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Abstract
Diffusion of elements that result in compositional zoning in minerals in volcanic rocks may be used to determine the timescales 
of various volcanic processes (e.g., residence times in different reservoirs, ascent rates of magmas). Here, we introduce the tool 
and discuss the reasons for its gain in popularity in recent times, followed by a summary of various applications and some main 
inferences from those applications. Some specialized topics that include the role of diffusion anisotropy, isotopic fractionation by 
diffusion, image analysis as a tool for expediting applications, and the sources of uncertainties in the method are discussed. We point 
to the connection between timescales obtained from diffusion chronometry to those obtained from geochronology as well as various 
monitoring tools. A listing of directions in which we feel most progress is necessary/will be forthcoming is provided in the end.
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Introduction

Dynamic processes in the interior of the Earth that ulti-
mately lead to volcanic eruptions leave their imprints in 
the chemical compositions of volcanic minerals and melts. 
As material is transferred from the source regions (partial 
melting, melt segregation) through residence in multiple 
reservoirs in the crust and the mantle (with processes 
such as magma mixing, mingling, and assimilation in 
transcrustal magma plumbing systems) to eruption (con-
duit processes, processes during cooling in lava flows or 
bombs), minerals are exposed to different thermodynamic 
magmatic environments (the overall chemical environment 
defined by chemical potentials of different components as 
well as temperature and pressure—see Kahl et al. 2015 

for a detailed description and definition) for different 
durations of time. The chemical signature of each ther-
modynamic environment is distinct, and superposition of 
different chemical compositions in a given mineral grain 
leads to the development of compositionally zoned crys-
tals. Chemical diffusion is effective in high-temperature 
magmatic systems and attempts to remove such disequilib-
rium, either by erasing existing compositional differences 
or by forming new gradients in order to reset the chemical 
composition of a mineral inherited from a different ther-
modynamic environment (e.g., different temperature or 
pressure). If the rate of diffusion of an element or isotope 
in a mineral is known, then the extent of such diffusive 
modification may be used to determine the duration of 
time spent by a crystal in a given environment (e.g., a 
particular magma reservoir). This is illustrated in Fig. 1. 
The basic principle is embodied in the relationship X2 ~ Dt, 
where X is the length scale over which diffusion occurs, D 
is the relevant diffusion coefficient, and t is the timescale 
of interest. Following the first applications in meteorites 
in the 1960s (Wood 1964), this principle has been applied 
to practically all kinds of rocks to obtain different param-
eters related to timescales (e.g., residence times, cooling 
rates, ascent rates) under different names (e.g., diffusion 
chronometry, geospeedometry, thermochronology). It is 
important to note at this point that the method yields a 
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duration, and not an age of an event and that the method 
should be applied to compositional gradients only after it 
is established that these formed by diffusion and not crys-
tal growth (e.g., see below as well as Costa et al. 2008; 
Shea et al. 2015a).

There are a number of reasons for the growth in popu-
larity of diffusion modelling to obtain timescales in recent 
years:

	 (i)	 After the first pioneering studies, it became obvious 
that timescales in igneous systems (like residence 
times of crystals, cooling rates) were short and often 
covered ranges of days to years (e.g., Coish and Tay-
lor 1979; Onorato et al. 1981; Gerlach and Grove 
1982; Ozawa 1984; Grove et al. 1984; Koyaguchi 
1986; Snow and Yund 1988; Nakamura 1995). Such 

short timescales are inaccessible to other methods 
(e.g., short-lived radionuclides), particularly for older 
rocks (the time-resolution of diffusion chronometry 
is independent of age).

	 (ii)	 The advances in experimental and analytical tech-
niques, particularly the ability to determine con-
centration gradients over micro- to nano-scales for 
a range of elements and isotopes, have made the 
determination of many diffusion coefficients as well 
as applications to many more situations possible. In 
addition to the conventional electron microprobe, 
tools such as SIMS or LA-ICP-MS for trace ele-
ments (e.g., Beck et al. 2006; Spandler et al. 2007; 
Qian et al. 2010), FTIR and Raman spectroscopy 
for H-species (e.g., Ingrin et al. 1995; Kohlstedt and 
Mackwell 1998; Demouchy et al. 2006), nano-SIMS 
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Fig. 1   Illustration of the general principles of diffusion chronom-
etry for a simple scenario where a rim of a different composition is 
overgrown on a crystal with orthorhombic symmetry (e.g., olivine or 
orthopyroxene), and subsequently diffusion of atoms occurs between 
the core and the rim. The simplified schematic drawing of a volcanic 
plumbing system to the left illustrates a deeper source region where 
magma is generated, a storage region at intermediate depths consist-
ing of many interconnected smaller magma reservoirs, and the vol-
canic edifice at the top with an eruption center. The deeper source 
region is one magmatic environment (ME2, characterized by one set 
of values of pressure, temperature, and chemical potential of differ-
ent chemical components), the shallow storage location is a second 
magmatic environment, ME1. It is highlighted that a magmatic envi-
ronment may be made up of several physical reservoirs (assumption: 
these are so close to each other that the pressure difference cannot be 
discerned using standard tools of barometry). Magma from the source 
region with its crystal cargo (Stage I, at time tI) moves to the inter-
mediate storage location (Stage II, time tII, “Intrusion”). The colors 
in the different reservoirs and crystals indicate different chemical 
compositions of the crystals in the different magmatic environments. 
In this case, the overgrowth of a new composition is triggered by the 
intrusion of the crystal cargo from ME2 into ME1 as part of a magma 
mixing event. A critical assumption is that the overgrowth is pro-

duced instantaneously after the arrival of the magma with its crystal 
cargo in ME1. Once the chemical contrast between the core and the 
rim of a crystal is produced, diffusion of atoms attempts to erase the 
concentration gradient (i.e., the diffusion clock starts ticking) and the 
process continues until it is quenched by cooling at eruption (Stage 
III). How fast the clock ticks depends on the diffusion coefficient of 
the element of interest in the mineral, and a variety of other param-
eters that characterize the ME. Modeling the diffusion process yields 
the time interval between the time of intrusion/magma mixing (tII) 
and eruption (tIII), which is the residence time of the crystal in ME1. 
The shape of the concentration profile that would be measured at each 
stage and the calculated profile shape that should match the measure-
ments are shown on the sides. The equation that is solved to obtain 
the timescale is shown on the bottom right, and arrows on concentra-
tion profiles underscore other concentration parameters (initial condi-
tion = shape of concentration profile at the start of the diffusion pro-
cess, boundary condition = how concentration change/stay constant 
at the boundaries of the domain where diffusion occurs) that need to 
be defined. More complex initial conditions such as non-homogene-
ous concentration distribution, boundary conditions such as concen-
trations at the rim changing with time, and multiple-stage processes 
can be modeled using the same principles iteratively (see Kahl et al. 
2011 for an illustration) 
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( e.g., Saunders et al. 2014; Seitz et al. 2018; Sham-
loo and Till 2019) or Atomprobe for ultrahigh spatial 
resolution (Valley et al. 2015), and femtosecond LA-
ICP-MS for isotopic gradients of heavy elements are 
being used (e.g., Oeser et al. 2014, 2015; Steinmann 
et al. 2019).

	 (iii)	 Numerical computation of diffusion processes can 
now be carried out on any ordinary laptop computer, 
making the tool accessible to even real-time moni-
toring (Gansecki et al. 2019; Re et al. 2021). Such 
programs should also include corrections for spatial 
averaging effects of the analytical tools (“Convolu-
tion correction”) (e.g., Hofmann 1994; Ganguly et al. 
1988; Bradshaw and Kent 2017; Jollands 2020). A 
few user-friendly numerical tools are available where 
a user may directly determine timescales without 
the need for programming (e.g., DIPRA: Girona 
and Costa 2013; An Excel spreadsheet of Dan Mor-
gan, pers. comm.; Hesse 2012, NIDIS: Petrone et al. 
2016; DFENS: Mutch et al. 2021); more such tools 
should be forthcoming soon.

Examples of diffusion chronometry

Over the past 20 years, diffusion chronometry in volcanic 
rocks has been carried out using a number of elements and 
minerals that include:

	 (i)	 Fe–Mg, Ni, Ca, and Mn in olivine;
	 (ii)	 Mg, Sr in plagioclase;
	 (iii)	 Mg, Ba, Sr, Na–K in sanidine;
	 (iv)	 Ti in quartz
	 (v)	 Fe–Mg, Fe-Ti, and Cr-Al in ilmenite/spinels;
	 (vi)	 Fe–Mg in pyroxenes;
	(vii)	 H diffusion in olivine or pyroxenes;
	(viii)	 Li diffusion in olivine, plagioclase, pyroxenes or zir-

cons;
	 (ix)	 H2O (volatile) diffusion in melt embayments;
	 (x)	 H2O (volatile) diffusive loss from melt inclusions via 

their host mineral (olivine);
	 (xi)	 Cl in apatite.

A complete list of references with studies applying these 
different diffusion chronometers is provided as supplemen-
tal bibliography. Two points are worth noting in this context: 
(i) diffusion of some elements occur obeying equations that 
deviate from the conventional forms (e.g., Mg in plagioclase, 
see Costa et al. 2003), and (ii) timescales determined with 
older diffusion coefficients are often revised, or at least re-dis-
cussed, as newer, more robust diffusion data become available 
(consequence of improved technology as well as improved 
understanding of diffusion mechanisms in minerals).

These tools have been used in practically all known vol-
canic settings such as subduction zones (SZ), oceanic hot 
spots (OHS), mid ocean ridge systems (MOR), intraconti-
nental rift zones (IRZ), hot spots (HS), or flood basalts (FB) 
as well as continental silicic volcanic systems (SVS); in the 
entire range of magmatic compositions from basaltic through 
rhyolitic/dacitic (including alkaline as well as sub-alkaline 
magmas); geographically spread over the entire globe and 
indeed, including samples from the Moon, Mars, and vari-
ous meteorites; the applications span a range of ages from 
contemporary volcanic products to samples that are about 
as old as the Earth in meteorites (e.g., Ganguly et al. 1994; 
Miyamoto and Takeda 1994; McCallum and OBrien 1996; 
Fisler and Cygan 1998; Mikouchi et al. 2001; Fagan et al. 
2002; Beck et al. 2006; Ganguly et al. 2013; Richter et al. 
2021). There are some indications that timescales of evolu-
tion of silicic magma reservoirs are somewhat longer than 
storage and residence times in mafic systems (Cooper 2019, 
2017; Costa 2021). Input of new, usually hotter, more mafic 
magmas shortly (weeks to months) before eruption is quite 
common and may have a triggering effect (Kent et al. 2020). 
Diffusion chronometry using faster diffusing elements like 
H has been used to determine ascent rates (inferred depth of 
the magma/duration of the ascent). These studies indicate 
that rapid exhumation is more often associated with explo-
sion (Charlier et al. 2012; Barth et al. 2019; Myers et al. 
2018; Barth and Plank 2021).

A number of reviews are available that discuss the details 
of the methods of such applications in volcanic systems 
(see Costa et al. 2008; Dohmen et al. 2017), strengths and 
weaknesses of diffusion modelling (see Chakraborty 2006, 
2008), available diffusion coefficients in different minerals 
up to 2010 (see Zhang and Cherniak 2010), and the kinds of 
information relevant to volcanic systems that are obtained 
from diffusion chronometry (Cooper 2019; Costa et al. 2020; 
Costa 2021; Petrone and Mangler 2021). Short summaries 
of different aspects may be found in various articles in Ele-
ments (Costa and Turner 2007; Putirka 2017; Cooper 2017). 
While we refer readers to these reviews and original papers 
for details, we highlight a few practical aspects of diffusion 
chronometry and advanced approaches for volcanic systems.

Diffusion anisotropy and sectioning effects

Most applications so far have used one-dimensional concen-
tration profiles (see Fig. 1). To obtain a correct duration from 
such a profile, it is necessary to consider that.

	 (i)	 diffusion is anisotropic in non-cubic minerals and 
therefore the crystallographic direction of the profile 
needs to be measured (for example using EBSD, as 
shown in Costa and Chakraborty 2004) and
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	 (ii)	 the profile could be affected by diffusion fluxes from 
other directions oblique to the direction of the profile 
(Costa et al. 2003 provide an example). Shea et al. 
(2015b) discuss these aspects in detail for olivine 
(see also Krimer and Costa 2016, for orthopyroxene 
and Couperthwaite et al. 2021 for olivine) and make 
recommendations for the number of profile measure-
ments that are necessary for obtaining statistically 
robust results.

Ganguly et al. (2000) discuss a way for correcting for 
oblique sectioning effects in isotropic minerals. Measure-
ment of compositional gradients in three dimensions using 
serial sectioning or tomographic image analysis tools is a 
possible direction of future development (Lubbers et al. 
2022); some related tools have recently been developed in 
the study of metamorphic rocks (George and Gaidies 2017; 
Gaidies and George 2021).

Fitting procedures and related errors

Uncertainties in fitting diffusion profiles arise from many 
sources (e.g., sectioning effects) and it is not possible to 
quantify all of them—therefore, reproducibility and spread 
of timescales obtained from a statistically significant num-
ber of multiple determinations remains the most reliable 
measure of uncertainties. However, this approach needs to 
account for the fact that not all crystals of the same mineral 
in a rock (e.g., olivines) experienced the same history. The 
tool of systems analysis of zoning profiles developed by 
Kahl et al. (2011, 2015) can help to identify crystal popula-
tions that experienced the same history, and reproducibility 
of timescales obtained from one such group of crystals is 
indicative of uncertainties. The different sources from which 
errors can arise in fitting diffusion profiles have been listed 
and discussed for experimental samples (where at least some 
of the variables are well constrained) in the Appendix of 
Faak et al. (2013). In natural samples, the additional and 
largest source of uncertainty is in the knowledge of the 
temperature(s) at which diffusion occurred and inferred 
uncertainty of the respective diffusion coefficient. These 
aspects have been considered in Gualda et al. (2012) and 
in the reviews by Costa (2021) and Petrone and Mangler 
(2021). New tools for addressing these are emerging from 
recent work (such as the DFENS method, Mutch et al. 2021).

It is worth noting here that the solutions of the diffusion 
equations are of the form C (x,t), so that it is necessary to 
determine a C(x)—a profile, and not a single composition at 
some point within a crystal (e.g., the core, or the rim)—for 
obtaining information on timescales. The same composi-
tion may result at the core of a crystal, for example, from 
different sets of initial and boundary conditions on different 

timescales; it is the profile shapes (more precisely—the cur-
vatures of the profile, ∂2C/∂x2, at each position x along the 
profile, see diffusion equation in Fig. 1) that are unique func-
tions of time. This important aspect has been discussed with 
illustrations in Faak and Gillis (2016).

Finally, incorrect choice of initial and boundary condi-
tions can lead to errors (see, for example, Costa et al. 2003; 
Shamloo et al. 2021). The emerging recognition that (Welsch 
et al. 2013, 2014) crystals do not always grow radially from 
core outwards like tree-rings is an aspect that needs to be 
considered in this regard—analysis of stable isotopes can 
help.

Stable isotopes as diffusion fingerprint

Light isotopes diffuse faster than heavier ones and therefore 
they leave a fingerprint of the diffusive process (e.g., Rich-
ter et al. 2003; Beck et al. 2006; Sio et al. 2013). Recent 
advances using femtosecond-Laser ablation ICP-MS allow 
such isotopic fractionation and resulting zoning of elements 
like Li, Fe, and Mg in minerals like olivine or plagioclase 
(Oeser et al. 2015; Steinmann et al. 2020) to be determined. 
This gives us the opportunity to (a) distinguish between 
compositional gradients formed by diffusion from those 
that develop during crystal growth, and (b) define the cor-
rect initial and boundary conditions under which diffusion 
occurred (e.g., Oeser et al. 2015; Sio and Dauphas 2016; 
Steinmann et al. 2020).

Image analysis

As diffusion modelling relies on the measurement of con-
centration gradients and profile shapes, the time and cost of 
measurement of concentration profiles or element concen-
tration maps is considerable and there have been efforts to 
reduce these. One approach relies on image analysis—for 
example, the brightness contrast in a BSE or CL image (col-
lected in seconds) is calibrated for element concentrations 
and the resulting gradients are used for diffusion modelling 
(e.g., BSE for Ba in sanidine: Morgan et al. 2006, Rout and 
Worner 2020; or Fe–Mg in pyroxene: Morgan et al. 2004; 
CL and Ti in quartz: Gualda and Sutton 2016).

Multiple element/mineral approach

The occurrence of different minerals with many different 
major and trace elements offers several “clocks” in any 
given rock (each element in each mineral, with a different 
diffusion coefficient and likely different initial and bound-
ary conditions under which diffusion occurs, is a separate 
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“clock”). These can be used to verify internal consistency, 
as well as to access a wide range of timescales (e.g., use 
slow diffusing species, such as REE in some minerals: long 
timescales, such as source region events; rapidly diffusing 
species, such as Li or H in some minerals: rapid processes 
such as magma ascent and conduit processes). Note that each 
grain of a mineral, and even each crystallographic direction 
in a mineral with anisotropic diffusion, is an independent 
clock for determination of timescales. It is the consistency of 
such multiple determinations (i.e., enough statistical robust-
ness) that compensates for many of the inherent shortcom-
ings of the method (e.g., knowledge of initial conditions, 
the thermodynamic variables and uncertainties in diffusion 
coefficients), some illustrative examples include Costa and 
Dungan (2005), Kahl et al. (2011, 2016). On the other hand, 
discrepancies in obtained timescales using different “clocks” 
point to either shortcomings of one or more methods (pro-
viding a means of internal cross calibration), or to more 
nuanced non-linear thermal histories (see Chamberlain et al. 
2014 for an example).

Many crystals go through multiple magmatic environ-
ments before eruption, and the tool of sequential kinetic 
analysis (Kahl et al. 2011) can help to determine the time-
scales of residence of the crystal in each of the environments.

Connection to other volcanological tools

The storage times at different reservoirs and the times of 
transfer (in units of “time before eruption”) between them 
may be related to various kinds of monitoring signals, 
thereby allowing observations on the surface to be related 
to processes in the interior, and at the same time providing 
a means of validating the timescales obtained from diffusion 
chronometry. Kahl et al. (2011) related timescales obtained 
from their sequential kinetic analysis to signals from seis-
mic monitoring, variations in ground tilt and SO2-flux, and 
lava fountaining events in Mt. Etna between 1991 and 1993. 
These results showed how different signals observed on the 
surface are related to events occurring at different depths 
below the volcanic edifice at different times. Saunders et al. 
(2012) related timescales obtained from diffusion chronom-
etry to seismic events observed at Mt. St. Helens, and sub-
sequently other studies have related timescales from diffu-
sion chronometry to various monitoring signals (e.g., Kahl 
et al. 2013; Marti et al. 2013; Kilgour et al. 2014; Viccaro 
et al. 2016; Rasmussen et al. 2018; Pankhurst et al. 2018; 
Albert et al. 2019; Giuffrida et al. 2021). Such studies lead 
to a better understanding of processes that occur within a 
plumbing system at depth. This, in turn, would enable (a) 
a more detailed understanding of past eruptions, where no 
monitoring signals are available, and (b) better interpretation 
of monitoring signals that are observed in the future.

Combination of geochronology 
and diffusion chronometry

A combination of geochronology (based on zircons or 
monazites, for example) and diffusion chronometry (based 
on olivines and plagioclase, for example, but also zircon) 
is a powerful tool (Cooper 2019). See Cooper (2019) and 
Cooper and Kent (2014) for details of how the tools are com-
bined. These have revealed that magma reservoirs (locations 
where magma pools physically, which is often governed by 
long-term tectonics such as location of zones of faulting 
or other weakness) or by rheology (e.g., the crust—mantle 
boundary) may be long lived; residence times of magmas, 
i.e., molten entities in such locations, may occur on much 
shorter timescales, governed by thermal parameters. These 
have triggered the question and debate on whether magma 
is stored at near or sub-solidus conditions (warm storage) or 
cold between successive pulses of magma input (see Cooper 
2019, and Costa 2021, for a discussion of pros and cons, as 
well as Bachmann and Huber 2019, for a review of physical 
modelling of different possible timescales).

Future directions and problems to address

•	 Non-isothermal and non-isobaric diffusion models, with 
constantly adaptive boundary conditions should become 
more common as multistage and magma ascent related 
processes are studied. There will be a coupled need for 
high-resolution thermometry and barometry.

•	 Combination of isotopic fractionation caused by diffu-
sion (of light elements such as H or Li, as well as heavier 
elements such as Fe, Mg, or Ca) will be used increas-
ingly to model diffusion under better constrained (more 
clearly defined initial and boundary conditions) con-
ditions. Such models should integrate the diffusion of 
elements, isotopes and the fractionation in an internally 
consistent manner. The use of reaction–diffusion equa-
tions (to address homogeneous reactions) and multicom-
ponent diffusion (coupling between different isotopes and 
overall elemental flux) will be necessary. We expect the 
specialized (and expensive) tool of isotopic fractiona-
tion to guide the modelling (e.g., identify concentration 
gradients formed by diffusion rather than growth, choice 
of boundary conditions) while the bulk of the data will 
be generated from more rapid and accessible tools (e.g., 
image analysis, see above).

•	 An aspect that has been suppressed in the applications of 
diffusion chronometry in volcanic systems so far, implic-
itly or explicitly, has been the role of growth and dissolu-
tion coupled with diffusion. However, it is an important 
aspect in systems where crystals grown in one environ-
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ment are constantly exposed to other environments in a 
dynamic system. Modelling such systems require reac-
tion–diffusion equation (see the previous point as well) 
as well as an understanding of how the diffusion process 
is itself modified by moving boundaries that result from 
growth and/or dissolution. Note that solutions to reac-
tion–diffusion equations have behavior that is not seen 
in simple diffusion equations, such as the attainment of 
time-independent, steady-state concentration gradients. It 
is important to evaluate this possibility in the application 
of diffusion chronometry, because otherwise erroneous 
timescales may be obtained by fitting such steady-state 
concentration profiles.

•	 A related important aspect is the question of the lifetime 
of a crystal. Until now, it is assumed that a mineral grain 
exists in a system governed by its chemical thermody-
namic phase relations (e.g., the temperature at which 
olivine forms). However, processes of recrystallization, 
governed by considerations of textural equilibrium (e.g., 
interfacial and surface energy effects) and facilitated by 
the presence of non-hydrostatic stress or fluids, determine 
the actual lifetime of a given grain of a mineral. This 
sets an upper limit to timescales that may be accessed 
by diffusion chronometry (i.e., olivine may be stable in a 
given system for a long duration, but if recrystallization 
of grains occurs on timescales of a few hundred years, 
then diffusion chronometry with olivine, no matter using 
which element, cannot access any timescale longer than 
a few hundred years). Some of the discrepancy between 
timescales obtained from geochronology and diffusion 
chronometry may be related to this effect. Studies that 
combine kinetics of evolution of crystal size distributions 
(CSD) with diffusion modelling will provide insights in 
this area.

•	 Diffusion of many trace elements (e.g., Li, H, REE) in 
different rock forming silicates occur by more than one 
mechanism (e.g., Mackwell and Kohlstedt 1990; Dohmen 
et al. 2010; Bloch et al. 2020). Modelling these adequately 
requires an understanding of diffusion mechanisms and the 
use of reaction–diffusion equations that account for homo-
geneous reactions between different species, and these 
would become more common as more detailed measure-
ments become available. Multicomponent diffusion equa-
tions that account for exchange between different species 
simultaneously will be necessary (e.g., Cl-F-OH in apatite, 
Li et al. 2020).

•	 Connections of timescales obtained from diffusion chro-
nometry to various physical phenomena (e.g., seismic 
events, changes in gas flux, or ground deformation) have 
so far been made empirically, by a “pattern matching” 
approach (see the examples above). Physics-based multi-
stage models that are being increasingly developed (see, for 
example, lectures on the MCS RCN website: https://​www.​

sz4dm​cs.​org/​volca​no-​works​hop; Bachmann and Huber 
2019) should be coupled with diffusion modelling (Cheng 
et al. 2020) to obtain a more holistic view of processes 
occurring on various timescales in a volcanic system. We 
reiterate here that diffusion chronometry relates timescales 
to magmatic environments (ME); an associated next step 
that is very important is to relate those ME to physical 
entities/processes. For example, recorded changes in vola-
tile contents relate to changes in volatile fugacities, but 
these may be caused by decompression, degassing, or by 
changes in fluid composition—the interpretation of time-
scales obtained from profiles of volatile species would be 
very different depending on which of these interpretations 
hold in a specific case.

As application of diffusion chronometry becomes more 
widespread, there will be a need for (a) quick, inexpensive but 
robust analytical tools for the determination of concentration 
gradients, (b) user-friendly software for making the tool acces-
sible to a large group of volcanologists who are not specialists 
in diffusion chronometry, (c) benchmarks that allow users to 
test results they obtain, and (d) improved evaluation of various 
sources of errors and uncertainties in a probabilistic sense.
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