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Abstract
The physical processes that operate within, and beneath, a volcano control the frequency, duration, location and size of  
volcanic eruptions. Volcanotectonics focuses on such processes, combining techniques, data, and ideas from structural geol- 
ogy, tectonics, volcano deformation, physical volcanology, seismology, petrology, rock and fracture mechanics and classical  
physics. A central aim of volcanotectonics is to provide sufficient understanding of the internal processes in volcanoes so  
that, when combined with monitoring data, reliable forecasting of eruptions, vertical (caldera) and lateral (landslide) col- 
lapses and related events becomes possible. To gain such an understanding requires knowledge of the material properties of  
the magma and the crustal rocks, as well as the associated stress fields, and their evolution. The local stress field depends on  
the properties of the layers that constitute the volcano and, in particular, the geometric development of its shallow magma  
chamber. During this decade an increasing use of data from InSAR, pixel offset and structure-from-motion, as well as dense,  
portable seismic networks will provide further details on the mechanisms of volcanic unrest, magma-chamber rupture, the  
propagation of magma-filled fractures (dikes, inclined sheets and sills) and lateral and vertical collapse. Additionally, more  
use will be made of accurate quantitative data from fossil and active volcanoes, combined with realistic numerical, analytical  
and machine-learning studies, so as to provide reliable models on volcano behaviour and eruption forecasting.

Keywords Volcano monitoring · Magma-chamber · Magma plumbing system · Dike propagation · Caldera collapse · 
Eruption forecast

Introduction

Volcanotectonics is a discipline that has emerged over the 
past four decades, but its roots are much older. In this brief 
overview, the focus is on the tectonic/structural geology 
studies that shaped our initial understanding of volcanotec-
tonics, the development of mechanical models provided to 

explain magma emplacement, the testing of these models 
during important eruptive events and finally a summary of 
how we see the discipline developing in the future. Because 
of the space limitations, many volcanotectonic topics are here 
treated very briefly (and some hardly at all), the focus being 
on those that we regard as the most important and relevant for 
this brief. While we aim at giving a general view of the main 
topics presented, for some points there may be other valid 
perspectives — for example, as to the scope of volcanotec-
tonics — that are not reflected in the present short overview.

While the details of how volcanoes function is still a topic 
of active research, how they form is now well understood. Yet, 
as late as the early nineteenth century the formation of vol-
canoes was not generally understood. ‘Craters of elevation’, 
a prominent idea at the time, suggested that volcanoes/vol-
canic islands such as Etna, Santorini and some of the Canary 
Islands formed through a sudden upheaval of an originally  

Editorial responsibility: J.H. Fink

This paper constitutes part of a topical collection: 
  
Looking Backwards and Forwards in Volcanology: A  
Collection of Perspectives on the Trajectory of a Science

 * Kyriaki Drymoni 
 kyriaki.drymoni@unimib.it

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s00445-022-01582-4&domain=pdf


Bulletin of Volcanology (2022) 84: 72  

1 3

horizontal pile of lava flows erupted on the sea floor (Elie 
de Beaumont and Leopold von Buch — the latter intro-
duced the Spanish term ‘caldera’ into volcanology). Later 
studies by Charles Lyell and others, however, demonstrated 
that polygenetic volcanoes form over long periods of time 
through the accumulation of eruptive and intrusive materials 
(cf. Geikie 1905; Adams 1938; Wilson 1998).

Volcanotectonics is a subfield of volcanology that uses 
techniques from tectonics/structural geology combined with 
appropriate principles from physics, including rock physics, 
fracture mechanics and fluid mechanics. The focus of vol-
canotectonics is on understanding physical processes that 
occur within and beneath volcanoes and the combination of 
research on fossil and deeply eroded volcanoes with those of 
active volcanoes.

Tectonic/structural geology studies 
of volcanoes

The roots of volcanotectonics lie in studies of volcanic struc-
tures in the second half of the nineteenth century. An early 
focus was on dikes (Fig. 1a, c), for the obvious reason that 

they were known to be the principal feeders to eruptions 
(Geikie 1905). Much of the structural/tectonic data on dikes 
collected during the nineteenth century through field stud-
ies in the UK, with references to other areas such as the 
USA, Iceland, Italy and India, is presented by Geikie (1897). 
Whilst Geikie did not use the term ‘extension fracture’, the 
relationships between cross-cutting dikes demonstrate that 
dikes most commonly occupy extension fractures and rarely 
use faults as paths. Further description of Geikie’s interpre-
tations is presented in the supporting information, as well as 
a summary of several dike-related structural topics absent 
from his overview. Briefly, these topics include inclined 
sheets, dike-fracture formation and the relation between dike 
strike and stress fields and other mechanical aspects.

Mechanical models of magma chambers 
and sheet intrusions

Magma chambers are a necessary condition for the for-
mation and activity (such as dike/sheet injections and 
eruptions, caldera collapses and geothermal fields) of 
polygenetic volcanoes (Gudmundsson 2020). Formation, 
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Fig. 1  Examples of volcanotectonic structures. a A local radial  dike 
(thickness: 1.5 m) dissecting the northern caldera wall of the Santorini 
volcano, Greece. b The Las Cañadas caldera (rim indicated) and the 
stratovolcano Teide, the Canary Islands. The major axis of the caldera 
is about 17 km, the minor axis about 9 km, and maximum height of the 
caldera wall is about 500 m (photo: NASA). c Part of a regional dike 
swarm (mean thickness 5.5  m) dissecting a basaltic lava pile in East 

Iceland. Most of the dikes, here about 1.2 km below the surface at the 
time of their emplacement, are indicated by white arrows. d The Torres 
del Paine laccolith/sill in Chile, a fossil shallow magma chamber, 
mostly of granite but underlain by a mafic pluton (photo: Evelyn 
Proimos/Flickr). The felsic part seen here is about 2-km thick, with a 
well-exposed floor and roof, and was emplaced at 2–3 km depth below 
the active volcanic area at the time (Michel et al. 2008)
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mechanical development and rupture (during unrest) of 
magma chambers are active research topics within vol-
canotectonics but with original ideas conceived in the 
nineteenth century. Perhaps the first attempt to explain 
volcanic structures observed in the field in terms of a 
mechanical model was made by Gilbert (1877) in his study 
of the formation of the laccoliths of the Henry Mountains 
of Utah in the USA. Since many shallow magma chambers 
are laccoliths which, in turn develop from sills, these may 
be regarded as the first mechanical models on the forma-
tion of magma chambers.

Most volcanic eruptions are supplied with magma 
through dikes. Understanding the mechanics of dike 
emplacement is thus of fundamental importance for suc-
cessful eruption forecasting. There can be no progress in 
understanding dike/sheet propagation and eruption unless 
it is clear what mechanical type of fracture they are. The 
first mechanical model of dikes was provided by Anderson 
(1905, 1951). He understood that most dikes are fluid-
driven fractures, that is, extension fractures, formed in a 
direction perpendicular to the minimum principal com-
pressive stress. (This conclusion was also reached by 
Hubbert and Willis (1957) who pointed out that dikes are 
analogous to human-made hydraulic fractures.) Anderson 
suggested, using results from Inglis (1913), that, theo-
retically, high tensile stress will concentrate at the tip of 
an overpressured dike — his proposed ‘wedging action’ 
(Anderson 1951) — encouraging its propagation.

Anderson further recognised that sills (hence, many 
shallow magma chambers) and inclined sheets are also 
extension fractures and modelled the latter as such (Ander-
son 1936). These conclusions were generally accepted, 
although some suggested inclined sheets were shear frac-
tures (e.g. Robson and Barr 1964; Phillips 1974). These 
suggestions could plausibly be entertained at that time 
when extensive tectonic data on inclined sheets were not 
available. Studies of thousands of inclined sheets in many 
active and extinct volcanoes over the past decades show, 
however, that the great majority of inclined sheets are 
extension fractures (Gudmundsson 2020).

As regards local stresses in volcanoes, Anderson (1936) 
was the first to apply a nucleus-of-strain model (the gen-
eral solutions were initially derived by Melan, 1932, and 
also by Mindlin, 1936) to explain the orientation of the 
stress trajectories that largely determine the paths of 
inclined sheets and dikes. Anderson (1936) also used the 
model to provide the first mechanical explanation for the 
formation of ring-dikes and, therefore, of ring-faults asso-
ciated with collapse calderas (Figs. 1b and 2).

Subsequently, Mogi (1958) used the nucleus-of-strain 
model to explain the surface deformation of volcanoes result-
ing from pressure changes in a magma chamber. In volcan-
ology, this is known as a point-pressure or Mogi model and 

has been widely used for decades. The model is of great use 
for estimating the depth to the pressure source, the magma 
chamber (Chaussard and Amelung 2014). Because it assumes 
an elastic half space (no layering) and a chamber without a 
well-constrained size or shape, the Mogi model is less use-
ful to infer the stress conditions for magma-chamber rupture 
(and dike/sheet injection) or ring-fault formation. For the latter, 
numerical models for chambers of various sizes and shapes 
(Figs. 1d and 2), hosted by layered crustal segments (Fig. 1a, 
c), are considered more useful (Gudmundsson 2020).

Similarly, elastic-dislocation models, initially used for faults 
(Steketee 1958a, b; Press 1965), have been widely applied to 
dikes (Okada 1985, 1992; Dzurisin 2006; Segall 2010). The pri-
mary use of such models is for the inversion of surface-defor-
mation data to infer dike (and inclined sheet and sill) opening/
thickness, attitude and depth assuming, again, that the crustal 
segment behaves as an elastic half-space. Numerical models on 
dikes began in the late 1970s (Pollard and Holzhausen 1979; 
cf. Pollard and Fletcher 2005; Rivalta et al. 2015). While the 
early models assumed elastic half-spaces, increasingly realistic 
layered models are now fast becoming the rule (e.g. Manconi 
et al. 2007; Masterlark 2007; Kinvig et al. 2009; Marti et al. 
2016; Bazargan and Gudmundsson 2019; Drymoni et al. 2020; 
Clunes et al. 2021).

All the early models were significant steps forward in tec-
tonic studies of volcanoes. They are still widely used, but the 
general trend now is towards more realistic models (including 
layered crustal segments, magma sources of various shapes 
and existing faults) using numerical techniques. These make 
it possible to make models that, in combination with results 
from theories of composite materials, fracture and analytical 
mechanics, and the in situ and upscaled physical properties 
of volcanic rocks (Heap et al. 2020; Heap and Violay 2021), 
permit forecasts of magma-chamber rupture (Fig. 1d) dur-
ing unrest periods (Browning et al. 2015) and determination 
of the likely propagation paths of the resulting intrusions 
(Figs. 1a and 2; Gudmundsson 2020; Davis et al. 2021).

Recent events that have shaped 
volcanotectonics

The first textbooks that explicitly define the discipline of vol-
canotectonics were published only in the past decade (Gud-
mundsson 2011, 2020; Acocella 2021). This is a testament 
to the discipline’s novelty. The development of the disci-
pline has also been influenced by observations from several 
comparatively recent volcanic eruptions, caldera collapses 
and unrest periods. All these observations have provided 
constraints on the underlying physics that control magma 
emplacement and eruptions and have led to an enhanced 
understanding that now forms the basis of reliable eruption 
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forecasting, an ultimate goal in volcanology (Sparks 2003; 
Roman and Cashman 2018).

The formation of calderas and landslide scarps can pro-
vide access to the inner workings of the volcano. For exam-
ple, the 2000 summit collapse of the Miyakejima volcano 
in Japan exposed series of arrested dikes and feeder-dikes 
within the caldera walls (Geshi et al. 2002, 2020). In fact, 
many caldera walls are ideal for studying the inner work-
ings of volcanoes since the scarps record important infor-
mation about past magma paths and fault slips (Drymoni 
et al. 2021). More recently, the well-monitored caldera col-
lapse at the summit of Kīlauea (USA) in 2018 (Anderson 
et al. 2019; Tepp 2021) permitted unprecedented temporal 
coverage of a collapse and allowed frictional properties of 
the collapse faults to be constrained (Segall and Ander-
son 2021). A significant contribution to our understanding 
of caldera collapse derives from analogue models which, 
when combined with field observations and numerical 
models, are powerful tools in gaining insight to the under-
lying processes (Roche et al. 2000; Bosworth et al. 2003; 
Lavallée et al. 2004; Acocella 2007; Geyer and Marti 2008, 
2014).

In the 1970s and 1980s, it was recognised from meas-
urement of unrest events in Iceland and Hawaii (USA) that 
dike propagation induces earthquake swarms, and numerous 
such observations have been made since (Passarelli et al. 
2015). Recently, there have been real-time observations 
of dike propagation, as inferred from induced seismicity 
(Agustsdottir et al. 2016). Despite high-quality instrumen-
tal monitoring of dike propagation during unrest periods in 
many volcanoes (Fig. 2), successful forecasting of dike-fed 
eruptions is still rare. A well-known example of forecasting 
is the Plosky-Tolbachik (Russia) 1975–76 eruption which 
was preceded by strong seismic precursors and could be pre-
dicted one week in advance (Fedotov et al. 1980). Similarly, 
the 2000 eruption of Hekla, Iceland, was forecasted within 
hours due, primarily, to the signal from one fortuitously 
located borehole strainmeter that recorded the opening of 
a dike, with separate complementary measurements of the 
preceding seismicity (Sturkell et al. 2013).

Both these, and other similar, forecasts are purely empiri-
cal, and their success depends on the assumption that the 
behaviour of the volcano is essentially the same prior to each 
eruption. Over time periods that are short in comparison 

Fig. 2  Schematic illustration 
of a typical internal structure 
(plumbing system) of a poly-
genetic volcano with a collapse 
caldera, inclined sheets, sills, 
dikes and mechanical layering. 
The primitive lava shield is fed 
directly from the deep-seated 
reservoir which also supplies 
magma (through dikes) to the 
shallow magma chamber. The 
shallow chamber expands and 
generates earthquakes (indi-
cated by crosses) and, over time, 
injects numerous radial dikes 
and inclined sheets most of 
which become arrested at con-
tacts between mechanically dis-
similar rocks while some feed 
sills, a laccolith and eruptions. 
The former volcanic edifice has 
been subject to vertical (caldera) 
and lateral (landslide) collapses. 
Also shown are the main tech-
niques for real-time monitoring 
of volcanotectonic processes. 
These include geological meas-
urements and studies, satellite 
imaging (including interfero-
metric synthetic aperture radar 
(InSAR)), magnetotelluric (MT) 
studies, gravimetric studies, 
unmanned aerial vehicle (UAV) 
or drones and global positioning 
system (GPS)
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with the lifetime of a volcano, the behaviour during unrest 
that eventually results in an eruption may, indeed, be basi-
cally the same. But given that volcanoes are highly dynamic 
systems whose mechanical properties, local stresses, and 
magma-source geometries and sizes are continuously chang-
ing, the assumption that purely empirical methods can be 
used to make reliable forecasts of volcanic eruptions is not 
evidence-based. For example, the 2012–13 Plosky-Tolbachik 
(Russia) eruption was not preceded by any strong seismic 
precursor and could not be forecasted (Caudron et al. 2015). 
Reliable forecasts, in general, must rest on an understanding 
of the physical principles that control magma-source rup-
ture and magma movement from the source to the surface. 
Those principles constitute a major part of the discipline of 
volcanotectonics.

Volcanotectonics in 2030

 Data and insights of great value to the further develop-
ment of volcanotectonics have recently been obtained from 
petrological/geochemical studies. These include studies of 
deep-seated transcrustal magmatic systems (Cashman et al. 
2017), the eruption timescales and dynamics (e.g. Dingwell 
1996; Caricchi et al. 2007; Druitt et al. 2012; Lavallée et al. 
2015; Viccaro et al. 2016; Flaherty et al. 2018; Ruth et al. 
2018), the pre-eruptive storage conditions of the eruptive 
magma (e.g., Cadoux et al. 2014; Putirka 2017; Stock et al. 
2018; Humphreys et al. 2021) and the petrogenetic evolu-
tion of the plumbing systems from their subaerial lavas to 
pyroclastic products (e.g. Martin et al. 2006; Andújar et al. 
2015; Cooper et al. 2019; Buckland et al. 2021).

Volcanotectonics, like other disciplines, embraces techno-
logical advances such as new generations of high-resolution 
satellite systems with free data access (e.g. the 8 satellites 
of the EU’s Earth Observation Programme Copernicus), 
data collection from UAV (drone) surveys, innovative and 
machine-learning supported data analysis (Bueno et  al. 
2019), as well as virtual reality applications (Fig. 2; Tibaldi 
et al. 2020; Bonali et al. 2021). In this decade, many of 
these techniques will further allow remote monitoring of 
volcanoes and hence permit a greater volume of data to be 
acquired with larger temporal resolution. The use of low-cost 
technologies such as fibre optic cables have the potential to 
expand greatly the spatial coverage of strain and seismic data 
at volcanoes, and the accuracy of these data will improve as 
the techniques develop (Jousset et al. 2018; Currenti et al. 
2021). Machine learning methods will be used to better dis-
tinguish data from noise and to improve the forecasting of 
volcano behaviour, including the accumulation of stress, 
strain and energy, in near or actual real-time, in and around 
volcanoes.

A great challenge, but a reasonable goal, in this decade 
is to provide a robust theoretical framework that allows for 
a realistic interpretation of the various geophysical signals 
during unrest periods. To do so requires as complete an 
understanding as possible of the underlying geology and 
structures within and around a volcano, and so detailed 
geological field studies remain paramount. It is now under-
stood that the orientation and arrangement, as well as the 
mechanical properties, of the units/layers that constitute a 
volcano can substantially alter recorded surface deforma-
tion fields (Bazargan and Gudmundsson 2019; Clunes et al. 
2021), and may generate substantial error if an elastic half-
space is assumed (Masterlark 2007; Gudmundsson 2020). In 
addition to well-known and long-studied earthquake swarms 
and deformation signals, some volcanoes provide thermal 
signals that may appear years or decades before eruptions 
(Girona et al. 2021). These signals need to be linked with 
thermo-mechanical deformation processes that lead to seis-
mogenic rock failure (Browning et al. 2021). The potential 
effects of earthquakes, particularly large ones, on nearby 
volcanoes need to be further explored (Manga and Brodsky 
2006; Namiki et al. 2016; Seropian et al. 2021). Since most 
dike/sheet injections do not result in eruptions (Gudmunds-
son 2020), a more fruitful approach might be to look for 
evidence of earthquake-triggered dike/sheet injections rather 
than eruptions. Advances in muography, magnetotelluric and 
gravimetric techniques will allow further constraints on vol-
canotectonic structures that can be linked to field measure-
ments (Athanassas 2020; Pearce et al. 2020; Okubo 2020). 
Also, global satellite-measured precipitation will help to 
understand how infiltrated rain/ground water affect volca-
noes under unrest (Farquharson and Amelung 2020).

Most volcanic eruptions occur because a magma-filled 
fracture (dike/sheet) is able to propagate from its source to 
the surface. Magma-source rupture and propagation of the 
resulting fracture to the surface are primarily controlled by 
physical principles derived from fluid and solid (including 
fracture) mechanics, analytical mechanics and thermody-
namics/statistical physics (Gudmundsson 2020). Key issues 
here are the strain energy that accumulates in the volcano 
during unrest before magma-source rupture and the local 
stresses in, and the mechanical properties of, the layers 
between the source and the surface. Novel laboratory stud-
ies will be required to constrain the evolution of the in situ 
and upscaled rock properties (Heap et al. 2020; Heap and 
Violay 2021). The strain accumulation provides much of 
the energy needed to form and propagate the magma-filled 
fracture, and the local stresses, to a large degree, determine 
whether or not the fracture is able to reach the surface to 
supply magma to an eruption.

In conclusion, the decade will see much more focus on 
understanding the physics of volcanoes. That understanding, 
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combined with geological and geophysical fieldwork and mod-
elling, should bring us closer to the goal of reliable forecasting 
of the time, place and size of volcanic eruptions.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00445- 022- 01582-4.
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