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Abstract
The contemporary occurrence of juvenile gas emissions at springs or mofettes in active volcanic areas can be observed 
worldwide. This correlation is less frequent in areas with dormant or post-volcanic activity. The NW-Bohemia/Vogtland 
region located at the Eger rift zone (Czech Republic) provides an intriguing example of this correlation between numerous 
Neogene-aged post-volcanism locations and juvenile fluid emission sites. Newly discovered dikes and diatremes are located 
close to vents with the highest helium isotope ratios (3He/4He) of about 6 Ra. Our results lend support to the hypothesis that 
feeder dikes and their fractured wall rocks should be considered the predominant conduits for the continuous upwelling of 
juvenile fluids. Moreover, 77% of the CO2 gas emission sites are located close to dikes or diatremes, i.e., within a distance of 
4 km. Our studies reveal a spatial dependence of the Ra values at the spring sites with the estimated distances to the basaltic 
bodies. The results confirm the negative trend known from the literature. That is, Ra values decrease with increasing distance 
from the feeder dikes.

Keywords  Neogene volcanism · Feeder dikes · Juvenile fluids · Mineral springs · Helium isotope

Introduction

Emission of mantle-derived volatiles (e.g., CO2) can be 
observed worldwide at mineral springs and mofettes. Inter-
connected fracture systems in the crust are the most probable 
pathways in non-volcanic areas (Caracausi and Sulli 2019; 
Chiodini et al. 2010; Kennedy and van Soest 2007; Kulon-
goski et al. 2013; Tamburello et al. 2018). Ascent paths have 
also been linked to diatremes and dikes which represent a 
direct link between magmatic reservoirs at depth and the 
uppermost crust or surface (Dahm et al. 2020; Fischer 2008; 
Griesshaber et al. 1992; Hunt et al. 2017; Perez et al. 2011; 
Sano et al. 1984; Sorey et al. 1998). Extensional tectonic 

processes due to the regional stress field are important fac-
tors for the activation and reactivation of dike propagation 
as well as the ascent of juvenile fluids in the crust (Gud-
mundsson et al. 2022; Tamburello et al. 2018). Examples of 
juvenile fluid degassing in the vicinity of dormant volcanos 
have been reported worldwide at locations such as Mt. Vul-
ture (Caracausi et al. 2015), in the Carpathian-Pannonian 
Region (Kis et al. 2017), and in Siberia (Tang et al. 2013). 
During the Cenozoic, intraplate alkaline volcanism formed 
the Central European Volcanic Province. This province is 
associated with a WSW-ENE trending Cenozoic rift system 
which extends from the Massif Central in France through 
the Eifel in Germany to the Eger Rift in Czech Republic 
and Lusatia in Poland (Fig. 1a) (Büchner et al. 2015; Ulrych 
et al. 2011). Today, emission of juvenile fluids rich in CO2 
and with elevated 3He contents is common at mineral springs 
or mofettes within this province (Bräuer et al. 2013, 2017; 
Carlé 1958, 1975; Pearce et al. 2004). Carlé (1975) pub-
lished a comprehensive collection of fluid emission sites 
across this province, collating fluid chemistry and the rela-
tion of emission sites to their hydrogeological sources and 
the geological basement. Other locations of CO2 emission 
close to Neogene diatremes are known in the Rhine graben 
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(Clauser et al. 2002; Griesshaber et al. 1992), Bad Urach 
(Carlé 1958), and the Black Forest (SW-Germany). Here, 
mineral springs containing CO2 are active, for example, near 
the village Oppenau as at Bad Antogastand Bad Griesbach 
(Stober 1995). Mineral springs with mantle-derived CO2 are 
also active in the western Eger Rift and around the Cheb 
basin (Czech Republic, NW Bohemia, Fig. 1b) (Bräuer et al. 
2018; Weinlich et al. 1999). Anomalously high 3He/4He 
ratios (Ra) of up to 6 Ra at these springs suggests a link to 
recent volcanism or magmatic unrest (Bräuer et al. 2014). 
However, an open question is the transport pathway for the 
ascending juvenile fluids toward the surface.

For the NW-Bohemia/Vogtland region, Babuška and Plom-
erová (2008) suggested that microplate boundaries act as con-
duits for ascent of juvenile fluids from the lithospheric mantle. 
Here, we explore whether diatremes and dikes associated with 
the Cenozoic volcanic activity in the NW-Bohemia/Vogtland 
region could provide a direct link to the asthenosphere to feed 
the mantle-derived CO2 emissions. To do this, we combine 
stratigraphic analyses with geomagnetic survey data. This 
allows us to locate sub-surface basaltic bodies and assess their 
influence on the present distribution of degassing sites.

Geological setting, the occurrence 
of juvenile fluids

Tectonic

The geological basement of the NW-Bohemian massif is a 
part of the Saxo-Thuringian zone and comprises a complex 
nappe stack of strongly foliated metasedimentary and meta-
mafic rocks of varying metamorphic grade (Kroner et al. 
2007). Intrusion of post-Variscan granitic plutons in the 
NW-Bohemia/Vogtland region, the Fichtelgebirge/Smrčiny 
granite, comprises an older (320 Ma) complex and a younger 
(290–280  Ma) complex (Hecht et  al. 1997). The most 

prominent tectonic structure of the NW-Bohemian/Vogtland 
region is the Regensburg–Leipzig Zone (RLZ) (Fig. 1b), 
which is about 700 km long and 40 km wide (Bankwitz 
et al. 2003; Pohl et al. 2006; Sonnabend 2022). The zone is 
composed of major N-S structures and en-echelon segments 
which are seismically active (Dahm et al. 2018; Fischer et al. 
2014; Korn et al. 2008). A second major tectonic element is 
the ENE-WSW striking Cenozoic Eger Rift (Fig. 1b). This 
rift zone is part of the Central European Volcanic Province 
(Fig. 1a).

The late Variscan, Oligocene/pre-Neogene, and the Pli-
ocene were periods of tectonic activity along the eastern 
marginal fault of the Cheb basin, a continuation of the active 
shear zone of the NNW–SSE trending Mariánské Lázně 
fault zone (MLFZ, Fig. 1c) (Peterek et al. 2011; Pitra et al. 
1999; Špičáková et al. 2000). During the late Ologicene and 
Pliocene, subsidence of the Cheb basin occurred, where its 
deepest part is 300 m deep, which is located at the eastern 
margin of the basin. Sedimentation in the basin began in 
the early Miocene and continued through the Pliocene and 
Quaternary (Pešek et al. 2014; Špičáková et al. 2000).

According to Ulrych et al. (2011), Cenozoic volcanic 
activity began during the pre-rift period (79–49 Ma) along 
the Eger Rift due to the Erzgebirge uplift and rift zone sub-
sidence (Abratis et al. 2009; Ackerman et al. 2013, 2015; 
Brandl et al. 2015; Büchner et al. 2015; Cajz et al. 2009; 
Chadima et al. 2009). The second volcanic period occurred 
between 42 and 16 Ma, with a late-rift phase occurring dur-
ing 16–0.3 Ma. In the late Oligocene–early Miocene epoch, 
numerous eruptions fed by basaltic magmas can be associ-
ated with small dikes or diatremes in the Eger Rift zone, 
where the Doupove stratovolcano is also located (Fig. 1c). 
Volcanism was probably linked to and influenced by the 
magmatic activity in the mantle-crustal transition (Hrub-
cová et al. 2017) and the NW–SE trending regional stress 
field (Heidbach et al. 2018; Korn et al. 2008). A few of 
these volcanic structures are still visible (e.g., Podhorni vrch 
#75, Pechbrunn #82, Wartberg #35, Fig. 1c), but others are 
today covered by sediments or have been eroded. Our study 
focuses on these volcanic structures, their spatial distribu-
tion, and their relation to the juvenile fluid emission sites.

Seismicity

A high rate of seismicity has been recorded in this region and 
is located along the N-S trending lineament, the RLZ (Dahm 
et al. 2018; Fischer et al. 2014; Horálek et al. 1996; Sonna-
bend 2022). These earthquakes and earthquake swarms with 
numerous micro-earthquakes occur frequently with magni-
tudes up to ML = 4.6 being recorded in 1985/86. The epicent-
ers of the most active earthquake swarm clusters are located 
around the village of Nový Kostel (Fig. 1b). Fischer et al. 
(2014) give a comprehensive description of the earthquake 

Fig. 1   a Simplified map of the Central European Volcanic Province. 
b Simplified geological map of the Regensburg-Leipzig zone (RLZ) 
between 12° and 13°E of the NW-Bohemia/Vogtland region with 
the distribution of earthquake epicenters and juvenile fluid emission 
sites corresponding to mofettes and CO2-containing mineral springs 
following Heinicke and Woith (2022). Gray: metasediments, white: 
Cenozoic sediments, grey with white crosses: granitic basement, 
and purple: alkaline volcanic rocks. Map source: BGR Hannover. c 
Geology with location of basaltic structures mapped by Cháb et  al. 
(2007), Ulrych et  al. (2011, 2016), Emmert et  al. (2007), and Hoth 
et al. (1981) as well as those located by this study (purple numbered 
triangles): M: Mýtina maar (covered the Železnáhûrka volcano); 
N: Bad Neualbenreuth maar; K: Komorni  hûrka; B: Liba maar; D: 
Doupovské Hory volcano. Black lines: fault zones; MLFZ: Marián-
ské Lázně fault zone; brown dashed line: Eger Rift zone; BB: Bad 
Brambach; NK: Nový Kostel; FL: Františkovy Lázně; K: Karlovy 
Vary; LK: Lázně Kynžvart; ML: Mariánské Lázně; KL: Konstanti-
novy Lázně

◂
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swarm activity. The reasons for the earthquake swarm activ-
ity of the region are still under investigation (Heinicke et al. 
2022; Vavryčuk et al. 2021; Vavryčuk and Hrubcová 2017). 
The main causes could be the regional stress field (Heidbach 
et al. 2018), the magmatic underplating (Fischer et al. 2014; 
Hrubcová et al. 2017), and a possible influence of magmatic 
unrest below the major hypocenter of Nový Kostel (Dahm 
et al. 2008; Fischer et al. 2014; Špičák et al. 1999).

Juvenile fluids

The hydrogeological situation of the Cheb basin and the 
Vogtland area is described in Burda and Baburek (1998), 
Egerter et al. (1984), Storch (1998), and Springorum (2000). 
The numerous mineral springs are fed by subsurface water 
with recharge in the basin shoulder areas. Mixing with juve-
nile CO2 in shallow aquifers reduces the pH and increases the 
solubility of minerals from the host rocks, which are mostly 
basin sediment layers. This mineralized water feeds spas such 
as Františkovy Lázně, Mariánské Lázně, Bad Brambach, Bad 
Elster, and Karlovy Vary (Fig. 1b). Springs are also located 
on the western edge of the Eger Rift zone (Weinlich et al. 
2003) and across the eastern part of the rift zone. All such 
springs show signs of mantle-derived fluids, as is apparent 
from the δ13C values of the CO2 phase of the water (Dupal-
ová et al. 2012; Geissler et al. 2005; Weinlich et al. 2003).

The widespread distribution of mantle-derived CO2 at 
mineral springs and mofettes is given in Fig. 1b, and about 
300 mineral springs or mofettes are registered in our data-
base (Heinicke and Woith 2022). This database is built on 
our own field work, published data (Bälz 1908; Bräuer et al. 
2018; Dietl 1942; Geissler et al. 2005; Jahnel 1937; Sprin-
gorum 2000; Weinlich et al. 1999, 2003) and web-based 
sources (e.g., www.​estud​anky.​eu) (Fig. 1b). Only a few 
have been sampled and analyzed for their chemical contents 
(Egerter et al. 1984; Storch 1998), but the isotopic signature 
of CO2 emissions analyzed by Weinlich et al. (1999) and 
Geissler et al. (2005) indicates a magmatic origin with δ13C 
values of − 4.3 to − 2 δ13CPDB (CO2) (‰). In addition, the 
3He mantle contribution is in the range of subcontinental 
mantle fluids (Gautheron et al. 2005), with R/Ra (atmos-
pherically corrected 3He/4He ratios) of up to 6 Ra (Bräuer 
et al. 2008, 2018; Geissler et al. 2005; Weinlich et al. 1999, 
2003). Available 3He/4He ratios and δ13C data and additional 
analysis by the INGV (Istituto Nazionale di Geofisica e Vul-
canologia, Palermo, Italy) are compiled as Supplementary 
Information S2. The spatial distribution of the gas emis-
sion sites is concentrated along a NW–SE trending zone that 
crosses the Eger Rift (Fig. 1b) (Heinicke and Woith 2022). 
Figure 1c shows the distribution of the Ra values based on 
the supplementary information list S2.

Methods

Stratigraphic analysis

We separate the areas of metasedimentary basement from 
the granitic basement in the Cheb basin analyzing the local 
basement and its stratigraphy using more than 100 drill sites 
completed by the Czech Geological Survey (ČGS) in Praha 
(Czech Republic) (Fig. 2). Drill site locations were used to 
map the distribution of alkaline magmatic rocks above the 
basement (Fig. 2). The ČGS boreholes vary in depth between 
100 and 300 m, with one deep borehole # 627479 having a 
depth of about 1200 m. Thus, our assessment applies to this 
depth range.

Magnetic surveys

The selection of survey areas was based on the borehole 
stratigraphy plus the Saxonian regional geomagnetic map of 
Börner and Käppler (2019). Other sites were surveyed on the 
assumption that mapped volcanic structures should be associ-
ated with gas emission centers whose Ra values are increased, 
e.g., greater than 2.

The magnetic survey was performed using proton mag-
netometer of the type G856 (Geometrics) and PMG-2 (Satis-
Geo). We used also an Overhausen magnetometer GSM-19W 
(GEM Systems). All sensors give intensity T of Earth’s mag-
netic field with an absolute accuracy of ≤ 0.1 nT. Diurnal vari-
ations were continuously recorded (1-min interval) at a base 
station near the village of Kopanina (Fig. 3). All measure-
ments were referenced to this base station with a magnetic 
anomaly value dT = 0 nT. The accuracy of the survey data dT 
is around ± 1 nT. The profiles were selected as an irregular 
grid depending on topographic reasons. The distance of the 
measurement points at the profiles was about 20 m.

Further, we created a 3D susceptibility model for one 
location (“43”) using the interactive potential field modeling 
software IGMAS + (Anikiev et al. 2020; Götze and Lahmeyer 
1988) to achieve a geometric image of the volcanic structure. 
Three relevant susceptibility bodies in the model are used with 
their assumed susceptibility values: metasediments: 0.2 *10–3 
(SI); basalt: 0.025 (SI) and the Cenozoic and Quaternary sedi-
ment cover with a zero susceptibility. The model also includes 
the borehole data of #102609 with a basalt layer of about 26 m 
thickness.

Results

We find widespread association of volcaniclastics, basalts, 
or tephra layers with mostly hidden diatremes or dikes 
(Fig. 1c). The distribution of the diatremes and dikes, in 

http://www.estudanky.eu


Bulletin of Volcanology (2023) 85:38	

1 3

Page 5 of 15  38

particular of the Neogene volcanism, was underrepresented 
in the literature (e.g., Fischer et al. 2014; Geissler et al. 
2005). However, these structures could act as pathways for 
ascending juvenile fluids.

Stratigraphic analysis

The analysis of borehole documents revealed deposits 
relating to alkaline volcanism ranging from thin sheets 
of volcaniclastics of a few centimeters thick (e.g., S of 
Nový Kostel, Fig. 2) to basaltic layers of up to 30 m in 
thickness (e.g., at boreholes #102607, Fig. 5 and SE 
of FL, Fig. 3). All deposits are located on top of the 

Variscan basement. These volcanic deposits are thus 
late Oligocene to early Miocene. Analysis of the tec-
tonosedimentary evolution of the Cheb basin has been 
carried out by Špičáková et al. (2000), who found that 
the main volcanic phase can be dated to 30–21 Ma. One 
tuff deposit at a borehole S of Nový Kostel/Lesna (bore-
hole #548887) was dated to 21.1 Ma with paleomag-
netic investigations (Bucha et al. 1990), but according to 
Špičáková et al. (2000), this age is only an approxima-
tion. However, this age of around 21 Ma is comparable 
to age determinations for diatremes located about 40 km 
to the west in NE-Bavaria (Rohrmüller et al. 2005) and 
in southern Vogtland (Abratis et al. 2009).

Fig. 2   The Cheb basin and surrounding areas with the geology 
and CO2 gas emission sites (blue circles, from Heinicke and Woith 
(2022)). The stratigraphy based on the borehole sites of the Czech 
Geological Survey (ČGS; www.​geolo​gy.​cz) is described in the leg-

end. Black crosses on gray background show the covered granitic 
basement following Mlčoch and Skácelová (2009). Zones of gas 
emission at springs or mofettes are marked as Soos (S), Hartoušov 
(H), and Bublák (B); villages: L: Lesina; K: Kopanina; Z: Žirovice

http://www.geology.cz
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Magnetic survey

An increased magnetic total intensity T of Earth’s mag-
netic field indicates a large amount of magnetic rocks (e.g., 
basalt) or high contents of magnetic minerals in the subsur-
face. This increased magnetic field could generate a positive 
or negative anomaly according to the global orientation of 
the Earth’s magnetic field during the cooling process of the 
magma, as observed in our measurements. Different dia-
treme structures along the eastern Cenozoic rift system show 
increased magnetic field values of the anomalies between 
80 and 1300 nT (Flechsig et al. 2015; Lindner et al. 2006; 
Mrlina et al. 2009; Skácelová et al. 2012).

The results of the magnetic surveys allow us to dis-
tinguish areas with and without elevated magnetic total 
fields used to interpret the locations of possible magmatic 

structures based on their elevated magnetic signature. The 
magnetic susceptibility of the alkaline magmatic rocks in 
this region has been found to be three to four orders of mag-
nitude greater than that of the local sediment cover, granite, 
or metasediments (Mrlina et al. 2007; Skácelová et al. 2012).

Our magnetic survey shows anomalies with amplitudes 
between − 130 and + 2040 nT compared with an accuracy 
of ± 1 nT. The distribution of the 17 areas of our magnetic 
survey is presented in the supplementary information list S1, 
map SM1, and Fig. 1c.

The locations of the most important areas for our 
studies, because they are new discovered volcanic struc-
tures and they are located close to strong gas emission 
zones, are indicated in Fig. 3. The area south of the city 
of Františkovy Lázně “FL” (Fig. 3) is an additional vol-
canic structure that can be associated with a Quaternary 

Fig. 3   Part of the Cheb basin with the areas of the magnetic survey 
at Žirovice-Soos (ZS) and Lesina-Hartoušov-Bublák (LHB). The dis-
covered diatremes and dikes (pink triangles: 38, 41, and 43) are close 
to the gas escape centers of Soos (S), Hartoušov (H), and Vackovec/
Bublák (B), respectively. Solid lines indicate major faults, and dashed 

lines are local fault zones according to the geological map 1: 50.000, 
Prague: Česká  geologická  služba [cit. 2018–03-21]. The coordinate 
system has been changed to UTM 33N for a better display of the sur-
vey results on a smaller scale. Numbers next to the boreholes indicate 
the top of the respective geological unit in m above sea level (a.s.l.)
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volcano, the Komorni hûrka (Kammerbühl). This volcano 
represents the most recent magmatic activity of the “FL” 
area. A comprehensive magnetic survey of these structures 
was not possible due to the presence of the city. Evidence 
in borehole logs around the city confirms the distribution 
of basaltic and tephra layers to the southeast (boreholes, 
e.g., #565848) and to the north (Pešek et al. 2014). How-
ever, at Komorni hûrka, basaltic deposits and the emission 
of juvenile fluids at numerous springs support a possible 
link between the presence of diatremes and/or dikes and 
juvenile fluid emission.

Area “ZS” (“Žirovice‑ Soos”)

The area “ZS” is located NE of Žirovice, 1500 m west of the 
Soos park area (Fig. 3). It was first investigated by Dobeš 
et al. (1986) and was interpreted as a tectonic depression 
with volcaniclastics or with a coal seam formation. Our mag-
netic survey reveals a ring structure with a negative magnetic 
anomaly (− 130 nT). The ring-like orientation of this anom-
aly (“38,” Fig. 4) hints at a basaltic body that probably was 
associated with a maar diatreme and a surrounding tephra 
ring (Lorenz 2007; White and Ross 2011). The surrounding 
volcaniclastics and tephra deposits have been partly eroded.

Ascending magma probably followed a N-S trending zone 
of fractured basement formed during the subsidence of the 
Cheb basin in the late Oligocene (Fig. 4). Further fracture 
zones could have been created during magma ascent and 
eruption around the feeder dike (Buck et al. 2005; Delaney 
et al. 1986; Gudmundsson and Loetveit 2005). The regional 
stress field (NW–SE) could keep these fractures open and 
allow fluid transport toward the surface. The high mantle 
helium content of 3.3 Ra (Bräuer et al. 2018) in the Soos 
emission area indicates a relatively short migration path in 
the upper crust which would reduce the Ra values due to the 
addition of radiogenic 4He.

Area “LHB” (“Lesina‑Hartoušov‑Bublák”)

Area “LHB” is a magnetic anomaly of about 1.5 km * 3 km 
(Fig. 5). Massive basaltic and tephra layers can be found at 
two boreholes within the anomaly, confirming the presence 
of a volcanic structure at depth. At borehole #102607, a 
basaltic layer of about 30 m in thickness is located above the 
granitic basement at a depth of 134 m. At borehole #102609, 
there is a basaltic layer of 26 m in thickness at a depth of 
111 m lying on the metasediment basement.

Fig. 4   Negative magnetic anomaly of the Žirovice maar diatreme, dT anomaly “38” The coordinates are in UTM 33N. Red dashed line: N-S 
trending fault zone taken from the ČGS geological 1:50.000 map; black points: measurement locations used for the magnetic survey
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The magnetic anomaly of “LHB” is divided in two parts 
(Fig. 5). The first (“43,” Fig. 5) has maximum values of dT 
of 800 nT and has an elongate form with an E-W extension 
of about 1 km. We consider this to be a dike, intruded along 
a tectonic weak zone as indicated in Fig. 6, which could be 
an extensional fault zone caused by rifting with a N-S ori-
ented extension during the early Oligocene (Peterek et al. 
2011; Ulrych et al. 2003).

The second part (“41,” Fig. 5) is a dT anomaly of about 
100 nT and shows a NNW-SSE trend. We also interpret this 
as a dike intruded along a normal fault zone (red dashed line, 
Fig. 6). Vertical displacements of the granite and metasedi-
ment basement (Fig. 6) show a down throw of − 80 m toward 
the ENE, consistent with the fault zone being associated 

with subsidence of the Cheb basin. We suggest that this fault 
zone is probably responsible for the Oligocene/Neogene 
magma ascent, which formed additional fracture zones for 
the recent fluid supply that feed toward the mofettes of Bub-
lák/Vackovec and Hartoušov, the two strongest gas emission 
zones of the Cheb basin.

Our 3D susceptibility model of the main anomaly “43” 
(Fig. 7) shows that the magnetic anomalies of LHB are 
associated with volcanic structures with thicknesses of 
80–100 m, at a mean depth of 100–150 m (line A–A′, Fig. 7). 
The anomaly can thus be modeled as a basaltic body with an 
east–west extension of ~ 1000 m, a north–south extension of 
100 m, a mean depth (below the current surface) of less than 
25 m, and a thickness of at least 250 m.

Fig. 5   Magnetic anomalies of the “LHB” area. Coordinates are in 
UTM 33N. The buried volcanic structures are indicated by the num-
bers “41” and “43.” Blue points: degassing centers of Hartoušov (H) 
and Bublák/Vackovec (B) (Kämpf et  al. 2019); purple squares: drill 

sites where basalt is found; deep yellow points: drill sites where only 
granitic basement is found; grey points: drill sites with metasediment 
basement; small black points: measurement points; black dashed lines 
A-A′: profile of the 3D modeling given in Fig. 7
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To verify the link between the volcanic structures and 
the fluid emission sites in the NW-Bohemia/Vogtland 
region (Fig. 1b and 1c), we have estimated their dis-
tances to each other. Figure 8a shows this relation as a 
histogram out to a maximum distance of 4 km, which 
is the cutoff for our cross-correlation. We select this 
maximum distance to avoid a correlation with known 
volcanoes at a greater distance. This correlation reveals 

that 77% of all CO2 gas emission sites (138 single site 
accounts) are located within less than 4 km from a Ceno-
zoic volcanic structure. Figure 8b also supports this rela-
tion by comparing the spatial distribution of the numer-
ous gas emission sites and the feeder dikes nearby. It is 
fair to note that there are springs without diatremes in 
the vicinity and diatremes without any indications of gas 
emission sites nearby.

Fig. 6   Dikes “41” and “43” of “LHB” (purple triangles) aligned with 
two fault zones indicated by black dashed lines. Uppermost basement 
levels from the borehole stratigraphy are given in m a.s.l. Blue points: 
CO2 emission sites; blue line: Plesna river; black dashed lines: tec-
tonic faults from the ČGS 1:50.000 geological map. The red dashed 

line indicates a possible normal fault related to the subsidence of the 
Cheb basin. This line is estimated following Špičáková et al. (2000) 
and Mlčoch et al. (2009) and the basement level differences found in 
the drill site data
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Comparison between the Ra values of 36 gas emis-
sion sites (supplement list S2) and their spatial dis-
tr ibution around volcanic structures indicates a 
decreasing Ra value with increasing distances from 
the volcanic structures (Fig. 9). We have restricted our 
analysis to an arbitrarily chosen maximum distance 
range of 4 km. Greater migration distances along per-
meable fracture zones are possible, such as along the 
MLFZ. However, we cannot separate if the ascent of 
juvenile f luids occurs along volcanically and/or tec-
tonically controlled fracture zones at larger distances 
from the feeder dike.

Discussion

Our study suggests that Cenozoic magma intrusions and 
volcanic structures are the basis for additional fracture 
zones which allow the ascent of juvenile fluids to the sur-
face. The spatial distribution of numerous Neogene and 
Quaternary volcanic structures (Fig. 1c) and the emission 
of juvenile fluids (Fig. 1b) occur mostly along an NW–SE 
trending zone between Bad Elster in the NW and Kon-
stantinovy Lázně in the SE (about 25 km wide, 110 km 
long) and along the Eger Rift zone. Similar links had been 
shown to exist also at other extinct and dormant volcanic 

Fig. 7   a Profile taken from 
the 3D susceptibility model 
crossing the main anomaly at 
LHB (line A–A′, Fig. 5). Red 
line: borehole #102609. b The 
fit between the model and the 
measured dT for profile A–A′. 
The model has good correlation 
with the measured values with 
a R2 value of around 0.8. The 
model thus explains most of the 
measured data signal

Fig. 8   a Estimated distances 
between known volcanic struc-
tures (Fig. 1c) and CO2emission 
sites (Fig. 1b) up to a distance 
of 4 km and b spatial distribu-
tion of data presented in a). 
Purple triangles: basalts from 
Fig. 1c; green points: emission 
sites; black points: villages, BE: 
Bad Elster; NK: Nový Kostel; 
KV: Karlovy Vary; KL: Kon-
stantinovy Lázně
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systems, as at Mt. Vulture in Italy (Caracausi et al. 2015), 
Rungwe Volcanic Province in Tanzania (Barry et  al. 
2013), Mount Onake in Japan (Sano et al. 1984), Car-
pathian-Pannonian Region in Romania (Kis et al. 2017), 
and Changbaishan volcano in China (Wei et al. 2021).

Our results suggest that the ascent of magma and fluids 
is controlled by the tectonic and structural properties of 
the basement with fracture zones, which provide transport 
pathways. Dikes can occupy tensile fracture zones created 
by extension (Gudmundsson et al. 2022; Gudmundsson 
and Loetveit 2005; Tamburello et al. 2018), as is the case 
at the Cheb basin. Dike propagation models have also sug-
gested emplacement of dikes around the central diatreme, 
maar or scoria cone (cf. Rivalta et al. 2015). Buoyancy-
driven fracture propagation associated with magma ascent 
also induces fractures at the wall rock (cf. Townsend 
et al. 2015). Delaney et al. (1986), for example, observed 
numerous joints parallel to the dike orientation, which 
can be used as fluid transport paths. Additionally, the dis-
solution processes along the wall rock due to interaction 
with the juvenile fluids increases the fracture permeabil-
ity further (Heinicke et al. 2019). If these intrusions and 
fractures are associated with fault zones, as here related 
to subsidence within the Cheb basin, gas emission in the 
vicinity of diatremes or dikes is further enhanced. We 
consider the regional seismicity (Fig. 1b) as an important 
driving force to enable the continuous ongoing migration 
of juvenile fluids through the crust. This all means that 
dikes and diatremes, especially when also associated with 
fault zones, present permeable conduits for fluid ascent 
from degassing sources in the mantle.

Spatial correlation between feeder dikes and mantle 
helium

Highest contents of mantle-originated fluids are associated 
with the highest Ra values up to the upper limit of about 9 
Ra for MORB and 6.3 Ra for the European subcontinental 
mantle helium isotope signature (Gautheron et al. 2005). 
This compares with a crust-derived range of about 0.02 
(Ozima and Podosek 2002). The relatively fast transport up 
an open volcanic conduit acts as a shortcut from the upper 
mantle, avoiding long-term contact with the upper crust and 
therefore less reducing the admixture of radiogenic 4He and 
loss of 3He, which would reduce the Ra values. The oppo-
site applies to ascent of juvenile fluids along deep-reaching 
fracture zones with velocities of cm to mm per year for 
which there is a high degree of isotope exchange (Stober 
1995). The decrease in Ra with increasing distance to the 
source for fractures extending through upper crust has been 
widely observed (e.g., Barry et al. 2013; Hilton et al. 1993; 
Karolytė et al. 2019; Marty et al. 1989; Sano et al. 1984; 
Zhang et al. 2021). These examples consider stratovolcanoes 
and MORB basalts and their emission of juvenile fluids at 
springs, mofettes, and fumaroles at distances of up to 15 
km and, in one case, up to 50 km (Barry et al. 2013). Ra 
values decrease, for example, from about 9 Ra in the main 
crater area to about 4 Ra at the fluid emission sites at 15 km 
distance for several volcanoes in Japan (Marty et al. 1989).

In comparison to these investigations, our considera-
tion is related to relatively small volcanic structures (dikes, 
diatremes) and therefore also shorter distances to the gas 
emission sites. We used the published Ra data of the region, 

Fig. 9   Comparison of the estimated distances between the nearest 
known volcanic structures and the springs/mofettes with their Ra val-
ues (green points) according to the supplementary information list S2 
with their references. These gas emission sites are coded by their ID 

number (Heinicke and Woith 2022). The Ra values trend to decrease 
with increasing distances to the feeder dikes: starting from a few hun-
dred meters (e.g., Bublák, #153b) up to 2.2 km (e.g., Bad Elster, #5f). 
The green dashed lines indicate a range of this trend (no correlation)
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compiled in the supplementary information list S2. Figure 9 
thus shows the relation between the estimated distances of 
the respective springs/mofettes to the closest known Ceno-
zoic feeder dikes according to Fig. 8 and their analyzed Ra 
values. The relation suggests a negative trend. That is, with 
increasing distance to the closest feeder dike, the Ra value 
at the gas emission site decreases. This means that springs 
with Ra values greater than 1 could be supplied with juvenile 
fluids via a fracture system associated with these dikes. Our 
analysis shows only a range of estimated distances with a 
maximum of 4 km between dike and fluid emission site. 
However, longer migration distances are possible on fault 
zones of tectonic and structural control, but we have to con-
sider also additional hidden volcanic structures, which could 
exist in the vicinity of these emission sites with increased 
Ra values.

The trend found in Fig. 9 thus implies that the closer the 
feeder dike is to the gas emission point, the higher the Ra 
values will be. The results suggest that tectonically weak 
zones, which are associated with magma ascent and dike 
propagation, are an important basis for the post-volcanic 
fluid transport along permeable fractures.

Conclusions

A link between magmatic reservoirs and juvenile fluid dis-
charge at mineral springs and mofettes is well known, but 
the means of transport to the surface and why particular 
paths exits are much less clear. We consider feeder systems 
for volcanic activity in the Cenozoic as one important way 
that today link magmatic reservoirs at depth to surface emis-
sions. In the NW-Bohemia/Vogtland region, Cenozoic intru-
sions controlled by the tectonic regime represent permeable 
fracture zones which allow the ascent of juvenile fluids to 
the surface.

Our magnetic survey of the NW Bohemia/Vogtland 
region resulted in the discovery of new Neogene volcanic 
structures which are located close to the most important 
juvenile fluid degassing centers of Hartoušov, Bublák/Vack-
ovec, and Soos. Tectonic structures and associated conduits 
used by the Cenozoic volcanism provide conduits for the 
ascent and emission of juvenile fluids. Our compilation of 
all volcanic structures and juvenile fluid emissions for NW-
Bohemia/Vogtland reveals that 77% of fluid emission sites 
are located less than 4 km from a volcanic structure.

Our study reveals a significant decrease in Ra values in 
gas emission sites with increasing distance to the volcanic 
structures, revealing that the location of dikes controls the 
location of fluid ascent.
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