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Abstract
Since the 1919 foundation of the International Association of Volcanology and Chemistry of the Earth’s Interior (IAVCEI), 
the fields of volcano seismology and acoustics have seen dramatic advances in instrumentation and techniques, and have 
undergone paradigm shifts in the understanding of volcanic seismo-acoustic source processes and internal volcanic structure. 
Some early twentieth-century volcanological studies gave equal emphasis to barograph (infrasound and acoustic-gravity 
wave) and seismograph observations, but volcano seismology rapidly outpaced volcano acoustics and became the standard 
geophysical volcano-monitoring tool. Permanent seismic networks were established on volcanoes (for example) in Japan, the 
Philippines, Russia, and Hawai‘i by the 1950s, and in Alaska by the 1970s. Large eruptions with societal consequences gener-
ally catalyzed the implementation of new seismic instrumentation and led to operationalization of research methodologies. 
Seismic data now form the backbone of most local ground-based volcano monitoring networks worldwide and play a critical 
role in understanding how volcanoes work. The computer revolution enabled increasingly sophisticated data processing and 
source modeling, and facilitated the transition to continuous digital waveform recording by about the 1990s. In the 1970s 
and 1980s, quantitative models emerged for long-period (LP) event and tremor sources in fluid-driven cracks and conduits. 
Beginning in the 1970s, early models for volcano-tectonic (VT) earthquake swarms invoking crack tip stresses expanded to 
involve stress transfer into the wall rocks of pressurized dikes. The first deployments of broadband seismic instrumentation 
and infrasound sensors on volcanoes in the 1990s led to discoveries of new signals and phenomena. Rapid advances in infra-
sound technology; signal processing, analysis, and inversion; and atmospheric propagation modeling have now established 
the role of regional (15–250 km) and remote (> 250 km) ground-based acoustic systems in volcano monitoring. Long-term 
records of volcano-seismic unrest through full eruptive cycles are providing insight into magma transport and eruption pro-
cesses and increasingly sophisticated forecasts. Laboratory and numerical experiments are elucidating seismo-acoustic source 
processes in volcanic fluid systems, and are observationally constrained by increasingly dense geophysical field deployments 
taking advantage of low-power, compact broadband, and nodal technologies. In recent years, the fields of volcano geodesy, 
seismology, and acoustics (both atmospheric infrasound and ocean hydroacoustics) are increasingly merging. Despite vast 
progress over the past century, major questions remain regarding source processes, patterns of volcano-seismic unrest, internal 
volcanic structure, and the relationship between seismic unrest and volcanic processes.
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State of the art and introduction

Seismic and acoustic (collectively seismo-acoustic) geo-
physical technologies are complementary in volcano science 
and monitoring. Volcano seismology involves the analysis, 
interpretation, and modeling of seismic signals generated 
inside and around active volcanoes, as well as the application 
of seismic techniques to image internal volcanic structure 
(e.g., Aki 1992; Chouet 1996a, 1996b, 2003; McNutt 1992, 
1996, 2005; Kumagai 2009; Lees 2007; Neuberg 2011; 
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Wassermann 2012; Chouet and Matoza 2013; Thompson 
2015; Kawakatsu and Yamamoto 2015; McNutt and Roman 
2015; Nishimura and Iguchi 2011; Zobin 2016; Saccorotti 
and Lokmer 2021). Volcanic seismicity occurs from mantle 
depths to the surface, and elucidates magmatic, hydrother-
mal, and faulting processes occurring within and around 
volcanoes (e.g., McNutt 1996; Nishimura and Iguchi 2011; 
Chouet and Matoza 2013; Kawakatsu and Yamamoto 2015; 
Matoza 2020). Infrasound (atmospheric acoustic waves with 
frequencies ~ 0.01–20 Hz) is produced by shallow subsurface 
and subaerial processes, including explosive eruptions, shal-
low degassing, surface flow, and mass wasting (Johnson and 
Ripepe 2011; Fee and Matoza 2013; Allstadt et al. 2018; 
Matoza et al. 2019a). Infrasound from major explosive erup-
tions can propagate thousands of kilometers in atmospheric 
waveguides, enabling regional (15–250 km) and remote 
(> 250 km) ground-based detection and characterization of 
explosive eruptions (e.g., Wilson and Forbes 1969; Kamo 
et al. 1994; Liszka and Garces 2002; Evers and Haak 2005; 
Le Pichon et al. 2005; Campus and Christie 2010; Fee et al. 
2010a; Matoza et al. 2011a, 2018; McKee et al. 2021; Perttu 
et al. 2020a). Seismo-acoustic wave conversion and cou-
pling commonly occur (e.g., Ichihara et al. 2012; Matoza 
and Fee 2014; Fee et al. 2016); thus, collocated seismic and 
infrasonic sensor deployments reduce ambiguity in seismic-
acoustic signal type identification and process discrimina-
tion (e.g., Iguchi and Ishihara 1990; Garcés et al. 1998; Rip-
epe et al. 2001; Lees et al. 2004; Johnson et al. 2005; Matoza 
et al. 2009a, b, 2019b; Ichihara et al. 2021) and in explo-
sive eruption detection and localization (e.g., Matoza et al. 
2007, 2017; Sanderson et al. 2020; Le Pichon et al. 2021). 
At present, seismic and infrasound networks have become 
indispensable components in tracking the geophysical sig-
natures of unrest and eruption, enabling better monitoring 
and mitigation of volcanic hazards (e.g., Moran et al. 2008a; 
National Academies of Sciences, Engineering, and Medi-
cine 2017; Alvarado et al. 2018; Power et al. 2020). In the 
marine environment, technological advances and increasing 
availability of hydroacoustic systems and ocean-bottom seis-
mology are expanding volcano seismology and acoustics to 
partially submerged and submarine oceanic volcanoes (e.g., 
Talandier and Okal 1987; Yamasato et al. 1993; Caplan-
Auerbach and Duennebier 2001; Dziak et al. 2005, 2011; 
Chadwick et al. 2008, 2012; Green et al. 2013; Metz et al. 
2016; Caplan‐Auerbach et al. 2017; Metz and Grevemeyer 
2018; Tepp et al. 2019, 2020; Fee et al. 2020; Talandier et al. 
2020; Tepp and Dziak 2021; Rose and Matoza 2021).

In modern volcano seismology, quantitative source 
mechanism models based on full-waveform moment-tensor 
and single-force representations provide detailed source-
time histories (e.g., Ohminato et al. 1998a, b; Nakano et al. 
2003; Chouet and Matoza 2013; Kawakatsu and Yamamoto 
2015). Interpretations of these observations are facilitated 

by laboratory and numerical experiments investigating 
a range of seismic source processes in volcanic fluid and 
solid frictional systems (e.g., Lane and James 2009; James 
et al. 2004; Lavallée et al. 2008; Arciniega-Ceballos et al. 
2015; Spina et al. 2018). Further hypothesis testing is ena-
bled through multi-parametric geophysical and geological 
field observations (e.g., Tuffen and Dingwell 2005; Pallis-
ter et al. 2012; Rasmussen et al. 2018; Unwin et al. 2021). 
The ability to accurately recover seismic source mechanisms 
depends on seismic station density and distribution along 
with known resolution of the internal seismic velocity struc-
ture of the volcanic edifice and upper crust (e.g., Bean et al. 
2008; De Barros et al. 2011; Dawson et al. 2011; Chouet 
and Dawson 2016), which are all steadily improving with 
advances in (for example) portable compact broadband 
(e.g., Aster et al. 2005; Ibáñez et al. 2016; Lyons et al. 2016; 
Matoza et al. 2022a) and nodal (e.g., Kiser et al. 2016; Wu 
et al. 2017; Glasgow et al. 2018) seismic instrumentation, 
exploited by various tomographic implementations includ-
ing ambient noise seismology (e.g., Obermann et al. 2016; 
Wang et al. 2017; Ulberg et al. 2020). Advances in broad-
band seismic and complementary geodetic instrumenta-
tion (e.g., tiltmeters, high-rate Global Navigation Satellite 
System (GNSS) receivers, and continuous gravity meters) 
and techniques are expanding the scope of volcano seis-
mology to an increasingly wider bandwidth, including, at 
longer time-scales, ultra-long-period (ULP, > 100 s period) 
signals approaching static ground deformation (e.g., Green 
et al. 2006; Green and Neuberg 2006; Sturkell et al. 2008; 
Mattia et al. 2008; Maeda et al. 2011, 2017; Chouet and 
Dawson 2015; van Driel et al. 2015; Wauthier et al. 2013, 
2016; Poland and Carbone 2018; Poland et al. 2019; Alvi-
zuri et al. 2021; Soubestre et al. 2021; Bell et al. 2021). The 
boundary between volcano geodesy and volcano seismology 
is thus becoming seamless (e.g., Anderson et al. 2010; Segall 
2013; Wauthier et al. 2016; Fernández et al. 2017; Segall 
and Anderson 2021; Neuberg et al. 2022). Rapid advances 
in computation are enabling more thorough processing and 
analyses of greater volumes of seismic waveform data and 
characterization of hundreds of thousands to millions of 
seismic events recorded during sustained episodes of vol-
canic unrest and eruption (e.g., Moran et al. 2008b; Rodgers 
et al. 2015a; Matoza et al. 2015, 2021). Machine learning 
methods were adopted relatively early in volcano seismology 
(e.g., Falsaperla et al. 1996; Langer et al. 2003; Scarpetta 
et al. 2005; Benítez et al. 2007; Ibáñez et al. 2009; Daw-
son et al. 2010, 2012) but are now in increasing use (e.g., 
Malfante et al. 2018; Carniel and Guzmán 2021; Dempsey 
et al. 2020; Shen and Shen 2021) and are poised for massive 
impact most immediately in event detection and association, 
classification, and forecasting.

In modern volcano acoustics, quantitative source mecha-
nism models and source inversions have been developed for 
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relatively simple volcano-acoustic sources such as impulsive 
explosions (Johnson et al. 2008a; Kim et al. 2012, 2015; 
Iezzi et al. 2019a) and rockfalls (Moran et al. 2008c). The 
acoustics of more complex sources such as sustained vol-
canic jet noise signals from sub-Plinian and Plinian erup-
tions (Matoza et al. 2009a; 2013a; Mckee et al. 2017) are 
being investigated by laboratory (Swanson et  al. 2018; 
Fernández et al. 2020) and numerical (Cerminara et al. 
2016; Brogi et  al. 2018) experiments. Non-linearity in 
source and propagation is being examined in observations 
and by numerical simulation (Marchetti et al. 2013; Fee et al. 
2013a; Maher et al. 2020, 2022; Watson et al. 2021). Acous-
tic full-waveform inversion methods take into account topo-
graphic effects, which are particularly significant at local 
ranges (< 15 km). Major advances in infrasound propagation 
theory and numerical implementations incorporating opera-
tional atmospheric specifications are enabling increasingly 
accurate models of regional range (15–250 km) and remote 
(> 250 km) infrasound propagation through atmospheric 
waveguides particularly in the troposphere, stratosphere, and 
thermosphere (e.g., Drob 2019; Waxler and Assink 2019; 
Schwaiger et al. 2019). In tandem, advances in infrasound 
technology and signal processing, discrimination, associa-
tion, and location are improving abilities to detect signals 
from remote explosive eruptions within the plethora of 
interfering background ambient infrasound signals, which 
are sometimes termed clutter (e.g., Garces and Hetzer 2006; 
Matoza et al. 2013b; Ceranna et al. 2019), and wind noise 
(e.g., Hedlin and Raspet 2003; Walker and Hedlin 2010; 
Raspet et al. 2019) and localize these detections to remote 
volcanoes using sparse ground-based infrasound networks 
(e.g., Evers and Haak 2005; Arrowsmith et al. 2015; Matoza 
et al. 2017) or combined seismic and infrasonic networks 
(e.g., Fee et al. 2016; Matoza et al. 2018; Sanderson et al. 
2020; Le Pichon et al. 2021). Infrasound early warning and 
eruption notification systems are in operation and undergo-
ing testing and refinement (e.g., Garces et al. 2008; Fee et al. 
2010b; De Angelis et al. 2012; Ripepe et al. 2018; Matoza 
et al. 2019a), augmenting spaceborne remote sensing meth-
ods for monitoring and quantifying global volcanism (e.g., 
Wright et al. 2004; Webley and Mastin 2009; Prata 2009; 
Ramsey and Harris 2013; Patrick and Smellie 2013; Poland 
2015; Carn et al. 2017; Poland et al. 2020; Mckee et al. 
2021). More broadly, volcano seismology and acoustics 
have seen progressive integration with a wide array of vol-
cano-monitoring techniques (including, but not limited to) 
thermal, gas, electromagnetic, volcanic lightning, fumarole 
and hydrothermal, physical volcanological, and petrological 
methods utilizing ground-based and spaceborne instrumen-
tation systems (e.g., Martini et al. 1991; Fischer et al. 1994; 
Harris and Ripepe 2007a; Marchetti et al. 2009; McNutt 
and Williams 2010; Saunders et al. 2012; Harris et al. 2012; 
Van Eaton et al. 2016; Neal et al. 2019; Poland et al. 2020).

The occasion of the IAVCEI Centennial (1919–2019) 
(Cas 2022) is a time to reflect on 100 years of scientific and 
technological advances in volcano seismology and volcano 
acoustics; advances which have led to the point at which 
we are today in 2022. One hundred years is a long time 
for modern science, and advances in volcano seismology 
and acoustics have been coupled more broadly to develop-
ments, in (including, but not limited to) geophysics, tecton-
ics, volcanology, seismology (broadly), acoustics (broadly), 
physics, applied mathematics, electrical and mechanical 
engineering, material science, instrumentation, remote 
sensing, and computer science. For this necessarily finite 
review, we limit our scope to a highlight of major trends and 
changes in instrumentation and technology, new discover-
ies, and paradigm shifts from 1919 to the time of writing 
(2021 to 2022). Volcanology is an observational science; 
over the past 100 years, major technological advances have 
provided progressively sharper tools to make new observa-
tions (e.g., the transition from analog to digital recording, 
event-triggered to continuous waveform data, short-period 
to broadband), all of which have led to discoveries of new 
phenomena as well as major shifts in understanding. Simi-
larly, larger eruptions (VEI > 4; Volcanic Explosivity Index; 
Newhall and Self 1982) and the associated seismo-acoustic 
unrest and eruption signatures are only available to observe 
relatively rarely, and instrumentation must be in place at 
suitable locations (Moran et al. 2008a). Large eruptions and 
those with societal consequences have generally provided 
impetus and catalyzed the implementation of new seismic 
(and more recently acoustic) instrumentation and led to 
operationalization of research methodologies (e.g., Alcaraz 
et al. 1952; Philippine Geodetic & Geophysical Institute 
1952; Malone 1990; Tayag and Punongbayan 1994; De 
la Cruz-Reyna and Siebe 1997; Sparks and Young 2002; 
Yamasato 2005; Gudmundsson et al. 2010; Neal et al. 2019).

Herein, we use the following definitions to refer to obser-
vation period (s) or frequency (Hz) bands of volcano seismic 
and acoustic signals (Ohminato et al. 1998a, b; Chouet and 
Matoza 2013):

• Ultra-long-period (ULP) > 100 s or < 0.01 Hz;
• Very-long-period (VLP) 2–100 s or 0.01–0.5 Hz;
• Long-period (LP) 0.2–2 s or 0.5–5 Hz; and
• Short-period (SP) 0.05–0.2 s or 5–20 Hz.

Strictly speaking, this terminology refers just to the band 
of the signal. In addition to the classification based on fre-
quency content, volcano-seismic signals have also been 
named according to the inferred physical source process 
(Lahr et al. 1994; Chouet 1996a). In this latter process-
based classification system, the most important distinction is 
between brittle-failure shear or tensile sources that occur in 
the elastic solid Earth (including so-called volcano-tectonic 
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or VT seismicity), and volumetric sources that actively 
involve a fluid (including long-period seismicity, which 
includes individual LP events and tremor). In general, dif-
ferent physical processes occur on different time and spa-
tial scales, but observed volcanic signals often do not fall 
neatly into these frequency bands (such as ULP, VLP, LP, 
and SP). Thus, moment-tensor and single-force source-rep-
resentations provide a more fundamental basis for signal 
and process discrimination (e.g., Kumagai 2009; Chouet and 
Matoza 2013; Kawakatsu and Yamamoto 2015).

Volcano seismology in 1919

Instrumental volcano seismology in 1919

By 1919, quantitative instrumental recording of seismic 
ground motions was well underway using the seismo-
graph, that is, an instrument for measuring seismic ground 
motion as a continuous function of time as a waveform 
(Dewey and Byerly 1969). There was, for example, regu-
lar reporting of earthquakes since 1883 in Japan allow-
ing early pioneering observational seismology works by 
Profs. Sekiya Seikei and Fusakichi Omori (e.g., Omori 
1894; Dewey and Byerly 1969; Agnew 2002). A seismo-
scope is an instrument for recording only the occurrence, 
time, and in some cases duration of an earthquake, but not 
a waveform record of ground motion. Seismic monitoring 
using pendulum seismoscopes began at the Manila Obser-
vatory, Philippines in 1868 followed with seismographs 
during the 1880s (Saderra Masó, 1904; Repetti 1946; 
Udías and Stauder 1996; Bautista and Bautista 2004; 
Manila Observatory 2016). Mexico installed its first seis-
mograph in 1904 (Pérez-Campos et al. 2018; Suárez and 
Pérez‐Campos 2020). A first national seismic network 

was deployed in Chile by 1909 (Brenner 1911; Barrientos 
and National Seismological Center (CSN) Team 2018).

The first dedicated instrumental volcano-seismological 
observations (Fig. 1) are typically attributed to Luigi Palm-
ieri, with observations of “continuous tremor” at Vesuvius 
using his “sismografo elettro-magnetico” (developed by 
Palmieri around 1856), which is formally considered a 
collection of electromagnetic seismoscopes (Dewey and 
Byerly 1969). Osservatorio Vesuviano, the world’s first 
volcano observatory, was founded 1841 (Palmieri 1859; 
Imbò, 1949; Borgstrom et al. 1999; Giudicepietro et al. 
2010). The Palmieri seismoscope ran continuously until 
1906, and was replaced in 1914 (Giudicepietro et al. 2010). 
In Japan, Sakurajima was the first volcano to have a seis-
mometer installed nearby (Fig. 1). A Milne-type seismome-
ter was installed at Kagoshima Weather Station in 1888 and 
later recorded precursory earthquakes to the 1914 eruption 
(Omori 1916; Yamasato 2005; Iguchi 2013).

A landmark study by Omori (1912) on eruptions and 
earthquakes of Mount Asama used Omori’s two-component 
horizontal pendulum seismograph “tromometer” (Fig. 2), 
which was a modification of the earlier horizontal pendu-
lum seismograph of John Milne (Omori 1899). This formed 
the basis of the Bosch-Omori seismograph, which was later 
deployed worldwide (e.g., Dewey and Byerly 1969; Klein 
and Koyanagi 1980; Moore et al. 2018; Suárez and Pérez‐
Campos 2020; Ammon et al. 2020). The original Omori 
seismographs did not include viscous damping, which was 
added in the Bosch-Omori design (Klein and Koyanagi 
1980; Okubo et al. 2014). Omori also conducted pioneering 
observational seismology studies recognizing the forecast-
ing potential for eruptions of Mount Usu in 1910 (Omori 
1911) and Sakurajima in 1914 (Omori 1916; Davison 1924). 
Omori established the first volcano observatory in Japan at 
Mount Asama in 1911 (Suwa 1980) (Fig. 1). Even in these 

Fig. 1  Expansion of volcano-
seismic networks worldwide: 
1919 to ~ 1980. Black dots and 
corresponding labels indicate 
dates of stations installed on 
volcanoes by 1919 (bold labels 
indicate permanent stations). 
Colored regions indicate timing 
of initial installation of per-
manent seismic networks; see 
Table 1 for details

Kīlauea 1912-

Pelee 1903-

Vesuvius 1856-1906, 1913-

Usu 1910
Asama 1912-14

Sakurajima 1914

Taal 1911
Bulusan 1918
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earliest instrumental observations it was clear that volcano-
seismic signals could be different in character to ordinary 
crustal earthquakes (Gasparini et al. 1992).

Continuous seismic monitoring at Mount Pelée, Marti-
nique began in 1903 with the installation of a two-compo-
nent (horizontal) Omori seismograph that operated until 
1927 (Fig. 1). However, the station was too far from the 
volcano (located at a distance of 8.5 km) to detect any weak 
volcanic seismicity (Lacroix 1904; Hirn et al. 1987). Two 
of Omori’s original seismograph instruments, which were 
an “ordinary” seismograph and a “heavy” seismograph, 
were also purchased by Thomas Jaggar and installed at 
the newly established (founded 1912) Hawaiian Volcano 
Observatory (HVO) (Klein and Koyanagi 1980; Wright 
and Takahashi 1989, 1998; Okubo et al. 2014). Jaggar had 
traveled to Japan in 1909 and met with Omori to learn 
about the new seismological methods as part of laying the 
foundation for establishing the HVO (Hawaiian Volcano 
Observatory 2001; Jaggar 1956). Jaggar later (by July 
1913) added two horizontal Bosch-Omori instruments that 

were operated by HVO until 1963 (Klein and Koyanagi 
1980; Apple 1987; Okubo et al. 2014). For further infor-
mation on the early development of the HVO, the reader is 
referred to the collections by Wright and Takahashi (1989, 
1998) and “The Volcano Letter” collections (see Takahashi 
1988).

Simultaneous with Omori’s work in Japan, similar pio-
neering research was conducted by Miguel Saderra Masó in 
the Philippines at the Weather Bureau (Manila Observatory) 
(Saderra Masó, 1911a; 1919). The 1911 eruption of Taal was 
documented in detail by Saderra Masó (1911a) including 
with observations from Vicentini and Omori seismographs, 
as well as ten Richard barograph stations installed out to a 
distance of 242 km (Fig. 3). In a 1911 publication summa-
rizing observations at Taal, Mayon, and Camiguin (Saderra 
Masó, 1911b), Saderra Masó wrote:

“The exorbitant toll of human lives levied by the recent 
eruption of Taal Volcano is a lesson which must not be 
forgotten, so much the less in view of the fact that, under 

Fig. 2  Seismograph and barograph observations of Mount Asama 
(a–d) and Sakurajima (e–h) by Omori (1912, 1916) [a–d and e–h 
reproduced from Omori (1912) and Omori (1916), respectively; 
digitally enhanced for image clarity]. (a) Mount Asama, 1911 “The 
strong eruption of the Asama-yama, on May  8th, 1911, at 3:28  pm, 
seen from Komoro 5  min after the commencement.” (b) “Tromom-
eter observation at Ashino-taira of the Asama-yama: Diagrams of a 
volcanic earthquake not accompanying an eruption. Asama-yama 
earthquake of Feb.  22nd, 1911; 11:47:04 pm.” (c) “Barograph record 
obtained at the meteorological observatory of Yokosuka, showing the 

effect due to the explosion of the Asama-yama on Dec.  7th, 1909.” 
(d) “A portable two-component horizontal tremor recorder.” (e) 
Sakurajima, 1914 “View taken about 1 h after the commencement of 
the eruption, or approximately at 11 am, on Jan  12th, 1914.” (f) “Tro-
mometer observation in Kagoshima of the Sakura-jima after-eruption 
on Jan  21st, 1914; 2:19:57 pm.” (g, h) “Barograph observation at Fru-
sato of the Sakura-jima after-eruptions” (black-white colors inverted 
for clarity). In (g, h), note the asymmetric explosion waveforms 
which are now commonly captured at volcanoes (including Sakura-
jima) with modern broadband infrasound instrumentation
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similar circumstances, on a likewise recent occasion 
(July, 1910) not a single life was lost in Japan [Usu]. 
These occurrences in Japan and those which we have 
recently witnessed in connection with the eruption of 
Taal Volcano, January 30, 1911, prove conclusively that 
some eruptions can be foreseen; a conclusion likewise 
stated by the eminent seismologist Prof. F. Omori.”
(Saderra Masó 1911b)

In a review of Saderra Masó’s paper (Saderra Masó 
1911b), Harry O. Wood concluded:

“The moral drawn in the paper is that sundry volcanic 
eruptions, through the occurrence of earthquakes, or in 
other ways, can be anticipated in sufficient time to per-
mit the escape of persons whose lives are threatened.”
(Wood 1912)

Wood was subsequently recruited by Jaggar to establish 
seismic monitoring at the HVO (Wood 1913), arriving there 
in summer 1912 (Okubo et al. 2014).

Saderra Masó established a small seismic observatory 
at Ambulong on the north shore of Lake Taal following the 

1911 eruption (Saderra Masó 1911a, 1913; Repetti 1946, 
1948). Bulusan volcano had a significant eruption in 1918 
which was also documented, including with observations 
from a seismograph placed at about 8 km distance (Saderra 
Masó, 1919). In 1920, Saderra Masó represented the, then, 
world-famous Manila Observatory (Repetti 1948) at the First 
Pan-Pacific Scientific Conference held in Honolulu, Hawai‘i 
together with Omori and Jaggar who co-organized the seis-
mology and volcanology section (Proceedings of the first 
Pan-Pacific Scientific Conference 1921).

Volcano seismology scientific framework in 1919

By 1919, it had been well established qualitatively that 
volcanic eruptions were generally preceded by observ-
able, i.e., felt, seismicity (see, for example, the writings of 
Pliny the Younger; Sigurdsson et al. 1982), and also that 
earthquakes at volcanoes do not necessarily lead to erup-
tion (Scrope 1825). Early ideas about the mechanisms by 
which magmatic processes drove earthquakes were heavily 
influenced by principles of structural geology. Scrope (1825) 
posited that earthquakes would occur most strongly at depths 

Fig. 3  Seismograph and barograph observations of the 1911 eruption 
of Taal, Philippines by Saderra Masó (1911a) [Figures reproduced 
from Saderra Masó (1911a); digitally enhanced for image clarity]. (a) 
“Eruption during the afternoon of January 30, 1911, showing cloud 
sweeping down the volcano slopes.” (b) “A tree 15  cm in diameter 
broken by the force of the eruption and shredded like a whisk broom 
by the mud driven by the force of the eruption.” (c) “Portion of the 

record made by the horizontal pendulums January 29 and 30, 1911.” 
[Omori seismograph] (d) “Portion of the record made by the Vicen-
tini seismograph January 29 and 30, 1911.” (e) “Barograms, January 
30, 1911 from 1 to 5 am.”; the text on the left gives the location of 
each barograph station, its range (distance from the source) in kilom-
eters, and the direction from the source (Taal)



Bulletin of Volcanology (2022) 84: 86 

1 3

Page 7 of 49 86

where expansive force of magma was strongest. According 
to Scrope (1825), this led to the, albeit possibly subtle, uplift 
of shallower strata and consequential, and possibly seismic, 
dilation/fissuring. This was a prescient connection with the 
modern continuum between volcano seismology and vol-
cano geodesy. Scrope (1825) further posited that the position 
of a fissure with respect to its expansive force would control 
whether magma erupted or remained trapped in the crust, 
leading to a testable hypothesis about the location and tim-
ing of earthquakes with respect to the vent.

In the decades between Scrope’s pioneering treatise of 
1825 and 1919, the beginnings of instrumental seismology 
led to debate and refinement of these ideas. Omori (1912) 
hypothesized that strong volcanic earthquakes resulted 
from energy released by subterranean explosions that were 
not simultaneously accompanied by eruption, and that an 
explosive eruption produced a lower quantity of seismic 
energy. That is, eruptions were “safety valves” that served 
to reduce pressure causing large earthquakes (Omori 1912). 
Omori further hypothesized that the former type of non-
eruptive volcanic earthquake would be characterized by a 
deeper implosive source (“B-type”), and the latter explosion 
earthquake type by a shallow explosive source (“A-type”). 
Omori (1912) presented limited evidence for this pattern 
from a seismograph installed at Mount Asama, which was 
later refined by Minakami (1960) using data from volcanic 
and tectonic earthquakes, as shown in Fig. 4. Jaggar (1920), 
summarizing work by the nascent HVO (Wright and Taka-
hashi 1998), posited that volcanic earthquakes could reflect 
a wide variety of processes alone or in combination. He 
hypothesized that volcanic earthquakes occur on existing 
rift faults stressed past their frictional limit. Jaggar’s point 
that multiple source processes could result in volcanic earth-
quakes was accompanied by early recognition of a variety 
of seismic signals such as harmonic and spasmodic tremor 
(Omori 1914; Jaggar 1920). The early classification scheme 
based on event depth made by Omori (1912) ultimately 
evolved into a spectral-based classification scheme, in which 
spectral differences were hypothesized to correspond to fun-
damentally different source mechanisms (Minakami 1974; 
Lahr et al. 1994).

Volcanic waves in the atmosphere in 1919

Atmospheric infrasound (frequency band ~ 0.01 to 20 Hz) is 
part of a broad spectrum of atmospheric waves produced by 
volcanic activity that includes gravity waves, acoustic-grav-
ity waves, infrasound, and audible acoustic waves (Gossard 
and Hooke 1975). By 1919, low-frequency (< 1 Hz) pressure 
waves from eruptions had been captured instrumentally by 
meteorological barographs, and research was underway to 
understand the physics of these atmospheric pressure dis-
turbances and their relation to atmospheric structure. This 

work based on instrumental observations had begun 36 years 
earlier with the eruption of Krakatau.

In 1883, over 50 weather barometers around the world 
recorded (ultra) long-period pressure disturbances from the 
cataclysmic, VEI 6, August 27 eruption of Krakatau, Indonesia 
(Scott 1883; Strachey 1884, 1888; Verbeek 1884). A Royal 
Society of London report compiled the barometric observa-
tions and reports of sounds heard (Strachey 1888). Audible 
cannon-like sounds were reported as far away as ~ 4800 km, 
similar to historical “earwitness” reports from the earlier 
1815 eruption of Tambora (de Jong Boers 1995). The Kraka-
tau atmospheric (ultra) long-period pressure wave propagated 
around the globe and was recorded as barometric pulses 
for four minor-arc passages and three major-arc (antipodal) 
passages (Strachey 1888). It took roughly 1.5 days to make 
each complete lap, with an average propagation speed of 
300–325 m/s; the dominant periods at long range were ~ 100 
to 200 min (Gabrielson 2010). These observations stimulated 
the development of theory to explain what were eventually 
termed acoustic-gravity waves, and more specifically the sur-
face-guided Lamb wave, and to understand the effects of grav-
ity, buoyancy, and atmospheric structure on their propagation 
(e.g., LeConte 1884; Lamb 1911; Taylor 1929, 1936; Pekeris 
1939; Pierce 1963; Press and Harkrider 1962, 1966; Harkrider 

Fig. 4  Comparison of frequency distribution (histogram) of hypocen-
tral depth of “A-type” and “B-type” volcanic earthquakes and tectonic 
earthquakes from Minakami (1960). Horizontal axis shows approxi-
mate depth in km (Z, increasing depth to right; note logarithmic 
scale), and vertical axis shows occurrence frequency (F, increasing 
occurrence frequency upwards). Based on these depth distributions, 
volcanic earthquakes at Oosima (Oshima) and Usu Volcanoes, Japan, 
were considered to be “A-type” earthquakes, and volcanic earth-
quakes at Hakone Volcano, Japan were considered to be “B-type” 
earthquakes. Both types of volcanic earthquakes were shown to have 
shallower average depths than aftershock sequences following the 
Ito, Huiki, Tottori, Oga, and Tango mainshock earthquakes, as well 
as “general” tectonic earthquakes (M > 5) in and near Japan. Figure 
reproduced from Minakami (1960)
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1964; Harkrider and Press 1967; Bretherton 1969; Yeh and Liu 
1974; Gabrielson 2010).

The pioneering study of Omori (1912) at Mount Asama, 
Japan, gave nearly equal emphasis to seismic and atmospheric 
pressure wavefields, using seismometers and barometers to dis-
criminate between seismic signals associated with airborne 
explosions (“detonations” and “sound tremors”) and non-
explosion earthquakes (Fig. 2). Many of the explosion events 
were audible in settlements at distances of ~ 200 to 300 km, 
and some were powerful enough to knock out doors and win-
dows. Omori used this information to map the sound propa-
gation and acoustic shadow zones, and began to consider the 
effects of wind and topography on the acoustic signals; these 
topics are again active research areas today. Omori continued 
the analysis of barograph records, for example, at Sakurajima 
(Omori 1916) (Fig. 2). Saderra Masó (1911a) made similar 
instrumental (seismograph and barograph) observations for the 
1911 eruption of Taal, Philippines (Fig. 3).

The use of weather barometers and infrasonic microphone 
arrays to study low-frequency (< 1 Hz) atmospheric pres-
sure waves from volcanic explosions at regional to global 
ranges (tens to thousands of kilometers) continued spo-
radically throughout the twentieth century, most commonly 
when large eruptions were recorded on remote barograph 
or infrasonic microphone arrays, for example, for the erup-
tions of Mount Pelee, Martinique, 1902 (Anderson and Flett 
1903); Bezymianny, Russia, 1956 (Gorshkov 1960); Mount 
St. Helens, USA, 1980 (Reed 1987; Delclos et al. 1990); 
El Chichón, Mexico, 1982 (Mauk 1983); Mount Tokachi, 
Japan, 1988; Sakurajima, Japan, 1989; Pinatubo, Philip-
pines, 1991; Ruapehu, New Zealand, 1995 (Morrissey and 
Chouet 1997), and Popocatépetl, Mexico (Raga et al. 2002).

Despite early pioneering instrumental studies giving near-
equal emphasis to seismic and atmospheric pressure wave-
fields (e.g., Saderra Masó 1911a; Omori 1912; Perret 1950), 
advances broadly in seismology and specifically in volcano 
seismology rapidly outpaced those in atmospheric acoustics 
until the 1990s (Harris and Ripepe 2007a, b; Fee and Matoza 
2013; Chouet and Matoza 2013; Matoza et al. 2019a).

Instrumentation changes 1919–2019

Volcano seismology and acoustics are highly observational 
fields. The phenomena that can be observed depends upon 
the available instrumentation. From 1919 to 2019, major 
advances were made (for example) (1) in instrument sen-
sitivity, i.e., the smallest resolvable amplitude change of 
ground motion or air pressure that can be measured; (2) 
in bandwidth, i.e., the frequency range of signals that can 
be captured; (3) in the portability, compactness, rugged-
ness, and rapid deployability of instrumentation; (4) in 

the electronics systems for recording, storing, timing (e.g., 
GNSS), and telemetering the data; (5) in reducing instru-
mental power requirements, solar charging, and battery 
technology; and (6) with the computer revolution, the effi-
ciency with which data could be processed and stored. A 
comprehensive history of seismometry, microbarograph, and 
infrasound sensor technology evolution from 1919 to 2019 
is beyond our scope. For some of the details, we refer the 
reader to Dewey and Byerly (1969), Howell (1989), Ben-
Menahem (1995), Agnew (2002), Evers and Haak (2010), 
Ponceau and Bosca (2010), Nief et al. (2019), Marty (2019), 
and references therein. Major milestones included the transi-
tion from analog to digital recording, event-triggered to con-
tinuous waveform data, and short-period to broadband, all of 
which collectively provided a progressively sharper, higher 
fidelity, wider bandwidth, higher sensitivity, and more tem-
porally continuous capture of the seismic and acoustic signa-
tures of volcanic unrest and eruption. Moreover, a net effect 
of these technological advances was that the operational 
seismological monitoring workflow became increasingly 
efficient, with real-time data transmission and processing 
enabling the results of seismological analyses to be available 
more rapidly to inform monitoring decisions (e.g., Klein and 
Koyanagi 1980; Okubo et al. 2014; Thompson 2015).

Although field logistics at volcanoes will always be 
demanding, these technological advances have generally 
also allowed steady expansion in the numbers of seismic 
and acoustic stations (i.e., increases in network density) at 
permanently monitored volcanoes (Fig. 5; Table 1) and in 
campaign research deployments, in turn permitting higher 
spatiotemporal resolution geophysical inference. Although 
operating and maintaining permanent seismic monitor-
ing stations at volcanoes is still not straightforward, it is 
undoubtedly easier now in the days of digital waveform 
telemetry and low-power ruggedized systems compared 
to the laborious days of smoked paper or tape recorders. 
Another promising trend in volcano seismology and acous-
tics is the increased central archiving and public worldwide 
sharing of waveform data, which is beginning to allow sys-
tematic comparisons and hypothesis testing of seismic and 
acoustic source processes across varied volcanic systems and 
tectonic environments.

For operational volcano monitoring, a critical techno-
logical advance was the development of radio telemetry 
(e.g., Eaton 1977; Murray 1992; Lockhart et al. 1992; 
Thompson 2015). Prior to radio telemetry, data transmis-
sion utilized cables including telephone cables. At the 
HVO, this resulted in miles of overland cables by 1958 
and a seismic station distribution limited by cable logis-
tics (Klein and Koyanagi 1980; Klein et al. 1987; Okubo 
et al. 2014). Radio telemetry thus represented a monu-
mental advance, permitting the expansion of volcano 
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seismic monitoring networks worldwide (e.g., Klein and 
Koyanagi 1980; Ewert and Swanson 1992; Hill 1984; 
Castellano et al. 2002; Power and Lalla 2010; Giudicepi-
etro et al. 2010; Senyukov et al. 2009; Nishimura and 
Iguchi 2011). Data from remote and widely distributed 
instruments could be collected at a central location and 
analyzed in real time (first on media such as smoked drum 
paper and later on computerized systems). This advance 

primarily occurred in the mid-1960s through the early 
1970s.

As an illustration of other major technological changes, 
we consider selected time snapshots containing landmark 
studies or significant eruptions. We focus the remainder 
of this section on technological changes from 1970 to 
2020, which was a time of major growth in quantitative 
volcano seismology.

Fig. 5  Expansion of seismic monitoring on the Island of Hawai‘i. 
Figure on left reproduced from Okubo et  al. (2014) showing seis-
mic stations (triangles) operating on the Island of Hawai‘i in 1923, 
1934, 1950, and 1958. Figure on right reproduced from Matoza et al. 
(2021) showing the HVO seismic network and additional stations on 
the Island of Hawai‘i for which digital event-based waveform data are 

available from (left) the CUSP system (1986–2009; 144 channels) 
and (right) the AQMS system (2009–2018; 565 channels). ANSS, 
Advanced National Seismic System; AQMS, ANSS Quake Man-
agement System; CUSP, Caltech-USGS Seismic Processing; HVO, 
Hawaiian Volcano Observatory. Figures reproduced from Okubo 
et al. (2014) and Matoza et al. (2021)

Table 1  Expansion of permanent volcano-seismic networks worldwide (illustrative and representative, not complete)

Region/country (volcanoes) Year(s) of establishment Reference(s)

Japan (Asama, Aso, Sakurajima) 1910s–1960s Minakami 1950, Suwa 1980, Wada et al. 1963
Philippines (Taal, Hibok-Hibok) 1910s–, 1950s Saderra Masó, 1911b; Tayag and Punongbayan 1994
Hawai‘i/USA 1910s Okubo et al. 2014
Indonesia (Merapi, Papandayan, Kelut) Single station 1924, 1982 Ratdomopurbo and Poupinet 2000, van Padang 1933
Papua New Guinea (Rabaul) 1940s Fisher 1940
Kamchatka/Russia 1940s Fedotov et al. 1987, Gorelchik 2001, Gordeev et al. 2006
Pacific Northwest/USA 1950s Weaver et al. 1990; Norris 1991
New Zealand 1950s Scott and Travers 2009
Alaska/USA 1960s–1970s Power et al. 2020
Martinique (Pelee) 1970s Hirn et al 1987
Iceland 1970s Einarsson 2018
Ecuador 1980s Alvarado et al. 2018
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Volcano seismology in the 1970s: limited portability

By the 1970s, field studies at volcanoes using portable 
seismic instrumentation and computational methods were 
underway, but the portability was highly limited by today’s 
standards. A 1959 eruption of Kīlauea, Hawai‘i, produced 
a stagnant lava pond at Kīlauea Iki, a pit crater adjacent to 
Kīlauea summit caldera in the upper east rift zone (Richter 
et al. 1970), and its slow cooling and solidification provided 
a landmark opportunity in volcanology (Kauahikaua and 
Poland 2012; Heiken 2013) and decades of studies includ-
ing scientific drilling (e.g., Rawson 1960; Wright et al. 1976; 
Helz 1980, 1993; Helz and Thornber 1987). By the 1970s, 
the solidified crater floor also enabled seismological inves-
tigations, including a refraction experiment performed for a 
series of geophones deployed along the long axis of the cra-
ter floor (Aki et al. 1978) and passive seismic surveys cap-
turing local seismic events originating in the cooling crust of 
the lake (Chouet 1979). Chouet (1979) developed a quan-
titative source model for the seismic signals originating 
within the cooling Kīlauea Iki magma body, parameter-
ized as vertically aligned penny-shaped cracks between 
columnar basalt joints, with tensile failure (crack open-
ing) due to cooling and solidification of magma. Chouet 
(1979) presented an analytical expression for the far-field 
pulse shape of vertical and horizontal ground displace-
ments including attenuation, enabling forward modeling 
with the crack model to infer cavity volumes, which com-
pared reasonably well with independent estimates based 
on thermodynamic considerations and a cooling model 
(also by Chouet 1979).

These were important early studies in quantitative (and 
computational) volcano seismology, but the limitations 
of seismic instrumentation technology at the time made 
installing and maintaining the field equipment highly 
laborious (B. Chouet, personal communication, 2019 & 
2021). For example, a study on coda waves from earth-
quakes in Hawai‘i (Chouet 1976) involved the deployment 
of 4 mi (6.4 km) of military surplus Spiral-4 cable to 
connect station OTL (Outlet) on Sand Hill to the HVO. 
Spiral-4 came in spools weighing 100 lb. (45 kg) each; 
40 spools were used. The data were stored on paper 
(recording at 1 mm/s for months on end), which had to 
be digitized by hand to be stored on punch cards. The 
seismic surveys described by Chouet (1979) (conducted 
in the summer of 1974) used a “portable” Sprengnether 
MEQ-800 smoke drum recorder with a vertical compo-
nent (short-period) Mark products L-4C 1 Hz geophone 
as the sensor (Fig. 6a). All of the data were analog and 
had to be measured by hand with rulers (B. Chouet, per-
sonal communication, 2019 & 2021).

Volcano seismology in the 1980s: digital capture 
and storage

The 1980s saw the beginnings of digital data capture and 
storage, based on the recording of event-triggered digital 
waveforms. The 1980–1986 unrest and eruption sequences 
of Mount St. Helens, USA, provided opportunities to record 
signals with new technologies, with access to the crater floor 
exposed by the 18 May 1980 lateral blast allowing near-
field high signal-to-noise ratio recording. A pioneering study 
by Fehler and Chouet (1982) and Fehler (1983) utilized a 
prototype 12-bit digital recorder which had been designed 
and built at the Massachusetts Institute of Technology, USA 
primarily for ocean bottom deployment (Fig. 6b, c). The 
deployment consisted of nine short-period seismometers 
(L4-C 1 Hz geophones with a rapid fall-off in response 
below 1 Hz) attached to the digital event recorders, which 
provided event-triggered recording. This involved event-
windowed data recording on a magnetic tape that was initi-
ated whenever seismic amplitude rose significantly above 
the background noise. There was thus no continuous digital 
recording, but continuous analog recording was made sepa-
rately on paper chart recorders. The digital recording pack-
age for each station consisted of a 4-ft. (1.2 m) tall cylinder 
containing the signal processing electronics and recorder, but 
one station was nevertheless deployed in the crater of Mount 
St. Helens (Fehler and Chouet 1982; B. Chouet, personal 
communication, 2019 & 2021). Despite these limitations, 
this deployment provided digital capture of long-period 
(LP, 0.5–5 Hz) seismicity and tremor at Mount St. Helens 
(Fig. 6b) (Fehler and Chouet 1982; Fehler 1983), providing 
new and key observations that initiated a sustained research 
program to understand the quantitative source mechanism 
of long-period seismic events and tremor (Chouet and Julian 
1985; Chouet 1981; 1985; 1986; 1988; 1992).

Digital recording facilitated digital signal processing, 
including the application of the Fast Fourier Transform 
(FFT) (Cooley and Tukey 1965; Cooley et al. 1969) for 
spectral estimation. Fehler and Chouet (1982) reported LP 
events with durations ∼30 s, spectra peaked in the range 
1.7–2.3 Hz, and at depths of between 0 and 5 km. Produc-
tion of the spectral peaks by a path effect (Malone 1983) 
was considered inconsistent with the data because the posi-
tion of the spectral peaks did not change significantly with 
station location, and a VT earthquake located in the vicin-
ity of the crater observed with the same instruments did 
not have the same spectral structure as the LPs (Fehler and 
Chouet 1982). Fehler and Chouet (1982) proposed that the 
spectral peaks originated from the excitation of a fixed cav-
ity under the active crater. Following Latter (1979), Fehler 
(1983) also noted the spectral similarity of LP events and 
tremor, and proposed that tremor consisted of a superposi-
tion of randomly occurring LP events. These observations 
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rejuvenated interest in LP event and tremor models in which 
the fluid plays an active role in generating the signal.

Computer-based earthquake data processing began 
at HVO in 1979 through digitizing analog tapes. Subse-
quently, by 1986, automated operational near-real-time 
seismic network processing with event-triggered digi-
tal storage was underway with the Caltech-USGS Seis-
mic Processing (CUSP) system (Fig. 5), which received 
analog telemetered seismic data and converted it to a 
digital format (Okubo et al. 2014). Nevertheless, by the 
time of the 1991 eruption of Pinatubo, Philippines (Tayag 
and Punongbayan 1994; Punongbayan and Newhall 
1999), analog systems remained standard in operational 
(especially rapid response) monitoring due to their low 
cost, simplicity of design, and ruggedness (Lockhart 
et  al. 1996). However, digital acquisition, telemetry, 
and signal processing were becoming increasingly inte-
grated in operations (e.g., Sabit et al. 1996; Ramos et al. 
1996, 1999). The 1980s also saw steady expansion of 

volcano-seismic monitoring capacities worldwide. For 
example, in 1988, the Instituto Geofísico of the Escuela 
Politécnica Nacional (IGEPN) of Ecuador began con-
tinuous monitoring of Ecuadorian volcanoes with single 
telemetered seismic stations at Tungurahua, Cotopaxi, 
Cuicocha, Chimborazo, Antisana, and Cayambe, and seis-
mic and geodetic networks were established at Guagua 
Pichincha (Alvarado et al. 2018). Several volcanological 
and seismological observatories were also established in 
Colombia by the Colombian Geological Survey (formerly 
Instituto Colombiano de Geología y Minería INGEOMI-
NAS) in the late 1980s (Vargas et al. 2018).

Volcano seismology in the 1990s: portable 
broadband seismometry, infrasound, continuous 
digital waveform data

The 1990s saw the advent of portable broadband seismom-
etry at volcanoes capturing waveforms in the VLP and ULP 

Fig. 6  Instrumentation changes 
1970s to 1980s. (a) Observation 
of Kīlauea Iki, 1974 using a 
Sprengnether MEQ-800 smoke 
drum recorder with L-4C 1 Hz 
geophone (Chouet 1979). (b, 
c) Prototype 12-bit digital 
waveform records (also using 
the L-4C geophone) of (b) 
long-period event in October 
1980 and (c) tremor at Mount 
St. Helens (Fehler 1983). The 
waveforms in (b, c) are for the 
same station (vertical compo-
nent) but filtered in different 
bands and with different magni-
fication (indicated by text). Fig-
ures reproduced from Chouet 
(1979) and Fehler (1983)
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bands, immediately leading to the discovery of new signals 
and phenomena (Fig. 7) (e.g., Kawakatsu et al. 1992; Neu-
berg et al. 1994; Kaneshima et al. 1996; Arciniega-Ceballos 
et al. 1999). The reader is referred to the reviews by Chouet 
and Matoza (2013) and Kawakatsu and Yamamoto (2015) 
for an overview of VLP and ULP observations, inversions, 
and modeling studies during this time. Previously unob-
servable with standard short-period instrumentation, VLPs 
represented entirely new signals reflecting slower processes 
associated with unsteady mass transport, and commonly 
attributed to fluid–rock interaction or longer-term inertial 
volume changes in fluid-filled conduits (e.g., Kawakatsu 
et al. 1992; Ohminato et al. 1998a, b; Nishimura et al. 2000; 
Kumagai et al. 2003; Kumagai 2006; Chouet and Dawson 
2011).

Advances in computer processing and storage by the 
1990s also enabled the transition to continuous digital wave-
form recording and storage for an expanding number of sta-
tions, and made tractable full-waveform inversions using 
synthetic Green’s functions taking into account topography 
(Ohminato et al. 1998a, b; Kumagai et al. 2002a; Chouet 
et al. 2003, 2005; Nakano and Kumagai 2005). As a result, 
broadband observations rapidly became quintessential in 
volcano-seismic monitoring worldwide (e.g., Martini et al. 
2007; De Cesare et al. 2009; Neuberg et al. 1998; Kawakatsu 
et al. 2000; Iguchi 2013). For example, a semi-permanent 
digitally telemetered (continuous data) 10-station broadband 
network was established at Kīlauea beginning November 
1994, immediately capturing a variety of new signals and 

processes and augmenting monitoring capacity (Dawson 
et al. 1998).

Audio range volcanic sound microphone recordings 
(> 20 Hz)

Frank Perret made probably the first recordings of sounds 
in the audio range (frequencies > 20 Hz) from volcanoes 
using moving-coil microphones at Vesuvius in 1906, even-
tually also recording signals at Etna, Stromboli, Kīlauea, 
Sakurajima, Mount Pelée, and Soufrière Hills (Perret 1950). 
The first tape recordings of volcanic sounds were appar-
ently made by the NHK (Nippon Hōsō Kyōkai) Broad-
casting Bureau of Japan (Snodgrass and Richards 1956). 
In 1952, a program of volcanic acoustics was initiated by 
James Snodgrass at the Scripps Institution of Oceanography, 
USA, leading to a decade’s worth of underwater and air-
borne acoustic recordings of volcanic sounds with frequen-
cies > 50 Hz (Richards 1963). The paper by Richards (1963) 
summarizes these observations, relating the various sounds 
to different idealized styles of volcanic activity.

A pioneering study of acoustic signals (> 20 Hz) by 
Woulff and McGetchin (1976) represents the first attempt 
at a quantitative link between acoustic radiation and fluid 
mechanics at volcanoes using equivalent source theory. This 
study introduced the idea of using radiated acoustic power 
and frequency content to infer erupted gas exit velocity 
for assumed equivalent monopole, dipole, and quadrupole 
source types. Woulff and McGetchin (1976) only considered 

Fig. 7  The advent of broadband volcano seismology (examples). (a) 
Explosion event at Sakurajima reported by Kawakatsu et al. (1992). 
(b) Eruption at Stromboli reported by Neuberg et  al. (1994). (c) 
Broadband waveform attributed to a hydrothermal reservoir at Aso 

reported by Kaneshima et al. (1996). (a) Reproduced from Kawakatsu 
et  al. (1992); (b) reproduced from Neuberg et  al. (1994); (c) repro-
duced from Kaneshima et al. (1996)
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audio range acoustic signals > 20 Hz, but later infrasound 
(< 20 Hz) studies built extensively upon this concept (e.g., 
Firstov and Kravchenko 1996; Vergniolle et al. 1996; John-
son 2003, Vergniolle and Caplan-Auerbach 2006; Matoza 
et al. 2009a; Caplan-Auerbach et al. 2010; Kim et al. 2012; 
Ripepe et al. 2013; Lamb et al. 2015; Delle Donne et al. 
2016; Fee et al. 2017; Haney et al. 2018; Iezzi et al. 2019a, 
2022; Perttu et al. 2020b). In a reexamination of the origi-
nal formulation of Woulff and McGetchin (1976) in the 
context of the current understanding of jet noise, Matoza 
et al. (2013b) concluded that the formulation of Woulff and 
McGetchin (1976) can lead to large errors when inferring 
eruption parameters from acoustic data and thus requires 
modification.

Remote volcano infrasound observations 
from the 1960s to the 1990s

In volcano seismology, the frequency band from ~ 0.01 to 
20 Hz (which includes VLP, LP, and SP), is particularly 
important for signals of volcanic unrest and eruption. In 
atmospheric acoustics, this band is termed infrasound 
(e.g., Pierce 1981; Bedard and Georges 2000; Hedlin et al. 
2002; Evers and Haak 2010). Progress in the field of vol-
cano (atmospheric) acoustics was therefore modest until 
microphones targeting these frequencies were deployed 
near active volcanoes. As we reviewed above, barograph 
records capturing atmospheric pressure wave signals with 
frequencies < 1 Hz were documented since the 1883 Kraka-
tau eruption. However, the frequency limit of the barograph 
instrumentation (< 1 Hz), together with their prime usage 
as weather stations, resulted in an observational bias toward 
larger eruptions recorded at long ranges.

Reviews of some aspects of the history of general infra-
sound research can be found in Bedard and Georges (2000), 
Hedlin et al. (2002), and Evers and Haak (2010). The era of 
atmospheric nuclear testing from 1945 to 1963 (the 1963 
Limited Test Ban Treaty then prohibited nuclear weapon 
tests in the oceans, atmosphere, and space) resulted in active 
research programs in infrasound, including the development 
of sensors, spatial wind-noise filtration systems, and array 
processing methods, particularly between the years 1945 
and 1967 (Thomas et al. 1971). Between 1967 and 1985, 
infrasound research continued with geophysical studies of 
weather, meteors, aurorae, and volcanoes, and this time 
period saw the first utilization of low-frequency infrasound 
microphone arrays to detect remote volcanic eruptions (in 
the band 0.01–0.1 Hz).

Goerke et al. (1965), Wilson et al. (1966), and Wilson and 
Forbes (1969) provided some of the first infrasonic micro-
phone array observations of volcanic eruptions in the low 
infrasound band (0.01–0.1 Hz). The 1963 eruption of Mount 
Agung, Bali, was recorded 14,700 km away in Boulder, 

Colorado (Goerke et al. 1965), and the 1967 eruptions of 
Redoubt and Trident Volcanoes, Alaska, were recorded in 
Fairbanks, Alaska (Wilson et al. 1966; Wilson and Forbes 
1969). The main emphasis of these studies was the atmos-
pheric propagation of the signals. Infrasonic microphone 
arrays were then installed at Kariya, Japan (Tahira 1982), 
and Windless Bight, Antarctica, 26 km from Mount Erebus 
(Dibble et al. 1984). Although limited to the 0.1–1 Hz band, 
the Kariya array routinely detected explosions from Sakura-
jima at a range of 710 km and also recorded the 1991 Pina-
tubo eruption at a range of 2770 km. These data were used 
to infer eruptive time-histories when visual or instrumental 
observations close to the volcano were impossible (Tahira 
et al. 1996).

The first proposal for an acoustic early warning system for 
explosive eruptions of which we are aware was that of Kamo 
et al. (1994). Kamo et al. (1994), following work by Tahira 
(1982), demonstrated that an array at Kariya, 710 km from 
Sakurajima, was capable of detecting infrasound from volca-
noes thousands of kilometers distant and showcased example 
signals from the 1991 eruption of Pinatubo (see also Tahira 
et al. 1996). Kamo et al. (1994) concluded that “this capabil-
ity forms the basis of a proposal for a worldwide network of 
air-wave sensors to monitor volcanic explosions,” proposing 
the “PEGASAS-VE” (“pressure gage system for air-shocks 
by volcanic eruptions”) early warning system for aviation 
safety that would consist of a set of infrasonic microphone 
arrays with a 500–1000 km spacing. Kamo et al. (1994) pro-
posed that PEGASAS-VE “would be a very effective means 
of enhancing aviation safety and would be similar to the 
tsunami warning system, which is in worldwide operation.” 
Although PEGASAS-VE was not constructed, the Interna-
tional Monitoring System (IMS) infrasound network was 
initiated after the Comprehensive Nuclear-Test-Ban Treaty 
(CTBT) was opened for signature in 1996 (e.g., Christie 
and Campus 2010; Marty 2019; Le Bras et al. 2021). The 
proposed 500 km spacing of the PEGASAS-VE design was 
chosen to provide timely warnings of volcanic eruptions 
within 30 min based on infrasound propagation time. The 
average station spacing for the complete IMS infrasound 
network will be about 2000 km (Christie and Campus 2010), 
so additional stations will be needed to augment the IMS 
infrasound network (e.g., Matoza et al. 2007, 2011a,b; 2017, 
2018; Garcés et al. 2008; Fee et al. 2010b; Tailpied et al. 
2013, 2016; Nishida and Ichihara 2016; Ripepe et al. 2018; 
Taisne et al. 2019; Perttu et al. 2020a; Le Pichon et al. 2021) 
and achieve the vision outlined in the original PEGASAS-
VE proposal (Kamo et al. 1994).

Volcano infrasound in the 1990s

Volcanic infrasound in the band 1–20 Hz (termed near-
infrasound) was collected at local recording ranges (defined 
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as < 15 km) during a small number of field studies in Kam-
chatka and Antarctica in the 1970s and 1980s (e.g., Dib-
ble et al. 1984; Firstov and Kravchenko 1996; Gordeev 
et al. 1990). Observations of local volcano near-infrasound 
greatly expanded in the 1990s with field studies particularly 
in Japan and at Stromboli, Italy (Fig. 8). In Japan, Iguchi 
and Ishihara (1990) and Yamasato (1997) installed infra-
sonic microphones at distances of 2–5 km from Sakurajima, 
Suwanosejima, and Unzen, recording numerous explosions 
and pyroclastic flows (Yamasato 1997), harmonic infrasonic 
tremor (Sakai et al. 1996), and impulsive signals associated 
with LP seismic events (Iguchi and Ishihara 1990; Yamasato 
1998). The study by Sakai et al. (1996) at Sakurajima is con-
sidered the first observation of infrasonic harmonic tremor, 
but this publication was followed rapidly by similar obser-
vations at Arenal (Hagerty et al. 1997, 2000; Garces et al. 
1998) (Fig. 8) and Karymsky (Johnson et al. 1998). Acoustic 
studies began at Stromboli in the early 1990s (Braun and 
Ripepe 1993; Vergniolle and Brandeis 1994; Buckingham 
and Garcés 1996). Since then, it has become increasingly 
clear that an array of volcanic processes produces a variety 
of types of infrasound signals across the 0.01–20 Hz fre-
quency range (e.g., Harris and Ripepe 2007a, b; Johnson 
and Ripepe 2011; Garces et al. 2013; Fee and Matoza 2013; 
Matoza et al. 2019a; Marchetti et al. 2019).

In 1996, the CTBT was opened for signature, leading to 
the construction of the IMS. The IMS included a global infra-
sound network with, as of 2022, 53 certified infrasound sta-
tions of a planned total 60 (Marty 2019). Construction of the 
IMS led to rapid advances in infrasound technology, such as 
improvements in instrumentation, signal-processing methods, 
and infrasound propagation modeling. These technologies 
have all been transferred and adapted to understand and moni-
tor volcanic processes (Garces et al. 2003, 2008; McCormack 
et al. 2005; Matoza et al. 2007, 2019a; Matoza and Fee 2018).

Volcano seismo‑acoustics: 2000 to 2020

During the past 20 years, the fields of volcano seismology 
and volcano acoustics have been progressively merging, as 
captured in the term volcano seismo-acoustics, and in-line 
more broadly with the emergence of the discipline of seismo-
acoustics (Arrowsmith et al. 2010). These complementary 
geophysical technologies provide more complete capture of 

the signals of unrest and eruption, from the mantle to the 
surface, and reduce ambiguity in signal and process identi-
fication. From 2000 to 2020, high-quality, broadband, and 
well-calibrated infrasound sensors have become increasingly 
portable, lower power, and rapidly deployable, mirroring 
trends in portable broadband seismology. Digitizers, power 
systems, and other electronic components of the system are 
highly similar for infrasound and seismic stations, mak-
ing these complementary channels easy to record together 
and leveraging general technological advances in seismol-
ogy. Telemetry systems have also increasingly moved from 
analog to digital. The large community EarthScope USArray 
Transportable Array catalyzed advances in seismo-acoustic 
systems technology (Busby et al. 2018). For research cam-
paign-style deployments relying on local data storage (no 
telemetry), high-volume data storage has increasingly permit-
ted the collection of longer multi-year datasets, with more 
recording channels, at higher sample rates, and with easier 
field logistics (infrequent data downloads). In addition, cel-
lular modems (where coverage is available) now make possi-
ble streaming of remote data without purpose-built telemetry 
systems (e.g., Busby et al. 2018; Sanderson et al. 2021; Shiro 
et al. 2021). Numerous other advances in instrumentation 
technology have driven progress. For example, for reviews of 
infrasound sensor and wind noise reduction system develop-
ments, the reader is referred to Ponceau and Bosca (2010), 
Nief et al., (2019), and Raspet et al. (2019).

Permanent volcano monitoring networks have progres-
sively established denser seismic networks (Figs. 1 and 5), 
with continuous digital waveform acquisition, processing, 
and storage now being the standard. Infrasound technology 
has been increasingly integrated in volcano-seismic monitor-
ing operations and is also rapidly becoming standard (e.g., 
Orazi et al. 2013; Ruiz et al. 2013; Iguchi 2016; Coombs 
et al. 2018; Alvarado et al. 2018; Yokoo et al. 2019; Taisne 
et al. 2019; Power et al. 2020).

The internet, central data archiving, and legacy data

A general trend in seismology has been toward increased cen-
tral archiving and public sharing of waveform data facilitated 
by data management centers worldwide, e.g., IRIS (Incorpo-
rated Research Institutions for Seismology), founded 1987 
(Smith 1987); GEOFON (GEOFOrschungsNetz), founded 
1992 (Quinteros et al. 2021); GEOSCOPE (French Global 
Network of broad band seismic stations), founded 1982 
(Roult et al. 2010); ORFEUS (Observatories and Research 
Facilities for European Seismology), founded 1988 (van Eck 
and Dost 1999); MEDNET (Mediterranean Very Broadband 
Seismographic Network), founded 1987 (Boschi et al. 1991); 
and POSEIDON (Pacific Orient Seismic Digital Observa-
tion Network), founded 1989 (Geller 1974; Shimazaki et al. 
1992). The growth of the internet accelerated these trends 

Fig. 8  Volcano infrasound in the 1990s (examples). (a) Infrasound 
and seismic observations at Stromboli by Ripepe et  al. (1996). (b) 
Infrasound at Stromboli analyzed by Vergniolle and Brandeis (1994). 
(c) Seismic and infrasonic observation of “C-type” (harmonic) tremor 
at Sakurajima by Sakai et al. (1996). (d) Seismic and infrasonic har-
monic tremor at Arenal reported by Hagerty et al. (1997) and Garces 
et  al. (1998). (a) Reproduced from Ripepe et  al. (1996); (b) repro-
duced from Vergniolle and Brandeis (1994); (c) reproduced from 
Sakai et al. (1996); (d) reproduced from Garces et al. (1998)

◂
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(Malone et al. 1993; Malone 1995). These efforts have col-
lectively had profound impacts on seismology (e.g., Malone 
et  al. 1993; Malone 1995; Aster et  al. 2004) and, more 
recently, infrasound (e.g., Hutko et al. 2017; Busby and Ader-
hold 2020; Stammler et al. 2021) technology and research. 
Data management centers have become increasingly impor-
tant with the rise of continuous data streams and growing 
data volumes. In the past decade, volcano seismo-acoustics 
research infrastructure has increasingly moved toward the 
standards of FAIR (Findable, Accessible, Interoperable, 
and Reusable). The central archiving and public accessibil-
ity of seismo-acoustic data allows systematic comparisons 
across varied volcanic systems and tectonic environments. 
Preserving data for the future will further ensure that wave-
form details from landmark eruptions will be available for 
retrospective analyses with new processing methodologies, 
or in light of new paradigms and hypotheses.

For the same reasons, the preservation of legacy seismic 
data is an urgent priority (e.g., Bogiatzis and Ishii 2016; 
Richards and Hellweg 2020; Hwang et al. 2020; Pérez‐Cam-
pos et al. 2020). As seismic and acoustic waves propagate 
over distance, wave amplitude loss occurs from geometrical 
spreading, attenuation, and scattering, generally resulting in 
information loss about volcano seismic and acoustic unrest 
and eruption signals with increasing distance from the vol-
canic source. Thus, seismic and acoustic instrumentation 
provide the most information when deployed as dedicated 
monitoring instruments (< 50 km range). However, seismic 
signals from eruptions or unrest sequences have still been 
captured and usable, to some degree, by more distant sta-
tions on early instrumental records. For example, some seis-
micity from the 1943 eruption of Parícutin was recorded by 
a Wiechert seismograph at the Tacubaya seismic station in 
Mexico City at ~ 320 km distance from the source (Yokoy-
ama and de la Cruz-Reyna 1990). Similarly, the 1963–1967 
eruption of Surtsey, Iceland was recorded by two stations at 
distances > 100 km (Sayyadi et al. 2021). This underscores 
the importance of preserving and making available legacy 
seismic data, especially data from classic eruption case 
studies in volcanology (e.g., Malone 2020; Thompson et al. 
2020; Lee et al. 2020; Sayyadi et al. 2021).

Progression in understanding of volcano 
seismic source processes 1919–2019

Volcano seismology involves both the analysis of seismic 
signals generated by volcanic processes and the appli-
cation of seismic techniques to image internal volcanic 
structure. We focus our review in this section largely on 
the former (analysis of volcano-seismic signals). However, 
these objectives are closely related, since the ability to 
accurately recover seismic source mechanisms depends 

upon the resolution of the velocity structure of the vol-
canic edifice and upper crust (e.g., Bean et al. 2008; De 
Barros et al. 2011; Dawson et al. 2011). For reviews and 
perspectives on advances in seismic imaging of internal 
volcanic structure, we refer the reader to Lees (2007), 
Chouet and Matoza (2013), Saccorotti and Lokmer (2021), 
Koulakov and Shapiro (2021), and Thelen et al. (2022).

We also limit our primary focus to the progression in 
understanding over the past hundred years of volcano-tec-
tonic (VT) and long-period (LP) seismicity (0.5–5 Hz), 
which includes individual transient LP events and more 
temporally continuous tremor. This choice is made since 
VLP seismicity was discovered as recently as the 1990s 
and has already been adequately reviewed by Chouet and 
Matoza (2013). Recent advances have also been made at 
the longer ULP time-scales approaching static. A review 
of ULP signals is also provided by Chouet and Matoza 
(2013) and these signals have been increasingly amena-
ble to observation and analysis over the past decade. A 
primary advance for the ULP band has been the devel-
opment of waveform inversion methods that account for 
contributions from both translation and tilt in horizontal 
seismograms through the use of Green’s functions repre-
senting the seismometer response to translation and tilt 
motions (Maeda et al. 2011, 2017; Chouet and Dawson 
2015; van Driel et al. 2015; Waite and Lanza 2016; Jolly 
et al. 2017a). Thus, volcano seismology presently pro-
vides quantitative models of the seismic source process 
related to a variety of volcanic processes over an extremely 
wide band spanning the LP, VLP, and ULP bands (Maeda 
et al. 2017; Chouet and Dawson 2015). However, until 
the advent of broadband seismometry at volcanoes in the 
1990s, LP and VT sources were a primary focus of vol-
cano seismology.

Long‑period seismicity: LP events and tremor

Long-period (LP, 0.5–5 Hz) seismicity includes individ-
ual transient LP events and more continuous tremor (e.g., 
Kawakatsu et al. 1992; Kaneshima et al. 1996; Narváez et al. 
1997; Gil Cruz and Chouet 1997; Neuberg et al. 2000; Aki 
and Ferrazzini 2000; Saccorotti et al. 2001; Kumagai et al. 
2002b; Nakano et al. 2003; Lesage et al. 2006; Waite et al. 
2008; Nakamichi et al. 2009; Palo et al. 2009; Alparone et al. 
2010; Matoza and Chouet 2010; Buurman and West 2010; 
D'Auria et al. 2011; Traversa et al. 2011; Arciniega-Ceballos 
et al. 2012; Rodgers et al. 2013; Matoza et al. 2014a; Unglert 
et al. 2016; Battaglia et al. 2016a; Lyons et al. 2016; Bell 
et al. 2017; Frank et al. 2018; Soubestre et al. 2018; Park 
et al. 2019). The escalation of LP seismicity at shallow depth 
(< 2 km) in a volcanic edifice is often explained in terms of the 
pressure-induced disruption of a shallow hydrothermal region, 
and is one of the most significant indicators of volcanic unrest 
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(e.g., Chouet et al. 1994; Chouet 1996a; Chouet and Matoza 
2013). Long-period events are transient signals characterized 
by a short-lived (∼10 s) broadband onset, followed by a coda 
of decaying harmonic oscillations lasting from tens of sec-
onds to a few minutes in duration (Chouet 1996a). This is 
commonly interpreted as a broadband, time-localized pres-
sure excitation mechanism (or trigger mechanism), followed 
by the response of a fluid-filled resonator (Chouet 1996a). 
Long-period events are typically associated with volumetric 
source mechanisms when moment-tensor representations are 
possible to determine (Chouet and Matoza 2013). Volcanic 
seismic tremor is a more continuous vibration of the ground 
with observed durations of minutes to hours, or even weeks to 
years in some cases (McNutt 1992). Observations of volcanic 
tremor are multifarious and tremor apparently results from a 
variety of fluid processes (e.g., McNutt 1992; Konstantinou 
and Schlindwein 2003; Chouet 1996b). Worldwide observa-
tions of volcanic tremor show a wide variability in temporal 
durations, signal amplitudes, and frequency contents. Accord-
ingly, various terms have been introduced over the years to 
capture the variety in tremor observations and physical inter-
pretations. These include, but are not limited to, harmonic 
tremor, monotonic/monochromatic tremor, spasmodic tremor, 
eruption tremor, banded tremor, and tremor storm (e.g., Seidl 
et al. 1990; McNutt 1992; Konstantinou and Schlindwein 
2003). For example, “eruption tremor” is still commonly 
used to describe broadband tremor directly associated with 
sustained explosive eruptions (Scandone and Malone 1985; 
McNutt and Nishimura 2008).

The classification of seismic signals associated with pro-
cesses operating in complex natural systems is not straight-
forward, and these descriptive terms have thus consequently 
been applied in various ways in the literature, and in some 
cases have evolved over time. One of the earliest distinc-
tions made by Jaggar, following Omori in the early twen-
tieth century, was that between “spasmodic” tremor (i.e., 
irregular vibrations) and “harmonic” tremor (i.e., more 

rhythmic vibrations) (Omori 1908, 1911, 1916; Jaggar 
1920). However, since the advent of spectral analyzers and 
later digital signal processing from the 1970s onwards, the 
term “harmonic tremor” has evolved to generally imply 
tremor with sharply peaked spectra (Fig. 9), but the tremor 
spectral peaks do not always follow a simple harmonic pro-
gression (Lesage et al. 2006; Matoza et al. 2010). Whether 
the spectral character of LP and tremor events is related to 
a source, path, or site effect (Goldstein and Chouet 1994; 
Chouet et al. 1997) has been discussed extensively (e.g., 
Malone 1983; Fehler and Chouet 1982; Bean et al. 2014; 
Chouet and Dawson 2016). Untangling source, path, and site 
effects has, however, become progressively more robust with 
more recent data, for example, from denser broadband seis-
mic networks (e.g., Waite et al. 2008; Chouet and Dawson 
2016; Lyons et al. 2016; Matoza et al. 2022a). Clear multi-
parameter evidence for source resonance includes infrasound 
signals recording the same spectral signature as co-located 
seismic instrumentation but for a different (atmospheric) 
path (Garcés et al. 1998) (Fig. 8d), video data capturing 
breathing mode gas oscillations from a vent coincident with 
a Helmholtz resonance spectral infrasonic signature (Fee 
et al. 2010c), and the observation of multiple gas eruption 
jets related to the production of dual overlapping gliding 
harmonic seismic spectral evolution (Lesage et al. 2006).

Previously, it was already noted from about the 1980s that 
LP events and tremor have similar spectral properties and are 
closely temporally related, with for example swarms of indi-
vidual LP events merging into tremor and back into LP events 
(e.g., Latter 1979; Fehler 1983; Neuberg et al. 1998, 2000; Pow-
ell and Neuberg 2003; Hotovec et al. 2013). This particular type 
of tremor thus clearly has a common origin with the individual 
LP events. These observations led to the interpretation that LP 
events represent the impulse response of a resonant tremor-
generating system, and that some types of tremor consist of 
the superposition of many individual LP events (Latter 1979; 
Fehler and Chouet 1982; Fehler 1983; Chouet 1985). This type 

Fig. 9  Example seismograms 
and their normalized amplitude 
spectra showing “spasmodic” 
tremor (left) and “harmonic” 
tremor (right) at Galeras, 
Colombia.  Reproduced from 
Gil-Cruz (1999)
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of tremor would probably be classified as “spasmodic” tremor 
in the original terminology of Jaggar (1920).

We next briefly review the development of quantitative 
models of long-period events and tremor beginning from the 
1950s, and again focusing most on the time since the 1970s.

Volcanic tremor: early quantification

Omer (1950) provided one early quantitative model for the 
source mechanism of volcanic tremor, attributing tremor 
observations at Kīlauea (Finch 1949) (Fig. 10a, b) to a path 
effect: the reverberation of near-surface strata excited into 
motion by magma moving though subsurface feeding con-
duits. Shima (1958) and Kubotera (1974) instead proposed 
that a peaked tremor spectrum at Mount Aso (Sassa 1935) 
(Fig. 10c) was a result of free oscillations of a spherical 
magma chamber, while Shimozuru (1961) considered the 
longitudinal resonance of a cylindrical magma column. Stein-
berg and Steinberg (1975) attributed tremor to pulsating “flow 
crises” of gas in volcanic vents undergoing the transition from 
subsonic to supersonic flow. However, these early models did 
not adequately quantify the driving force of the fluid or predict 
the elastic radiation from the source region (Chouet 1981). 
More critically, these models required implausibly large 
dimensions for the resonating cavities, as pointed out by Fer-
razzini and Aki (1987). For example, Kubotera (1974) deter-
mined the source of 3.5–7 s period tremor at Aso (Fig. 10c) to 
be a resonating spherical magma chamber of 2–4 km radius.

Crack propagation source model of Aki

A rigorous quantitative and (early) computational treatment of 
volcanic tremor was given by Aki et al. (1977), who proposed 

a mechanism for volcanic tremor at Kīlauea consisting of 
the sudden extension of dry and fluid-filled tensile cracks 
(Fig. 11a). Two scenarios were proposed: (1) the jerky exten-
sion and propagation of a single crack; (2) the random jerky 
openings of narrow channels connecting a chain of pre-exist-
ing cracks. This simplified two-dimensional model considered 
both the driving excitation and crack geometry appropriate for 
magma transport, but the fluid did not support acoustic waves 
and merely acted as a passive cushion to the motion of the 
crack wall. Near-field and far-field displacements computed 
by finite-difference calculations replicated the general proper-
ties of the observed tremor. A key parameter in the formula-
tion of Aki et al. (1977) was the crack stiffness, defined:

where b is the bulk modulus of the fluid in the crack, L is 
the crack length, μ is the elastic shear modulus, and d is the 
aperture of crack opening. The single-crack model (scenario 
1, above) was rejected because the growing crack length 
predicted a significant increase in tremor period, inconsist-
ent with the observations at Kīlauea. Aki et al.’s (1977) sce-
nario 2 was further developed for deep tremor occurring at 
30–50 km beneath Kīlauea by Aki and Koyanagi (1981). 
They defined a measure of tremor amplitude related to the 
magma flux known as reduced displacement:

where A is the peak-to-peak amplitude of ground motion 
( A

2
√

2
= Ar.m.s. , the root-mean-square amplitude), and r is the 

source-to-receiver distance. Measurement of the reduced 
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,
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Fig. 10  Continuous observatory 
waveforms of volcanic tremor 
that informed early ideas at (a, 
b) Kīlauea (Finch 1949) and 
(c) Aso (Kubotera 1974). (a, b) 
Recorded on a Bosch-Omori 
seismograph ~ 3.4 km from 
Halema‘uma‘u. (a) “March 
21, 1921. This is typical of the 
record when lava is high in 
Halemaumau. Some micro-
seisms present. Record magni-
fied 3 times” (Finch 1949). (b) 
“May 8, 1924. Record when no 
lava is visible in Halemaumau 
but underground movement 
of lava [sic] in the Puna Rift 
probable” (Finch 1949). Figures 
reproduced from Finch (1949) 
and Kubotera (1974)
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displacement as a function of time implied a magma flow 
rate an order of magnitude lower than that implied by field 
observations of erupted lava effusion rates reported by 
Swanson (1972). Thus, Aki and Koyanagi (1981) concluded 
that most magma transport in the lithosphere takes place 
aseismically, with only particularly strong barriers to flow 
acting as seismic sources.

Later, Chouet (1981) further developed the crack model 
of Aki et al. (1977), calculating near-field and surface dis-
placements for a single crack extension while accounting for 
interaction with the free-surface and near-surface velocity 
structure. The effects of varying the structure of the elastic 
media, source depth, and bulk modulus of the fluid in the 
crack were explored. This model was expanded into three-
dimensions and further described in Chouet (1982, 1983). 
However, these models still assumed no active participation 
of the fluid. The fluid could not transmit acoustic waves, and 

the dynamics of the fluid were not considered in detail. Con-
sequently, the spectral peaks obtained by these models were 
too weak and too broad, and the long duration of observed 
LP signals could not be reproduced (Chouet 1988).

Fluid resonance models and “crack waves”

The 1980–1986 unrest and eruptions of Mount St. Helens 
provided new digital observations of LP events and tremor 
(Fehler and Chouet 1982; Fehler 1983), rejuvenating interest 
in LP and tremor models in which the fluid plays an active 
role. Lawrence and Qamar (1979) and Ferrick et al. (1982) 
proposed a mechanism involving volcanic fluids analogous 
to the water-hammer effect in a cavity connecting a magma 
chamber to the surface. This model consisted of resonance 
of a conduit in response to unsteady flow conditions (i.e., 
“fluid transients”, resulting from an abrupt disturbance to 

Fig. 11  Evolution of fluid-
driven source models. (a) Aki 
et al. (1977) fluid-driven crack 
models. In this model, the fluid 
did not support acoustic waves 
and merely acted as a passive 
cushion to the motion of the 
crack wall. (b) Chouet (1985) 
fluid-filled conduit pipe model. 
The source is composed of a 
“trigger,” a “resonator,” and 
a “radiator”; in this case, the 
cylindrical conduit resonator 
produced acoustic resonance 
organ pipe modes. (c) Chouet 
(1988) resonating fluid-driven 
crack model. This numerical 
formulation produced slow 
solid–fluid interface waves 
or “crack waves,” permit-
ting observed seismicity with 
long-period (LP, 0.5–5 Hz) 
frequencies to be explained 
by a modest-sized compact 
resonating cavity. (d) Kumagai 
and Chouet (2000) formulation 
for investigating attenuation 
in the fluid-filled crack model. 
For explanation of symbols in 
each case, the reader is referred 
to the original references. (a) 
Reproduced from Aki et al. 
(1977), (b) reproduced from 
Chouet (1985), (c) reproduced 
from Chouet (1988), (d) 
reproduced from Kumagai and 
Chouet (2000)
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a fluid system initially at steady state) (Ferrick et al. 1982). 
These studies were motivated by seismic observations of 
“icequakes” in glaciers and seismic events originating from 
a malfunctioning power plant that resembled volcanic LP 
events.

Chouet (1985) also recognized the importance of the 
fluid in sustaining resonance, and interpreted individual 
LP events as the impulse response of a tremor-generating 
system. Accordingly, he proposed a conceptual system con-
sisting of a “trigger,” a “resonator,” and a “radiator”; in this 
case, a hemispherical trigger, overlying a cylindrical conduit 
resonator (with “organ pipe” modes), terminated at the base 
by a circular radiator (Fig. 11b). Chouet (1985) proposed 
that the trigger mechanism was the rapid exsolution of gases 
from the fluid phase during magma ascent, or flashing of a 
subsurficial layer of phreatic water to steam due to shallow 
magma intrusion. An LP event thus corresponded to a sin-
gle triggering of the system, while continuous tremor would 
result from continuous triggering. Thus, the goal of under-
standing the complex source mechanism of volcanic tremor 
was superseded by the more tractable task of understanding 
individual LP events.

Chouet and Julian (1985) and Chouet (1986, 1988) 
further developed the crack models initiated by Aki et al. 
(1977) and Chouet (1981, 1982, 1983), now allowing the 
fluid to transmit acoustic energy (Fig. 11c). These models 
were formulated using the equations of elastodynamics in 
the elastic solid, as well as conservation of momentum and 
equations of continuity for the fluid. These fluid-filled crack 
models were applied to non-double couple earthquakes 
observed near Long Valley Caldera between 1978 and 1983, 
hydrofracture events used in hydrocarbon extraction (Bame 
and Fehler 1986), and volcanic LPs and tremor. The most 
significant feature of these models was the presence of an 
interface wave propagating through the fluid and reflecting 
back and forth at the crack tips. The velocity of this “crack 
wave” is slower than the acoustic velocity of the fluid at 
all wavelengths, and is inversely dispersive (i.e., velocity 
decreases as wavelength increases). The properties of the 
crack wave are analogous to those of tube waves propagating 
in a fluid-filled borehole (Biot 1952). However, unlike the 
tube wave, as the wavelength increases to infinity, the veloc-
ity of the crack wave approaches zero in inverse proportion 
to the square root of wavelength (Ferrazzini and Aki 1987). 
In the short wavelength limit, the crack wave reduces to the 
Stoneley wave propagating along a fluid–solid interface 
(Stoneley 1926; Ferrazzini and Aki 1987).

Ferrazzini and Aki (1987) found analytic expressions 
of the crack waves by considering normal modes in a fluid 
layer between two homogeneous half-spaces, producing dis-
persion relations in harmony with the numerical results of 
Chouet and Julian (1985) and Chouet (1986). These studies 
showed that “slow waves” or “crack waves” could produce 

long-period elastic radiation from only a modest-sized reso-
nating cavity. For instance, Kubotera (1974) had previously 
determined the source of 3.5–7 s period tremor at Mount 
Aso (Fig. 10c) to be a resonating spherical magma chamber 
of 2–4 km radius. By considering crack waves, Ferrazzini 
and Aki (1987) and Chouet (1988) could model this same 
tremor signal as resulting from a modest-sized magma body 
0.5-m thick and 0.5-km long.

Analysis of the radiation properties from the resonating 
crack by Chouet (1988) demonstrated the stability of the 
dominant period in the far-field, while the frequency and 
width of this spectral peak was a strong function of the crack 
stiffness and trigger amplitude, area, and location. The crack 
stiffness (Eq. 1) affects the dispersion characteristics and 
therefore the resonance frequencies of the crack, while the 
frequency and duration of the signals are also affected by the 
impedance contrast between solid and fluid:

where ρs and ρf are the density of the elastic solid and fluid, 
respectively, α is the P-wave velocity of the elastic solid, and 
a is the sound speed of the fluid in the crack (Chouet 1988). 
The duration of the LP signal is also related to the viscous 
damping loss at the fluid–solid boundary:

where η is the viscosity of the fluid and L and d are the crack 
length and aperture (see Eq. 1) (Chouet 1988). Accordingly, 
the LP coda contains information on the attenuation proper-
ties of fluids in the crack source volume. However, as for-
mulated by Chouet (1988), the crack model accounts for 
radiation and viscous drag losses only. Intrinsic losses due 
to dissipation mechanisms within the fluid must be treated 
separately, and were the focus of follow-up work that exam-
ined attenuation in a fluid-filled crack.

Attenuation in volcanic fluid‑filled cracks

Attenuation in a fluid-filled crack model (Fig. 11d) was 
investigated by Kumagai and Chouet (1999, 2000, 2001) 
and Morrissey and Chouet (2001). The Sompi autoregres-
sive signal analysis method enabled estimates of the quality 
factor Q of observed LP waveforms (Kumazawa et al. 1990; 
Nakano et al. 1998). The resultant observed Q is composed 
of two components:

where Q−1
r

 and Q−1
i

 are the radiation and intrinsic losses, 
respectively. The radiation attenuation Q−1

r
 is a function of 

(3)Z =
�s�

�f a
,
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�f d
2�

,

(5)Q−1 = Q−1
r

+ Q−1
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,
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the resonator geometry, as well as the sound speed and den-
sity of the fluid, and can be evaluated using the fluid-filled 
crack model (Kumagai and Chouet 1999, 2000, 2001; Mor-
rissey and Chouet 2001). In contrast, the intrinsic attenua-
tion Q−1

i
 corresponds to intrinsic losses in the fluid, for exam-

ple, viscous, thermal, and acoustic damping. Consequently, 
calculation of Q−1

i
 requires knowledge of the thermodynamic 

equations of state for multiphase fluids (e.g., Kieffer 1977; 
Commander and Prosperetti 1989; Temkin and Dobbins 
1966).

Kumagai and Chouet (2000, 2001) evaluated Q−1
i

 and 
Q−1

r
 for various gas–gas mixtures, ash–gas mixtures, and 

liquid–gas mixtures. They found that Q−1
i

 was negligible 
compared to Q−1

r
 for gas–gas mixtures, but that Q−1

i
 could 

be important, for example, in bubbly liquids and in dusty 
and misty gases under certain bubble-size and particle-size 
conditions. Kumagai and Chouet (2000, 2001) also noted 
that the high observed Q (low attenuation) for long-lasting 
LP codas observed at several volcanoes could be explained 
by the high Q values of dusty and misty gases with small 
(∼1 μm) particles. This highlighted the importance of these 
fluids (dusty and misty gases) in generating LP events.

Trigger mechanisms of LP seismicity

The utility of the fluid-driven LP source models reviewed 
above was restricted to a quantification of the crack reso-
nance and properties of the fluids. These numerical and ana-
lytic formulations did not address the excitation (trigger) 
mechanism of the LP events or tremor. For example, in the 
computational formulation of Chouet (1986), the spatiotem-
poral properties of the pressure transient triggering the crack 
resonance are parameterized as kinematic conditions (e.g., 
an arbitrary step function in pressure applied to a small patch 
of the crack wall). Quantifying the physics of the trigger or 
driving mechanism of LP seismicity, including individual 
LP events (discrete impulse) and tremor (sustained), remains 
a work in progress. A wide variety of trigger mechanisms 
have been proposed (Chouet and Matoza 2013; and refer-
ences therein), including those ultimately arising from self-
sustained oscillations (e.g., Julian 1994; Balmforth et al. 
2005; Rust et al. 2008; Dunham and Ogden 2012; De Lauro 
et al. 2011; Lyons et al. 2013; Takeo 2021), magmatic-
hydrothermal interactions (e.g., Latter 1981; Havskov et al. 
1983; Chouet 1985, 1996a; Leet 1988; Almendros et al. 
2001; Kumagai et al. 2002b; Nakano et al. 2003; Nakano and 
Kumagai 2005; Lin et al. 2005; Ohminato 2006; Petersen 
and McNutt 2007; Cusano et al. 2008; Waite et al. 2008; 
Nakamichi et al. 2009; Matoza and Chouet 2010; Alparone 
et al. 2010; Arciniega-Ceballos et al. 2012; De Lauro et al. 
2012; Cannata et al. 2012; Maeda et al. 2013; Jousset et al. 
2013; Syahbana et al. 2014; Matoza et al. 2015; Kato et al. 

2015; Caudron et al. 2015; Rodgers et al. 2015b; Padrón 
et al. 2015; Sgattoni et al. 2016; Jolly et al. 2017a; Park et al. 
2019; D'Auria et al. 2011, 2019; Dawson and Chouet 2019; 
Gresse et al. 2021; Butcher et al. 2021), magmatic degas-
sing (e.g., Chouet and Shaw 1991; Kawakatsu et al. 1992; 
Neuberg et al. 1994; Benoit and McNutt 1997; Gil Cruz and 
Chouet 1997; Garcés et al. 1998; Hagerty et al. 2000; Ripepe 
et al. 2001; Falsaperla et al. 2002; Chouet et al. 2003; Rowe 
et al. 2004; Molina et al. 2004; Ruiz et al. 2006; Lesage et al. 
2006; Saccorotti et al. 2007; Patanè et al. 2008; Arciniega-
Ceballos et al. 2008; Johnson et al. 2008b; Palo et al. 2009; 
Buurman and West 2010; Traversa et al. 2011; Davi et al. 
2012; Lyons et al. 2016; Battaglia et al. 2016b), and brit-
tle failure of melt (e.g., Webb and Dingwell 1990; Goto 
1999; Neuberg et al. 2006; Tuffen et al. 2003; Tuffen and 
Dingwell 2005; De Angelis and Henton 2011; Thomas and 
Neuberg 2012). We refer the reader to the work by Chouet 
and Matoza (2013) for a review of this literature discussing 
the various proposed mechanisms and the observational and 
modeling constraints.

Advances in fluid‑driven source models

The fundamental significance of solid–fluid interface waves 
as possible sources of LP seismicity was demonstrated in 
the work reviewed above. Work since about 2000 has fur-
ther explored the parameter space of solid–fluid interface 
waves, including consideration of other source geometries 
and investigation of the potential for self-sustained oscilla-
tion in volcanic fluid transport systems (e.g., Krauklis and 
Krauklis 1998; Jousset et al. 2003, 2004; Balmforth et al. 
2005; Rust et al. 2008; Dunham and Ogden 2012; Lipovsky 
and Dunham 2015). Some of these studies have referred to 
the crack wave as the “Krauklis wave” after Krauklis (1962) 
(e.g., Korneev 2008, 2011; Frehner 2014; Cao et al. 2021). 
A series of papers by Maeda and Kumagai (2013, 2017), 
Taguchi et al. (2018, 2021), and Torres et al. (2021) provide 
empirical formulations and generalized equations for the fre-
quencies and quality factors of crack resonance, enabling 
more rapid evaluation of source parameters (forward mode-
ling) compared to previous formulations involving a numeri-
cal solution based on finite differences (Chouet 1988).

Volcano‑tectonic (VT) seismicity

Since 1919, major advances in the understanding of VT 
earthquakes and their relationship to magmatic processes 
accompanied improved observations of event rates, loca-
tions, focal mechanisms, and magnitudes; as well as the 
development of the plate tectonics paradigm and corre-
sponding ideas on magma generation. By the middle of 
the twentieth century, it was recognized that some volcanic 
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earthquakes, termed “ordinary volcanic earthquakes” by 
Minakami (1950), and ultimately defined as “volcano-
tectonic” or VT earthquakes by Lahr et al. (1994), were 
nearly indistinguishable from tectonic earthquakes in that 
their waveforms contained high-frequency P and S phases. 
However, following from earlier ideas linking volcanic 
earthquakes to tensile failure (Jaggar 1920; Reid 1929) and 
accumulating observations of “great earthquakes” prior 
to eruptions (MacGregor 1949), a protracted debate about 
causality, i.e., whether these earthquakes triggered or were 
triggered by magmatism, arose during the mid-twentieth 
century. One camp, speaking from an experimental per-
spective, supported a “stress release hypothesis” that “ordi-
nary volcanic earthquakes” resulted in pressure decreases 
of sufficient magnitude to generate melting and magma 
formation, with magma then ascending along the earth-
quake fault to erupt (e.g., Yoder 1952; Uffen 1959; Uffen 
and Jessop 1963). Alternatively, others argued, in line with 
modern understanding, that melting resulted in volume (and 
thus pressure) changes which strain the crust to trigger VT 
earthquakes (e.g., Kuno 1958; Minakami 1960; Matsuzawa 
1953). For a review of contemporaneous understanding of 
whether and how purely tectonic earthquakes may trigger 
magmatic unrest, which is beyond the scope of this article, 
we refer the reader to Manga and Brodsky (2006).

Deployments of multiple seismic instruments on active 
volcanoes, and the consequent possibility of locating VT 
earthquakes, led to both advances in fundamental under-
standing of VTs and their use in forecasting. An early 
example involves the recognition that an (ultimately non-
eruptive) 1933–37 Montserrat swarm was shallow (e.g., 
Perret 1939) and of volcanic origin. Powell (1938) showed 
that this swarm comprised an elongated cluster of epicent-
ers, which MacGregor (1949) linked to the trend of sou-
frières (recently active vents) on the island, suggesting that 
the VT earthquakes were connected to a plane of crustal 
weakness or deep-seated fracture. Due to the expansion 
of the HVO seismic network, earthquakes preceding the 
1942 eruption of Mauna Loa were observed to migrate 
towards and along the volcano’s southwest and northeast 
rift zones, leading to an accurate forecast of an eruption 
along the volcano’s flanks rather than at its summit. Addi-
tional observations of propagating VT earthquakes were 
made in 1960 at Kīlauea, and at Krafla in 1977, among 
others. Ultimately, the new observations demonstrating 
linear elongation of VT clusters and temporal propagation 
lent support to a hypothesized close spatial relationship 
between VT earthquakes and migrating magma, culminat-
ing in the “mesh hypothesis,” i.e., the idea that VT swarms 
occur on faults connecting magma-filled tension cracks as 
proposed by Hill (1977). As the station densities of seismic 
networks increased, it became possible to detect and locate 
smaller seismic events, and thus expanding quantities of VT 

seismicity, more precisely. Toda et al. (2002), for example, 
documented the locations of over 7000 VT earthquakes, 
accompanying dike intrusion under the Izu islands, Japan, 
which propagated to ultimately form an elongated cluster. 
Later, Ágústsdóttir et al., (2016) described the locations 
of over 30,000 propagating VT earthquakes accompanying 
dike intrusion and propagation at Bárðarbunga–Holuhraun, 
Iceland, in 2014–2015.

The expansion of multi-instrument volcano-seismic 
networks also allowed calculation of VT earthquake focal 
mechanisms, ultimately shifting early hypotheses that these 
earthquakes occurred as tensile failure to a double-couple 
failure model. An early attempt to distinguish “push/pull” 
mechanisms on the basis of first motions from a single 
seismometer was made by Sassa (1936). However, later 
work by Wada and Sudo (1967), using first motions from 
five stations recording earthquakes during the 1965–1966 
eruption of Aso, Japan, documented mixed first motions 
for “tectonic-type” earthquakes, suggesting a double-couple 
component of motion. Additional evidence for a double-
couple mechanism, dominated by strike slip and/or normal 
slip, for VT earthquakes emerged in the 1970s (Fig. 12) 
(Zobin 1971; Minakami 1974; Filson et al. 1973; Francis 
1974; Ward and Gregersen 1973). This led to the develop-
ment of a theoretical framework for dike mechanics (e.g., 
Pollard 1987; Rubin 1993, 1995 and references therein) in 
the 1990s that linked VT earthquakes to stresses induced 
in the host rock by ascending and/or pressurizing magma. 
This theoretical framework established a new paradigm 
that VT earthquakes were not necessarily spatially close 
to their source magma. This paradigm was enforced by 
observational evidence that induced stresses controlled VT 
seismicity (Barker and Malone 1991), and included obser-
vations of “distal VT” earthquakes preceding eruptions 
at Pinatubo in 1991 (Harlow et al. 1996), Mount Spurr in 
1992 (Power et al. 1995), and Soufrière Hills and Unzen 
in 1995 (Umakoshi et al. 2008; Roman et al. 2008). Based 
on a comparative analysis of distal VT seismicity preced-
ing 111 eruptions at 83 volcanoes, in addition to distal VT 
swarms preceding intrusions at 21 other volcanoes, White 
and McCausland (2016) made a case that distal VT seismic-
ity was an important precursor for Earth’s most explosive 
eruptions. In this regard, they argued that distal VT seis-
micity preceded all VEI ≥ 5 explosive eruptions that they 
considered. They additionally argued that pre-eruptive dis-
tal VT seismicity originated on tectonic fault structures up 
to tens of kilometers laterally from the eruption site, rather 
than directly beneath the eruption site.

Beginning in the early 1990s, more comprehensive VT 
focal mechanism catalogs (Barker and Malone 1991; Aspi-
nall et al. 1998) began to show that many VT earthquake 
focal mechanisms had P-axes approximately perpendicular 
to regional maximum compressive stresses, linking VTs to 
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stresses resulting from compression of the wall rock around 
a dike. Later work (Roman and Cashman 2006; Roman et al. 
2021) demonstrated that this phenomenon corresponded to 
magmas with high bulk viscosities, and that VTs resulting 
from emplacement of low-viscosity magmas most likely rep-
resented induced stresses ahead of the dike tip rather than in 
the dike wall rock.

While VT earthquake magnitudes have not received 
nearly as much attention as their locations and focal mecha-
nisms, several important observations about VT magnitudes 
have informed understanding of their mechanism and their 
utility in eruption forecasting. By the 1970s, it had been rec-
ognized that magnitudes of VT earthquakes were generally 
low M < 4 (Zobin 1971; McNutt and Roman 2015), although 
exceptions have since been found (e.g., Yokoyama 2001; 
Nishimura et al. 2001; Wauthier et al. 2013). Early exami-
nations of temporal patterns of precursory seismic energy 
release noted that, while some eruptions take place imme-
diately following a decrease in seismic energy (Minakami 

1961; Gorshkov 1960), a general increase in earthquake 
magnitude and cumulative energy release may be useful for 
forecasting eruption onset (Tokarev 1963; 1966). Further-
more, concepts from earthquake statistics led to recognition 
that a VT swarm’s b-value may be abnormally high com-
pared to “tectonic” earthquake sequences, suggesting that 
increases in fluid pressure in the seismogenic volume around 
a magma pocket may play a role in driving VT seismicity 
(e.g., Mogi 1962; Suzuki 1959; Warren and Latham 1970).

Advances in eruption forecasting using 
seismicity: 1919 to 2022

In this section, we follow recent terminology for the dis-
tinction between an eruption “forecast” and “prediction” 
using seismicity. This is stated by National Academies of 
Sciences, Engineering, and Medicine (2017) as follows:

Fig. 12  Evidence from 
Minakami (1974) of double-
couple mechanism for “A-type” 
volcanic earthquakes: geo-
graphical distribution of initial 
motions of the Kakuto caldera 
earthquake. E: epicenter, E′: 
corrected epicenter. Closed 
circles: upward initial motion. 
Open circles: downward initial 
motions. Figure reproduced 
from Minakami (1974)
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“An eruption forecast is a probabilistic assessment of 
the likelihood and timing of volcanic activity. The fore-
cast may also include information about the expected 
style of activity, the duration of an eruption, and the 
degree to which populations and infrastructure will be 
affected (Sparks 2003). A prediction, in contrast, is a 
deterministic statement about where, when, and how 
an eruption will occur, and a prediction will either be 
correct or incorrect”.

An ideal forecast of volcanic activity includes the loca-
tion, timing, character, and magnitude of the potential erup-
tion, and a quantitative estimate of the probability of each of 
these factors. While the potential of instrumental seismology 
to inform on eruption forecasting was recognized early-on, 
true forecasts (as opposed to hindcasts), were, and continue 
to be, limited by sparse and distant instrumentation (Hirn 
et al. 1987), lack of real-time telemetry, and inability to dis-
tinguish “false alarms” (e.g., MacGregor 1949; Macdonald 
1954; Shepherd et al. 1971; Savage and Cockerham 1984; 
Moran et al. 2011). In addition, forecasting was hindered by 
the related issue of characterizing background seismicity 
levels (Wood 1974; Decker 1973). For example, the 1949 
eruption of Mauna Loa was preceded by an increase in fre-
quency of earthquakes, but the increase was not sufficiently 
great, or the pattern sufficiently definite, to make possible a 
forecast of the eruption (Macdonald 1954). Most early erup-
tion forecasts focused on increases in the number of instru-
mentally detected discrete events, and indicated only that an 
eruption was likely, with little or no indication of the timing 
of the anticipated eruption. An early and rare example is of 
numerous tremor events that were recorded at Merapi Vol-
cano, Indonesia, in January 1930, with an increase in their 
occurrence to 25 November. These, together with increased 
fumarole temperatures, were used to forecast the eruption 
(BNEIVS 1949; Van Padang 1933; Voight et al. 2000).

Forecasts based on seismic unrest became both more 
diverse, and more accurate, beginning in the 1960s 
with the advent of conceptual models, such as those of 
Minakami (1960, 1974) and the landmark recognition that 
an increase in B-type (Fig. 4) earthquakes could serve as 
a short-term precursor. As summarized by Girina (2013), 
after the first seismic station was installed in 1960 (Toka-
rev 1981) near Bezymianny Volcano, Russia, earthquake 
classification led to recognition of reliable patterns of seis-
mic activity leading to phases of lava dome growth and 
explosive eruptions that could be used to forecast changes 
in the ongoing eruption (Gorelchik 2001) (Fig. 13). Simi-
larly, the occurrence of volcanic tremor was used to for-
mulate successful short-term (up to 7 days in advance) 
forecasts of eruptions at Ruapehu, New Zealand (Dibble 
1969; Clacy 1972). A notable success occurred at Tolba-
chik, Russia, in 1976, where a dense network of rapidly 

deployed seismometers allowed forecasting not only of the 
time but also the location of the eruption approximately 
one week in advance (Tokarev 1978). The methods for 
rapid data analysis developed during these responses 
provided an early basis for the formalization of the Fail-
ure Forecast Method (FFM) later applied at Mount St. 
Helens in the 1980s (Voight 1988). Additional notable 
successes in short-term forecasting during these decades 
also occurred in Iceland at Heimaey in 1973 (Björnsson 
and Einarsson 1974) and Krafla in 1974 (Einarsson 2018).

Following these efforts between 1960 and 1980, a series 
of challenges and successes in seismicity-based eruption 
forecasting continued through the 1980s and 1990s. For 
example, the start of the 1980–1986 eruption of Mount St. 
Helens, USA, was successfully forecasted based on earth-
quakes that began approximately 2 months prior to the major 
explosive eruption on May 18, 1980 (Endo et al. 1981). 
Forecasts of subsequent eruptions at Mount St. Helens, 
based on seismic energy release in combination with obser-
vations of tilt and dome expansion, became increasingly 

Fig. 13  Location and time of Tolbachik 1975 eruption forecast 3 days 
beforehand on the basis of epicenter locations. Diagram shows the 
location of Ploskii Tolbachik volcano (I), seismic stations (II), new 
crater (III), earthquake epicenters (IV), and boundaries of the area 
of old, well-preserved scoria cones of fissure eruptions (V). Figure 
reproduced from Tokarev (1978) (modified with annotation)
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precise through the end of the eruptive phase in 1986 (e.g., 
Swanson et al. 1985; Malone et al. 1981, 1983). In Hawai‘i, 
an eruption forecast for Mauna Loa, based on 2 years of 
increased seismicity and deformation, was published in 1983 
and was qualitatively correct regarding the timing of the next 
eruption (Decker et al. 1995). In contrast, although preceded 
by a detected increase in seismicity almost a year before its 
cataclysmic eruption in November 1985, Nevado del Ruiz, 
Colombia ultimately presented a complex situation that 
resulted in substantial issues with false alarms and commu-
nication of warnings (Voight 1996). An eruption at Redoubt 
Volcano, Alaska, beginning in 1989 led to the formalization 
of the Real-Time Seismic Amplitude Measurement (RSAM) 
and Spectral Seismic Amplitude Measurement (SSAM) 
approaches, which allowed rapid characterization of seismic-
ity levels in multiple frequency bands for forecasting (Endo 
and Murray 1991; Stephens et al. 1994). RSAM and SSAM 
soon proved to be critical tools for seismic-based forecast-
ing, as during the 1991 eruption of Pinatubo, Philippines 
(Pinatubo Volcano Observatory Team 1991; Cornelius and 
Voight 1994; Power et al. 1994). Regardless of these dec-
ades of progress, eruption forecasting based on seismicity 
continues to be a challenge, particularly for smaller erup-
tions (Cameron et al. 2018), phreatic eruptions (Roman et al. 
2019; Kilgour et al. 2021), and occasional larger eruptions 
that appear to be preceded only by short and subtle seismic 
precursors (Johnson et al. 2010).

Volcano infrasound since the 1990s

As reviewed above, volcano acoustics research remained 
relatively dormant until a significant revival beginning in the 
1990s. This revival was facilitated by factors including the 
availability of new infrasound instrumentation technology 
and computational capability to perform digital infrasound 
signal processing and noise discrimination (e.g., Garcés 
et al. 2003, Matoza et al. 2007; Christie and Campus 2010). 
Since that time, much progress has been made. The util-
ity of infrasound technology in volcano monitoring is now 
firmly established, and infrasonic systems are increasingly 
being implemented as a volcano monitoring tool worldwide. 
Reviews of various aspects of volcano acoustics are pro-
vided in the work by Johnson and Ripepe (2011), Fee and 
Matoza (2013), Garces et al. (2013), McNutt et al. (2015), 
Allstadt et al. (2018), Matoza and Fee (2018), Matoza et al. 
(2019a), Marchetti et al. (2019), Taisne et al. (2019), Ripepe 
and Marchetti (2019), De Angelis et al. (2019), and Johnson 
(2019). We here refer the reader to these reviews and do 
not attempt a comprehensive review of volcano infrasound 
research since the 1990s, instead limiting the discussion to a 
highlight of major signals studied and trends in the research 
progression.

Explosive eruptions are the most obvious volcanic 
sources producing easily observable high-amplitude infra-
sound signals. Infrasound signals from explosive eruptions 
may propagate in the atmosphere over distances of thou-
sands of kilometers under favorable conditions, enabling 
regional (ranges 15–250 km) and remote (ranges > 250 km) 
ground-based infrasonic monitoring (e.g., Matoza et al. 
2007; Fee et al. 2010a,b; Matoza et al. 2011a; 2018; Ripepe 
et al. 2018; Lyons et al. 2020). The utility and limitations 
of infrasound for globally detecting and cataloging Earth’s 
volcanism is presently under investigation (Dabrowa et al. 
2011; Matoza et al. 2017; de Negri et al. 2022). We refer 
the reader to reviews by Matoza et al. (2019a) and Taisne 
et al. (2019) for discussions on progress and outstanding 
challenges in developing global eruption notification and 
acoustic early warning using regional and global infrasound 
networks for the time covering up to about 2017 (the time of 
writing of those reviews).

Even considering only explosive eruption sources, a wide 
variety of infrasound signals have been observed (Fig. 14), 
capturing the underlying variety of physical explosion mech-
anisms and mass flux source-time functions (Johnson 2003; 
Matoza et al. 2014b; Fee et al. 2017). These signals range 
between (1) discrete explosion waves with relatively simple 
waveforms lasting from several to tens of seconds (Fig. 14a, 
b) (e.g., Firstov and Kravchenko 1996; Ripepe and Marchetti 
2002; Johnson 2003; Marchetti et al. 2009, 2013), and (2) 
sustained, broadband, infrasonic tremor signals lasting from 
minutes to hours (Fig. 14e, f) (e.g., Vergniolle and Caplan-
Auerbach 2006; Matoza et  al. 2009a; Fee et  al. 2010b; 
Caplan-Auerbach et al. 2010). The latter signals (2) resemble 
an infrasonic form of jet noise from flight vehicles and have 
thus been termed volcanic jet noise (Matoza et al. 2009a; 
2013a; Fee et al. 2013a, b; McKee et al. 2017). Intermedi-
ate signal types (Fig. 14c–e) consisting of a short-duration 
impulsive explosion waveform followed by sustained jetting 
(of variable duration) are commonly observed and appear to 
be a characteristic feature and behavior of intermediate-com-
position (andesitic) low-level explosive volcanism, as well 
as strombolian eruptions (e.g., Ishihara 1985; Ripepe et al. 
1996, 2007; Johnson 2007, Johnson et al. 2008b; Sahetapy-
Engel et al. 2008; Marchetti et al. 2009; Yokoo et al. 2013; 
Lopez et al. 2013; Firstov et al. 2013; Taddeucci et al. 2014).

The acoustics of all of these complex explosive eruption 
sources are currently being investigated through dedicated 
field studies (e.g., Jolly et al. 2017b; Iezzi et al. 2019a; Wal-
lace et al. 2020; Taddeucci et al. 2021; Matoza et al. 2022a) 
and in the laboratory (e.g., Médici et al. 2014; Médici and 
Waite 2016; Swanson et al. 2018; Peña Fernández et al. 
2020), as well as through numerical modeling (e.g., Tad-
deucci et al. 2014; Cerminara et al. 2016; Brogi et al. 2018; 
Watson et al. 2021). The effects of, especially near-source, 
topography and atmospheric propagation on shaping the 
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observed signals are being investigated for a variety of scales 
from local (< 15 km) to remote (> 250 km) (e.g., Fee and 
Garces 2007; Matoza et al. 2009b; 2011a; Kim and Lees 
2011, 2014; Johnson et al. 2012; Assink et al. 2012, 2013; 
Fee et al. 2013b; Lacanna and Ripepe 2013; Lacanna et al. 
2014; Lonzaga et al. 2015; Ortiz et al. 2018, 2021; Sabatini 
et al. 2019; Iezzi et al. 2019a,b; Waxler and Assink 2019; 
Ishii et al. 2020; Martire et al. 2022; Maher et al. 2021). 
Non-linearity in source and propagation is also being exam-
ined in observations and by numerical simulation (Mar-
chetti et al. 2013; Fee et al. 2013a; Maher et al. 2020, 2022; 

Watson et al. 2021). Complex explosive processes and sig-
nals from eruptions in partially water-submerged (marine, or 
crater lake) settings have been documented (e.g., Green et al. 
2013; Lyons et al. 2019; Fee et al. 2020; Park et al. 2021; 
Rose and Matoza 2021).

As reviewed above, infrasonic source resonance signa-
tures in the long-period band, e.g., infrasonic harmonic 
tremor (e.g., Sakai et al. 1996; Garces et al. 1998; Lyons 
et al 2013) and seismo-acoustic expressions of LP events 
(Yamasato 1998; Johnson et al. 2008b; Matoza et al. 2009b) 
were noted early and observations of these signals have 
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Fig. 14  Example infrasonic pressure waveforms associated with dif-
ferent explosive eruptive styles at selected volcanoes. The top four 
traces (a–d) are of 30-min duration, while the lower two traces (e–f) 
are of 13.8-h duration. The right-hand labels indicate the volcano and 
recording distance (range) r [km]. In each case, the right-hand y-axis 
is the observed acoustic pressure amplitude at that range, while the 
left-hand y-axis is the amplitude corrected to a reference distance 
of 1 km from the source by assuming 1/r geometrical spreading for 
approximate comparison. (a) Typical strombolian explosions from 
Stromboli, Italy (Ripepe and Marchetti 2002). (b) High-rate repetitive 
“strombolian” explosions at Yasur, Vanuatu (Matoza et  al. 2022a). 

(c) “Strombolian” explosions from Tungurahua, Ecuador, with codas 
containing harmonic tremor (Fee et  al. 2010b). (d) Complex explo-
sion waveforms from Karymsky, Kamchatka, with an initial sharp 
compressional onset followed by short-duration jetting (Lopez et  al. 
2013; Matoza et  al. 2014b) or “blow-off” (Firstov et  al. 2013). (e) 
sub-Plinian eruption from Tungurahua, Ecuador, consisting of mul-
tiple sustained sequences of volcanic jet noise interspersed with 
discrete explosions (Matoza et  al. 2009a). (f) Sub-Plinian to Plinian 
eruption at Tungurahua: a sustained volcanic jet noise signal with 
more gradually evolving signal properties
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progressively expanded to cover a range of magma compo-
sitions and eruption styles. Effusive eruptions, lava flows, 
lava flowing in tubes, and convecting lava lakes have been 
observed to produce near-continuous broadband and/or har-
monic infrasound (Garces et al. 2003; Cannata et al. 2009; 
Matoza et al. 2010; Fee et al. 2010c; Ulivieri et al. 2013; 
Patrick et al. 2016, 2019; Spina et al. 2017; Valade et al. 
2018; Barrière et al. 2018; Lyons et al. 2021) as well as 
seismicity (Harris et al. 2005; Jones et al. 2006). Eruptions 
sites at Kīlauea, for example, have produced prodigious 
broadband and harmonic infrasonic tremor associated with 
effusive and degassing activity and occasional short-duration 
explosions (e.g., Garces et al. 2003; Matoza et al. 2010; Fee 
et al. 2010c; Patrick et al. 2016, 2019; Lyons et al. 2021). 
Overpressurized degassing (gas puffing) also has its own 
infrasonic signature (Ripepe et al. 2002, 2007; Harris and 
Ripepe 2007b). Cavities and gas-filled conduits above degas-
sing magma appear to significantly influence the infrasonic 
signature (Matoza et al. 2010; Fee et al. 2010c; Goto and 
Johnson 2011; Richardson et al. 2014; Spina et al. 2015; 
Johnson et al. 2018). In a series of papers, Buckingham 
and Garcés (1996), Garcés and McNutt (1997), and Gar-
cés (2000) developed a canonical model, deriving an ana-
lytic solution for the upgoing sound field (i.e., the airborne 
Green’s function) from a resonant magma or gas-filled con-
duit. In these conduit resonance models (Buckingham and 
Garcés 1996), the geometrical idealization of the conduit 
was similar to that of Chouet (1985), with the exception 
that the “radiator” was then a diaphragm-like motion of the 
magma surface radiating sound into the atmosphere. This 
formulation demonstrated that high-frequency (> 50 Hz) 
acoustic energy is propagated preferentially in a narrow 
beam of sound vertically above a conduit, while infrasonic 
frequencies (< 10 Hz) diffract spherically from the conduit 
opening  (vent), partially explaining why these frequen-
cies are more readily recorded with ground-based sensors. 
The formulation of Garcés (2000) considered the resonant 
properties of a tube of fluid connected to the atmosphere 
with arbitrary variable cross-sectional area that may also be 
moving at high velocity relative to the sound speed of the 
flow (i.e., at a high Mach number). More recent work by 
Watson et al. (2019, 2020) has developed an analytic solu-
tion for the shallow crater resonance signature. Similarly to 
Garces (2000), the Watson et al. (2019, 2020) formulation 
is axisymmetric and permits a variable cross-sectional area 
with depth.

A variety of surficial mass movements have now been 
shown to generate infrasound (Allstadt et al. 2018, and ref-
erences therein). For example, infrasound signals have been 
documented from lava dome collapse (Green and Neuberg 
2005), pyroclastic flows (Yamasato 1997; Ripepe et al. 2009, 
2010; Delle Donne et al. 2014), debris avalanches (Toney 
et al. 2021), rockfalls (Moran et al. 2008c; Johnson and 

Ronan 2015), lahars (Johnson and Palma 2015), and explo-
sive blowout of gas-charged blocks impacting the ground 
(Oshima and Maekawa 2001). As reviewed by Allstadt et al., 
(2018), this represents significant potential in augmenting 
monitoring capability for hazardous surficial mass move-
ments. However, much more work is required to quantify 
the seismo-acoustic source mechanisms from these sources 
(e.g., Moretti et al. 2012; Allstadt 2013; Farin et al. 2019; 
Coco et al. 2021; Brosch et al. 2021; Toney et al. 2021) and 
develop signal processing strategies to identify robustly the 
sometimes low-amplitude signals of surficial mass move-
ments within realistic persistent and variable background 
noise (Matoza et al. 2013b) including from (but not limited 
to) background fluvial infrasound from drainages through 
which lahars may propagate (Sanderson et al. 2021), distant 
storms (microbaroms) (Landès et al. 2012), and, in coastal 
locations, surf infrasound (Garcés et al. 2006).

Future trends

In the first section of this review, we provided a brief snap-
shot of the current state of volcano seismology and acous-
tics (also termed seismo-acoustics). One hundred years of 
advances amounts to a vast amount of progress and changes 
in instrumentation, analysis and inversion methodologies, 
as well as in our quantitative understanding of seismic and 
acoustic sources in volcanic systems. Despite this progress, 
major questions remain regarding source processes, patterns 
of volcano-seismic unrest, internal volcanic structure, and 
the relationship between seismic unrest and volcanic pro-
cesses. We refer the reader to two recent papers by Thelen 
et al. (2022) and Watson et al. (2022) published in the Bul-
letin of Volcanology Special Issue, “Looking Backwards and 
Forwards in Volcanology: A Collection of Perspectives on 
the Trajectory of a Science”. These two short perspective 
papers summarize recent progress and look to the future of 
volcano seismology and acoustics, speculating on advances 
to come based on current trajectories and trends.

Conclusions

Over the past hundred years, volcano seismology and acous-
tics have advanced profoundly. By 1919, the basic recog-
nizable components of these fields were already in place, 
with early instrumental waveform capture of volcanic seis-
micity and atmospheric pressure waves on seismographs 
and barographs demonstrating that geophysical monitoring 
could help track eruption progression and mitigate haz-
ards. Technological advances during the past hundred years 
have seen the toolkit of volcano seismology advance from 
smoked paper drum records to robust continuous digital 
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waveform streams, with increasingly sensitive and wider 
band instrumentation and denser networks capturing new 
signals and phenomena. The measurement of atmospheric 
pressure waves (acoustic-gravity waves) from explosive 
eruptions was a prominent feature of early volcano seismol-
ogy and volcanology studies through 1919, but advances in 
volcano seismology rapidly outpaced those in atmospheric 
acoustics until about the 1990s. Infrasound technology has 
since become increasingly integrated into volcano-seismic 
monitoring operations. Regional (15–250 km distance) 
and remote (at > 250 km) infrasound detection and explo-
sive eruption notification systems are now in operation and 
undergoing testing and refinement. Computational and quan-
titative volcano seismological approaches, beginning in the 
1970s, have also led to major progressions in understanding 
of source mechanisms and their relation to volcanic pro-
cesses. Geophysical monitoring is an essential component 
of societal resilience to volcanic hazards. Quantitative vol-
cano seismology and acoustics are indispensable for robust 
volcano monitoring and should continue to provide progres-
sively sharper insights into how volcanoes work.

Postscript: January 2022 eruption of Hunga, Tonga

While this manuscript was in a final editorial stage, the 
climactic eruption of Hunga volcano, Tonga occurred on 
15 January 2022. This event produced atmospheric waves 
unprecedented in the modern geophysical record and has 
resulted in exceptional multi-technology observations of 
rarely captured physical phenomena (e.g., Amores et al. 
2022; Astafyeva et al. 2022; Carr et al. 2022; Carvajal et al. 
2022; Ern et al. 2022; Harding et al. 2022; Harrison 2022; 
Kubota et al. 2022; Kulichkov et al. 2022; Lin et al. 2022; 
Liu et al. 2022; Le et al. 2022; Matoza et al. 2022b; Omira 
et al. 2022; Otsuka 2022; Poli and Shapiro 2022; Ramírez-
Herrera et al. 2022; Saito 2022; Schnepf et al. 2022; The-
mens et al. 2022; Vergoz et al. 2022; Wright et al. 2022; 
Yamazaki et al. 2022; Yuen et al. 2022). The prominent 
Lamb wave was observed propagating around the Earth for 
the same number of passages (four plus three antipodal) as 
the historic 1883 Krakatau eruption (Matoza et al. 2022b). 
As measured by the Lamb wave amplitudes, the Hunga 
explosion was comparable in size to that of the 1883 Kraka-
tau eruption and over an order of magnitude greater than 
that of the 1980 Mount St. Helens eruption (Matoza et al. 
2022b). As we have reviewed herein, the time from the 1883 
eruption of Krakatau (Scott 1883; LeConte 1884; Strachey 
1888) to the 2022 eruption of Hunga represents more than a 
century of remarkable advances in the instrumental record-
ing, technology, analyses, and understanding of seismic and 
atmospheric waves produced by volcanic eruptions.
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