ensemble size sufficient to provide the information
needed by decision-makers? Furthermore, the confidence
interval for an estimate reduces with increasing sample size
(Figs. 4 and 9), so it is also possible to design an ensemble
with the number of samples matched to a particular con-
fidence interval range. For example, if repeated laboratory
testing identified that an item of equipment failed within a
given time period if its exposure to volcanic ash exceeded
some concentration threshold, one could specify the number

of samples required for an ensemble forecast to calculate the
probability of exceeding this threshold for that time period
to a desired level of confidence. We provide in Appendix B
an accessible and minimal set of statistical results that jus-
tify the methods used in this paper. While not touched on in
this paper, further improvements to ensemble size selection
could be achieved through consideration of stopping rules
for stochastic sampling. These require computation of a stop-
ping criteria at each step, or every number of steps (Ata, 2007;
Gilman, 1968), and hence facilitate a more complicated sam-
pling process with further computations.

In many cases, it could be helpful for decision-makers to
be able to identify where in ensemble simulation results there
is greater or lower uncertainty in those results. Confidence
interval maps such as presented in Fig. 5 provide an impor-
tant visual indication of the variability within an ensemble
of a given size, as well as quantitative information about
the confidence of estimated ash thickness. The confidence
interval width plots presented in Fig. 5 provide an immedi-
ate indication of regions for which variability of estimates is
greatest (further from the volcanic source and in directions
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different from the dominant wind direction) and also how the
variability changes with ensemble size.

Fig. 9 Theminimum number of samples needed for the expected width
of the 95% confidence interval of the exceedance probability for a
threshold to be 50% of the exceedance probability itself for each loca-
tion in Table 1

Fig. 10 Exceedance probability estimates against threshold for select
(12 out of 29) GWL regimes at Heathrow airport. An ensemble size of
6000 is used

Fig. 11 Difference in variance of exceedance probability estimates
from using proportional stratified sampling with GWL regimes com-
pared to stochastic sampling, with the same location, expressed as a
percentage. Differences are shown for each location in Table 1, and an
ensemble size of 6000 is used

We also use the variance of an estimate to quantita-
tively compare results from two sets of simulations, in
this case between wind fields sampled stochastically and
those sampled from wind fields corresponding to particular
synoptic-scale weather patterns. The purpose of this example
of stratified sampling was to investigate whether the use of
weather patterns could increase the efficiency of probabilistic
ash hazard assessments by reducing the number of samples
required in an ensemble to compute an exceedance probabil-
ity at a given confidence interval. For our simulations over
scales of 1000km, we find that proportional stratified sam-
pling of wind fields corresponding to GWL regimes reduces
the variance of estimates, and hence the required number
of samples, by 5 to 20% for typical ground-level ash con-
centration thresholds. Although modest, this reduction could
represent a significant saving of computational time when
using time-dependent simulators. The ability to use aweather
pattern approach relies on allocating each day in the wind
field record to a particular regime, which may still need to
be done for weather regimes used in other global settings.

The reduction in the number of samples required to
compute an exceedance probability with a given degree of
confidence using proportional stratified sampling of GWL
regimes is achieved because the variance of the stratified
sampling estimator is bounded above by the weighted sum
of within-stratum variances, which we expect to be domi-
nated by the between-stratum variances when samples from
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the same stratum are typically similar to each other. Each
set of dispersion simulations for a particular regime could be
used to calculate exceedance probability estimates of ground-
level ash concentration or ash deposit thickness for a given
size eruption occurring into a particular weather pattern. This
set of simulations could be used to inform future prepared-
ness and to anticipate the impacts of an event in real-time. In
addition, post-stratification can be used to compute approxi-
mationswith reweighted strata to better reflect environmental
conditions for a specific eruption.

We have focused on the estimation of expectations and in
their confidence intervals. This is partly to avoid confusion
with other sources of uncertainty. In particular, the results
presented do not provide information about the variability
arising from the capability of the model used. For example,
in Fig. 4a, the shaded region indicates uncertainty associated
with the sample mean of the ash concentration at each point
in time, which is due to the number of samples. With 5000
samples, there is very little uncertainty about the mean, but
there is variability in ash concentrations themselves that can-
not be quantified by looking at its expected value. Plainly,
the quantity being presented is not the ‘true’ expected value
of the quantity given the eruption event in the real world,
but that of the quantity output by the simulator given some
parameterisations. It is simple to reduce the width of an esti-
mate’s CI further by increasing the ensemble size, but this
will not reduce the inherent bias which arises from using
an imperfect model. In operational environments, the results
obtained from using the methods in this paper should always
be presented with the caveat that these are based on model
assumptions and that ‘true’ CIs will be larger than the numer-
ical values obtained due to unmodelled variability.

We finally note that, although we used a 95% confidence
level in our examples the methods presented in this paper
extend to any choice of confidence level. A 95% confidence
level is fairly traditional in situations where data is scarce or
expensive to collect, as is usually the case in probabilistic
volcanic hazard assessment. In practice, choice of confi-
dence level should be context-specific and determined by
the application and data. We note also that specialised cor-
rections exist for CIs for Bernoulli probabilities that achieve
marginal improvements upon the coverage obtained by the
commonly used CI presented in this paper. In operational
environments where ensemble size is large enough (typi-
cally n > 40; Brown et al. (2001)), it can be beneficial to
instead use the modified version of Eq. 5 presented in Agresti
and Coull (1998). For smaller ensembles (n < 40), the Wil-
son interval may be recommended instead due to its higher
coverage (Wilson, 1927; Brown et al., 2001). These minor
corrections will result in small improvements in the coverage
for an exceedance probability CI.

The use of confidence intervals to compare probabilistic
ensembles highlights the need to consider ensemble design
across different types of volcanic ash forecasts and identify

consistent standards for their presentation to unify probabilis-
tic volcanic ash hazard assessment practice and communicate
variability in forecasts. As a starting point, the volcanol-
ogy community, in collaboration with operational end users,
needs to choose the confidence intervals for different forecast
applications such as airborne ash concentration or deposited
ash thickness.

Appendix A: GWL regime descriptions

Table 3 GWL regime abbreviations and their brief descriptions (James,
2007)

Abbreviation Description

WA Anticyclonic westerly

WZ Cyclonic westerly

WS South-shifted westerly

WW Maritime westerly, block Eastern

Europe

SWA Anticyclonic south-westerly

SWZ Cyclonic south-westerly

NWA Anticyclonic north-westerly

NWZ Cyclonic North-Westerly

HM High over central Europe

BM Zonal ridge across central Europe

TM Low (cut-off) over central Europe

NA Anticyclonic northerly

NZ Cyclonic northerly

HNA Icelandic high, ridge over central

Europe

HNZ Icelandic high, trough over central

Europe

HB High over the British Isles

TRM Trough over central Europe

NEA Anticyclonic north-easterly

NEZ Cyclonic north-easterly

HFA Scandinavian high, ridge over central

Europe

HFZ Scandinavian high, trough over central

Europe

HNFA Scandinavian-Iceland high, ridge over

central Europe

HNFZ Scandinavian-Iceland high, trough over

central Europe

SEA Anticyclonic south-easterly

SEZ Cyclonic south-easterly

SA Anticyclonic southerly

SZ Cyclonic southerly

TB Low over the British Isles

TRW Trough over western Europe
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Appendix B: Statistical background

The works collected here present some results for a deeper
understanding of the ‘Statistical background’ section in the
main text of the paper. This is not a presentation of new
results: it is intended to collate the background information
that is typically found in undergraduate statistics courses in
an accessible way. Much of the information presented in this
section can be found in DeGroot and Schervish (2012).

Estimators and estimates

Consider a general random variable X taking values in X
with probability density function (PDF) f (·; θ) : X → R,
characterised by some parameter θ ∈ 
 ⊆ R. We write X ∼
f (·; θ), or simply X ∼ f (θ), to show that the distribution of
X is described by f for some given value of the parameter
θ ∈ 
.

If we consider n random samples from the distribution of
X for some unknown value θ∗ ∈ 
, we write X ∼ fn(θ∗)
withX := (X1, . . . , Xn), where fn describes the joint distri-
bution ofX. In particular, if X1, . . . , Xn are independent and

identically distributed (i.i.d.), we denote this byX
iid∼ fn(θ∗),

where the joint density of X is the product of the densities of
the Xi :

fn(x; θ∗) =
n∏

i=1

f (xi ; θ∗). (B1)

Definition 1 (Estimate and estimator). Suppose that X ∼
fn(θ∗) for some unknown θ∗ ∈ 
 and let x be a realisation
of X. For some function θ̂ : X n → 
 of x that is intended
to provide an approximation of θ∗, θ̂ (x) is an estimate of θ∗.
Then θ̂ , or θ̂ (X), is referred to as an estimator of θ∗.

We emphasise that the estimator is a random variable and
the estimate a realisation of this random variable, but the
terms may be used interchangeably in the main text of the
paper.

Definition 2 (Unbiased). θ̂ is an unbiased estimator of θ if,
for all values θ ∈ 
, its expected value is the true value θ :

E

[
θ̂ (X)

]
= θ .

An unbiased estimator θ̂ thus provides us with unbiased
estimates of θ given data x1, . . . , xn . The performance of an
estimator, in terms of the discrepancy between the estimated
value and its true value, can be measured via a loss function
such as the mean squared error.

Definition 3 (Mean squared error). The mean squared error
(MSE) of an estimator θ̂ , givenX ∼ fn(θ∗) for some θ∗ ∈ 
,

is a loss function defined by

MSE
(
θ̂ (X)

)
:= E

[(
θ̂ (X) − θ∗)2

]
, (B2)

the mean of the expected squared difference between the
estimator and the true value θ∗.

EquationB2 can be decomposed into the variance and
squared bias of the estimator, referred to as the bias-variance
decomposition:

MSE
(
θ̂ (X)

)
= Var

(
θ̂ (X)

)
+
(
bias

(
θ̂ (X)

))2
, (B3)

where we define the bias as the expected difference between
the value of the estimator and the true value of the parameter:

bias
(
θ̂ (X)

)
:= E

[
θ̂ (X) − θ∗] = E

[
θ̂ (X)

]
− θ∗. (B4)

Remark 1 Noting that bias
(
θ̂ (X)

)
= 0 when the estimator

is unbiased, the bias-variance decomposition illustrates that
the MSE of an unbiased estimator is its variance.

Asymptotic behaviour of estimators

Let us denote by {Xn} a sequence X1, X2, . . . of randomvari-
ables taking values in X with the same distribution, indexed
by n. In this section, we introduce the notion of probabilistic
convergence of randomvariables and their distributions. This
is key to understanding the reasoning behindwhywe can con-
struct approximate confidence intervals for sufficiently large
n using a standard normal distribution.

Definition 4 (Convergence in probability). {Xn} is said to
converge in probability to the random variable X if, for all
ε > 0,

lim
n→∞P(|Xn − X | > ε) = 0, (B5)

which we write as Xn →P X .

Definition 5 (Convergence in distribution). {Xn} is said to
converge in distribution to a random variable X if, for all x
where the cumulative distribution function (CDF) FX (x) :=
P(X ≤ x) is continuous,

lim
n→∞P(Xn ≤ x) = P(X ≤ x) . (B6)

Then, the distribution of X is referred to as the asymptotic
distribution of {Xn}, and we write this as Xn →D X .

We present the following theorems in relation to the
asymptotic distributions of sequences of random variables.
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Theorem 1 (Weak Law of Large Numbers) If {Xn} are i.i.d.
random variables with common expectation E[X1] = μ <

∞, then

1

n

n∑

i=1

Xi →P μ. (B7)

Theorem 2 (Central Limit Theorem) If X1, . . . , Xn are i.i.d.
random variables such thatE[Xi ] = μ < ∞ andVar(Xi ) =
σ 2 < ∞ for all i ∈ {1, . . . , n}, then
√
n(Sn − μ)

σ
→D Z ∼ N (0, 1), (B8)

where Sn := 1
n

∑n
i=1 Xi .

Remark 2 We may write
√
n(Sn − μ)/σ →D Z ∼ N (0, 1)

as
√
n(Sn − μ)/σ →D N (0, 1), a slight abuse of notation,

for simplicity.

Theorem 3 Convergence in probability implies convergence
in distribution.

Theorem 4 (Slutsky’s theorem) If Yn →D Y and Zn →D c,
where c ∈ R is a constant, then

1. Yn + Zn →D Y + c.
2. Yn Zn →D Yc.
3. Yn/Zn →D Y/c, provided c �= 0.

Theorem 5 (ContinuousMappingTheorem) Let g : X → G
be continuous. Then,

1. If Zn →P Z, then g(Zn) →P g(Z).
2. If Zn →D Z, then g(Zn) →D g(Z).

Furthermore, we define the notions of consistency for a
sequence of estimators θ̂1, θ̂2, . . . , which we denote by {θ̂n},
and of asymptotic normality. This is essential for the con-
struction of asymptotically exact confidence intervals for θ .

Definition 6 (Consistent). A sequence of estimators {θ̂n} is
consistent if, for all θ ∈ 
 with X ∼ fn(θ),

θ̂n(X) →P θ. (B9)

Definition 7 (Asymptotic normality). Let {θ̂n} denote a con-
sistent sequence of estimators for some parameter θ ∈ 
.
{θ̂n} is asymptotically normal if, for some σ 2 > 0,

√
n(θ̂n(X) − θ)

σ
→D N (0, 1). (B10)

The deltamethod illustrates that an asymptotically normal
estimator remains asymptotically normal under transforma-
tion by a continuously differentiable function (Doob, 1935).

Theorem 6 (Delta method) Suppose {θ̂n} is a sequence of
consistent and asymptotically normal estimators and g :

 → G is a continuously differentiable function whose first
derivative g′(θ) is continuous and non-zero for all θ ∈ 
.
Then,

√
n
(
g(θ̂n(X)) − g(θ)

)

σ g′(θ)
→D N (0, 1), (B11)

i.e. {g(θ̂n(X)} is asymptotically normal.

Asymptotically exact confidence intervals

Definition 8 (Confidence interval). Let X ∼ fn(θ) for some
θ ∈ 
 and let L : X n → 
 and U : X n → 
 be functions
satisfying L(x) < U (x) for all x ∈ X n . For some α ∈
[0, 1], we say that a random interval [L(X),U (X)] is a 1−α

confidence interval if, for all θ ∈ 
,

P(θ ∈ [L(X),U (X)]) = P(L(X) ≤ θ ≤ U (X))

≥ 1 − α.

We refer to P(θ ∈ [L(X),U (X)]) as the coverage of [L(X),

U (X)].
Remark 3 The above definition of a confidence interval is
a probability statement about the joint distribution of the
random variables L(X) and U (X), given a particular value
of θ . Once the values of X1, . . . , Xn are observed to be
x1, . . . , xn , we compute the values of L(X) and U (X) to
obtain an observed confidence interval [Ln(x),Un(x)].

The following theorem tells us how to compute an
observed confidence interval such that the coverage of the
interval approaches 1 − α as the sample size increases.

Theorem 7 (Asymptotically exact confidence intervals)
Suppose {θ̂n} is a consistent sequence of estimators of θ

that is asymptotically normal, and also that {σ̂ 2
n } is a consis-

tent sequence of estimators of σ 2. Then, for all α ∈ (0, 1),
[Ln(x),Un(x)] is an asymptotically exact 1 − α confidence
interval for θ , where

Ln(x) = θ̂n(x) − zα/2

√
σ̂ 2
n (x)
n

, (B12)

Un(x) = θ̂n(x) + zα/2

√
σ̂ 2
n (x)
n

. (B13)
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The confidence interval is only asymptotically exact, so
in practice, the coverage of the confidence interval will be
different from 1 − α. However, as n increases, the coverage
will tend towards 1 − α.

Suppose we parameterise the problem in terms of τ :=
g(θ), where g is a bijective and continuously differentiable
function. In order to find a 1−α confidence interval for τ , we
might first consider a direct transformation of the confidence
interval [L(x),U (x)] for θ∗ through noting that

{
x ∈ X n : L(x) ≤ θ∗ ≤ U (x)

}

= {x ∈ X n : g(L(x)) ≤ τ ∗ = g(θ∗) ≤ g(U (x))
}
, (B14)

if g is an increasing function. We find that, as n → ∞,

P
(
L(x) ≤ θ∗ ≤ U (x)

)

= P
(
g(L(x)) ≤ τ ∗ = g(θ∗) ≤ g(U (x))

)→ 1 − α, (B15)

so [g(L(x)), g(U (x))] is an asymptotically exact 1− α con-
fidence interval for τ ∗. For decreasing g, we simply reverse
the directions of the inequalities in the above. Note that this
approach does not necessarily obtain a confidence interval
that is centred at τ̂n(x).

Alternatively, we note fromTheorem6 that if {θ̂n} is a con-
sistent sequence of estimators that is asymptotically normal
with mean θ and variance σ 2, then {τ̂n} is also a consis-
tent and asymptotically normal sequence of estimators with
mean g(θ) = τ and variance σ 2(g′(θ))2. Then, we can sim-
ply reapply Theorem 7 to {τ̂n}, yielding an asymptotically
exact 1 − α confidence interval [L̄(x), Ū (x)] for τ :

L̄(x) := τ̂n(x) − zα/2

√
σ 2
n (x)(g′(θn(x))2

n
, (B16)

Ū (x) := τ̂n(x) + zα/2

√
σ 2
n (x)(g′(θn(x))2

n
. (B17)

Example 1 For a random variable X with distribution func-
tion f , a common exercise is to estimate the expected value
of X , μ = E[X ]. We sample n times from the distribu-
tion of X1, . . . , Xn and estimate μ by μ̂n = 1

n

∑n
i=1 Xi .

A consistent estimator for σ 2 = Var(X) is then σ̂ 2
n =

1
n

∑n
i=1(Xi − μ̂n)

2, so that a 1 − α confidence interval for
μ is given by

μ̂n ± zα/2

√∑n
i=1(Xi − μ̂n)2

n
. (B18)

Suppose we now wish to find an estimate for logμ and
a corresponding confidence interval. From Theorem 5, we
know that log μ̂n →P logμ, so that log μ̂n is consistent.
Furthermore, since logμ is continuously differentiable with

non-zero first derivative 1/μ, we can apply Theorem 6 to
show that the sequence of estimators is asymptotically nor-
mal and use Eqs.B16 and B17 to obtain a confidence interval
for logμ:

log μ̂n ± zα/2

√∑n
i=1(Xi − μ̂n)2

nμ̂n
. (B19)

Estimation of Bernoulli probabilities

For the Bernoulli(p) random variable X , which we define in
the main text to represent exceedance for some threshold c,
we aim to estimate the value of the exceedance probability
p ∈ (0, 1) given some realised observations x drawn from

the distribution of X
iid∼ fn(p), where

f (x; p) = px (1 − p)x (B20)

for x ∈ {0, 1}, and hence

fn(x; p) =
n∏

i=1

f (x; p) = pxi (1 − p)1−xi (B21)

for x = (x1, . . . , xn) ∈ X n . X has expectation E[X ] = p
and variance σ 2 = Var(X) = p(1 − p), and we define the
simple estimator of p as

pnsimple := 1

n

n∑

i=1

Xi , (B22)

which is unbiased,

E

[
pnsimple

]
= 1

n

n∑

i=1

E[Xi ] = 1

n
np = p, (B23)

with variance given by

Var
(
pnsimple

)
= 1

n2

n∑

i=1

Var(Xi ) = 1

n2
np(1 − p)

= p(1 − p)

n
. (B24)

Since pnsimple = 1
n

∑n
i=1 Xi , where the Xi are i.i.d. with

E[Xi ] = p for all i = 1, . . . , n, it follows from Theorem 1
that pnsimple →P p, i.e. it is a consistent estimator of p. Fur-
thermore, by Theorem 2, pnsimple is asymptotically normal.

Using Theorem 7, we obtain the asymptotically exact con-
fidence intervals Eq.5 for p:

pnsimple ± zα/2

√
pnsimple(1 − pnsimple)

n
. (B25)
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Remark 4 To obtain the confidence intervals for log p, we
define the reparameterisation τ := g(p) = log p. We use
the result in Example 1 to obtain the asymptotically exact
confidence intervals Eq.6 for log p:

log
(
pnsimple

)
± zα/2

√
1 − psimple

npsimple
. (B26)

Appendix C: Results related to stratified
sampling

Variance decomposition into within- and
between-stratum components

We show that Eq.17 holds, i.e. the variance of a Bernoulli(p)
random variable X can be decomposed into within- and
between-stratum components. Let Z be the random variable
representing the start date of the wind field data drawn uni-
formly at random from Z , where Z is partitioned into J
strata Z1, . . . ,ZJ . For ease of notation, we represent the
event

{Z ∈ Z j
}
by {Y = j}, where Y is a random variable

drawn from {1, . . . , J } with probability

P(Y = j) = P
(Z ∈ Z j

) = w j , (C1)

for all j ∈ {1, . . . , J }, and∑J
j=1 w j = 1. Noting that

E[X |Y = j] = p j , (C2)

Var(X |Y = j) = p j (1 − p j ), (C3)

for all j ∈ {1, . . . , J }, we obtain

E[Var(X |Y )] =
J∑

j=1

P(Y = j)Var(X |Y = j)

=
J∑

j=1

w j p j (1 − p j ); (C4)

Var(E[X |Y ]) = E

[
(E[X |Y ] − E[E[X |Y ]])2

]

= E

[
(E[X |Y ] − E[X ])2

]

=
J∑

j=1

P(Y = j) (E[X |Y = j] − E[X ])2

=
J∑

j=1

w j (p j − p)2. (C5)

Then, by the law of total variance,

Var(X) = E[Var(X |Y )] + Var(E[X |Y ]) (C6)

=
J∑

j=1

w j p j (1 − p j ) +
J∑

j=1

w j (p j − p)2. (C7)

Unbiasedness and variance of the stratified
sampling estimator

For the stratified sampling estimator pnstrat defined in Eq.14,
we show that it is an unbiased estimator of p. Noting that
the samples X j,1, . . . , X j,n j are independent and identically
distributed so thatE

[
X j,i

] = E
[
X j,1

]
for all j ∈ {1, . . . , J },

we have

E
[
pnstrat

] = E

⎡

⎣
J∑

j=1

w j
1

n j

n j∑

i=1

X j,i

⎤

⎦

=
J∑

j=1

w j p j = p, (C8)

so it is unbiased for all p ∈ (0, 1). Furthermore, the variance
of pnstrat is given by

Var
(
pnstrat

) =
J∑

j=1

w2
jVar

(
pnj

)

=
J∑

j=1

w2
j

n j
p j (1 − p j ). (C9)

In particular, if n j = nw j for all j ∈ {1, . . . , J }, as in
proportional stratum allocation, we find that the variance of
the estimator is guaranteed to be less than or equal to that of
pnsimple:

Var
(
pnstrat

) =
J∑

j=1

w2
j

nw j
p j (1 − p j )

= 1

n

J∑

j=1

w j p j (1 − p j )

≤ 1

n

J∑

j=1

w j

(
p j (1 − p j ) + (p j − p)2

)

= 1

n
Var(X) = Var

(
pnsimple

)
, (C10)

where the final line follows from Eq.17.
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Asymptotic normality of the stratified sampling
estimator

We show that the stratified sampling estimator is asymptoti-
cally normal. Let q j := limn→∞ n j/n.

√
n
(
pnstrat − p

) = √
n

⎛

⎝
J∑

j=1

w j

n j

n j∑

i=1

X j,i −
J∑

j=1

w j p j

⎞

⎠

= √
n

⎛

⎝
J∑

j=1

w j

⎛

⎝ 1

n j

J∑

j=1

X j,i − p j

⎞

⎠

⎞

⎠

= √
n

⎛

⎝
J∑

j=1

w j√
n j

(
1√
n j

S j

)
⎞

⎠

=
J∑

j=1

w j√
n j/n

(
1√
n j

S j

)
, (C11)

where we denote S j := ∑n j
i=1 X j,i − p j . By Theorem 2,

S j/
√
n j →D N (0, σ 2

j ). It follows that

w j√
n j/n

1

n j
S j →D N

(

0,
w2

j

q j
σ 2
j

)

. (C12)

Then, since the J terms in the summation in Eq.C11 are
independent, we obtain

√
n
(
pnstrat − p

) =
J∑

j=1

w j√
n j/n

1

n j
S j

→D N
⎛

⎝0,
J∑

j=1

w2
j

q j
σ 2
j

⎞

⎠ . (C13)

That is, the stratified sampling estimator is asymptotically
normal with mean p and variance 1

n

∑J
j=1 w2

jσ
2
j /q j , where

q j = limn→∞ n j/n.

Optimal stratum allocation

It is possible to define an optimum stratification which will
always reduce the variance of the estimate, where the number
of samples is allocated proportionally to both the weights
w j and the stratum standard deviations σ j , where σ 2

j :=
p j (1−p j ) forBernoulli probabilities p j (seeEtore and Jour-
dain 2010). The variance of the optimal stratified estimator is
guaranteed to be less than that of proportional allocation, but
requires knowledge of the stratum variances. Since these are
usually unknown, approximately optimal stratified estima-
tors can be constructed using accurate approximations of the

stratum variances. In the setting of exceedance probability
estimation, stratum variances are linked to the exceedance
threshold of interest; if a range of thresholds are considered,
optimal allocation using any one threshold may not neces-
sarily provide better results overall. Therefore, in this paper,
we did not pursue optimal stratification, but here, we note its
benefit in variance reduction if sufficiently accurate approx-
imations of stratum variances are available.

Post-stratification

If our samples have already been drawn according to ran-
dom sampling, it is possible to post-hoc reduce the variance
of our probability estimates through a variant of stratified
sampling called post-stratification (Jagers et al., 1985). The
method has applications in areas such as political polling,
where survey responses are biased and require debiasing
to be representative of the entire population (Jagers, 1986).
An example application of post-stratification to the use of
weather regimes in volcanic ash hazard assessment would
be if the frequency of the weather regimes changed in the
future (without a change in the variation within patterns),
or perhaps if there were known seasonal changes in the fre-
quencies. Post-stratification would allow re-weighting of the
patterns without needing to resample individual wind fields
from their distribution.

In particular, using the notation described in the ‘Statisti-
cal background’ section of the main paper, if the simulation
start dates Z1, . . . , Zn have been drawn independently with
probabilities q1, . . . , qJ , we may allocate each sample to the
appropriate stratum according to their classification to obtain
stratum sizes

n j = ∣∣{i : Zi ∈ Z j , i = 1, . . . , n
}∣∣ (C14)

for j ∈ {1, . . . , J }, which we note are now random. We then
denote by X j,1, . . . , X j,n j the corresponding Bernoulli

(
p j
)

random variables representing exceedance for some thresh-
old. Stratum sample means can then be computed by Eq.13
and the stratified sampling estimator of p by Eq.14, which
we refer to as the post-stratified estimator.

The caveat of this method, however, is that the post-
stratified estimate cannot be computed if n j = 0 for some
j ∈ {1, . . . , J } (Jagers et al., 1985). As the n j are random,
the probability of this event is

P

(
min
j

n j = 0

)
=

J∑

j=1

(1 − q j )
n, (C15)
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which decreases exponentially quickly in n with a rate
depending on the smallest weight and hence becomes very
small as n increases.

In the following section, we show that the post-stratified
estimator is unbiased whenever the stratum sizes are non-
zero.Moreover, the estimator is asymptotically normalwhich
allows us to construct asymptotically exact confidence inter-
vals.

Unbiasedness and asymptotic normality of the
post-stratified estimator

Weview post-stratification as a situation inwhich the stratum
sizes n1, . . . , nJ are given positive integers. Given n j > 0
for each j ∈ {1, . . . , J }, X j,i ∼ Bernoulli

(
p j
)
for each

i ∈ {1, . . . , n j
}
. Then, conditional on the n j being positive,

we are in the standard stratified sampling setting, and the
post-stratified estimator is unbiased with the same asymp-
totic distribution as in the previous section, provided that
limn→∞ n j/n = q j .

If n j = 0 for some j ∈ {1, . . . , J }, then the post-stratified
estimator is not defined. It is possible to define the estimator
in some other way in this case; however, this would intro-
duce bias. Therefore, the post-stratified estimator is unbiased
whenever min j∈{ j,...,J } n j > 0.

An alternative approach is to treat the n1, . . . , n j as
realisations of random variables N1, . . . , NJ as in Jagers
et al. (1985). Let Z1, . . . , Zn be independent random vari-
ables drawn from Z such that q j := P

(
Z ∈ Z j

)
for all

j ∈ {1, . . . , J }, where∑J
j=1 q j = 1. Then,

N j =
n∑

i=1

1
{
Zi ∈ Z j

}
, (C16)

andwe see that (N1,. . ., NJ ) ∼ Multinomial (n, (q1,. . ., qJ )).
Letting f (Zi ) = 1 {ψ ◦ φ(Zi ) ≥ c} ∼ Bernoulli(p) rep-
resent the exceedance event, we write the post-stratified
estimator as

pnpost :=
J∑

j=1

w j
1

N j

n∑

i=1

f (Zi )1
{
Zi ∈ Z j

}
. (C17)

Then,

√
n
(
pnpost − p

)

= √
n

⎛

⎝
J∑

j=1

w j
1

N j

n∑

i=1

1
{
Zi ∈ Z j

} (
f (Zi ) − p j

)
⎞

⎠

=
J∑

j=1

nw j

N j

1√
n
S j , (C18)

where we define

S j =
n∑

i=1

1
{
Zi ∈ Z j

} (
f (Zi ) − p j

) =:
n∑

i=1

ϕ j (Zi ). (C19)

Noting that

ϕ j (Zi ) =
⎧
⎨

⎩

−p j if Zi ∈ Z j and Xi = 0,
1 − p j if Zi ∈ Z j and Xi = 1,

0 if Zi /∈ Z j ,

=
⎧
⎨

⎩

−p j w.p. q j (1 − p j ),

1 − p j w.p. q j p j ,

0 w.p. 1 − q j ,

(C20)

we find that

E
[
ϕ j (Zi )

] = (1 − p j )q j p j − p jq j (1 − p j ) = 0 (C21)

and

E

[(
ϕ j (Zi )

)2] = (1 − p j )
2q j p j + p2j q j (1 − p j )

= q j p j (1 − p j ) = q jσ
2
j , (C22)

giving

Var
(
ϕ j (Zi )

) = E

[(
ϕ j (Zi )

)2]− (E[ϕ j (Zi )
])2

= E

[(
ϕ j (Zi )

)2] = q jσ
2
j . (C23)

It follows from Theorem 2 that 1√
n
S j →D S̄ j ∼

N
(
0, q jσ

2
j

)
, for all j ∈ {1, . . . , J }. Noting that

E[ϕ j (Zi )ϕk(Zi )] = 0 for all j �= k, we show that the ϕ j (Zi )

are uncorrelated for all i ∈ {1, . . . , n}:

Cov
(
ϕ j (Zi ), ϕ j (Zi )

)

= E
[(

ϕ j (Zi ) − E
[
ϕ j (Zi )

])
(ϕk(Zi ) − E[ϕk(Zi )])

]

= E
[
ϕ j (Zi )ϕk(Zi )

] = 0, (C24)

which follows from Eq.C21. Using this result, we arrive at

Cov

(
1√
n
S j ,

1√
n
Sk

)
= E

[
S j Sk

] = 0, (C25)

for j �= k. Then, 1√
n
S1, . . . ,

1√
n
SJ are uncorrelated and con-

verge in distribution to S̄1, . . . , S̄J which are normal and
uncorrelated, and hence independent. Furthermore, by The-
orem 1, nw j/N j →P w j/q j . It then follows from Theorem
4 that

nw j

N j

1√
n
S j →D N

(

0,
w2

j

q j
σ 2
j

)

. (C26)
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Since there is joint convergence indistributionof 1√
n
S1, . . .,

1√
n
SJ to independent normal random variables, and in

nw1/N1, . . . , nwJ /NJ to constants, we can apply Theorem
5 to show that

√
n
(
pnpost − p

)
=

J∑

j=1

nw j

N j

1√
n
S j

→D N
⎛

⎝0,
J∑

j=1

w2
j

q j
σ 2
j

⎞

⎠ , (C27)

which is the same as Eq.C13. That is, the post-stratified esti-
mator has the same asymptotic distribution as the original
stratified sampling estimator despite the samples Z1, . . . , Zn

being drawn from some other distribution.

Supplementary information

An R package for carrying out the statistical methods dis-
cussed is available on GitHub (https://github.com/shannon-
wms/stratsampling).
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