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Abstract
The 1980 eruption of Mount St. Helens was instrumental in advancing understanding of how volcanoes work. Lateral edifice 
collapses and the generation of volcanic debris avalanches were not widely recognized prior to that eruption, making assessment 
of their hazards and risks challenging. The proliferation of studies since 1980 on resulting deposits and evaluation of processes 
leading to their generation has built on the insights from the 1980 eruption. Volcano-related destabilizing phenomena, such as 
strength reduction by hydrothermal alteration, deformation and structural modifications from shallow magma intrusion, and 
thermal pressurization of pore fluids supplement those factors also affecting nonvolcanic slopes and can lead to larger failures. 
Remote and ground-based monitoring techniques can aid in detecting potentially destabilizing dynamic processes and in fore-
casting the size and location of future large lateral collapses, although forecasting remains a topic of investigation. More than 
a thousand large lateral collapse events likely ≥ 0.01  km3 in volume have now been identified from deposits or inferred from 
source area morphology, leading to a recognition of their importance in the evolution of volcanoes and the hazards they pose. 
Criteria for recognition of debris-avalanche deposits include morphological factors and textural characteristics from outcrop to 
microscopic scale, allowing discrimination from other volcaniclastic deposits. Lateral edifice failure impacts a broad spectrum 
of volcanic structures in diverse tectonic settings and can occur multiple times during the evolution of individual volcanoes. 
Globally, collapses ≥ 0.1  km3 in volume have been documented 5–6 times per century since 1500 CE, with about one per century 
having a volume ≥ 1  km3. Smaller events < 0.1  km3 are underrepresented in the earlier record but also have high hazard impact.

Keywords Lateral edifice collapse · Debris avalanche · Failure causes · Sedimentology · Collapse frequency · Mount St. 
Helens

Introduction

The cataclysmic events of May 18, 1980, at Mount St. 
Helens led to major advances in the understanding of how 
volcanoes work. Not the least of these was a recognition of 
the instability of volcanic edifices and their propensity to 
collapse, producing large-scale volcanic debris avalanches 
(VDAs) that extend far from their volcano source. The 
1980 eruption of Mount St. Helens was instrumental in 
calling attention to this process that had received relatively 
little prior notice. Although large-scale lateral collapse of 
volcanic edifices and generation of debris avalanches had 
been recognized prior to 1980 at volcanoes such as Bandai 
in Japan in 1888 (Sekiya and Kikuchi 1889) and at oce-
anic volcanoes in the Hawaiian (Moore 1964) and Canary 
Islands (Bravo 1962), many now well-known examples 
such as Bezymianny in Kamchatka in 1956 (Gorshkov 
1959), Ritter Island in Papua New Guinea in 1888 (Hoyt 
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1978), and Mount Shasta in California (Hotz 1977) had 
been interpreted otherwise. Much of the pre-1980 recog-
nition of VDAs at other volcanoes was in less accessible 
regional or non-English publications and resulting depos-
its were most often attributed to a wide variety of other 

volcanic and nonvolcanic processes, including volcanic 
mudflows or lahars (Siebert and Roverato 2021).

The 1980 collapse was the first such event to be witnessed 
and documented at the time of occurrence. An impressively 
detailed compilation and analysis of the events of 1980 was 



Bulletin of Volcanology (2023) 85:61 

1 3

Page 3 of 54 61

rapidly published the following year (Lipman and Mullineaux 
1981) while the U.S. Geological Survey (USGS) and other 
scientists were caught up in dealing with an ongoing major 
volcanic crisis. We summarize the events leading up to and 
including the May 18 edifice collapse at Mount St. Helens at 
a time when the phenomenon of volcanic debris avalanches 
was not widely recognized, leading to great uncertainty about 
the future course of the eruption, with attendant difficulties 
in understanding and communicating risk implications. As 
part of this special issue on the lasting scientific influence of 
the 1980 eruption of Mount St. Helens, we then focus on the 
advances made in understanding and recognizing these events 
at Mount St. Helens and world-wide in the more than four 
decades since that catastrophic collapse.

Terminology

We use both edifice failure and edifice collapse to refer to 
landslide-generated lateral collapse of volcanic edifices pro-
ducing debris avalanches. Such landslides are predominantly 
gravitational but may also be promoted by dynamic volcanic 
processes such as internal magma “push.” The adjective “lat-
eral” is used here to distinguish from vertical caldera col-
lapse resulting from magma chamber evacuation. We apply 
the generic term landslide to both volcanic and nonvolcanic 
settings. Pyroclastic flow and pyroclastic density current are 
generalized terms referring to hot, gravity-driven flows with 
variable mixtures of air, gas, and pyroclastic particles. We 
generally use the former term, although both can encompass 
more specific processes such as pyroclastic surges, block-and-
ash flows, lateral blasts, and ignimbrites and we also use those 
more specific terms in context. The terms lateral blast or 
directed blast have been applied to several processes including 

dome explosions (Lerner et al. 2022), but we restrict usage 
here to laterally directed explosions associated with landslide-
generated edifice failures (Belousov et al. 2020).

1980 Mount St. Helens lateral edifice 
collapse and debris avalanche

Pre‑May 18 precursory activity

Prior to the rapid collapse on May 18, 1980, pre-failure defor-
mation at Mount St. Helens began at the onset of the eruptive 
event in March 1980. Deformation may have begun with the 
initial seismic events detected on March 20; minor surface 
fractures cutting the upper northern flank seen on March 25 
(Christiansen and Peterson 1981) may have been seismically 
induced. Summit uplift could have begun slightly before the 
initial small explosions on March 27, when a 1.5-km-long 
E-W-trending fracture was first apparent that heralded sub-
sequent formation of a 1.5-km-long, 0.4-km-wide, E-W-
trending summit graben. Three days later, deformation at the 
summit and upper north flank was quite prominent in aerial 
photos (Fig. 1a). Early explosions were centered within the 
summit graben that incrementally subsided and expanded to 
the north, with an uplifted block or bulge forming north of 
the graben that dramatically pushed the north flank north-
ward prior to May 18. The frequency of small explosions 
declined slowly in early to mid-April and stopped from April 
22 to May 6, resuming intermittently from May 7 to May 
14 (Christiansen and Peterson 1981); these explosions were 
thought at the time to be solely phreatic, but later found to 
include a magmatic component (Cashman and Hoblitt 2004).

Deformation monitoring on the lower northern flank 
that included spirit-level tilt stations and the frozen sur-
face of Spirit Lake as a large liquid tiltmeter (Lipman et al. 
1981) began on March 30. Tilt measurements at Timberline 
overlook on the north flank were intensified on April 20 to 
include geodetic measurements of points higher on the vol-
cano in response to visual evidence of the dramatic bulging 
on the upper north flank that was not detectable with the 
early flank tilt measurements (Lipman et al. 1981). Figure 1b 
and c show the impressive contrast between the pre-eruption 
profile of the summit and the same view on May 1 after 
more than a month of deformation. Sequential topographic 
maps documented that by April 7 the prominent north-flank 
bulge that formed north of the summit graben was about 
1.8 km in diameter (Moore and Albee 1981). It pushed the 
north flank northward, mostly in a horizontal direction, at 
a rate of about 1.5–2 m/day, with a peak of 2.5 m/day (Lip-
man et al. 1981). The bulge was attributed to intrusion of a 
cryptodome into the upper north flank deflected to the north 
by the pre-existing summit dome. By May 12 the bulge had 

Fig. 1  Precursory activity at Mount St. Helens in 1980. a Aerial 
oblique view of summit from east on March 30, 3 days after the onset 
of eruptive activity showing two small craters and abundant fractures 
on summit and upper flank with initial development of summit gra-
ben (Krimmel and Post 1981). b Summit of Mount St. Helens from 
Timberline viewpoint prior to 1980 volcanic unrest with older lava 
domes. DH Dogs Head dome, SB Sugar Bowl dome, GR Goat Rocks 
dome. August 1979 L. Siebert photo. c View from nearly same loca-
tion as b (with same features labeled) on May 1, 1980 (Lipman et al. 
1981). Base of deformation stretches from Dogs Head to above the 
top of Sugar Bowl dome and incorporates Goat Rocks and areas to 
the north. Photo by P. Lipman. d Modified Fig. 16 of Voight (2000), 
with redrafted version of original sketch by Voight posted on wall 
at the USGS office in Vancouver on April 15, 1980, showing failure 
surface cross-sections of Gros Ventre (Voight 1978) and Madison 
Canyon (Hadley 1978) nonvolcanic landslides and potential Mount 
St. Helens failure surfaces. Bandai volcano was added to final May 1 
report. e Mount St. Helens portion of original hand-drawn April 15, 
1980, sketch showing potential failure surface and including nota-
tion that slide mass could reach Spirit Lake and debris and mudflows 
travel much farther. Image courtesy of B. Voight

◂
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a height of 150 m above the previous slope at that point, 
with the Goat Rocks dome at the base of the bulge having 
moved northward by 106 m. By May 18, the cryptodome had 
an estimated volume of 0.11  km3 (Moore and Albee 1981).

Ongoing concern about the potential failure of the bulge 
had prompted the USGS to engage landslide expert Barry 
Voight to assess the probability of collapse. His report, sub-
mitted on May 1, was based on observations during his April 
11–19 visit (appended to Voight 2000) and was a prescient 
analysis of what could happen at Mount St. Helens. Voight 
noted similarity of events at Mount St. Helens to that at 
nonvolcanic landslides. He also diagramed potential failure 
zones at Mount St. Helens (Fig. 1d, e), modeled the tsunami 
potential from an avalanche reaching Spirit Lake, and noted 
potential failures as much as a kilometer thick with a volume 
of 1  km3 or more. He did not focus on potential explosions 
triggered by a rapid landslide at Mount St. Helens but noted 
the volcanic landslide at Bandai volcano in Japan in 1888 
and stated that removal of overburden pressure by a land-
slide could precipitate hydrothermal or possibly magmatic 
explosive activity. Voight had included the Bezymianny 
1956 eruption (Gorshkov 1959) in his draft report outline 
but did not refer to the widespread 1956 Bezymianny lateral 
blast in the final report due to ambiguities in Gorshkov’s 
interpretations and his lack of linking landslide and blast (B. 
Voight, 2021 Pers. Comm.). Voight concluded by noting that 
data on rates of deformation were difficult to directly inform 
stability decisions. This proved to be the case at Mount St. 
Helens. The extensive deformation monitoring of the omi-
nous bulge was intended to determine whether an increase 
in the rate of movement would be an indication of potential 
failure. However, measurements on May 16 (delayed due to 
poor weather since May 5) noted an average deformation 
rate that had slowed to 1.4 m/day between May 4 and May 
16. Measurements on May 17 and early on May 18, the latter 
made only an hour and a half before the May 18 cataclysmic 
eruption by David Johnston from the Coldwater ridge field 
station above the North Fork Toutle River valley, showed 
further slowing to about 0.5 m/day (Lipman et al. 1981).

Events of May 18

The 2 months of accumulating deformation at Mount St. 
Helens reached its culmination at 0832 Pacific Daylight Time 
(PDT) on May 18 when the summit and northern flank sud-
denly failed, producing one of history’s largest landslides. 
Geologists Keith and Dorothy Stoffel were serendipitously 
flying above the summit in a small plane (Stoffel 1980) when 
they saw small avalanches from the summit crater walls, after 
which the upper north flank begin to ripple in place and then 
collapse rapidly to the north. Failure of the edifice was ret-
rogressive, involving several slide blocks referred to as slide 

blocks I, II, and III (Voight 1981; Voight et al. 1981) (Fig. 2). 
Rapid unloading of the hydrothermal-magmatic system in the 
upper edifice by failure of slide block I exposed the intruded 
cryptodome and triggered a directed volcanic explosion (lat-
eral blast) that devastated 600  km2 over a broad arc WNW 
to ENE of the volcano, removing trees proximally and caus-
ing extensive radial and flow-parallel blowdown with stand-
ing singed trees at the deposit margins (Hoblitt et al. 1981; 
Moore and Sisson 1981; Waitt 1981).

Following emplacement of the debris avalanche and the 
lateral blast, an open-vent stage of the eruption began from a 
vent about a kilometer below the former summit, producing 
a powerful Plinian eruption column that rose to an altitude 
of 30 km (Sparks et al. 1986). Thick deposits of pumice 
lapilli blanketed areas near the volcano and distal ashfall 
reached eastward across the country, causing darkness more 
than 200 km from the volcano (Sarna-Wojcicki et al. 1981; 
Carey and Sigurdsson 1982; Eychenne et al. 2015; Criswell 
2021; Mastin et al. 2023). Collapse of the eruption column 
produced pumiceous pyroclastic flows that traveled 7–8 km 
from the vent, forming a large debris apron extending into 
Spirit Lake referred to as the Pumice Plain (Rowley et al. 
1981; Criswell 1987, 2021; Brand et al. 2016).

May 18 lahars, including those that traveled down the 
South Fork Toutle River and other valleys to the west and 
south, formed when pyroclastic surges melted snow and 
ice. A larger, fines-rich lahar formed several hours later due 
to liquefaction of the VDA deposit that had traveled down 
the North Fork Toutle River (Cummins 1981; Janda et al. 
1981; Pierson 1985; Fairchild 1987; Brantley and Waitt 
1988; Scott 1988a; Waitt 1989). The lahars caused major 
damage downstream to bridges, roads, houses, and logging 
camps, reaching the Columbia River and impacting shipping 
channels. Eyewitnesses located around the volcano provided 
photographic and other input to interpretation of the erup-
tion (Rosenbaum and Waitt 1981; Waitt 2015; Olsen 2016).

Edifice‑failure research at Mount St. Helens

Timely photographs taken by Gary Rosenquist from a loca-
tion about 17.5 km NE of the summit at Bear Meadow just 
outside the blast zone showed the volcano before the erup-
tion, the onset of the landslide, and the ensuing eruption. A 
series of 21 rapid photographs taken over a ~ 45-s interval 
captured the evolving collapse until the advancing blast 
cloud obscured views and he and other photographers at 
Bear Meadow fled the scene. This series allowed detailed 
assessment of the initial movements of the landslide and 
the lateral blast (Voight 1981; Voight et al. 1981) (Fig. 2). 
While the Stoffels were flying overhead, an apparently new 
fracture about 1.5 km long formed within about 5–10 s after 
they observed initial small avalanches on the crater walls at 
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Fig. 2  Initial sequence of edifice collapse showing incremental move-
ment of slide blocks I and II as seen from series of photographs by 
Gary Rosenquist (Voight et  al. 1981). Connected points in Voight 
et al.’s (1981) diagrams a and b indicate movement path for objects 
identified on several images. Photos c, d, and e can be matched to 
individual slide block movement locations with Rosenquist frame 
labels c, l, and o, respectively, from Voight diagrams a and b. Red 
Roman numerals on photos were added to mark approximate loca-
tions of the tops of slide blocks I and II on those photos. c Initial 
post-collapse Rosenquist photo (frame c) at approximately 0832:47 
PDT, ca. 36  s after initial earthquake, with no explosive activity 

showing slide block I at lower right, which had moved 700 m with a 
scarp 600 m high and had reached a velocity of about 50 m/s. Slide 
block II at the summit had been displaced about 100 m. White areas 
in between slide blocks are ice avalanches. d Rosenquist frame l taken 
10.0  s after frame c. Summit vertical explosions begin from area 
behind the top of slide block II and the initial explosions of the lateral 
blast begin through slide block II. e Rosenquist frame o 16.7 s after 
frame c showing growth of summit plume and blast cloud. c, d, and e 
copyrighted by Gary Rosenquist 1980, used with permission. Figure 
modified from Voight et al. (1981) and Pierson et al. (2018)
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about the time of a 5.1 magnitude earthquake at 0832:11.4 
PDT (Endo et al. 1981; Malone et al. 1981). Observable 
rockslide motion apparently initiated about 0832:21 PDT 
(Voight 1981). The initial landslide block (slide block I) 
originated from the area between two northern summit 
peaks and rapidly unroofed the cryptodome forming the 
north flank bulge. The initial detachment plane dipped 
to the north at about a 50–60° angle (Voight et al. 1981). 
Slide block I had moved 700 m, reaching a velocity of about 
50 m/s in about 26 s after its detachment prior to initiation 
of the blast explosions, which occurred as slide block II 
was impacting the source of the explosions upslope of slide 

block I. It moved an additional 700 m downward in only 
11 s, attaining a velocity of 70–80 m/s (Voight et al. 1981). 
The blast cloud soon overtook the still moving slide block 
I. Calculations of the initial movement of the blast cloud 
based on the photographs and subsequent destruction of a 
seismic station at Sugar Bowl dome likely due to arrival of 
the blast cloud suggested an average horizontal blast cloud 
velocity of 156 m/s, with a possible instantaneous velocity 
at Sugar Bowl exceeding 200 m/s (Voight 1981). Kieffer 
(1981a, b) modeled velocities up to 325 m/s as the blast 
cloud expanded.

Sidebar: Barry Voight and Harry Glicken
Two individuals, whose names are inexorably linked to Mount St. Helens, were involved both in pre-
May 18 monitoring efforts at the volcano in 1980 and in the scientific response to that eruption. They 
played an oversized role in the volcanology community’s understanding of factors contributing to edifice 
collapse and in recognition and characterization of the resulting deposits. Landslide expert Barry Voight
was tapped by the USGS prior to the eruption to evaluate the potential for landslide generation at Mount 
St. Helens. Following the eruption, he plunged into the evaluation of the debris-avalanche deposit and the 
causes of the failure, utilizing his engineering geology background to produce, along with his colleagues, 
rigorously constrained evaluations of causes of the collapse at Mount St. Helens and other volcanoes. He 
was subsequently involved in other major response efforts to volcanic crises or in hazard assessments 
around the globe, including at Montserrat and other West Indies volcanoes, and at volcanoes in 
Colombia, Ecuador, Indonesia, the Philippines, Japan, Alaska, Kamchatka, Mexico, France and Italy. 
Voight had a long-term involvement with the USGS Volcano Disaster Assistance Program, and his focus 
expanded to incorporate eruption forecasting concepts and methods to improve early warning and 
evacuation recommendations. His many awards, both in engineering and volcanology, include the 
IAVCEI Thorarinsson Medal in 2013 and election to the National Academy of Engineering in 2017.

Harry Glicken was a graduate student of R.V. Fisher at the University of California Santa 
Barbara (UCSB) at the time of the 1980 Mount St. Helens eruption. The events of May 18 prompted him 
to focus his dissertation on the newly emplaced debris-avalanche deposit. This remains one of the most 
detailed evaluations of an avalanche deposit to date, and his insights have informed the understanding of 
many other debris-avalanche deposits since. In addition to his work at Mount St. Helens, Glicken was 
involved in debris-avalanche projects at Mount Shasta in California, Augustine Volcano in Alaska, 
Papandayan volcano in Indonesia, and Bandai volcano in Japan. While working in Japan, his promising 
career was cut short in 1991 when he lost his life, along with French volcanologists Maurice and Katia 
Krafft and 40 Japanese residents and journalists, when they were caught in a pyroclastic surge from 
collapse of a growing lava dome on Unzen volcano. Glicken’s passion for work on volcanoes is carried 
on in subsequent papers by volcanologists building on his ground-breaking work at Mount St. Helens 
and by the annual award of the “Harry Glicken Memorial Graduate Fellowship” of the Department of 
Earth Sciences at UCSB. 
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The initial study of the 1980 VDA deposit at Mount 
St. Helens by Voight et al. (1981) during the summer of 
1980 constrained the timing of the VDA, its extent, and 
textural and physical properties of differentiated deposit 
units. Part of the rapidly moving VDA swept into Spirit 
Lake, raising the water surface of the lake by more than 
60 m and generating a > 260-m-high wave that swept trees 
blown down by the blast into the lake, many of which 
remain floating on the lake surface today. Another seg-
ment of the avalanche swept over an intervening ridge 
(now known as Johnston Ridge) into the South Fork Cold-
water Creek drainage, but the bulk of the avalanche was 
diverted by the ridge down the North Fork Toutle River. 
The VDA deposit eventually reached 23 km from the 
source and covered 60  km2 of the valley floor to an aver-
age thickness of 45 m and a maximum thickness of 195 m. 
Voight et al. (1981) calculated a 2.8-km3 volume for the 
deposit, with 2.76  km3 missing from the edifice, as well 
as an “in-place” (prior to expansion) volume of about 2.3 
 km3 and noted analogs to the Mount St. Helens avalanche 
deposit in Japan, Kamchatka (Russia), the Cascade Range 
(USA), Indonesia, and New Zealand.

Following initial studies of the 1980 Mount St. Helens 
VDA deposit (Voight et al. 1981, 1983; Ui and Aram-
aki 1983), the most detailed examination of the deposit 
widely consulted for understanding landslide events 
elsewhere was by Harry Glicken (1986) in his PhD 
dissertation at the University of California Santa Bar-
bara, which was published posthumously by the USGS 
(Glicken 1996). Glicken prepared detailed maps of the 
surface morphology of the VDA deposit and detailed 
lithologic maps at a 1:12,000 scale that distinguished 
overlying lateral-blast and lahar deposits. This mapping 
allowed determination of movement and destinations of 

the various parts of the edifice and their relationship to 
the three retrogressive slide blocks. Factors contributing 
to edifice instability and resulting collapse at Mount St. 
Helens and elsewhere are discussed in a later section.

Deposit geometry, morphology, and sedimentology

Glicken (1986, 1996) recalculated the preliminary deposit 
volumes of 2.8  km3 of Voight et al. (1981, 1983) to be 2.5 
 km3, including 0.43  km3 of material deposited in Spirit Lake. 
Neither figure included the 0.2  km3 of avalanche material 
remaining in the post-collapse crater. The deposit thinned 
considerably downstream of a constriction in the valley 
west of Coldwater Lake (Fig. 4), where it was dominated by 
slide block III material and widely overlain by subsequent 
May 18 lahar deposits. Glicken evaluated the morphology 
and volumes of hummocks, identifying 675 hummocks on 
available 1:24,000 maps. Small hummocks (less than about 
12 m maximum height constrained by available 40-ft. con-
tours) appeared throughout the deposit, but hummock size 
decreased with distance, with smaller hummocks form-
ing > 90% of hummocks beyond 24 km. Glicken’s detailed 
map of hummock orientations showed that elongation of 
hummocks was generally parallel to flow direction, but at 
valley constrictions or at the distal end orientations were 
random.

Glicken distinguished two end-member facies in the 
VDA deposit, a block facies, consisting of unconsolidated 
or poorly consolidated pieces of the edifice that were trans-
ported relatively intact, and a matrix facies consisting of 
completely mixed material from the edifice or substrate 
material incorporated during emplacement. Glicken (1990, 
1991) redefined the matrix facies to be the mixed facies, 
terminology subsequently widely adopted elsewhere. Both 

Fig. 3  Dark-colored hummock 
is exposed block-facies mate-
rial rafted within light-colored 
mixed-facies material in the 
1980 Mount St. Helens debris-
avalanche deposit. Red circle 
marks person for scale. Photo 
modified from Glicken (1986)
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block and mixed facies were found at the same exposure, 
and block-facies material was often surrounded by or carried 
within mixed-facies material (Fig. 3).

Hummocks were categorized based on facies relation-
ships and attributed to mechanisms such as horst and gra-
ben formation or basal or lateral shear. Block-facies material 
dominated the proximal to medial part of the deposit, with a 
mixture of block facies and mixed facies dominating distal 
material to the west. Pervasive fracturing throughout block-
facies material produced partially fractured or completely 
shattered debris-avalanche blocks. Studies on a microscopic 
scale at Mount St. Helens indicated that pervasive frac-
turing extended to the size of individual grain fragments 
(Komorowski et al. 1991).

Glicken conducted the first detailed analysis of the sedi-
mentological properties of a VDA deposit, utilizing pipette 
and sieve data for finer-grained parts of the deposit supple-
mented by photographic analysis of larger blocks in a series 

of 1-m2 “windows” created by clearing exposures of col-
luvium and slope wash. Although plots of grain size distri-
butions of different deposit types are often difficult to com-
pare due to different analytical techniques, plots of median 
grain diameter  (Mdϕ) against Inman sorting coefficient 
(σϕ) at Mount St. Helens showed that the VDA deposit was 
commonly coarser than pyroclastic-flow deposits (Walker 
1971) and better sorted than lahar deposits from Fisher and 
Schmincke (1984). Grain size data and clast density meas-
urements at Mount St. Helens suggested that clast fracturing 
did not occur progressively during transport but primarily 
originated near the source (Glicken 1986, 1996).

Emplacement processes

Three stratigraphically and lithologically distinct rock types 
are exposed in the post-collapse crater walls, consisting of 
older dacitic rocks of Pine Creek (ca. 3000–2550 cal BP) or 

Fig. 4  Summary of 1980 debris-
avalanche components before 
and after edifice collapse. a 
Cross section through pre-col-
lapse Mount St. Helens showing 
north flank bulge, extent of 
summit dome (light gray) and 
older domes (gray), inferred 
extent of 1980 cryptodome (red) 
after Donnadieu et al. (2001), 
and failure surfaces of the three 
landslide blocks (I, II, and III) 
after Glicken (1996).  Modified 
from Reid et al. (2010b). b Map 
of the 1980 debris-avalanche 
deposit showing the distribu-
tion of the primary lithofacies. 
The depositional extent of slide 
blocks I, II, and III are labeled. 
Dashed lines to the right of 
Coldwater Lake indicate area 
of South Coldwater Creek val-
ley. Figure from Pierson et al. 
(2018) after Glicken (1996)
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earlier age exposed at the base of the source scarp, overlain 
by andesitic and basaltic rocks of the Castle Creek, Kalama, 
and Goat Rocks eruptive periods (ca. 2025 cal BP to 1857 
CE), and modern dacitic rocks (1479 CE to 1857 CE) from 
the Goat Rocks and summit lava domes (Mullineaux and 
Crandell 1981; Clynne et al. 2008; Pallister et al. 2017). Dis-
crimination of these lithologies in VDA deposits outcrops 
along with deposits of the associated lateral blast allowed 
determination of sequential slide block movement and their 
ultimate destinations (Fig. 4).

The 0.96-km3 slide block I (Glicken 1986, 1996) initially 
traveled north into Spirit Lake and overrode two low points 
along Johnston Ridge to the west. Undulating avalanche trim-
lines to 200 m above the valley floor on the north valley wall 
above South Coldwater Creek provided evidence for transient 
wave–like avalanche transport that scoured the hillside of soil 
and earlier lateral-blast tree blowdown, leaving a thin ava-
lanche veneer well above valley-floor deposits (Fisher et al. 
1987). Much of the slide block I material was deflected west-
ward down the North Fork Toutle River valley and broken 
into smaller blocks, but an area of larger hummocks of the 
andesite and basalt lithofacies blocked the Coldwater Creek 
drainage, later forming Coldwater Lake (Fig. 4b).

Slide block II is dominated by stratigraphically lower 
older dacites from the edifice and contains 8% of juvenile 
cryptodome dacite. Slightly more than a quarter of the 0.75-
km3 slide block II (Glicken 1996) was incorporated in the 
lateral blast, and the remainder may have been deposited in 
Spirit Lake, the South Fork Coldwater Creek drainage, and 
the North Fork Toutle River valley reaching to the distal end 
of the deposit. The Rosenquist photos showed the lateral 
blast erupting through slide block II before overtaking slide 
block I, and deposits of the lateral blast were found locally 
beneath the VDA deposit and covered its entire surface 
before thinner parts of the blast deposit were eroded. Blast 
deposits were also found intermixed with the VDA deposit, 
and blast dacite was incorporated within the mixed facies 
of the VDA deposit. At some locations, mixing of blast 
and avalanche deposits created a hybrid deposit with tex-
tural attributes of both, prompting the use of working field 
names such as “blavalanche” or “blastalanche,” the latter 
informally used for proximal deposits near the Pumice Plain 
(Pallister et al. 2017). The interaction of slide blocks II and 
III with the lateral blast influenced the dynamics and travel 
distances of the slide blocks. Glicken noted a distinct change 
in deposit morphology and facies distribution at the valley 
constriction about 2 km west of Coldwater Lake (Fig. 4b). At 
this location, the very hummocky terrain of the proximal and 
medial parts of the VDA deposit dominated by block-facies 
material changed to a combination of mixed-facies and 
block-facies material with smaller hummocks surrounded 
by mixed-facies material. This combination persisted to near 
the distal end of the deposit.

The 1.29-km3 slide block III was the largest of the slide 
blocks (Glicken 1996). Rather than sliding like the discrete 
blocks I and II, the remaining edifice summit and rim of 
the landslide scarp forming slide block III appeared to have 
failed in a piecemeal manner driven by both gravitational 
sliding and explosive depressurization of the cryptodome 
(Voight et al. 1981, 1983; Glicken 1986, 1996; Sousa and 
Voight 1995). The bulk of this slide block traveled as block 
and mixed facies material that initially covered proximal 
axial parts of slide block I deposits but formed the domi-
nate downstream component of the western part of the VDA 
deposit. Later incision of the deposit exposed outcrops una-
vailable to Glicken, revealing an axial lobe in the North Fork 
Toutle River with abundant older dacite rocks overlying 
younger andesite-basalt units in reverse stratigraphic order. 
Ward (2006) attributed this to slide block III cutting deeper 
into the edifice, generating more mobile and lower basal 
friction slide block III material that overrode the higher 
basal friction material from earlier slide blocks that may 
have slowed to a stop.

Two‑explosion hypothesis and debris avalanche–
lateral‑blast interactions

Initial studies of lateral-blast dynamics and characteristics 
of deposits (Kieffer 1981a, b; Hoblitt et al. 1981; Moore 
and Sisson 1981; Waitt 1981) and many subsequent studies 
(Fisher et al. 1987; Brantley and Waitt 1988; Kieffer and 
Sturtevant 1988; Fisher 1990; Druitt 1992; Alidibirov 1995; 
Esposti Ongaro et al. 2012) were based on the premise of a 
single explosive event. Moore and Rice (1984) first proposed 
that a second explosion had taken place from a point either 
at Johnston Ridge or Spirit Lake using satellite infrared (IR) 
sensor data and eyewitness photos, and Sparks et al. (1986) 
also identified multiple plumes.

Hoblitt (2000) attributed the northern explosion of Moore 
and Rice (1984) to the blast cloud encountering the rug-
ged topography at Johnston Ridge, but also proposed a two-
explosion hypothesis, with the second originating on the 
north flank of the volcano. The second and larger explosion 
or explosion cluster was associated with a second IR spike 
and perhaps triggered the collapse of slide block III. It was 
considered to occur about 60–70 s after slide block II had 
moved downslope beyond its initial failure plane and re-
exposed part of the cryptodome (Hoblitt 2000). In this sce-
nario, the second explosion and IR spike were followed by a 
second major earthquake (Malone et al. 1981; Kanamori and 
Given 1982; Kanamori et al. 1984), attributed to the second 
group of explosions.

Hoblitt (2000) also noted that parts of the lateral-blast 
deposit contained two coarse basal units with the proportion 
of dense juvenile and lithic clasts increasing upward, con-
sistent with the initial explosion originating from the more 
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gas-rich upper part of the cryptodome and a second set of 
explosions originating from the more degassed lower part. 
Waitt et al. (2019) described evidence from azimuths of tree 
blowdown and abrasion that required a source of the second 
explosion on the north flank of the volcano and noted strati-
graphic evidence for two lateral explosive events on May 18.

The hypothesis of a second major lateral-blast explosion 
from the north flank (Fig. 7 of Hoblitt 2000) is consistent 
with stratigraphic evidence of the VDA deposit in which 
blast-dacite-rich slide blocks II and III display an explo-
sively enhanced greater mobility than slide block I, with 
slide block III forming the dominant distal component of 
the VDA deposit (Glicken 1986, 1996). The large volume of 
slide block III, the extent of its deposits, and its association 
with the second major lateral blast explosion and earthquake 
series suggest that slide block III could have included an 
initially large coherent slide block along with smaller incre-
mental piecemeal collapses.

Prehistorical lateral edifice collapse events at Mount St. 
Helens

The 1980 Mount St. Helens collapse led to the identifica-
tion of older VDAs at the volcano. The earliest was a late-
Pleistocene collapse on the south flank (Mullineaux and 
Crandell 1981; Newhall 1982; Clynne et al. 2008). The 
200–300-m-thick Cougar-stage VDA deposit on the south 
flank was emplaced at about 24.4 ka during the 28–18-ka 
Cougar Eruptive Stage at Mount St. Helens (Mullineaux and 
Crandell 1981; Clynne et al. 2008; Pallister et al. 2017). 
The volume was roughly estimated to be 1–2  km3 (Clynne 
et al. 2008). The VDA traveled about 17 km and dammed the 
Lewis River at the present site of Swift Creek (Clynne et al. 
2008). Subsequent overtopping of the blockage and sud-
den lake drainage filled the lower Lewis River valley with 

debris at least 75 m deep and caused flooding downstream 
to the Columbia River (Major and Scott 1988). A distinc-
tive, very porphyritic, hydrothermally altered hornblende 
dacite containing about 66%  SiO2 forms at least 80% of the 
deposit and is called the debris-avalanche dacite. The VDA 
deposit is found in both the Swift Creek drainage south of 
the summit and the Cedar Flats area in the Pine Creek drain-
age SE of the summit, implying an origin from the area of 
the present-day edifice with subsequent diversion around 
the broad Marble Mountain massif SE of Mount St. Helens. 
The avalanche was immediately followed by explosive erup-
tions that produced a two-pumice dacitic pyroclastic-flow 
deposit, dated at about 24.4 ka. This deposit overlies the 
Cougar-stage VDA deposit to depths of 100–200 m without 
evidence for intervening erosion or soil formation and has a 
volume of  >1.0  km3 (Clynne et al. 2008).

During the Pine Creek Eruptive Stage of Mount St. 
Helens about 3000–2500 years BP (Mullineaux and Cran-
dell 1981), two VDA deposits (Fig. 5) were emplaced on the 
north flank of the volcano (Hausback and Swanson 1990; 
Hausback 2000). The older of the two deposits is exposed 
at the bottom of Loowit and Step Creeks and consists of 
a > 40-m-thick section (base not exposed) of altered frag-
mental dacitic material with an upper contact suggesting 
hummocky topography. It is overlain by Pine Creek age 
pyroclastic-flow deposits and a younger VDA deposit with 
a 0–3-m-thick basal zone containing abundant uncharred 
and battered logs up to 40 cm diameter surrounded by an 
intermixed possible paleosol. These features indicate a time 
interval between the two VDA deposits sufficient for soil 
formation and growth of a fir forest. A log in the lowermost 
part of the upper unit yielded an age of 2590 ± 120 14C years 
BP. Both VDA deposit units consist of variegated light-gray 
and pastel-colored yellow, pink, and green unconsolidated 
lithic dacitic blocks, lapilli, and ash.

Fig. 5  Pine Creek (PC) age volcanic debris-avalanche deposits of 
Mount St. Helens. a Base of two light-colored volcanic debris-ava-
lanche deposits of Pine Creek age, shown by arrows, incised into 
north-flank deposits of Mount St. Helens. Upper deposit synchronous 
in age with the PC lahars (Hausback 2000) and likely dammed Spirit 
Lake, producing lake breakout floods that transformed into PC1 lahar. 

Photo by C.J. Harpel from Pierson et al. (2018). b Debris-avalanche 
block (DA) with basal clast-supported dacitic clasts at top of PC1 
lahar at Pullen Creek, ca. 30 km northwest of the volcano, overlain by 
PC3 lahar deposit. Photo by J. Major. The PC1 lahar contains VDA-
derived dacitic megaclasts up to 8 m in intermediate dimension (Scott 
1988b)
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The largest Pine Creek age lahar (PC1) in the Toutle 
River drainage was likely associated with catastrophic 
draining of Spirit Lake after it was dammed by a north-flank 
VDA deposit (Scott 1988a, b). The PC1 lahar contains both 
rounded lithic clasts entrained from river deposits during a 
major flood surge and megaclasts of debris-avalanche origin 
(Fig. 5b). The peak discharge exceeded that of the Ama-
zon River in flood stage (Scott 1989) and ranks among the 
world’s largest floods (O’Conner and Costa 2005). The Pine 
Creek age VDA deposits have limited exposure near the base 
of the volcano due to burial by deposits of later eruptions 
and have been considered relatively small-volume VDAs, 
but at least one of them must have had considerable vol-
ume as it dammed Spirit Lake (Scott 1988b). An avalanche 
of that volume would also have likely deflected westward 
down the North Flank Toutle River valley; this could have 
occurred with both Pine Creek VDA deposits. The broad 
flat floor of the North Fork Toutle River valley prior to 1980 
in contrast to valleys on other sides of the volcano could in 
part reflect earlier deposition of the Pine Creek age VDA 
deposits. Hydrothermally altered dacitic megaclasts in unit 
8 of Smith Creek-age lahar deposits (ca. 3900–3300 cal BP; 
Clynne et al. 2008) suggest a possible older VDA deposit in 
the North Fork Toutle River drainage (Scott 1988b).

Factors leading to edifice instability 
and subsequent failure

Landslides or slope failures are commonly complex and 
rarely result from just one factor. Typically, multiple desta-
bilizing conditions predispose a slope toward failure (such 
as steep slopes or weak rocks) and combine with a dynamic 
trigger event (such as increases in groundwater pore-fluid 
pressure or earthquake shaking) to drive failure, although 

failure can result from slow incremental changes as well. 
Volcano slopes are afflicted by destabilizing conditions oper-
ative on other large mountains, but edifices have additional 
disrupting factors related to dynamic volcanism and edifice 
construction, such as shallow magma intrusion and explo-
sive behavior, hydrothermal pressurization of various pore 
fluids by intrusion and heating, variable loading by magma 
extrusion, and weakening of rocks by acid-argillic hydro-
thermal alteration (Fig. 6). Moreover, volcanic edifices can 
exhibit tremendous geologic complexity and heterogeneity, 
both at the microscopic and field levels. A wide range of 
slope failure styles and sizes occur on volcanoes, ranging 
from relatively small rock falls to enormous, multiple cubic 
kilometer failure masses that dissect deeply into their edi-
fices (Siebert et al. 1987; McGuire 1996; Ui et al. 2000; van 
Wyk de Vries and Davies 2015).

Here we primarily focus on causes of these massive 
and deep flank collapses on subaerial stratovolcanoes; the 
mechanics and dynamics of motion and emplacement are 
discussed by others. These failures can be extensive enough 
to remove edifice summits. Edifice collapses can generate 
far traveled debris avalanches, with larger edifice collapse 
volumes typically resulting in greater avalanche runout. 
Thus, the volume and location of a failure mass can have 
far reaching ramifications, as these initial conditions influ-
ence the downslope transport behavior of an ensuing debris 
avalanche.

Only a few large edifice collapses have been observed well 
enough to reasonably ascertain the mechanisms that triggered 
collapse; these include Unzen-Mayuyama (1792 CE), Ban-
dai (1888 CE), and Ontake (1984 CE) in Japan; Bezymi-
anny (1956 CE) and Shiveluch (1964 CE) in Kamchatka, 
Russia; and Soufrière Hills (1997 CE) in Montserrat. The 
massive 1980 Mount St. Helens collapse is one of the best 
documented major edifice failures, as there were series of 

Fig. 6  Schematic diagram 
showing a few of the numerous 
volcanic and nonvolcanic fac-
tors that can destabilize edifice 
flanks with top right inset illus-
trating effects of hydrothermal 
alteration. Image modified from 
Roverato et al. (2021a)
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photos taken during the event and eye-witnesses, as well as 
instrumental records, prior to and during the collapse. Obser-
vations and analyses of this collapse offer crucial insights 
into conditions generally applicable to other edifice collapses, 
such as edifice structure, strength, shallow magma intrusion, 
and earthquake shaking. Here, we first examine controls on 
the 1980 Mount St. Helens collapse, then survey other factors 
that can predispose the flanks of subaerial stratovolcanoes to 
large-scale failure. We summarize potential triggers for these 
large collapses and finally discuss techniques for forecasting 
and (or) monitoring impending large flank collapses.

Lessons from the Mount St. Helens flank collapse

From the many observations made during the 1980 Mount 
St. Helens collapse, some of the most salient include (1) 
the intrusion of a shallow cryptodome into the upper edi-
fice, resulting in large scale faulting, graben-formation, and 
flank bulging; (2) slow deformation over several months, 
then rapid failure within seconds; (3) massive retrogression 
of failure in three stages, excavating deep into the edifice 
and removing its summit; (4) arcuate failure surfaces that 
cut across, and were not controlled by, geologic contacts 
within the edifice; and (5) rapid collapse associated with a 
moderate-sized earthquake. These observations have helped 
motivate and guide subsequent investigations into the causes 
of edifice collapse.

Using a variety of methods, including geotechnical defor-
mation analysis, limit-equilibrium slope-stability analysis, 
analog physical models, and rock testing, investigators have 
explored both the factors predisposing failure, including 
slowly changing conditions induced by volcanic activity, and 
the dynamic triggers leading to the rapid and massive Mount 
St. Helens collapse. Some of these studies are discussed in 
detail in Voight (2000). Here, we first discuss the destabi-
lizing factors that promoted instability and then examine 
potential triggering mechanisms. Factors that modify slope 
stability involve those that increase stress as well as those 
that reduce strength.

Topography and internal structural features commonly 
exert a primary influence on the size and geometry of gravi-
tationally controlled slope failures. Prior to volcanic unrest 
in 1980, the upper edifice of Mount St. Helens had relatively 
steep slopes, typically between 20 and 30°, but locally up to 
40° (Reid et al. 2000). Strike-slip faulting beneath the edifice 
may have further predisposed it to slope instability (Lagmay 
et al. 2000). The dynamic intrusion of a shallow cryptodome 
over 2 months resulted in dramatic edifice deformation with 
a large bulge (about 1.5 km by 2 km) on the north flank of 
the edifice (Fig. 1b, c), as well as a massive east-trending 
graben and large faults and fractures (about 1.5 km long) 
near the summit (Lipman et al. 1981; Moore and Albee 
1981; Voight et al. 1983). Cryptodome intrusion into the 

edifice strongly influenced both ground-surface topography 
and internal structures. Moreover, destabilizing effects asso-
ciated with intrusion could have included seismic inertial 
forces, reduction of rock strength, and (or) thermal or stress-
related pressurization of pore fluids (Voight et al. 1983).

The destabilizing role from direct magmatic driving 
forces at Mount St. Helens is not well quantified. In defor-
mation simulations using an interacting assemblage of rigid 
blocks representing the pre-deformation Mount St. Helens 
edifice, intruding magma pressure produces the observed 
surface deformation, including the development of a sum-
mit graben and north flank bulge (Paul et al. 1987). Other 
investigations using analog physical models illustrate the 
evolution of edifice deformation during shallow intrusion 
of a cryptodome (Donnadieu and Merle 1998, 2001). Using 
appropriate scaling of materials, these models show that ver-
tically intruded viscous material creates a series of evolving 
structural features, including upward shear faulting, bulging 
of one flank, and an asymmetric graben with normal fault-
ing oriented perpendicular to the bulge. A sill-like shaped 
cryptodome is not required to induce flank bulging.

Most limit-equilibrium slope-stability analyses of the 
1980 Mount St. Helens edifice utilize the observed deformed 
1980 topography, including the north flank bulge and sum-
mit graben (Voight et al. 1983; Reid et al. 2000, 2010b; Don-
nadieu et al. 2001). As the observed basal slip surfaces were 
arcuate, these analyses typically assume arcuate, circular, 
or spherical slip surfaces. Using two-dimensional analyses, 
investigations commonly focus on initial failures (such as 
block I) rather than a deep slip surface such as that asso-
ciated with block III (Voight et al. 1983; Donnadieu et al. 
2001). In these cases, the bulge controls the location of slide 
block I and the southern bounding normal fault of the gra-
ben forms the head of slide block II (Fig. 4a). The relative 
stability (determined as factor of safety, F) of slide block 
I and slide block II is similar in most analyses, in keeping 
with slide observations of block II moving shortly after and 
in concert with slide block I. Some analyses result in the 
lowest stability for block I (Voight et al. 1983), whereas oth-
ers incorporate weak zones along deeper internal structures 
created by intrusion and determine slightly lower stability 
for the larger block II (Donnadieu et al. 2001). Three-dimen-
sional slope-stability analyses of millions of potential fail-
ures affecting the edifice show that topographic oversteepen-
ing alone, caused by the bulge, destabilized the north flank 
by ~ 3% relative to its undeformed topography and focused 
instability on a ~ 1.1-km3 region incorporating the bulge 
(Reid et al. 2000). These studies reinforce the importance 
of topography as well as internal structural controls on slope 
stability.

Another primary control on slope and edifice instability is 
the distribution of rock strength. The collapse of Mount St. 
Helens offers insight here as well. Observations indicate that 
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most of the slip surfaces for all three 1980 slide blocks were 
predominantly formed in older dacite dome rocks under-
lying the sloping volcanic layers near the edifice surface 
(Voight et al. 1983; Reid et al. 2010b) (Fig. 4a). These bur-
ied dacite domes and other exposed domes swept away by 
the 1980 collapse were more plentiful in the northern part 
of the edifice. The 1980 slip surfaces cut across the thinner, 
upper edifice layers composed of lava flows and pyroclastic 
material (Fig. 4a), essentially unaffected by sloping layers 
in this near-surface region. Early stability analyses assumed 
relatively high strengths for these older dome rocks (internal 
friction angle of ~ 40°), and these high strengths necessi-
tated elevated pore-fluid pressures and earthquake shaking 
to produce slope failure (Voight et al. 1983; Reid et al. 2000; 
Donnadieu et al. 2001).

Many of the older dome rocks hosting the 1980 slip sur-
faces, however, are pervasively fractured (Hausback 2000; 
Kendrick et al. 2013) but contain essentially no hydrother-
mal alteration (Reid et al. 2010b). Laboratory tests using 
thermal and cyclic stressing on these older dome rocks 
demonstrate loss of rock strength and suggest that repeated 
dome inflation and deflation could progressively weaken 
them (Kendrick et al. 2013). Other laboratory shear strength 
testing of shattered dome rocks near the 1980 shear surface 
reveals that they become weaker through progressive shear-
ing (decreasing in friction angle from ~ 35 to ~ 27°), as might 
occur during intrusion and flank bulging (Reid et al. 2010b). 
Slope stability analyses using reduced strengths for these 
mechanically weaker rocks indicate a propensity for large-
scale failure, reducing slope stability by ~ 20% (Donnadieu 
et al. 2001; Reid et al. 2010b). Moreover, the distribution of 
Mount St. Helens edifice rock friction fundamentally affects 
subsequent landslide kinematics and runout (Ward and Day 
2006).

Pre-collapse groundwater conditions within the Mount 
St. Helens edifice are poorly known, although 1980 erup-
tive activity prior to collapse consisted of predominantly 
smaller phreatic or phreatomagmatic eruptions (Lipman 

et al. 1981; Cashman and Hoblitt 2004), suggesting at least 
some shallow groundwater. Many slope-stability analyses of 
the collapse assume relatively high pore pressures located 
on the slip surfaces to provoke instability (e.g., Voight et al. 
1983; Reid et al. 2000; Donnadieu et al. 2001). On the other 
hand, more generalized numerical simulations indicate that 
water tables may be relatively low within some stratovolcano 
edifices (Hurwitz et al. 2003; Ball et al. 2018). Analysis of 
potential failure retrogression induced by undrained unload-
ing of a cold, saturated Mount St. Helens edifice indicates 
that transiently out-of-equilibrium pore pressures would ena-
ble modest retrogression (on the order of block II) (Fig. 7), 
but less than the amount observed with block III (Reid and 
Brien 2006). High-temperature magma intrusion into a 
saturated or partially saturated edifice with accompanying 
thermally pressurization of pore fluids could have provided 
another destabilizing effect (discussed below).

The precise triggering mechanism inducing the May 18, 
1980, rapid flank collapse remains unclear. The collapse 
was accompanied by a surface-wave magnitude Ms = 5.2 
(mb = 4.7) earthquake (Kanamori and Given 1982), but dif-
ferent researchers have argued that the earthquake triggered 
the massive landslide or that the landslide itself caused the 
earthquake. The timing of the exceptional photographic 
observations of the collapse is not precise enough to une-
quivocally relate them to seismic network timing. Initial 
analysis suggested that sliding began ~ 7–20 s following the 
earthquake (Voight 1981). The earthquake has been cited as 
an abrupt trigger of collapse, in part because the flank did 
not show accelerating ground displacement in the days pre-
ceding collapse as often occurs with failures (e.g., Lipman 
et al. 1981; Voight et al. 1983; Voight 1989; Intrieri et al. 
2019) and in part because inertial forces from earthquake 
ground acceleration can provoke instability even in relatively 
strong rocks (e.g., Voight et al. 1983; Reid et al. 2000; Don-
nadieu et al. 2001).

Nevertheless, the seismic signal accompanying the collapse 
was not a classic double-couple source typical of tectonic 

Fig. 7  Simulated three-dimensional (3D) retrogression into a cold, 
fully saturated Mount St. Helens edifice without a cryptodome intru-
sion. Light gray indicates observed slide blocks I, II, and III failure 
surfaces. Leader lines mark sequence of simulated retrogression from 
right to left, with darker dashed lines representing sequential smaller 

retrogressive failures due to undrained rapid unloading caused by 
rapid removal of the previous failure masses. Here, retrogression 
halts before slide block III is removed. Image modified from Reid and 
Brien (2006)
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earthquakes, but instead was consistent with the onset of slid-
ing by a large landslide (Kanamori and Given 1982; Kanamori 
et al. 1984). There had been three earthquakes of similar mag-
nitude (7 April 1980, mb = 4.9; 16 April 1980, mb = 4.9, and 12 
May 1980, mb = 4.8) in the Mount St. Helens area the month 
before collapse (Kanamori et al. 1984). In the years since the 
1980 collapse, other researchers studying landsides as seismic 
sources have found that landslides of the Mount St. Helens 
size are capable of generating Ms ~ 5 earthquakes (Hasegawa 
and Kanamori 1987; Brodsky et al. 2003; Lipovsky et al. 
2008; Ekström and Stark 2013). Other studies indicate that, in 
general, the smallest earthquakes observed to trigger rock falls 
are about Ms ~ 5.5 and to trigger rock avalanches about Ms ~ 6 
to 6.5 (Keefer 1984; Rodríguez et al. 1999). Other possible 
triggers for the 1980 collapse, potentially acting in concert 
with one another, include progressive rock strength reduction 
from shearing (Reid et al. 2010b) or pressurization of gas or 
fluid in a shallow hydrothermal system (Voight et al. 1983). 
Rapid depressurization of the cryptodome and any shallow 
hydrothermal system caused by the swift movement of slide 
blocks I and II likely promoted explosive behavior, formation 
of the directed lateral blast, and retrogression of failure into 
the edifice (Voight et al. 1983).

Causes of collapse at other edifices

Following the catastrophic Mount St. Helens collapse in 
1980, there has been intense interest in understanding the 
causes of these collapses at other volcanoes. From a sim-
plistic mechanical perspective, slope failure occurs when 
driving forces on a potential slip surface exceed resisting 
forces. In an earlier review of collapse causes, Voight and 
Elsworth (1997) listed 48 categories of possible edifice 
destabilizing factors grouped by inherent causes, causes that 
increase shear stress, and causes that reduce shear strength. 
Other reviews have focused on volcano-centric aspects of 
collapse; for example, Roverato et al. (2021a) listed instabil-
ity factors related to (1) basement, tectonics, and faults; (2) 
slope substrate and gravitational spreading; (3) hydrothermal 
alteration; (4) dikes and magma intrusions; and (5) past and 
present climate effects. Acocella (2021) reviewed similar 
volcano-related factors as well as the destabilizing effects 
of excess pore-fluid pressures. Here, we use the insights 
gained from detailed examination of the 1980 Mount St. 
Helens collapse to focus specifically on controls of large 
and deep edifice collapses, as these can present immense 
and far-reaching hazards.

Fig. 8  Box plot of failure 
volumes ≥ 0.01  km3 since 
1500 CE categorized by event 
type, including flank failures 
associated with magmatic erup-
tion, phreatic eruption, and no 
eruption. Volumes of other large 
(≥ 0.02  km3), historical (since 
1900) nonvolcanic landslides 
are shown for comparison; 
nonvolcanic landslide data 
from Evans (2006). Smaller, 
potentially more frequent, 
failures < 0.01  km3 not included 
in plot. Box in each category 
represents 50% of the data (with 
median line), whiskers represent 
the upper and lower quartiles, 
and circles are outliers
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Figure 8 illustrates differences in edifice failure volumes 
associated with juvenile magmatic eruptions since 1500 CE, 
with phreatic explosions (with no juvenile magmatic erup-
tion components), and not associated with known eruptive 
activity. It also shows failure volumes from other historical 
large nonvolcanic landslides (primarily rockslides and rock 
avalanches) for comparison. Although there is clear overlap 
in the sizes found in each category, the median volumes for 
flank failures associated with magmatic or phreatic eruptions 
are roughly an order in magnitude greater than either non-
magmatic collapses or other large landslides.

In general, large landslides not on volcanoes have a myr-
iad of factors predisposing them to failure, such as steep 
slopes and weak rocks. Many of the large catastrophic land-
slides documented in the twentieth century were triggered 
by either large tectonic earthquakes (M > 6), large rainstorms 
such as typhoons or hurricanes, or snowmelt, but some have 
no clear trigger (e.g., Schuster 1996; Hewitt 1998; Schuster 
et al. 2002; Geertsema et al. 2006; Runqiu 2009). Several of 
the largest nonvolcanic landslides in Fig. 8 were triggered by 
large earthquakes, such as the ~ 2-km3 Usoi Dam rock slide, 
Tajikistan (1911), associated with a Ms = 7.6 earthquake 
(Schuster and Alford 2004) and the ~ 0.1-km3 Diexi landslide 
dam, China (1933), associated with a M = 7.5 earthquake 
(Dai et al. 2021). Large tectonic earthquakes, however, do 
not necessarily produce failures that dissect deeply into a 
mountain (see later discussion of VDA source areas). Nev-
ertheless, all these destabilizing and triggering factors could 
play a role in the failure of volcano slopes.

Large failures on volcanoes without an accompanying 
known eruption are similar in size to large landslides on 
nonvolcanic mountains (Fig. 8). Some of these failures were 
co-seismic, such as the ~ 0.034-km3 Ontake collapse (1984) 
associated with a M = 6.8 earthquake (Endo et al. 1989). As 
with many other flank collapses not involving the core of the 
volcano, this landslide did not excavate deeply into the edi-
fice (Endo et al. 1989; Voight and Sousa 1994), in contrast 
to the deep failure at Bandai (1888 CE) that was associated 
with a phreatic eruption (Sekiya and Kikuchi 1889) (Fig. 9). 
About two-thirds of the historical non-eruptive volcanic edi-
fice collapses were < 0.1  km3 in size (Fig. 8); many were 
relatively shallow flank failures. The largest (0.34  km3), at 
Unzen-Mayuyama (1792 CE), transpired in association with 
an estimated M = 6.4 earthquake (Sassa et al. 2016) while 
a nearby vent (Fugen-dake) located ~ 5 km away in the vol-
canic complex was in eruption (Ota 1969). It is possible 
that internal stress changes induced by magmatic and (or) 
hydrothermal fluids from this nearby eruption could have 
influenced collapse size. Hot fluids issued from the scarp fol-
lowing failure (Ota 1973). The effects from smaller edifice 
failures (< 0.01  km3) not shown in Fig. 8 can certainly be 
hazardous: for example, they can over run nearby towns and 

generate far-traveled tsunamis. Smaller failures, such as the 
2012 avalanche at Te Maari in New Zealand (~ 0.0008  km3), 
can also be triggered by earthquakes (Procter et al. 2014).

The other two categories in Fig. 8 show events associated 
with magmatic or exclusively phreatic eruptions. Many of 
these failures sculpted deeply into an edifice and are deeper 
and larger than non-eruptive collapses (Fig. 9 and later dis-
cussion of VDA source areas). Large non-eruptive collapses 
may have occurred in the prehistoric record, although evi-
dence for an eruption accompanying such large collapses 
may be removed or hidden. Relatively few studies of collapse 
events note the character or existence of associated eruptive 
activity (Dufresne et al. 2021a). Large, apparently non-erup-
tive collapses prior to 1500 CE include the > 10-km3 failure 
of Gede volcano in Indonesia (Belousov et al. 2015), some 
in Kamchatka such as the 4–6-km3 1.2-ka collapse of the 
extinct Kamen volcano (Ponomareva et al. 2006), and the 
18–22-km3 8.6-ka VDA deposit at Meru volcano in Tanzania 
(Delcamp et al. 2016a).

We focus below on factors at subaerial stratovolcano 
edifices that might promote larger, deeper failures atypical 
of landslides on other mountains. Conditions that can sub-
stantially modify the strengths or stresses at depth could 
promote a series of large retrogressive failures into an edifice 
core. These conditions, important to slope-stability analyses, 
include (1) edifice structure, (2) rock strength, (3) pore-fluid 
effects, and (4) dynamic triggers. Many of these elements are 
interrelated and can vary over time within an edifice.

Fig. 9  Cross sections of two volcano flank landslides in Japan. a 
Ontake (1984 CE) triggered without eruption by a M 6.8 earthquake 
(Okusa et  al. 1987). b Bandai (1888 CE) associated with a phreatic 
eruption (Sekiya and Kikuchi 1889). Figures from Siebert et al. (2019)
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Edifice structure

Topography and internal structural features commonly exert 
a primary influence on the size and geometry of slope fail-
ures. Gravitational forces acting on the mass between the 
ground surface and the landslide slip surface are a major 
driver of instability. Steep slopes commonly drive instability, 
but in themselves do not necessarily lead to deeper, larger 
failures. Internal structures can vary the distribution of load-
ing, create strength discontinuities, and modify pore-fluid 
flow patterns within an edifice. Here, we examine structural 
factors that could reduce the stability of crucial regions 
within an edifice and predispose an edifice to larger, deeper 
collapses.

Regional tectonic stress fields can influence the growth 
of edifices, the direction of flank collapses, and potential 
pathways for destabilizing magma intrusions, as documented 
in many studies (e.g., Nakamura 1977; Siebert 1984; Dela-
ney et al. 1986; Lagmay and Valdivia 2006; Macías et al. 
2010; Paguican et al. 2012; Schaefer et al. 2013; Tibaldi 
2015; Delcamp et al. 2016b). In particular, active tectonic 
faulting under or within an edifice can promote large-scale 
collapse. Field observations and analog physical models 
reveal that fault type, geometry, displacement, and motion 
can affect stability (van Wyk de Vries and Merle 1996; Lag-
may et al. 2000; Vidal and Merle 2000; Norini and Lagmay 
2005; Norini et al. 2008; Wooller et al. 2009; Paguican et al. 
2014). In analog experiments, subsurface faulting can create 
surface bulging and landslides of different sizes. For exam-
ple, larger unstable volumes are generated with basal edifice 
faults located farther from the central axis of the volcano 
(Wooller et al. 2009).

Other structural conditions can modify the stresses within 
an edifice and potentially lead to large-scale collapses. Grav-
itational spreading typically transpires when a volcano is 
constructed on a base of weak and (or) ductile rocks, such 
as poorly lithified sediments or unconsolidated pyroclastic 
deposits (e.g., Borgia 1994; van Wyk de Vries and Borgia 
1996; Borgia et al. 2000; Tibaldi et al. 2005; van Wyk de 
Vries and Davies 2015). The effects of spreading can be 
complex (van Wyk de Vries and Matela 1998; Byrne et al. 

2013), and relatively slow spreading generally leads to gen-
tler slopes and thus can help stabilize an edifice (van Wyk 
de Vries and Borgia 1996; Andrade and van Wyk de Vries 
2010). However, observations at some volcanoes, includ-
ing Mombacho (Nicaragua), Iriga (Philippines), Socompa 
(Chile/Argentina), and Parinacota (Chile/Bolivia), indicate 
that a weak base may have facilitated large-scale collapse 
(van Wyk de Vries and Francis 1997; van Wyk de Vries 
et al. 2001; Clavero et al. 2002; Shea et al. 2008; Paguican 
et al. 2012). Numerical models reveal that spreading can 
modify internal edifice stresses (Fig. 10) (van Wyk de Vries 
and Borgia 1996; Norini et al. 2010), and analog models 
demonstrate that certain spreading conditions, such as out-
ward flow of a weak, low viscosity base or the presence of 
a weak edifice core, can promote deeper collapses (Merle 
and Borgia 1996; Cecchi et al. 2004; Delcamp et al. 2008; 
Andrade and van Wyk de Vries 2010; Kervyn et al. 2014).

A related condition is flank instability promoted by a 
weak base that slopes under an edifice (e.g., Wooller et al. 
2004; Carrasco-Núñez et al. 2006; Norini et al. 2010; Mur-
ray et al. 2018) (Fig. 10). Some observed large collapse scars 
are oriented in the direction of the regional slope, indicating 
that sloping bases may play a widespread role in predis-
posing large-scale instability (e.g., Francis and Wells 1988; 
Vallance et al. 1995; Carrasco-Núñez et al. 2006; Siebert 
et al. 2006). Shallow intrusion of magma, as occurred during 
the 1980 Mount St. Helens collapse, can greatly transform 
edifice topography and internal structure, and is discussed 
further in the “Dynamic triggers” section below.

Lateral edifice collapse itself can cause major perturba-
tions of stress regimes within volcanoes and modify volcano 
plumbing systems, petrology and eruptive style (de Silva 
et al. 1993; Siebert et al. 2004; Ginibre and Wörner 2007; 
Manconi et al. 2009), and locations of post-collapse vents 
and fissures (McGuire and Pullen 1989; Tibaldi 2003; Mac-
caferri et al. 2017).

Rock strength

Material strength is a fundamental factor governing 
slope instability at any scale. Volcanoes are commonly 

Fig. 10  Cross sections showing simulated two-dimensional (2D) 
elastoplastic displacements at two edifices with different subsurface 
structures (faults in black) and weaker basement rocks at the Colima 

volcanic complex, Mexico. NC, Nevado de Colima volcano; FC, 
Fuego de Colima volcano.  Modified from Norini et al. (2010)
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composed of a wide variety of earth materials emplaced 
during edifice construction, including lava domes as well 
as essentially slope-parallel lava flows, pyroclastic-flow, 
and tephra-fall deposits (Fig. 6). Edifices are intruded by 
dikes, sills, and cryptodomes, and the edifice base may rest 
on different materials (see previous section). These highly 
heterogeneous, layered, jointed, and fractured materials 
can exhibit a wide range in properties (porosity, density, 
elastic parameters) as well as strengths (compressive, ten-
sile, shear), as documented in many studies (e.g., Wat-
ters et al. 2000; Thomas et al. 2004; Apuani et al. 2005a; 
Apuani et al. 2005b; Moon et al. 2005; Schaefer et al. 
2015a; Heap and Violay 2021; Heap et al. 2021c; Kendrick 
et al. 2021; Lavallée and Kendrick 2021). Many of these 
studies have focused on scaling up rock properties derived 
from small samples to values appropriate for an edifice, 
through methods such as rock mass rating (RMR) or geo-
logic strength index (GSI) rating. Although most studies 
focus on rocks accessible on the surface of an edifice, the 
distribution of strength deeper within an edifice is critical 
to large-scale collapse; thus, some studies have assessed 
rock strengths from exposed crater walls (e.g., Moon et al. 
2005; del Potro and Hürlimann 2009; Reid et al. 2010b) 
or exhumed systems (Mordensky et al. 2018). Volcanoes 
have additional dynamic processes that can, over time, 
reduce rock strength, including mechanical and chemical 
alteration from an active hydrothermal system or fractur-
ing from thermal or cyclic mechanical stressing.

The circulation of hot fluids and gases within edifice or 
dome rocks can promote mineral dissolution, precipita-
tion, and (or) replacement. Hydrothermal processes vary 
in time and space throughout an edifice but can progres-
sively weaken rocks. Acid-sulfate hydrothermal altera-
tion that creates intermediate or advanced argillic mineral 
assemblages (Meyer and Hemley 1997; Zimbelman et al. 
2005; John et al. 2008), in particular, can lead to increased 
porosity, development of weak clay minerals, and signifi-
cant reductions in strength (Watters et al. 2000; del Potro 
and Hürlimann 2009; Pola et al. 2012, 2014; Wyering et al. 

2014; Heap et al. 2015; Farquharson et al. 2019; Mordensky 
et al. 2019; Frolova et al. 2021). If sufficiently pervasive or 
affecting a potential failure surface, these strength reduc-
tions can promote edifice or dome instability (e.g., López 
and Williams 1993; Reid et al. 2001; Cecchi et al. 2004; 
Zimbelman et al. 2004; Procter et al. 2014; Ball et al. 2015; 
Ball et al. 2018; Heap et al. 2019; Heap et al. 2021a; Heap 
et al. 2021b) (Fig. 11).

The effects of hydrothermal alteration, however, can be 
complex and not all forms weaken rock — some types of 
alteration, such as silicification, do not create weak clay min-
erals and may reduce rock porosity by precipitating min-
erals. In these situations, alteration may increase strength 
(Watters and Delahaut 1995; Wyering et al. 2014; Frolova 
et al. 2015; Mordensky et al. 2018; Heap et al. 2020; Heap 
and Violay 2021). Geophysical surveys using magnetic and 
electrical resistivity methods have revealed both extensive 
and limited altered zones in volcano edifices (e.g., Finn et al. 
2001; Finn et al. 2007; Gonzales et al. 2014; Rosas-Carbajal 
et al. 2016; Usui et al. 2017; Finn et al. 2018; Ghorbani et al. 
2018; Kereszturi et al. 2020; Miller et al. 2020; Heap et al. 
2021b; Peterson et al. 2021). Some edifices, such as Mom-
bacho (Shea et al. 2008), have both deeper collapse scars in 
more extensive hydrothermally altered rocks and shallower 
scars associated with less abundant altered rocks.

Hydrothermally altered rocks are not required for large-
scale failure. Notably, some altered clasts were contained in 
the 1980 Mount St. Helens VDA deposit (Glicken 1996); 
however, the rocks hosting the primary slip surfaces were 
essentially unaltered (Reid et al. 2010b). Although many 
debris-avalanche deposits contain hydrothermally altered 
rocks (e.g., Siebert 1984; Carrasco-Nuñez et al. 1993; Val-
lance and Scott 1997; Norini et al. 2020; Roverato et al. 
2021a), weakening from hydrothermal alteration needs to 
be present in crucial locations to play a role in destabilizing 
large regions. Many volcano edifices have small, localized 
regions of hydrothermal alteration, commonly near fuma-
roles, but these typically would be insufficient to destabilize 
an edifice flank.

Fig. 11  Computed three-
dimensional (3D) slope stability 
draped on shaded relief of 
Mount Rainier, Washington, 
USA. a Image of relative slope 
stability using homogene-
ous rock strength. b Image of 
relative slope stability using 
inferred subsurface distribu-
tion of weaker hydrothermally 
altered rocks. Instability (red) 
is focused on the west flank, 
a region underlain by highly 
altered rocks.  Modified from 
Reid et al. (2001)
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Magma intrusion can weaken rocks by thermal and (or) 
mechanical stressing, potentially affecting broad areas 
within an edifice. Laboratory experiments document that 
thermal stresses in volcanic rocks can sometimes lead to 
microfracturing and strength reduction (e.g., Kendrick et al. 
2013; Schaefer et al. 2015a; Browning et al. 2016; Heap and 
Violay 2021). Underlying basement rocks may be weakened 
by heating as well, thereby promoting long-term deforma-
tion of an edifice (Heap et al. 2013). Cyclic stressing of 
volcanic rocks, as might occur during repeated intrusions, or 
rapid unloading as might have transpired during prior flank 
collapses, can also reduce strength (Kendrick et al. 2013; 
Schaefer et al. 2015a). Magmatic intrusion into an edifice 
could generate locally weakened fault gouge zones along the 
intrusion contacts (e.g., Donnadieu and Merle 2001; Cash-
man et al. 2008; Moore et al. 2008; Kendrick et al. 2012; 
Pallister et al. 2013: Mordensky et al. 2018), and incipient 
flank failures may progressively reduce strength through 
active shearing (Reid et al. 2010b). Thus, dynamic processes 
can weaken rocks and promote instability over broad regions 
in crucial zones within an edifice.

Pore‑fluid effects

Fluids in pores or fractures are an extremely important 
destabilizing factor for many landslides, and undoubtedly 
play a large part in some edifice flank failures that have not 
been associated with eruption. For example, the Casita, 
Nicaragua, flank VDA in 1998 was triggered during intense 
rainfall from Hurricane Mitch (e.g., Kerle et al. 2003; Scott 
et al. 2005; Devoli et al. 2009). The presence of fluids in a 
slope can modify the weight distribution and thereby change 
gravitationally induced stresses. Pore fluids can reduce the 
strength of clays due to their mineralogy and structure. In 
many situations, however, the dominant destabilizing effect 
is from locally elevated pore-fluid pressures that reduce 
frictional resistance; this modifies the effective stresses act-
ing on a failure surface and can induce failure (Terzaghi 
1950; Lambe and Whitman 1969). Moreover, fluid saturated 
rocks can promote the transition from debris avalanche to 
debris flow or lahar, as inferred from various field settings 
(e.g., Voight et al. 1983; Vallance and Scott 1997; Capra and 
Macías 2000; Capra et al. 2002; Tost et al. 2014; Delcamp 
et al. 2016b). Thus, the magnitude and distribution of pore-
fluid pressures within an edifice can be crucial to instability.

Landslides triggered by infiltrating water or from gravity-
driven groundwater flow tend to be relatively shallow, in 
part because the ratio of shear to normal stresses affecting 
frictional resistance on a slip surface tends to be largest near 
the ground surface (e.g., Iverson and Reid 1992; Reid and 
Iverson 1992; Reid 2004). The presence and distribution of 
fluids within a volcano is undoubtedly complex, given the 
heterogeneous materials within an edifice (e.g., Sanford et al. 

1995; Aizawa et al. 2009; Delcamp et al. 2016b; Ball et al. 
2018), and a variety of driving forces affecting fluid flow 
including gravity as well as thermal and mechanical stress-
ing conditions induced by nearby magma (e.g., Elsworth and 
Voight 1995, 1996; Reid 2004). Little data exist about fluid 
pressures within active stratovolcanoes, but geophysical sur-
veys have revealed varied distributions of saturated rocks 
(Finn et al. 2001, 2007, 2018; Revil et al. 2004; Aizawa 
et al. 2009; Peterson et al. 2021). Numerical simulations of 
coupled groundwater and heat flow indicate that water tables 
recharged by rain and snowmelt might exist lower within 
an edifice (Hurwitz et al. 2003; Ball et al. 2018), leading to 
large unsaturated regions in the upper edifice.

At some volcanoes, groundwater can occur higher in an 
edifice, as suggested by small phreatic eruptions, for example, 
at Mount St. Helens in 1980, and indicated by observations of 
upper flank groundwater expulsion, for example, at Nevado 
del Huila, Peru, in 2007 (Worni et al. 2012; Johnson et al. 
2018). Hydraulic properties such as porosity and permeability 
vary extensively in volcanic rocks, as noted in many studies 
(e.g., Wright et al. 2009; Farquharson et al. 2016; Lamur et al. 
2017; Heap et al. 2018; Farquharson et al. 2019; Revil et al. 
2020; Heap and Violay 2021). Lower permeability rock layers 
within a slope can produce perched water tables resulting in 
locally elevated, and potentially destabilizing, pore pressures 
(e.g., Rulon and Freeze 1985; Sruoga et al. 2004; Delcamp 
et al. 2016b; Ball et al. 2018) (Fig. 12). Moreover, hydrother-
mally altered rocks with greater porosity and clay minerals 
can hold more water, potentially enhancing the transition from 
debris avalanche to debris flow. Coupled numerical models 
also demonstrate that heating from deep or shallow magma 
tends to increase pore-fluid pressures deep within an edifice 
(e.g., Hurwitz et al. 2003; Reid 2004; Ball et al. 2018; Collard 
et al. 2020; Heap et al. 2021a). Thus, elevated pore pressures 
at depth could destabilize deeper regions.

Dynamic triggers

The relatively slow, incremental pre-conditioning processes 
described above might eventually lead to large-scale flank 
collapse. Such processes can significantly modify internal 
stresses or strength distributions and thereby promote larger, 
deeper failures. Moreover, destabilizing processes com-
mon on other mountains (e.g., infiltration of groundwater 
from storm events) could contribute to long-term instabil-
ity. However, the 1980 Mount St. Helens collapse and other 
historical collapses, such as Unzen-Mayuyama (1792 CE), 
Bandai (1888 CE), Bezymianny (1956 CE), and Shiveluch 
(1964 CE), have been accompanied by more dynamic trig-
gers, such as seismic shaking or volcanic unrest. Inertial 
forces from tectonic or volcanic seismicity could play a role 
in instigating failure (e.g., Voight et al. 1983; Voight and 
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Elsworth 1997; Procter et al. 2014), although as noted above, 
earthquake-induced landslides themselves rarely result in the 
very deep scars associated with large-scale flank collapses. 
Subsequent retrogression of an initial failure, as ensued at 
Mount St. Helens and inferred at other historical collapses 
(Fig. 13), promotes the development of these deep-seated 
scars (Voight 2000).

Edifice failures are often associated with volcanic unrest 
(e.g., Waythomas 2012; Acocella 2021; Roverato et  al. 
2021a). Very large and deep historical flank failures have 
most frequently been associated with some type of erup-
tion, either magmatic, phreatomagmatic, or phreatic, and 
therefore have transpired with either shallow (within the 
edifice) or deeper magmatic activity (Table 1 and Fig. 8). 
Shallow intrusions into an edifice have been noted with 
many collapses, including Bezymianny, Lamington, Mount 
St. Helens, and Soufrière Hills (Gorshkov 1959; Voight 
et al. 1983; Siebert et al. 1987; Belousov et al. 2007, 2020). 
Flank failure in these situations commonly leads to expo-
sure of the intrusion and eruption of juvenile magma, as 
occurred at Mount St. Helens, Lamington, and Bezymianny. 
Such shallow magma intrusions can create many destabiliz-
ing conditions, including topographic bulging and edifice 

oversteepening, the development of large grabens and 
internal faults, and shearing and weakening of rocks in the 
deformed zones, all of which occurred at Mount St. Helens 
(discussed above). Physical analog modeling studies as well 
as computational slope-stability and deformation analyses 
highlight the importance of these dynamic destabilizing 
influences (e.g., Voight et al. 1983; Voight and Elsworth 
1997; Donnadieu and Merle 1998, 2001; Reid et al. 2000; 
Donnadieu et al. 2001; del Potro et al. 2013). In addition 
to intrusions, dome extrusion onto a weak hydrothermally 
altered edifice can instigate large landslides that incorporate 
both the dome and the underlying edifice, as occurred at 
Tutupaca, Peru (Samaniego et al. 2015; Valderrama et al. 
2016; Mariño et al. 2021).

Magma pressure from a shallow intrusion exerted on edi-
fice rocks might contribute to instability, although modeling 
studies vary on the relative importance of this effect. Some 
indicate that the mechanical (non-pore pressure) effects 
from magmatic pressures in an intrusion are localized and 
unlikely to be the dominant factor controlling large-scale 
instability (Elsworth and Voight 1995; Iverson 1995). Other 
studies illustrate marked destabilizing effects from magmatic 
pressures (“push”) within an edifice (e.g., Paul et al. 1987; 

Fig. 12  Cross sections showing 
possible groundwater configura-
tions within stratovolcanoes. a 
Schematic representation show-
ing perched or hanging water 
tables on lower permeability 
layers.  Modified from Delcamp 
et al. (2016b). b Simulated 
gravity-driven groundwater 
tables in four different scenarios 
with either homogeneous rocks, 
a low permeability branch 
(horizontal layer), a low perme-
ability sloping layer, or multiple 
low permeability sloping layers. 
Different water tables (colored 
lines) represent simulations 
with different surrounding rock 
permeability (k). Lower overall 
permeability leads to higher 
elevation water tables. Modified 
from Ball et al. (2018)
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McGuire et al. 1990; Voight and Elsworth 1997; Lundgren 
et al. 2004; Apuani and Corazzato 2009).

Heating of pore fluids or degassing from subsurface 
magma can lead to Bandai-style phreatic explosions or 
eruptions without a magmatic component (e.g., Barberi 
et al. 1992; Germanovich and Lowell 1995; Stix and de 
Moor 2018; Takahashi and Yahata 2018). Shallow magma 
intrusion into an edifice can induce mechanical and thermal 
stressing (Elsworth and Voight 1995; Kendrick et al. 2013), 
but heating of pore fluids or gases near the intrusion can 
play a more extensive role in destabilizing an edifice (e.g., 
Elsworth and Voight 1995; Day 1996; Reid 2004) (Fig. 14). 
Fluid pressurization results from heating a fluid or gas within 
restricted pores (Delaney 1982; Mace and Smith 1987); in an 
edifice, this process is transient, as elevated pressures even-
tually dissipate. As with other forms of groundwater flow 
within an edifice, hydraulic properties, including porosity, 
compressibility, and permeability, greatly control the degree 
of thermal fluid pressurization (e.g., Reid 2004; Ball et al. 
2018; Heap et al. 2021a). Higher permeability rocks can 
rapidly dissipate pressures whereas lower permeability rocks 
retain elevated pressures. Pressurization is largest near a heat 

source, and propagates outward over time; thus, there may 
be a time lag between magma movement and destabilizing 
effects in an edifice (Reid 2004), but fluid pressures travel 
much faster than thermal effects (Delaney 1982). Pressurized 
gases within an extruded lava dome may also induce failure 
(e.g., Voight and Elsworth 2000; Elsworth and Voight 2001; 
Simmons et al. 2005). Deeper fluid pressurization could 
foster failure retrogression following the unloading from an 
initial shallower failure.

Forecasting and monitoring potential collapse

Large edifice collapses are much less frequent than volcanic 
eruptions. The lack of well-studied historical collapse events 
as well as the complexity of volcanoes can make accurately 
forecasting the size, location, and timing of collapse events 
challenging. Prior to volcanic unrest, assessments commonly 
rely on understanding past collapse events at a particular 
edifice or at one with similar conditions. Geotechnical-based 
approaches have proven useful in understanding the causes 
of specific failure events, such as at 1980 Mount St. Helens 
(e.g., Voight et al. 1983; Paul et al. 1987; Reid et al. 2000, 
2010b; Donnadieu et al. 2001). This back-analysis approach 
has been applied to other previous edifice collapses, such as 
White Island (Moon et al. 2005).

Forward-looking, scenario-based assessments of potential 
edifice collapses using limit-equilibrium slope-stability anal-
ysis have been performed at volcanoes, including Augus-
tine Volcano, Alaska (Reid et al. 2010a); Mount Baker, 
Washington (Finn et al. 2018); Volcán de Colima, Mexico 
(Borselli et al. 2011); Iliamna Volcano, Alaska (Peterson 
et al. 2021); Mount Rainier, Washington (Reid et al. 2001); 
Stromboli, Italy (Apuani et al. 2005a; Apuani et al. 2005b; 
Schaefer et al. 2019; shown in Fig. 15); and Teide, Tenerife, 
Canary Islands (del Potro et al. 2013). Continuum or dis-
crete deformation modeling of internal stresses and strains 
has been applied to assess potential collapses at other vol-
canoes, including Citlaltépetl, Mexico (Zimbelman et al. 
2004); Etna, Italy (Apuani et al. 2013); Pacaya, Guatemala 
(Schaefer et al. 2013); Soufrière Guadeloupe (Heap et al. 
2021b); and Stromboli (Apuani and Corazzato 2009). These 
slope-stability studies aim to forecast the size and location 
of future failures. Nevertheless, their insight is limited by 
uncertainties in defining structures and material properties 
deep within an edifice. Moreover, dynamic processes that 
modify internal stresses or weaken rocks can be difficult to 
quantify.

For volcanoes undergoing unrest, dynamic processes may 
hint at possible failure, and monitoring changes over time 
may enable better forecasting of future unstable behavior. 
Many techniques for volcano monitoring, such as ground 
deformation, volcano seismicity, and chemical changes 
in gas or fluid emissions, rely on changes detected by 

Fig. 13  Schematic cross sections of three large flank collapses on 
stratovolcanoes associated with phreatic (a) or magmatic (b and c) 
eruptions. a Bandai. b Bezymianny. c Mount St. Helens. Each col-
lapse is inferred to have three blocks that retrogressively failed 
in sequence (numerals I, II, and III) resulting in a large, deep scar.  
Modified from Voight (2000)
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Table 1  Documented lateral edifice-failure events since 1500 CE

Events with VDA deposit volumes ≥ 0.1  km3 in normal font; italicized lines are smaller volumes 0.01–0.1  km3. Bolded volcano Type entries mark 
deep-seated failures typically involving the summit and core of the volcano; non-bolded events are shallow, mostly flank failures lower on the 
edifice. Volume data in parentheses are in situ source area volumes; without parentheses are from deposit volumes. Volume estimates of the 1888 
Ritter Island collapse vary widely from a 2.4-km3 shallower volcanic edifice failure surface to a 7.34-km3 deeper failure surface involving signifi-
cant submarine substrate (Karstens et al. 2020). Agent (cause of fatalities): A, avalanche; L, lahar; P, pyroclastic flow; T, tsunami, listed in order 
of cause of known or inferred number of fatalities. Known tsunami fatalities at Krakatau in 1883 are not listed because, although large-volume 
submarine VDA deposits have been identified (Camus et al. 1992; Deplus et al. 1995), the number of potential avalanche-related tsunami fatali-
ties is not known. Type of collapse: M, magmatic eruptions; Mb, magmatic eruption with lateral blast; P, phreatic eruption; x, no eruptive activity. 
At Unzen volcano in 1792, there was no eruption at the Mayu-yama dome complex where collapse occurred, although neighboring Fugen-dake 
volcano was erupting. VEI, Volcanic Explosivity Index (Newhall and Self 1982). VEIs of 4 or higher are bolded. Frequent historical ice-rock 
avalanches from Iliamna Volcano are typically from ice-rock interface (Huggel et al. 2007) and are not included. Single reference listed for each 
deposit focuses on early work pertaining to edifice collapse event. Data updated from Siebert and Roverato (2021) and Dufresne et al. (2021a)

Volcano Location Type Year km3 Fatal Agent Type VEI References

Anak Krakatau Indonesia Stratocone 2018 0.3  > 437 T M 3 Priyanto et al. (2021)

Meager Canada Stratocone 2010 (0.0485) - - x - Guthrie et al. (2012)

NW Rota-1 Mariana Is Stratocone 2009 0.053 - - M 0 Chadwick et al. (2012)

Monowai Tonga Stratocone 2004–2007 0.042 - - M 0 Chadwick et al. (2008)

Bawakaraeng Indonesia Stratocone 2004 0.2 32 A x - Tsuchiya et al. (2009)

Stromboli Italy Stratocone 2002 (0.029) - - M 2 Tinti et al. (2006)

Monowai Tonga Stratocone 2002 (0.085) - - M 0 Chadwick et al. (2008)

Soufriere Hills Montserrat Dome 1997 0.05 - - Mb 3 Voight et al. (2002)

Fernandina Galapagos Caldera 1988 0.9 - - M 2 Chadwick et al. (1991)

Bezymianny Kamchatka Dome 1985 0.05 - - Mb 3 Melekestsev (2006)

Ontake Japan Stratocone 1984 0.034 - - x - Endo et al. (1989)

St. Helens Washington Stratocone 1980 2.5 57 P, A, L Mb 5 Voight et al. (1981)

Ili Werung Indonesia Stratocone 1979 0.05 539 A, T x - Yudhicara et al. (2015)

Meager Canada Stratocone 1975  ± 0.0285 4 A x - Mokievsky-Zubok (1977)

Shiveluch Kamchatka Dome 1964 1.5 - - M 4 Gorshkov and Dubik (1970)

Rainier Washington Stratocone 1963 0.011 - - x - Crandell and Fahnestock (1965)

Bezymianny Kamchatka Stratocone 1956 0.8 - - Mb 5 Gorshkov (1959)

Lamington Papua NG Stratocone 1951 0.03 3000? P M 4 Belousov et al. (2020)

Kliuchevskoi Kamchatka Stratocone 1945 0.05 - - M 3? Ponomareva et al. (2006)

Harimkotan Kurile Is Dome 1933 0.5 2 T M 5 Belousova and Belousov (1995)

Paluweh Indonesia Dome 1928 n/a 226 T, A M 3 Primulyana et al. (2017)

Mageik Alaska Stratocone 1912  ± 0.075 - - x - Griggs (1920)

Hakuba-Oike Japan Compound 1911 0.15 - - x - Yoshida (2016)

Baker Washington Stratocone 1891  ± 0.018 - - x - Scott et al. (2001)

Ritter Island Melanesia Stratocone 1888 (> 2.4) 3000? T M 2? Johnson (1987)

Bandai Japan Stratocone 1888 (0.5) 461 A, P P 4 Sekiya and Kikuchi (1889)

Augustine Alaska Dome 1883 0.3 - - M 4 Siebert et al. (1995)

Krakatau Indonesia Stratocone 1883 (< < 3.8) (?) T, P M 5 Camus et al. (1992)

Sinarka Kurile Is Stratocone 1878 0.5? (?) A M 4 Belousova and Belousov (2011)

Tate-yama Japan Stratocone 1858 0.2 Many L x - Nozaki (2015)

Garibaldi Lake Canada Stratocone 1855–1856 0.025 - - x - Moore and Mathews (1978)

Baker Washington Stratocone 1845–1847  ± 0.025 - - x - Scott et al. (2001)

Ararat Turkey Stratocone 1840 0.3 1900 P P 3? Karakhanian et al. (2002)

Suwanose-jima Japan Stratocone 1813  > 1.0 - - M 4 Shimano et al. (2013)

Tutupaca Peru Stratocone 1802? 0.7? - - M 4? Samaniego et al. (2015)

Unzen Japan Dome 1792 0.34 15,030 T, A x - Ota (1969)

Asama Japan Stratocone 1783 0.14 1491? A, P, L M 4 Tamura and Hayakawa (1995)

Papandayan Indonesia Stratocone 1772 0.14 2957 A P 3 Glicken et al. (1987)

Oshima-Oshima Japan Stratocone 1741 2.5 1475 T M 4 Satake and Kato (2001)

Augustine Alaska Dome 1700? 0.15 - - M ? Siebert et al. (1995)

Nabukelevu Fiji Dome 1650?  > 0.1? - - M ? Cronin et al. (2004)

Callaqui Chile Stratocone 1630?  < 0.7 - - M ? Polanco and Naranjo (2008)

Chaos Crags California Dome 1650? 0.15 - - x - Crandell et al. (1974)

Komagatake Japan Stratocone 1640 1.55 700 T Mb 5 Yoshimoto and Ui (1998)

Augustine Alaska Dome 1540? 0.5 - - Mb 4? Siebert et al. (1995)

Soufrière Guadeloupe Stratocone 1530  ± 0.05 - - M 3 Boudon et al. (2008)

Rainier Washington Stratocone 1500? 0.23 - - x - Scott et al. (2001)
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ground-based or remote sensors (e.g., Chouet 1996; Dzuri-
sin 2007; Scarpa and Tilling 2012; Schaefer et al. 2019; 
Kern et al. 2022). Monitoring can help distinguish shift-
ing conditions that could predispose a flank to collapse. For 
example, seismic monitoring or repeated seismic tomogra-
phy can detect shallow magma intrusions that might incite 
collapse (Patanè et al. 2006; Giampiccolo et al. 2020). Also, 
repeat aerial geophysical surveys could detect changes in 
rock properties (such as porosity or strength) due to acidic 
hydrothermal alteration that might weaken an edifice flank 
over time (e.g., Rouwet et al. 2014; Miller et al. 2020; Heap 
et al. 2021a; Kereszturi et al. 2021).

Monitoring ground deformation is one of the fundamen-
tal tools in slope-stability forecasting — it can identify 
specific regions or kinematic elements actively bulging or 
displacing downslope as well as quantify rates of change 
that might portend catastrophic failure. Deformation moni-
toring at edifices commonly focuses on detecting magma 
movement, understanding magma plumbing systems, and 
forecasting potential eruptions (e.g., Poland et al. 2006; 
Dzurisin 2007; Segall 2013; Biggs and Pritchard 2017). 
Although conventional landslide investigations can use 
subsurface instruments installed in boreholes to charac-
terize the size and location of a sliding mass, this is rare 
at volcanoes due to cost and logistical difficulties. Instead, 
monitoring ground-surface deformation at edifices is the 
norm. A myriad of active tectonic, hydrothermal, and 

magmatic processes can affect edifice surface deforma-
tion (Poland et al. 2006) and hinder precise interpreta-
tion of observations. Persistent deep-seated deformation 
due to spreading or sagging, inflation or deflation from 
magma movement, surficial mass wasting processes, ther-
mal contraction, compaction, or transient loading from 
magma extrusion can overprint or combine with flank 
deformation (e.g., Lanari et al. 1998; Stevens et al. 2001; 
Lundgren et al. 2004; Lu et al. 2005; Sturkell et al. 2006; 
Ebmeier et al. 2014; Poland et al. 2017; Schaefer et al. 
2017; Ebmeier et al. 2018; Schaefer et al. 2019). Neverthe-
less, transient surface deformation of a flank or dome has 
preceded catastrophic collapse, as demonstrated at Mount 
St. Helens, Bezymianny, Lamington, and Soufrière Hills 
(e.g., Gorshkov 1959; Lipman et al. 1981; Voight 2000; 
Voight et al. 2002; Belousov et al. 2020).

There are a wide variety of techniques for monitoring and 
detecting geodetic changes over time in the surface of an edi-
fice. They range from repeat campaign-style, ground-based 
techniques using leveling or Global Positioning System 
(GPS)/Global Navigation Satellite System (GNSS) surveys 
(e.g., Nishi et al. 1999; Murray and Wooller 2002; Dzuri-
sin 2007; Clarke et al. 2013) to photogrammetry including 
structure-from-motion techniques (Baldi et al. 2008; Diefen-
bach et al. 2012), lidar (e.g., Neri et al. 2008; Favalli et al. 
2009; Okyay et al. 2019), or satellite-based interferometric 
synthetic aperture radar (InSAR) (Wicks et al. 2002; Solaro 
et al. 2010; Ebmeier et al. 2013; Pinel et al. 2014; Bon-
forte and Guglielmino 2015; Froger et al. 2015; Schaefer 
et al. 2015b, 2019; Di Traglia et al. 2018). Some of these 
techniques are not continuous, for example, ground-surface 
changes detected by satellite-based InSAR depend on the 
frequency (often days to weeks) of satellite passes over an 
edifice. Future satellite capabilities with higher frequency 
passes could greatly improve this monitoring technique. Bet-
ter temporal resolution of changes can be recorded using 
fast-repeat methods such as ground-based InSAR (e.g., 
Wadge et al. 2005; Macfarlane et al. 2006; Wadge et al. 
2008; Intrieri et al. 2013; Nolesini et al. 2013; Di Traglia 
et al. 2014a; Di Traglia et al. 2014b; Bonforte et al. 2016; 
Di Traglia et al. 2018; Kuraoka et al. 2018; Schaefer et al. 
2019) (Fig. 15) or more continuous GPS/GNSS techniques 
(e.g., Segall et al. 2001; Bartel et al. 2003; Dzurisin 2003; 
Biggs et al. 2010; Hotta et al. 2016; De Guidi et al. 2018).

Trilateration using electronic distance measurements and 
differences between aerial photographs were used at Mount 
St. Helens in 1980 (Lipman et al. 1981; Moore and Albee 
1981). Given their large extent, potential hazards, and dif-
ficult ground access, edifices are now commonly monitored 
with GPS/GNSS and (or) satellite-based InSAR techniques. 
To understand the amounts and rates of downslope edifice 
flank motion, however, standard analysis techniques such 
as vertical elevation differences between sequential DEMs 

Fig. 14  Simulated effects of coupled pore-fluid pressurization and 
stress changes induced by the thermal effects of a shallow magma 
intrusion beneath an edifice. Vectors indicate direction of fluid flow. 
Higher values of effective-stress ratio indicate more unstable areas. 
Figure from Reid (2004)
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or changes in line-of-sight (LOS) distances from radar over 
time may not be sufficient, as they do not track the actual 
downslope ground motion. Three-dimensional positional 
changes over time obtained from ground-based GPS/GNSS 
measurements, InSAR techniques such as permanent scatters 
or amplitude pixel offset measurements (e.g., Hooper 2008; 
Crosetto et al. 2016; Schaefer et al. 2017), or a combination 
of techniques for both spatial and temporal coverage (e.g., 
Palano et al. 2008; Chen et al. 2017; Wang et al. 2019) can 
more accurately determine slope displacements from large-
scale flank landsliding.

In addition to identifying where a potential slope fail-
ure might transpire, deformation monitoring can some-
times provide insights into when slow creeping motion 
will transition into catastrophic failure. With some land-
slides, velocity or acceleration thresholds or reciprocal of 

velocity relations have provided sufficient time to issue 
warnings or estimate time of failure (e.g., Saito 1965; Salt 
1988; Voight 1989; Crosta and Agliardi 2003; Federico 
et al. 2012; Dick et al. 2015; Loew et al. 2016; Sega-
lini et al. 2018; Intrieri et al. 2019). Such failure fore-
casting techniques have been applied to volcanic rocks 
and edifice failures with varying levels of success (e.g., 
Voight 1989; Murray et al. 1994; Kilburn 2003; Bell et al. 
2011a; Bell et al. 2011b; Heap et al. 2011; Hao et al. 
2016; Kilburn 2018). In addition, increasing frequency 
of smaller landslide or earthquake activity may serve 
as a precursor to a large slide (e.g., Kilburn and Voight 
1998; Voight et al. 2002; Di Traglia et al. 2018). How-
ever, the reciprocal of velocity approach did not work well 
at Mount St. Helens (Lipman et al. 1981; Voight et al. 
1983). Rapid failure of landslides is a complex process 

Fig. 15  Examples of slope-sta-
bility analysis and ground-based 
InSAR monitoring for potential 
collapse at Stromboli, Italy. 
a Limit-equilibrium stability 
results for potential landslides 
with volumes between  105 and 
 106  m3. Warmer colors (lower 
F values) are less stable. b Dis-
placement rates from ground-
based InSAR monitoring 
(February 2015–October 2016) 
of part of the summit crater. 
Warmer colors indicate higher 
rates.  Modified from Schaefer 
et al. (2019)



 Bulletin of Volcanology (2023) 85:61

1 3

61 Page 24 of 54

(Fell et al. 2007), and many slides move and stop without 
catastrophic movement (e.g., Petley et al. 2002; Rose and 
Hungr 2007; Intrieri and Gigli 2016); volcanic edifices 
also can exhibit these mutable behaviors (e.g., Carracedo 
1999; Schaefer et al. 2015b; Giampiccolo et al. 2020).

If a stratovolcano edifice experienced a large bulge 
during a cryptodome intrusion with phreatic explosions 
(similar to 1980 Mount St. Helens), it would likely be 
intensely monitored and analyzed. Both perceived hazards 
and nearby risk would influence monitoring strategies, 
including temporal and spatial coverage of the ongoing 
volcanic unrest and deformation. Potential landslide loca-
tion and collapse magnitude could be well estimated with 
appropriate monitoring, such as InSAR, and might con-
tribute to a reasonable overall estimate of failure likeli-
hood. However, this can be more challenging in the more 
common cases without dramatic Mount St. Helens–style 
deformation or active magmatic involvement. Despite 
advancements in understanding these high-impact but 
low-frequency failures, accurately forecasting the timing 
of failure remains elusive and a topic of investigation.

Characteristics and identification of volcanic 
debris‑avalanche deposits

Although deposits from large-scale lateral collapse of vol-
canic edifices had been recognized prior to 1980, such as at 
Bandai in 1888 (Sekiya and Kikuchi 1889) and in the Hawai-
ian (Moore 1964) and Canary Islands (Bravo 1962), evi-
dence was not widely known and the resulting deposits were 
attributed to a broad range of primary and secondary vol-
canic or nonvolcanic processes, including volcanic mudflows 
or lahars (Siebert and Roverato 2021). The 1980 eruption of 
Mount St. Helens motivated an increasing number of field 

studies of these deposits and illuminated their characteris-
tics. VDAs differ from their nonvolcanic counterparts (e.g., 
Hsü 1975; McSaveney 1978; Plafker and Ericksen 1978; 
Strom et al. 2019) in that they tend to involve larger volumes 
with higher fine-grained proportions and have proportion-
ally longer runout distances (Lucas et al. 2014; Dufresne 
et al. 2021a) (Fig. 16). VDA deposits have some character-
istics similar to other volcaniclastic deposits such as those of 
lahars and pyroclastic flows but have distinguishing attrib-
utes ranging from deposit-scale morphological features to 
textural features at outcrop and microscopic scale. Numerous 
reviews of the characteristics of VDA deposits include those 
of Ui et al. (2000) and van Wyk de Vries and Davies (2015) 
in two The Encyclopedia of Volcanoes editions, and papers 
in Roverato et al. (2021b). A book on volcaniclastic deposits 
(Pierson et al. in review) includes discussion of VDA depos-
its and a photo glossary to aid in their distinction.

Unlike debris flows or lahars, VDAs are typically not 
water-saturated, although the variable amounts of avail-
able water within the edifice influences avalanche behavior 
(Fig. 17). Volcanic edifices can develop localized and evolv-
ing saturated regions above low permeability layers that can 
then contribute to landslide initiation, avalanche transport 
processes, and post-avalanche dewatering (Delcamp et al. 
2016b; Ball et al. 2018). If sufficient water is present within 
an avalanche body, partial or complete transformation to 
debris flow/lahar may occur, almost immediately after fail-
ure or after the avalanche has traveled some distance (e.g., 
Voight and Sousa 1994; Scott et al. 1995; Vallance and Scott 
1997; Evans et al. 2001; Bernard et al. 2019; Dufresne et al. 
2021a; Paguican et al. 2021). Avalanches that liquefy during 
flow and transform to lahars can flow farther and inundate 
larger areas.

Although water is the most efficient mechanism for partial 
fluidization of debris avalanches (Legros 2002), complete 

Fig. 16  Comparison of volume 
(V) versus runout (L) for 
volcanic and nonvolcanic debris 
avalanches. Orange triangles, 
volcanic debris avalanches 
(VDAs); blue circles, nonvol-
canic debris (rock) avalanches 
(RA). Solid trend lines are for 
VDAs, dashed lines for nonvol-
canic events. Figure modified 
from Dufresne et al. (2021a)
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water saturation is not an essential component of debris-
avalanche mobility (Weidinger et al. 2014). Contingent on 
the degree to which VDAs truncate zones of groundwater 
within an edifice, deposits can display both saturated regions 
with ductile deformation and non-saturated regions with 
brittle deformation, often in close contact with each other 
(Delcamp et al. 2016b). Most lateral edifice collapses behave 
as debris avalanches (Vallance and Iverson 2015), which can 
be locally saturated but retain sedimentological and textural 
characteristics of unsaturated flow throughout their extent, 
including lower clay content, open voids without mud fills, 
and non-dispersed clast clusters (Siebert et al. 2004; Yoshida 
and Sugai 2010; Roverarto et al. 2015).

Most VDAs are emplaced at relatively low temperatures, 
even during magmatic eruptions. At Mount St. Helens in 
1980 (Banks and Hoblitt 1981, 1996) and Bezymianny in 
1956 (Belousov and Belousova 1998), temperatures were 
under 100° C. Clement et al. (1993) found paleomagnetic 
evidence for variable primary temperatures up to 350–580° 
C in medial parts of a VDA deposit from Volcán de Colima. 
Pseudotachylites or frictionites, resulting from frictional 
heating, have been reported at the base of VDA deposits in 
Peru (Legros et al. 2000; Bernard et al. 2019; Hughes et al. 
2020), France (Bernard and van Wyk de Vries 2017), and in 
the massive mid-Cenozoic megaslides in Utah (Hacker et al. 
2014; Biek et al. 2019).

Morphologic evidence

Most VDAs exhibit a characteristic surface morphology 
with variable proportions of hummocky terrain and areas of 
closed depressions. Hummocky terrain (discussed below) 
can dominate deposits but can also be separated by wide 

areas of topographically subdued terrain formed during 
emplacement or after the failure event. Deposit geometry 
can help distinguish VDAs from other volcaniclastic depos-
its as VDAs are often unusually thick in comparison with 
saturated volcaniclastic flows such as lahars, hyperconcen-
trated flows, or volcanic muddy floods. Thickness tends to be 
greater in valley-confined deposits but can also be significant 
in broad areas of unconfined deposits.

Source areas and proximal features

The morphology of VDA source areas differs from other vol-
canic depressions and from those of nonvolcanic landslides 
(Fig. 18). Lateral edifice failures are often referred to as sec-
tor collapses although Bernard et al. (2021) noted ambigui-
ties in use of the term. They range in scale from those that 
involve the summit and core of the volcano and are charac-
teristically deep (to ~  103 m from original ground surface), 
breached depressions that are open on the downslope side, 
with relatively flat floors and steep head walls and subpar-
allel side walls, to more shallow and smaller collapses on 
the flanks of volcanoes (Fig. 9a). Most avalanche source 
areas are U-shaped in plan view, with somewhat broader 
breaches than that of a horseshoe shape and are distinct from 
the narrow breaches typical of erosional depressions (Sie-
bert 1984)––although actual morphology can vary consider-
ably (Bernard et al. 2021). Source area terminology varies 
widely, including terms such craters or calderas (sometimes 
with genetic or morphologic modifiers), amphitheaters (to 
avoid comparisons with calderas), and scars or scarps (Ber-
nard et al. 2021; Siebert and Roverato 2021). Bernard et al. 
(2021), following terminology of the nonvolcanic landslide 
community, prefer the use of the term volcanic landslide 

Fig. 17  Model of water migra-
tion and influence during 
landslide initiation and mass 
transport.  Modified from Del-
camp et al. (2016b)
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scar for these features. These failure scars are commonly 
partially or completely filled by the products of post-ava-
lanche eruptions, and at many volcanoes the VDA deposits 
themselves are the only evidence for lateral edifice failure.

During failure, large segments of the volcanic edifice 
may slide relatively short distances without disaggregat-
ing into a debris avalanche. Reiche (1937) described these 
features at nonvolcanic landslides, referring to them as 
toreva blocks after the Toreva landslide in Arizona. They 
represent remnants of the initial edifice failure block and 
commonly display rotational, backward dipping struc-
tures as they slide, tilt, and rotate along listric faults (e.g., 
Andrade and van Wyk de Vries 2010; Paguican et al. 2014, 
2021; Dufresne and Geertsema 2020). At Socompa volcano 
(Francis et al. 1985; Wadge et al. 1995; Grosse et al. 2022), 
backward-tilting toreva blocks up to 2.5 km in length and 
11.5  km3 in volume lie within and near the base of the col-
lapse scar, perpendicular to the scar sidewalls and failure 
direction. Similarly oriented backward-tilting toreva blocks 
up to about 5 km in length with a volume of ~ 5  km3 occur 
at Volcán Barú in Panama (Siebert et al. 2006; Sherrod 

et al. 2007; Herrick et al. 2013). Analog modeling shows 
the toreva blocks form early in the collapse process and can 
transition to downslope hummock formation (Andrade and 
van Wyk de Vries 2010; Paguican et al. 2014, 2021). Toreva 
blocks can occur at large, deep-seated collapses but are not 
preserved where topography drops steeply away from the 
base of the volcano (van Wyk de Vries and Davies 2015).

A prominent proximal feature seen in analog modeling 
of collapse processes is the formation of a graben perpen-
dicular to the failure direction (Andrade and van Wyk de 
Vries 2010; Paguican et al. 2014). The graben originates 
high on the edifice during the onset of failure, as observed at 
Mount St. Helens in 1980, and migrates downslope, forming 
a depression at the base of the failure scar between upslope 
toreva blocks and the downslope hummocky terrain of the 
VDA deposit (Fig. 19). This graben area is the transitional 
point between the listric, high-angle normal faults of the 
collapse zone and the low-angle normal faults of the depo-
sitional zone (Paguican et al. 2014). Field evidence for this 
graben is often obscured by deposition of post-collapse 
eruptive or volcaniclastic products.

Fig. 18  Edifice collapse scars. a Large-scale, ca. 4 × 6  km collapse 
scar (white outline) from two Pleistocene collapse events at Reven-
tador volcano in Ecuador involving summit and core of volcano 
(Johnson et  al. 2006). Steam plume rises from the post-collapse 
cone, whose eruptive products fill much of the originally deep-
seated scar. Photo by P. Ramon modified from https:// volca no. si. edu/ 
galle ry/ ShowI mage. cfm? photo= GVP- 11671. b Small-scale, shal-
low ca. 0.6 × 1.5  km 1984 flank collapse scar at Ontake volcano in 
Japan (Endo et al. 1989). Photo by L. Siebert. c Differences in source 
geometry between volcanic edifice and rock slope failures illustrat-

ing deeper failures and potentially higher landslide volumes for VDA 
sources. Volcano profiles and those of Frank and Goldau rock ava-
lanches after Siebert (1984). Additional rock avalanche profiles from 
Donghekou (Qi et al. 2011), Vaiont (Dykes and Bromhead 2018), and 
Köfels (Prager et al. 2009). Note difference in scale between the two 
slope failure types (volcanic are larger). Volcano name font colors 
show failures associated with magmatic eruptions (red), phreatic 
eruptions (blue), and non-eruptive events (black). c Modified from 
Dufresne et al. (2021a)

https://volcano.si.edu/gallery/ShowImage.cfm?photo=GVP-11671
https://volcano.si.edu/gallery/ShowImage.cfm?photo=GVP-11671
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Hummocky terrain

The typical irregular surface topography forming hummocky 
terrain (Fig. 20) is characteristic of both subaerial and sub-
marine VDA deposits. Large avalanche deposits can contain 
hundreds to thousands of hummocks that range from a meter 
to several hundred meters in height and more than a kilom-
eter in length. Hummock formation occurs under varying 
conditions but is dominated by extensional horst-and-graben 
formation during lateral spreading of a moving VDA (e.g., 
Voight et al. 1981, 1983; Paguican et al. 2012; van Wyk de 
Vries and Davies 2015). Extensional formation of hummocks 
can be accentuated by spreading on a weak base (van Wyk de 
Vries et al. 2001; Roverato et al. 2021a). Hummocks may also 
form by individual blocks rafted in finer-grained material or 
during compressional thrusting and faulting at deposit mar-
gins or where the VDA is constricted by topography (Glicken 
1986, 1996). Analog modeling shows hummock formation as 
a natural progression during edifice failure from initial toreva 
block formation within the edifice to hummock generation 
beyond the edifice as extensional spreading and normal fault-
ing separates slide blocks (Andrade and van Wyk de Vries 
2010; Paguican et al. 2014, 2021).

Hummock orientations are often elongated in a radial pat-
tern from the source, but orientations can be variable due to 
lateral spreading, or transverse to flow direction (Fig. 21). 

Elongated hummocks produced by flow-parallel shear may 
form long longitudinal ridges, which themselves may be bro-
ken up into hummock chains (Fig. 21). Hummock chains 
may reflect additional extensional ridge breakup into indi-
vidual aligned hummocks when the fronts of ridges have 
greater velocity/momentum than upslope ridge components 
to the rear (Dufresne and Davies 2009). Hummock concen-
trations are also influenced by pre-avalanche topography. 
Many hummocks at the Acajutla VDA deposit in El Salva-
dor (Siebert et al. 2004) preferentially lie adjacent to buried 
ridges of Tertiary bedrock, and at Raung volcano in Java 
they are near bedrock hills (Siebert 2002). Valley wall con-
strictions at Mount St. Helens (Glicken 1986, 1996) and 
Volcán Barú (Herrick et al. 2013) also stranded coherent 
block-facies material against topographic barriers.

Extensional spreading of hummocks creates closed 
depressions between hummocks that can be closely spaced 
and contain ponds and small lakes. VDA deposits also can 
display broad, flat intrahummock areas that can encompass 
the dominant proportion of deposit surface areas. These 
intrahummock areas initially form from grabens between 
hummock horsts but reflect zones of intense extensional 
strain in a mixture of brecciated block-facies, mixed-facies 
material (see lithofacies discussion below), and substrate 
material (van Wyk de Vries and Davies 2015). These areas 
can be composed of large concentrations of mixed facies 

Fig. 19  Analog model, < 1 m in long dimension, of the evolution of a 
landslide on a cone into a debris-avalanche. Time A: initial landslide 
stage with formation and subsequent sliding along normal faults. 
Time B: formation of additional normal and strike-slip faults with 
onset of upper graben formation (white arrow). Time C: toreva blocks 
(T) that began forming earlier are prominent in the collapse zone 

(CZ) and abundant hummocks (H) have formed in the depositional 
zone (DZ) below the expanding graben. Time D: hummocks break up 
as the avalanche spreads, although new hummocks may form in the 
accumulation zone (AZ) when large hummocks form as those in front 
decelerate and stop. Figure modified from Paguican et al. (2014)
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or, when sufficient water is present, lahar-facies deposits. 
Hummock formation dominates in block-facies deposits 
but can also be found in mixed-facies deposits as noted at 
Mount St. Helens (Glicken 1986, 1996) and in parts of trans-
formed lahar deposits as at Mount Rainier (Vallance and 
Scott 1997).

Statistical studies of morphometric and distribution 
features of hummocks for both topographically confined 

and unconfined VDAs (Glicken 1986, 1996; Yoshida et al. 
2012; Herrick et al. 2013; Yoshida 2013, 2014) document 
the decrease in size and proportion of hummocks with dis-
tance from the source. Hummock concentrations can also be 
found in compressional regimes adjacent to valley walls or 
at the terminus of deposits (e.g., Glicken 1986; Siebert et al. 
2004; Herrick et al. 2013; Paguican et al. 2014; Roberti et al. 
2017). Yoshida et al. (2012) noted that the rate of decrease in 

Fig. 20  Hummock topography from volcanic debris-avalanche 
(VDA) deposits. a Hummocks at 1956 CE Bezymianny, Kamchatka. 
Hummocks at this location have a spatial density of ~ 700/km2 (Bel-
ousov and Belousova 1998, with photo modified to show red-circled 
person for scale). b Hummocks deposited in Lake Nicaragua from 
collapse of Mombacho volcano in Nicaragua form the Las Isletas 
peninsula and adjacent islands. Photo by J. Incer (https:// volca no. si. 
edu/ galle ry/ ShowI mage. cfm? photo= GVP- 04203). c Aerial oblique 
map view of 1792 CE Mayu-yama VDA deposit from the Unzen vol-
canic complex, Japan. Collapse from Mayu-yama lava dome (center) 

produced VDA that swept into the Ariake Sea and produced a cata-
strophic tsunami. Note change in hummock orientation from largely 
radial subaerial hummocks to transverse hummocks just outboard of 
pre-collapse shoreline (partial location shown by dark green line). 
Unzen-Fugendake was source of 1792 CE lava flow (in red at top 
center) and pyroclastic-flow and debris-flow fan produced during the 
1990–1995 eruption (in pink at left). Older Shimabara VDA deposit 
forms olive-colored submarine deposits at right and subaerial depos-
its above dark green line depicting pre-1792 shoreline segment. Fig-
ure modified from Koga (2002), after Inoue (1999)

https://volcano.si.edu/gallery/ShowImage.cfm?photo=GVP-04203
https://volcano.si.edu/gallery/ShowImage.cfm?photo=GVP-04203
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hummock size was inversely related to the overall mobility 
of the avalanche and that hummock size parameters cor-
relate with avalanche volume and mobility. Yoshida (2013) 
documented that the average size of proximal hummocks 
positively correlates with the volume of the failure mass. 
Paguican et al. (2014) concluded that hummock size, shape, 
and density are influenced by interplay of the density of 
normal, thrust, and strike slip faults, material properties, and 
emplacement topography.

Other medial‑to‑distal features

More distal morphologic features on VDA deposits include 
lateral levees, longitudinal and transverse ridges, longitudi-
nal flow banding, and substrate sediment deformation at the 
deposit terminus (Fig. 22). Levee formation reflects shear 
boundaries due to changes in velocity gradients at valley 
sides or at the margins of unconfined VDAs and can be 
formed within deposits due to multiple lobes emplaced over 
time. Levees can reach ~ 50 m above the adjacent deposit 

surface and are significantly higher than those of lahars and 
pyroclastic flows. They can represent the fully dilated height 
of the VDA during emplacement or that of valley margin 
VDA material pushed aside by the moving flow (Shea and 
van Wyk de Vries 2008). Levees of VDAs at valley margins 
are typically taller than at unconfined locations. Blockage of 
tributary drainages by VDA deposits can form large lakes, 
such as those at Bandai (Sekiya and Kikuchi 1889), Mount 
St. Helens (Scott 1988b), and Volcán de Colima (Capra and 
Macías 2002; Cortés et al. 2010). Such lakes can overtop 
catastrophically, forming massive floods and breakout lahars 
long after their formation.

A variety of longitudinal and transverse features can form 
in VDA deposits. Flow-parallel elongated ridges up to tens 
of meters in height can be found in deposits from both non-
volcanic landslides and VDAs (Dufresne and Davies 2009) 
(Fig. 22). Flow-parallel ridges are on the order of hundreds 
of meters in length, while flowbands (sometimes called stri-
ations) are lower in height, separated by narrow “furrows,” 
and can extend for kilometers along much of the length of 

Fig. 21  Map of hummock distribution and hummock trains (red out-
lines) of two volcanic debris-avalanche (VDA) deposits at Momba-
cho volcano, Nicaragua. a Las Isletas VDA deposit. b El Crater VDA 
deposit. Hummocks shown in dark gray, VDA deposit area in lighter 
gray. BCA shows best circular approximation of deposits. Label EC 
at lower left in Las Isletas image shows upper part of El Crater col-

lapse scar also shown in b. Hummock trains at the El Crater VDA 
deposit are dominantly radial from source, whereas hummock trains 
on the Las Isletas peninsula and adjacent islands extending into Lake 
Nicaragua are more variable and show effect of lateral spreading. Fig-
ure modified from Shea et al. (2008)
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the deposit (Dufresne and Davies 2009). Prominent exam-
ples of flow banding at volcanic deposits are present at Llull-
aillaco in Chile/Argentina (Richards and Villeneuve 2001), 
Tutupaca in Peru (Valderrama et al. 2018), and the 1964 CE 
Shiveluch VDA deposit (Belousov et al. 1999) (Fig. 22d). 
Ridges within VDA deposits are thought to form in strong, 
competent, material that can travel over a mechanically weak 
base, whereas flowbands, the longer and thinner expres-
sions of ridges, are more likely created from flow-parallel 
size segregation of weak, loose, low-density, small-clast-
size source material (Inokuchi 1985; Dufresne and Davies 
2009). Analog modeling shows that ridged features occur 
when coarse irregular particles segregate and concentrate 
at the flow front surface and are then recirculated into the 
advancing flow front (Pouliquen et al. 1997; Johnson et al. 
2012; Valderrama et al. 2016, 2018). Analog modeling has 
shown that more homogeneous sources areas generate flow-
parallel ridged morphologies, rather than hummocky terrain 
(Shea and van Wyk de Vries 2008). Typically, more limited 

fragmentation and ensuing segregation leads to block sliding 
without ridge formation (Valderrama et al. 2018).

Stress regimes can vary widely during emplacement in 
VDAs due to differential movement of VDA segments, with 
cross-cutting fault relationships indicating multiple genera-
tions of deformation during emplacement (Roberti et al. 
2017) (Fig. 23). Sudden deceleration of VDAs can produce 
compressional transverse ridge or hummock orientation fea-
tures near the terminus of deposits or individual lobes as 
they slow to a halt (Roberti et al. 2017). These features can 
also form from a VDA moving over deformable substrate 
(Dufresne and Davies 2009) or due to changes in substrate 
slope angle or from substrate obstructions (Yoshida et al. 
2012; Herrick et al. 2013). Longitudinal hummocks can also 
change to transverse orientations from deceleration when an 
avalanche enters the sea, as at Augustine Volcano in 1883 
CE, Unzen in 1792 CE, Santa Ana volcano in El Salvador 
(Siebert et al. 1987, 1995, 2004), and at Harimkotan (Kha-
rimkotan) volcano in 1933 in the Kuril Islands (Belousov 
and Belousova 1996). In terrain with fine-grained, ductile 

Fig. 22  Volcanic debris-avalanche (VDA) deposit surface features. 
a Closed depressions between large hummocks at Mount St. Helens, 
Washington (USA), in foreground were often filled by small ponds 
post 1980. Coldwater Lake in left background was formed through 
damming of drainage by 1980 VDA deposit. USGS photo. b Larger 
vegetated closed depression at VDA deposit from Parinacota vol-
cano (right) in Chile (Clavero et  al. 2002). Photo by L. Siebert. c 
ca. 30-m-high 1980 Mount St. Helens VDA deposit marginal levee 

formed small lake from drainage blockage. Lateral-blast tree blow-
down visible at upper right. Photo from Glicken (1986). d Flow-
parallel ridges at the distal end of the 1964 Shiveluch VDA deposit, 
Kamchatka; these features also occur at nonvolcanic landslide depos-
its, pyroclastic-flow deposits, and those of snow and ice avalanches 
(Dufresne et al. 2009). Belousov et al.’s (1999) photo modified from 
Dufresne and Davies (2009)
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substrate, transverse distal and terminal hummock ridges 
at the terminus can be dominated by bulldozed substrate 
material producing thrust faults and soft-sediment deforma-
tion as at Shiveluch (Belousov et al. 1999), Ollagüe in Chile 
(Clavero et al. 2004), and Iriga volcanoes (Paguican et al. 
2012). Very abrupt deceleration of debris avalanches can 
create ballistic impacts from large clasts tossed hundreds 
of meters beyond the steep distal fronts of some avalanche 
deposits (Plafker and Ericksen 1978; Siebe et al. 1992).

Lithofacies

The literature on VDA deposits is populated by a wide range 
of lithofacies terminology that reflect the complex variety of 
rock types, structures, and textures in these deposits as well 
as ambiguities in criteria and definitions of terms (see dis-
cussion in Bernard et al. 2021 and Dufresne et al. 2021b). A 
first-order distinction between block facies and mixed facies 
(formerly matrix facies) has been widely used to charac-
terize these deposits (e.g., Glicken 1986, 1991, 1996; Ui 
and Glicken 1986; Ui et al. 2000; van Wyk de Vries and 
Davies 2015; Bernard et al. 2021; Dufresne et al. 2021b). 
Block-facies material is dominated by coherent and disrupted 
blocks and fragmented segments of the edifice that are trans-
ported relatively intact, preserving recognizable remnants of 
the original volcanic structures and stratigraphy, although 
with variable degrees of shear and internal deformation. 
The intense color variations produced by the juxtaposition 
of debris-avalanche blocks of variable composition and 
degrees of hydrothermal alteration with more subdued hues 

of disaggregated segments of the VDA can be one of the 
defining characteristics of VDA deposits. These variations 
are typically much more pronounced than in other mass 
flow deposits (Fig. 24a, b). Clasts are dominantly angular 
to very angular (Fig. 24c). In unconfined VDAs, the block 
facies is generally concentrated along the thick central axis 
of the deposit, but can persist to distal regions, although 
with diminishing block size. Bernard et al. (2021) distin-
guished edifice-derived block facies from that derived from 
incorporated substrate material. VDA deposits may include 
significant amounts of entrained substrate rock (Wadge et al. 
1995; Shea et al. 2008) and scoured surficial soil or sediment 
(Palmer et al. 1991; Bernard et al. 2008).

Mixed-facies material becomes progressively more 
abundant with distance from the source, and contrasts with 
block facies in being more homogeneous in color and tex-
ture (Fig. 24d), with smaller, more rounded, more broadly 
polymictic, and dispersed clasts. This facies, with its typi-
cally subdued brownish or grayish colors, contrasts with 
multi-hued block-facies material and these materials can be 
intruded into block-facies material (Fig. 24e). Along with 
transformed laharic material (discussed above), it can form 
the most widespread and voluminous part of VDAs (Val-
lance and Scott 1997; Tost et al. 2014). Contacts between 
facies are typically gradational but can also be sharp. van 
Wyk de Vries and Delcamp (2015) and van Wyk de Vries 
and Davies (2015) distinguished a monomictic matrix facies 
(produced by milling of clasts of one rock type) from a pol-
ymictic mixed facies. Palmer et al. (1991) also described a 
marginal facies with characteristics of transformation to a 

Fig. 23  Variable deformation 
regimes in distal portion of 
0.0485  km3 2010 CE volcanic 
debris-avalanche (VDA) deposit 
from Meager volcano in British 
Columbia with source area to 
left of this image. The 1.2-km-
long segment near terminus of 
VDA at intersection of Meager 
Creek and Lillooet River valleys 
shows zones of proximal exten-
sion (blue) with normal faulting 
and graben formation, a central 
zone of shear (purple) with 
dominant flow-parallel strike-
slip faults displacing thrust 
faults, and distal compression 
(red) dominated by thrust faults 
and transverse hummock chains. 
Arrows show overall flow direc-
tions. Figure modified from 
Roberti et al. (2017)
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debris flow (e.g., Neall 1979; Scott et al. 2001; Zernack et al. 
2011; Dufresne et al. 2021b; Zernack 2021), which can also 
be considered the lahar facies of an edifice collapse event 
(Siebert 2002; Pierson et al. in review). A basal facies on 
the scale of centimeters to a few meters in thickness reflects 
basal shear and substrate incorporation (Schneider and 
Fisher 1998; Ui et al. 2000; van Wyk de Vries and Davies 
2015), and a bulldozer facies describes areas of terminal, 
often soft sediment, folded, and sheared substrate (Belousov 

et al. 1999; Paguican et al. 2012; Dufresne et al. 2021b). The 
textural features visible at outcrop scale can be critical in 
distinguishing VDA deposits from other types of mass flows, 
including debris flow/lahars, pyroclastic flows, and glacial 
deposits. Diagnostic textural characteristics, however, are 
commonly not visible on surficial exposures, making cross-
sectional views in riverbanks, cliffs, road cuts, and quarries 
essential, which themselves may be partially obscured by 
slope wash or weathering.
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Sedimentology

Deposits of VDAs are typically massive without internal 
bedding or fabric, although bedding or fabric can be retained 
in block-facies material containing transported bedded 
deposits from the edifice or in sedimentary deposits incor-
porated during emplacement. In addition, transported logs 
or trees may be aligned parallel to flow direction (Takarada 
et al. 1999). Fluid escape structures are not common in 
VDAs, although clastic dikes of mixed facies materials with 
vertical to irregular orientations and lengths from meters to 
tens of meters are commonly intruded into debris-avalanche 
block fractures. Bubble vesicles common in lahar deposits 
are largely absent in VDA deposits outside of transformed 
lahar-facies deposits (Pierson et al. 2018). A unique charac-
teristic of VDA deposits is the frequent occurrence of clus-
tered clasts that are not widely dispersed within surrounding 
mixed-facies material (Fig. 24f). Clast distributions typically 
become more random with distance from source, but clast 
clusters may be present in distal areas of even very long-
runout deposits (Siebert et al. 2004; Roverarto et al. 2015).

Localized shear is common within faulted debris-ava-
lanche blocks (Fig. 24a, g), with brittle deformation structures 

including block elongation, conjugate reverse faults, and a 
variety of minor faults (Takarada et al. 1999). Basal shear 
is pervasive at the lower parts of VDAs and nonvolcanic 
landslides in contact with substrate and can produce parallel 
striations in bedrock similar to those generated by glaciers, 
distinguished by their occurrence in previously unglaci-
ated locations (Glicken 1996; Mehl and Schmincke 1999). 
Striations and grooves of variable orientation also appear in 
isolated individual blocks and incorporated substrate blocks 
within VDA deposits due to shear and collisional impacts 
(Mehl and Schmincke 1999; Bernard et al. 2022). On softer 
substrate, “groove casts” at the cemented bottom surface of 
a VDA deposit at Popocatépetl, Mexico, were interpreted 
to have been formed by sliding blocks scratching over soft 
clayey paleosols or sediments (Siebe et al. 2017). Shear can 
also occur at the base of fragmenting debris-avalanche blocks 
throughout the VDA during emplacement (Roverarto et al. 
2015) and at contacts of VDAs with co-eval pyroclastic-flow 
deposits (Bernard et al. 2022).

Clasts within VDAs vary widely in size from clay-sized 
particles to large blocks but are typically angular to very 
angular in contrast to those of other volcaniclastic mass flow 
deposits. Mixed-facies clasts reflect more differential move-
ment and can be more rounded, although are commonly in 
association with angular fragments. Dynamic disintegra-
tion of isolated clasts by collision and frictional grain-grain 
abrasion during transport increases the proportion of finer-
grained matrix with distance (Perinotto et al. 2015; Rover-
arto et al. 2015). As with nonvolcanic landslides (Shreve 
1968), VDA deposit outcrops often display clasts with jig-
saw cracks or jigsaw fractures (Ui 1983), where fractured 
clasts may remain in close proximity and can be visually 
refitted together like a jigsaw puzzle (Fig. 24h). Jigsaw 
fractures can be found throughout VDA deposits and distin-
guishes them from lahars, although their frequency is vari-
able within individual deposits and among different deposits. 
Jigsaw-fit textures also occur in a more localized context in 
hyaloclastites and peperites generated primarily by in situ 
non-explosive quench fragmentation at the margins of sub-
aqueous lava flows, domes, or sills (e.g.,Scutter et al. 1998; 
Schmidt and Schmincke 2002; Skilling et al. 2002).

Jigsaw cracks have been attributed to compression and 
rarefaction waves early in the landslide process at Mount 
St. Helens (Glicken 1986, 1996; Komorowski et al. 1991). 
Later work also notes collisional comminution close to 
the depositional sites of jigsaw-cracked clasts, without 
disruption from long transport distances, as suggested 
by analysis of fractal dimensions and circularity of jig-
saw-cracked clasts at Piton des Neiges volcano (Reun-
ion Island) (Perinotto et al. 2015). Jigsaw fracturing and 
localized crushing of particles continues down to micro-
scopic scale, as first demonstrated by the scanning elec-
tron microscopy of Komorowski et al. (1991) at Mount 

Fig. 24  Outcrop-scale volcanic debris-avalanche (VDA) deposit tex-
tures. a Roadcut through freshly excavated hummock in VDA deposit 
from the Fuego-Acatenango volcanic complex, Guatemala (Vallance 
et  al. 1995). Outcrop shows pervasive normal faulting and shear, 
with boudinage and both brittle and ductile (top of outcrop) deforma-
tion. Dashed lines mark selected normal faults, LF offset large lava 
flow segments, circled person at lower right for scale. b Chimborazo 
VDA deposit, Ecuador (Bernard et  al. 2008), with fractured gray 
debris-avalanche block in irregular contact with reddish clasts. Top 
of exposure is obscured by smooth, light-gray slope wash, empha-
sizing importance of fresh outcrops to reveal textures. c Dominantly 
angular clasts of VDA deposit from Tenerife volcano, Canary Islands 
(Martí 2019) with variably colored domains. d Acajutla VDA deposit 
from Santa Ana volcano, El Salvador (Siebert et al. 2004), showing 
relatively homogeneous, uniformly colored mixed-facies material 
containing small dark debris-avalanche block at left and light-brown 
substrate material at upper right. Polylithologic matrix contains both 
dark-colored lithic clasts and white pumice clasts. e VDA deposit 
from Dittmar volcano, California (Muffler and Clynne 2015), with 
light-colored mixed-facies material cutting through ignimbrite block 
at left and breccia block at right. Ignimbrite and remnants (outlined 
in white) at right indicate ignimbrite block and breccia block were 
in direct contact prior to mixed-facies injection. f Clast cluster sur-
rounded by brown clast-poor matrix material in Okinajima VDA 
deposit from Bandai volcano, Japan (Mimura and Endo 1997). Per-
sons along road for scale. g Vertical multi-hued shear bands in center 
at fault contact of dark-colored debris-avalanche block at left with 
light-colored block at right at Shasta Valley VDA deposit in Califor-
nia (Crandell 1989). h Jigsaw-fracture clast from the voluminous Oli-
gocene Sevier megaslide in the Markagunt Plateau, Utah (Biek et al. 
2019). Clast is 20-cm wide. Note incipient fractures within clast frag-
ments and separation of clast fragments by lighter-color, now indu-
rated, mixed-facies material. Photos by L. Siebert. Individual colored 
segments on scale bars in photos b, c, and e are 10 cm long, trowel in 
d and g is 26 cm long

◂
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St. Helens and subsequently seen at other volcanoes (e.g., 
Belousov et al. 1999; Pulgarín et al. 2004; Caballero and 
Capra 2011; Keigler et al. 2011; Roverato and Capra 2013; 
Perinotto et al. 2015; Roverarto et al. 2015; Bernard and 
van Wyk de Vries 2017; Bernard et al. 2019; Hughes et al. 
2020; Procter et al. 2021). These investigations show a 
wide range of microscopic textures indicative of crushing 
from repeated high-pressure collisional contacts between 
sand-sized grains during flow that differs from textures in 
other volcaniclastic flows (Fig. 25).

Following the pioneering grain-size distribution studies of 
Glicken (1986, 1996) at Mount St. Helens, subsequent VDA 
deposit grain-size distribution studies, primarily from other 
stratovolcanoes and lava domes, have been summarized by 
Dufresne et al. (2021b). Full-deposit grain-size distributions 
from VDA deposits overlap considerably with other volcani-
clastic deposits, particularly those of lahars and pyroclastic 
flows. VDA deposits are often as coarse or coarser than the 
pyroclastic-flow field of Walker (1971) and more poorly 
sorted than Walker’s pyroclastic-fall field (Siebert et al. 

Fig. 25  Scanning electron 
microscope (SEM) images 
of microtextures of volcanic 
debris-avalanche (VDA) deposit 
grains. a Fracture generation 
with separation of cracks and 
small-scale displacements. 
b Jigsaw fractures in lithic 
clast. c Shattered plagioclase 
crystal (pl) adjacent to glass at 
left along basal shear zone. d 
Hackly texture on projecting 
parts of glass-covered pyroxene 
crystal from highly irregular 
breakage by repeated high-pres-
sure grain contacts in contrast 
to smooth topographic lows on 
the surface. e Pair of diagonal 
lip structures wider and deeper 
at top of image. f Grooves and 
scratches of variable size and 
depth. g Percussion marks (P) 
from grain-to-grain impact. h 
Truncated crystal with staircase 
geometry. Modified images: 
a Shiveluch volcano, Kam-
chatka (Belousov et al. 1999); 
c Pichu Pichu volcano, Peru 
(Hughes et al. 2020); d Mount 
St. Helens, Washington, 1980 
CE VDA deposit (Komorowski 
et al.1991); e Nevado de Toluca 
volcano, Mexico (Caballero and 
Capra 2011). Images b, f, g, and 
h from Taranaki volcano, New 
Zealand (Roverarto et al. 2015)



Bulletin of Volcanology (2023) 85:61 

1 3

Page 35 of 54 61

2004; Dufresne et al. 2021b). Data collected after Walker 
(1971) show considerable overlap between pyroclastic-flow 
and pyroclastic-fall fields, and pyroclastic-surge data overlap 
broadly with both fields (Fisher and Schmincke 1984), who 
noted that these size and sorting diagrams should be used 
with caution. Standard grain-size distribution parameters 
including graphical statistics on size, sorting, kurtosis, skew-
ness, and size-component distribution can characterize VDA 
deposits. However, varying analytical and sampling tech-
niques can complicate direct data comparison, and grain-size 
distribution data alone may not be indicative of processes. 
Deposit morphology and outcrop- and microscopic-scale 
textures can be essential tools for VDA deposit identification.

Post‑1980 understanding of lateral edifice 
collapse and volcanic debris avalanches

Magnitude and global distribution

The 1980 collapse and eruption of Mount St. Helens 
spawned an intense burst of research on individual VDA 
deposits. Regional and global surveys of VDA deposit 
occurrences have been produced at a rate of more than 
one yearly since then, roughly equally divided between 
continental and oceanic compilations. Regional surveys 
included those in Tanzania (Delcamp et al. 2016a), New 
Zealand (Palmer et al. 1991; Neall 2002), Papua New 
Guinea (Johnson 1987; Silver et al. 2009), Indonesia 
(MacLeod 1989), Philippines (Geronimo-Catane 1995), 
Japan (Ui et  al. 1986; Inokuchi 1988, 2006; Yoshida 
2016), Hokkaido in Japan (Yamagishi 1996), Kuril 
Islands and Kamchatka (Melekestsev and Braitseva 
1988; Ponomareva et al. 2006; Belousova and Belousov 
2011), the Aleutian Islands (Coombs et al. 2007; Mon-
tanaro and Beget 2011), the Cascade Range (Siebert and 
Vallance 2017), Hawaiian Islands (Moore et al. 1989, 
1994; Normark et al. 1993; McMurtry et al. 2004), the 
Society and Austral Islands (Clouard and Bonneville 
2004), Mexico (Capra et al. 2002), Guatemala (Vallance 
et al. 1995), Costa Rica (Alvarado et al. 2004), Central 
America (Siebert et al. 2004, 2006), Ecuador (Andrade 
2009; Bernard and Andrade 2019), the Central Andes 
(Francis and Wells 1988), the West Indies (Deplus et al. 
2001; Boudon et al. 2007), the Madeira Islands (Quar-
tau et al. 2018), the Canary Islands (Krastel et al. 2001; 
Masson et al. 2002; Acosta et al. 2004; Hunt et al. 2014), 
and the Cape Verde Islands (Masson et al. 2008). Global 
surveys of VDAs included Ui (1983), Siebert (1984), Sie-
bert et al. (1987), Holcomb and Searle (1991), Mitchell 
(2003), Bernard (2008), Dufresne et al. (2008), Blahůt 
et al. (2019), Dufresne et al. (2021a), Siebert and Roverato 
(2021), and Rowberry et al. (2023).

VDA deposits originate from a broad spectrum of vol-
canic structures, most commonly from steep-sided strato-
volcanoes that compose about three-fourths of all known 
collapse events (Dufresne et al. 2021a). Over-steepened 
lava domes like Augustine Volcano (Siebert et al. 1989, 
1995; Waitt and Begét 2009), Soufriere Hills (Sparks et al. 
2002; Voight et al. 2002; Young et al. 2002), or Shive-
luch (Belousov et al. 1999) are also highly susceptible 
to lateral edifice collapse. Large VDA deposits can result 
from collapse of caldera walls during (Rinjani volcano, 
Indonesia; Lavigne et al. 2013) or after caldera formation, 
as occurred at Fernandina, Galápagos Islands, in 1988 
(Chadwick et al. 1991). Much smaller syn-eruptive VDA 
deposits have been noted at features as small as monoge-
netic cinder cones (Romero et al. 2020). Larger failures 
are not limited to steep slope angles, however, as demon-
strated by the large-scale lateral volcanic collapses occur-
ring on low-angle shield volcanoes in the Hawaiian Islands 
(Moore et al. 1989) and many other volcanic island chains 
as well as comparably sized massive collapses (> 1000 
 km3) from continental volcanic fields (Hacker et al. 2014; 
Biek et al. 2019). Submerged seamounts can fail both 
in island arc (Wright et al. 2006; Chadwick et al. 2008) 
and mid-plate (Smoot and King 1993; Moore et al. 1994; 
Staudigel and Clague 2010; Omira et al. 2016) settings. 
A 19-km3 VDA deposit has been documented along the 
Mid-Atlantic Rift (Tucholke 1992). Partially submerged 
VDA deposits are common on edifices ranging from mas-
sive shield volcanoes to smaller stratovolcanoes or lava 
domes. VDA deposits have likewise been documented at 
volcanic constructs on other planets (Bulmer and Wilson 
1999; McGovern et al. 2004). Individual VDA deposits 
have been identified on all continents. The vast majority 
of documented VDA deposits are Quaternary in age, but 
they have been documented as far back as the Precambrian 
in Australia (Trofimovs et al. 2004) and Brazil (Roverato 
2016). Dufresne et al. (2021a) analyzed known geometric 
and associated data on VDA deposits, including mobility, 
travel distance, volumes, areas, and poorly known associ-
ated eruptive activity.

Frequency of occurrence

The surge of interest in lateral edifice failure events has 
led to the identification of more than 1000 cases globally 
with known or inferred volumes ≥ 0.01  km3, most of these 
thought to be ≥ 0.1  km3, from more than 600 volcanoes, 
based on VDA deposits or inferred from source-area geom-
etries (Dufresne et al. 2021a; Siebert and Roverato 2021; 
this study). On a regional scale, more than half of large-
volume stratovolcanoes have undergone edifice failure at 
least once in regions such as Japan (Ui et al. 1986; Inokuchi 
2006), Kamchatka (Ponomareva et al. 2006), the Cascade 
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Range (Siebert and Vallance 2017), and Mexico (Capra et al. 
2002). Other regions such as Turkey and the Philippines 
have far fewer documented failures from their volcanoes. As 
VDA deposits have been investigated in more detail at indi-
vidual volcanoes, it has been documented that many have 
undergone more edifice failures than initially realized. Ten 
or more collapse events have occurred at Piton des Neiges 
(Oehler et al. 2008), Taranaki (Zernack et al. 2009), Bandai 
(Chiba and Kimura 2001), Augustine Volcano (Waitt and 
Begét 2009), Colima volcanic complex (Cortés et al. 2019), 
Soufrière Hills (Boudon et al. 2007), and Tenerife (Hunt 
et al. 2014). At a small-volume volcano such as Augustine 
Volcano, a high magma production rate promotes rapid 
reconstruction following failure and collapses have recurred 
as often as ~ 200 years during the past ~ 2500 years (Waitt 
and Begét 2009). At Las Derrumbadas dome complex in 
Mexico, as many as 10 VDA deposits > 0.01  km3, seven of 
which are > 0.1  km3, occurred during an eruptive episode at 
about 2 ka that lasted perhaps decades to centuries (Guil-
baud et al. 2022).

During historical time after 1500 CE, known lateral 
edifice-failure events ≥ 0.01  km3 in volume averaged about 
nine per century globally, with larger avalanches ≥ 0.1  km3 
averaging 5–6 per century and those > 1  km3 about one per 
century (Table 1). These are likely undercounts, as data 
show an apparent progressive decrease in events with age, 
going from nearly 20 events per century since 1900 CE and 
about 16 per century since 1800 CE to only a dozen known 
events in the three centuries prior to 1800 CE. This decline 
suggests that collapse occurrence data since 1800 CE may 
be a more representative frequency for larger events ≥ 0.1 
 km3. The systematic decline in known smaller events from 
more current values reflects the lower likelihood of earlier 
observations and documentation (Fig. 26).

Three-fifths of total events involved deep-seated fail-
ures, most often involving the summit and core of the vol-
cano, with the remainder being smaller volume, typically 
flank failures. These smaller failures included more than 
half of the total events since 1900 CE, likely reflecting 
the tendency for underreporting of less dramatic collapse 
events in earlier centuries (Fig. 26). This underreporting 
trend matches pronounced eruption undercounting, par-
ticularly of smaller eruptions, during the same intervals 
(Siebert et al. 2011) and for eruptions of all sizes through-
out the geologic record (Deligne et al. 2010; Brown et al. 
2014; Kiyosugi et al. 2015).

Two-thirds of events since 1500 CE (Table 1) were 
associated with eruptive activity, all but three of which 
were magmatic, the remainder associated with only phre-
atic eruptions. Lateral blasts such as at Mount St. Helens 
in 1980 and Bezymianny in 1956 were identified at only 
four of the other magmatic events. This is consistent with 
lateral-blast generation associated with edifice failure 

requiring the precise coincidence of collapse at the time 
of explosions, typically when a magma body is high in the 
edifice and collapsing slide blocks deflect decompression-
generated explosions (Belousov et al. 1999, 2007, 2020; 
Siebert 2002). Elsewhere, as at Shiveluch volcano in 1964 
(Belousov 1995), collapse can be completed prior to the 
onset of magmatic eruptions, resulting in open-vent erup-
tions and more typical vertical explosions (Fig. 27). A 
vertically directed, magmatic blast explosion occurred at 
Lamington volcano, Papua New Guinea, when the basal 
failure plane truncated only the upper tip of the intruding 
magma body (Belousov et al. 2020). When magma is even 
deeper, explosions may be only phreatic, as at Bandai vol-
cano in 1888 (Nakamura 1978).

Lateral edifice failure can also frequently occur in 
absence of eruptive activity, with attendant hazards 
implications. Half of the smaller-volume, shallower 
events ≤ 0.1  km3, few of which involved the summit of 
the volcano, had no reported eruptive activity (Table 1). 
Much larger deep-seated non-eruptive collapse events 
have also been reported in the geologic past, although 
the “historical” interval of Table 1 is too short to include 
these. The existence or character of associated eruptive 
activity is addressed at far too few earlier collapse events 
(Dufresne et al. 2021a) to adequately assess the degree 
of active magmatic involvement in past lateral edifice-
failure events.

Hazards from lateral edifice-failure events include 
those from the VDAs themselves, as well as those asso-
ciated with magmatic or phreatic eruptions accompanying 
the collapse event, including pyroclastic flows, lahars, 
and tsunamis created by the rapid impact of VDAs into 
the sea or large lakes (Latter 1981; Begét 2000; McGuire 
2006; Day 2015). Fatalities are known to have occurred 
at many of the events listed in Table 1 (including more 
than half of those with volumes ≥ 0.1  km3). The impact 

Fig. 26  Age distribution of lateral edifice collapse events since 1500 
CE. Blue bars are volcanic debris-avalanche (VDA) events with 
deposit volume ≥ 0.1  km3; gray bars are events ≥ 0.01 and ≤ 0.1   km3. 
The total twenty-first century data extrapolated from data through 
early 2023 with black lines showing known twenty-first century 
events. Data from Table 1
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would have been much higher had many not occurred in 
areas uninhabited or sparsely populated at the time. Edi-
fice collapse events led to more than 30,000 known fatali-
ties since 1500 CE (Table 1), about equally distributed 
between eruptive and non-eruptive events. Even smaller 
events than those considered here can have considerable 
impact as seen by the > 2500 non-eruptive fatalities from 
an avalanche-induced 0.0016-km3 debris flow at Casita 
volcano in 1998 (Scott et al. 2005). Tsunamis have by far 
been the leading cause of collapse-related deaths, domi-
nated by those in Japan and Indonesia. Thus, secondary 
hazards to humans during historical time have proven 
even more devastating than the considerable primary 
hazards from the VDAs themselves.

Summary

Lateral edifice collapse and the generation of volcanic 
debris avalanches were not widely recognized prior to the 
1980 Mount St. Helens collapse and eruption. The more 
than four decades since have seen a proliferation of stud-
ies on the resulting deposits and evaluation of processes 
leading to debris-avalanche generation, which build on the 
insights from the 1980 eruption. The Mount St. Helens 
VDA deposit is one of the best studied modern examples 

of a large-scale lateral collapse. Important aspects of the 
flank failure at Mount St. Helens include (1) a shallow 
cryptodome intrusion destabilized the north flank through 
deformation, bulging, and faulting; (2) slow deformation 
over months led to rapid catastrophic failure; (3) massive 
retrogression of three large slide blocks sculpted deeply 
into the edifice; (4) the accompanying Ms ~ 5 earthquake 
may have been induced by the enormous landslide; and 
(5) failure did not occur in hydrothermally altered rocks.

Slope instability is promoted by a myriad of factors — 
some act to predispose a slope to failure whereas others 
act as dynamic triggers. Volcanic edifices experience the 
destabilizing conditions present on other large mountains, 
such as earthquake shaking and elevated pore-fluid pres-
sures, but additionally have volcano-related destabilizing 
phenomena, such as hydrothermal alteration, deformation 
from shallow magma intrusion, and pressurization of pore 
fluids by heating.

Recent lateral edifice collapses after 1500 CE accompa-
nied by magmatic eruption or phreatic explosions are typi-
cally about an order of magnitude larger compared to those 
without these dynamic processes or large nonvolcanic land-
slides, although very large non-eruptive collapses have been 
reported in the geologic record. Factors that could enhance 
or promote large, deep failures, initially or through retro-
gression, involve modifying stresses or strengths at depth. 

Fig. 27  Sketches illustrating 
positions of magma bodies 
inside volcanic edifices before 
gravitational collapses. Directed 
(lateral) blasts occurred when 
failure planes truncated a com-
bination of dome and crypto-
dome (Bezymianny, Kam-
chatka), cryptodome (Mount St. 
Helens, Washington), and dome 
(Soufrière Hills, Montserrat). 
At Lamington (Papua New 
Guinea), the rupture surface 
intersected only the uppermost 
part of the cryptodome and 
vertical “blast explosions” with 
radial pyroclastic-flow distribu-
tion resulted. At Shiveluch 
(Kamchatka) and Harimko-
tan (Kuril Islands), collapse 
occurred before ascending 
magma reached the failure plane 
and no lateral blast occurred, 
although failure was followed 
by major vertical Plinian erup-
tions. Figure modified from 
Belousov et al. (2020)
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These stresses include changes in internal structures relating 
to gravitational spreading, possibly on a weak base; deg-
radation of highly variable rock strength by certain styles 
of hydrothermal alteration; locally elevated pore-fluid pres-
sures; and dynamic triggers such as earthquake shaking, 
magma intrusion, and thermal pressurization of pore fluids.

Scenario-based geotechnical assessments can aid in fore-
casting the size and location of future large lateral collapses. 
Monitoring volcanic unrest, such as increased seismicity 
and changes in volcanic gas emissions, can herald the onset 
of potentially destabilizing dynamic processes. A primary 
tool for detecting potential collapses is ground deformation, 
monitored using a variety of techniques. Satellite-based 
InSAR is useful for detecting changes in remote settings 
or over large areas whereas ground-based InSAR and con-
tinuous GPS/GNSS can provide near-real time assessments. 
Changes in ground velocity and (or) acceleration over time 
can sometimes forecast rapid failure. However, failures 
occur within a broad spectrum of magmatic and non-mag-
matic conditions with attendant difficulties in assessing and 
communicating short-term and long-term risk. Forecasting 
these high-impact but low-frequency events remains a topic 
of investigation.

Catastrophic edifice failure impacts a broad range of vol-
canic structures in diverse tectonic settings. More than a 
thousand events, primarily ≥ 0.1  km3 in volume, have now 
been identified from deposits or inferred from source area 
morphology, leading to a recognition of their importance in 
the evolution of volcanoes and the hazards they pose. These 
deposits had often previously been interpreted otherwise 
and morphological factors and textural characteristics from 
outcrop to microscopic scale are now known that distinguish 
VDA deposits from other volcaniclastic deposits.

Documented edifice failure events ≥ 0.01  km3 in volume 
averaged about 9 per century globally since 1500 CE, with 
larger avalanches ≥ 0.1  km3 averaging 5–6 per century and 
those > 1  km3 about one per century. An apparent progres-
sive decline in collapse events in earlier centuries reflects 
diminished likelihood of observation and documentation, 
particularly of less dramatic smaller volume events. This 
underrepresentation is consistent with pronounced eruption 
undercounting for eruptions of smaller sizes since 1500 CE 
and for those of all sizes throughout the geologic record. In 
addition to hazards from the VDAs themselves, collapse-
related hazards include those from associated magmatic or 
phreatic eruptions. Directed volcanic explosions such as at 
Mount St. Helens in 1980 and Bezymianny in 1956 require 
precise coincidence of collapse and decompression-related 
explosions, conditions not found at most magmatic collapse 
events. Associated secondary hazards also originate from 
lahars and collapse-generated tsunamis, with the latter being 
the primary cause of known collapse-related fatalities.
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