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Abstract
In this perspective piece, we reflect on scientific progress in volcanic risk reduction and its prospects for future development. In 
spite of recent advances, a dichotomy still exists between the products of academic research and the desire for practical applications. 
The main themes to emerge are (1) the need to find the most effective ways to explain the ever growing amount and complexity 
of volcanological data to non-specialist stakeholders, and (2) how to transfer to future generations of applied scientists the lessons 
from practical experience that are often missed by theoretical guidelines. Recommendations for sustaining progress in these fields 
include improving the accessibility of knowledge and data, embracing novel tools to communicate volcanic risk and uncertainty for 
decision making, and investing effort on transferring practical experience across generations.
En este breve artículo, reflexionamos sobre los adelantos científicos para la reducción del riesgo de erupciones volcánicas y en las 
oportunidades para continuar progresando. A pesar de avances recientes, todavía existe un desfase entre los resultados de investiga-
ciones científicas y su aplicación práctica. Los temas clave que identificamos son (1) la necesidad de encontrar maneras más efectivas 
de explicar la cantidad incremental de información volcanológica (y su creciente complejidad) a todos los grupos interesados, espe-
cialmente los no-especialistas y (2) cómo transmitir y transferir, a futuras generaciones de cientificos, la experiencia y los aprendizajes 
prácticos que no figuran en directrices y manuales. Recomendaciones para mantener avances en estos campos incluyen: mejorar la 
accesibilidad de la información y datos científicos, adoptar nuevas técnicas para comunicar: el riesgo volcánico, la incertidumbre 
en información científica y para apoyar la toma de decisiones, e invertir en transferir experiencia práctica a las generaciones futuras.
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Introduction

The core principles for managing volcanic emergencies were 
codified in the 1970s by the pioneering work of Michael 
Fournier d’Albe. Building on UNESCO’s definition of risk 

as the product ‘hazard x vulnerability x value’, he recog-
nised four priorities for reducing volcanic risk (Fournier 
d’Albe 1979): (1) to reduce hazard by improving the infor-
mation conveyed in hazard maps (notably how often a haz-
ard occurs); (2) to reduce vulnerability by incorporating into 
emergency response plans fundamental differences in the 
time-scales of social response and of the evolution of vol-
canic phenomena; (3) to advance monitoring and forecasting 
by the systematic collection of precursory data and improved 
methods of analysis and (4) to support decision making by 
formalising algorithms to define the threshold values of pre-
cursory signals required to trigger a particular emergency 
response, such as an evacuation.

These objectives have not changed in the past 50 years 
(Pallister et al. 2019), and, as described in companion 
papers to this collection, significant progress has since 
been made in modelling volcanic systems (Sparks 
et al. 2022; Aguilera et al. 2022), forecasting eruptions 
(Kilburn and Bell  2022) and the design of advanced 

Editorial responsibility: K.V. Cashman

This paper constitutes part of a topical collection: Looking 
Backwards and Forwards in Volcanology: A Collection of 
Perspectives on the Trajectory of a Science

 *	 Carmen Solana 
	 carmen.solana@port.ac.uk

1	 School of the Environment, Geography and Geosciences, 
University of Portsmouth, Burnaby Building, Burnaby Road, 
Portsmouth PO1 3QL, UK

2	 UCL Hazard Centre , Department of Earth Sciences, UCL, 
Gower Street, London WC1E 6BT, UK

3	 INGV-Osservatorio Vesuviano, Via Diocleziano 328, 
80124 Naples, Italy

/ Published online: 18 May 2022

Bulletin of Volcanology (2022) 84: 56

http://orcid.org/0000-0001-6927-2520
http://orcid.org/0000-0003-4961-2123
http://crossmark.crossref.org/dialog/?doi=10.1007/s00445-022-01563-7&domain=pdf


1 3

monitoring techniques (Ramsey et al. 2022; Poland and 
Zebker  2022; Thelen et  al.  2022). Low-cost sensors 
(Crawford et al. 2021; Granados-Bolaños et al. 2021) and 
processing methods (Garthwaite et al. 2019) have further 
enhanced monitoring capabilities in countries with lim-
ited economic resources. At the same time, hazard maps 
are being redesigned to assist decision making by taking 
greater account of the cultural and social perceptions of 
their audience (Calder et al. 2015; Lindsay and Robert-
son 2018; Clive et al., 2021).

Progress, however, has brought new challenges. Recent 
advances have generated data at an accelerating rate (Papale 
and Garg  2022), creating barriers to dissemination by 
lengthening the time needed to process the amount of new 
material and, because of the additional resources required 
for acquisition and processing, by widening the gap between 
economically rich and poor countries. Overcoming these 
barriers is as important as obtaining the data, and new strate-
gies are needed to break through the bottlenecks that impede 
the smooth translation of scientific information into practical 
emergency management.

Scientific information for volcanic risk 
reduction, planning and management

Between 1900 and 1980, the background death toll as a pro-
portion of the populations exposed to eruptions decreased 
by a factor of about five (Auker et al. 2013; Brown et al. 
2017). It has remained almost constant since then (Auker 
et al. 2013; Brown et al. 2017), in spite of a global increase 
in vulnerability and risk (Chester et al. 2000). The sustained 
low rate since 1980 has been attributed to general improve-
ments in communicating hazards, managing emergencies 
and social resilience (Auker et al. 2013; Brown et al. 2015; 
Pallister et al. 2019). The change is indeed cause for opti-
mism, but with caveats.

First, economic costs have been increasing and, between 
1980 and 2019, eruptions caused some US$12 billion of 
damage (Munich Re n.d.). This follows the encroachment of 
human activity into volcanic districts, regardless of warnings 
about the potential hazard.

Second, the most hazardous eruptions with a Volcano 
Explosivity Index of 5 or more tend to occur at intervals 
of decades. As a result, comparing outcomes between 
1980–2000 and 2000–present may be deceptive, because 
it coincides with a decrease in the number of such events 
from four in 1980–2000 (Mount St Helens 1980; El 
Chichón 1982; Pinatubo 1991; and Cerro Hudson 1991) 
to only two since then (Puyehue-Cordón Caulle, 2011 and 
Hunga Tonga–Hunga Haʻapai, 2022), both of which also 
happened to occur in remote locations. The decrease in 
number is likely to be a statistical fluctuation, and so a 

longer interval is required for a robust evaluation of sus-
tained progress in emergency management.

Third, the background death rate excludes individual 
eruptions that killed 5000 people or more (Auker et al. 2013) 
and, for fatalities since 1980, accounts for less than one third 
of the total number of lives lost. Most deaths in this period 
occurred in just one event: the 1985 eruption of Nevado 
del Ruiz, Colombia, which killed more than 23,000 peo-
ple (Voight 1990; Siebert et al. 2010; Auker et al. 2013). 
The eruption occurred after 68 years in repose, and the 
urgency of the response was hampered by unfamiliarity with 
the threat from the volcano (Voight 1990; Tilling 2009). 
Although this example may be viewed as an exception to 
general improvements in hazard management, it comes at 
the cost of having taken by far the greatest number of lives.

Long repose intervals promote delays in planning for 
volcanic emergencies, resulting in the need to design and 
implement plans after the start of unrest. Recent exam-
ples include the responses at Pinatubo in 1991 (Newhall 
and Punongbayan 1996; Sinclair 2019; Newhall 2021), and 
at the Chilean volcanoes Chaitén, in 2008, and Calbuco, 
in 2015 (Carn et al. 2009; Diaz Bouquillard 2019). The 
responses were successful, but in each case teams had to 
rely on last-minute decisions to compensate for the absence 
of formalised emergency plans. As summarised by Newhall 
and Punongbayan (1996), even when progress was being 
made with precautionary actions, ‘the margin by which risks 
were successfully mitigated … [were] alarmingly narrow’.

The lack of formalised emergency plans continues today 
against a background of an ever-increasing number of pub-
lished lessons, guidelines, advice and recommendations 
for best practice (UNDRO 1985; IAVCEI 1999, 2016; 
McGuire et al. 2009; Pallister et al. 2019, Lowersten et al. 
2022). It shows that, although advice and lessons can be 
translated into theoretical guidelines, they are less readily 
transformed into practical policy changes (Donahue and 
Tuohy 2006; Mafimisebi and Hadleigh-Dunn 2018), even 
when the path to change has been clearly formulated (Bret-
ton et al. 2018a, b b, Tsang & Lindsay 2020). This problem 
is especially acute in countries with dormant volcanoes 
(many of which are not regularly monitored), where ‘real-
world’ experience of volcanic emergencies is lost between 
generations of both scientists and emergency managers 
and, as a consequence, mistakes are repeated and simi-
lar lessons persistently rediscovered, such as the need for 
appropriate behaviour and communication strategies (e.g. 
Newhall and Punongbayan 1996; Solana and Spiller 2007; 
Barclay et al. 2008; Solana et al. 2008, 2017; McGuire 
et al. 2009; Brown et al. 2015; Harris 2015). Outstanding 
goals remain to develop novel and efficient methods for (a) 
translating scientific knowledge into practical, actionable 
information and (b) transferring experience and intangible 
knowledge to later generations.
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Translating scientific knowledge into practical 
information

Evaluations of responses to emergencies, such as the 
UNDRR’s Global Assessment Report on Disaster Risk 
Reduction or GAR (UNDRR 2019), indicate that the incor-
poration of scientific advances into emergency procedures 
is often delayed by a lack of accessibility to essential infor-
mation and by poor understanding of its relevance by non-
specialists. Some observatories, especially those that moni-
tor volcanoes in frequent eruption, have successfully bridged 
this gap, regardless of the economic resources of the country 
(e.g. Piton de la Fournaise, France (Peltier et al. 2022), Mer-
api, Indonesia (Mei et al. 2013) and Kīlauea, USA (Williams 
et al. 2020)). We suggest that even better results could be 
achieved if the broader academic community shared respon-
sibility for converting data into forms accessible for practical 
response methods, as illustrated below.

(1) Improving the accessibility of knowledge by broadening 
sources, audiences, languages and platforms. The latest scien-
tific findings are typically published for academic audiences in 
journals, some with expensive subscriptions. They are mostly 
written in English, and practical applications are rarely made 
explicit (c.f. Peltier et al (2022)). Uptake is thus necessarily lim-
ited among non-English speaking and non-academic audiences. 
Advances have been achieved with articles on applied volcanol-
ogy featuring more frequently in volcanological and disaster-
related journals (most notably with the creation of the Journal 
of Applied Volcanology). Even so, the articles still cater pri-
marily for scientific audiences. An implicit assumption appears 
to be that volcano observatories should take responsibility for 
translating the most up-to-date scientific information into a form 
appropriate for emergency planners (Pallister et al. 2019). Meet-
ing such a responsibility is often impractical, owing to a lack of 
resources in low-income countries and at volcanoes with long 
recurrence intervals.

A potential solution is for the wider academic community 
to assist in preparing information designed for decision mak-
ers. Methods of support include disseminating research results 
in non-academic fora; applying visual aids, such as infograph-
ics (Charlton et al. 2020) and film (Hicks et al., 2017); using 
accessible terminology in local languages (e.g. Harris et al. 
2017) (particularly when information refers to a specific vol-
cano) and increasing partnerships to co-design dissemination 
strategies with end users (Hicks et al. 2017, 2019).

(2) Designing novel systems to improve data analysis and 
accessibility. Contrasting obstacles to disaster risk reduction 
are a lack of available data on the one hand and an overload 
of data on the other. Lack of data is a long-established prob-
lem (UNDRR 2019) and remains acute at remote and dormant 
volcanoes. The problem of data overload has emerged with 
the growth of new technology and data-gathering capabilities. 
Satellites and low-cost ground-based instruments have greatly 

enhanced the amount of geophysical and geochemical data that 
can be acquired for volcano monitoring (Papale and Garg 2022; 
Poland and Zebker 2022). Larger amounts of data are generally 
seen as an asset for interpreting volcanic unrest. Paradoxically, 
however, they can hinder decision making during a crisis. First, 
they increase the possibility of unprocessed data (and related 
metadata) being disseminated in a form that is not user-friendly 
and so open to the spread of misinformation. Second, greater 
amounts of raw data require more complex processing and can 
yield a greater choice of interpretation (Newhall, pers. comm.)—
a combination that may promote greater uncertainty in select-
ing the most appropriate information for operational use. Big 
data projects may thus inadvertently widen the gulf between 
advances in research and advances in emergency management.

A strategy for closing the gulf is to present data and metadata 
in forms designed for all decision makers, rather than for scien-
tific analysis alone and to present data already analyzed in open-
access, user friendly formats, such as the WOVOdat database 
of volcanic unrest (WOVOdat n.d. Newhall et al. 2017, Costa 
et al. 2019). This could be developed further by including case 
studies of how data have been used during volcanic crises (e.g. 
how was it acted upon by different stakeholders, or, if not used, 
why was it discounted). Another example is the EU Copernicus 
Emergency Management Mapping Service, which was activated 
in 2020–2021 for the eruptions of La Soufrière on St Vincent, in 
the Caribbean, and of La Palma in the Canary Islands (Coperni-
cus n.d.). A natural extension would be to create so-called data 
cubes, which organise data into multi-dimensional (or multi-
parameter) spreadsheets, so that users can select the relevant 
combination of information required to investigate a particular 
question. They are well established in business analysis (Chin 
2020a,b) and have been emerging in the geosciences (Lewis 
et al. 2017; CommonSensing Project n.d.). Data cubes designed 
for shared use by all stakeholders (Wilkinson et al. 2016) would 
be ideally suited in volcanology as a common source for emer-
gency managers and scientists.

(3) Improving visualisations, models, maps and support 
systems. Maps continue to be one of the principal methods 
of displaying and communicating information on volcanic 
hazard and risk and to support decision making and planning 
(e.g. Nave et al. 2010; Calder et al. 2015; Charlton 2017; 
Pallister et al. 2019; UNDRR 2019; Charlton et al. 2020; 
Clive 2021; Lowenstern et al, 2022). Advances in commu-
nicating spatial hazard information have been facilitated by 
computer-assisted visualisations of maps that include per-
spective and topographic detail (Haynes et al. 2007), incor-
porate people’s experiences (Taylor et al. 2020), compile 
real-time observations through citizen-science initiatives 
(Sandri et al. 2020; EUROVOLC n.d.) and support inte-
grated decision making by combining scientific, geographi-
cal, political and socio-economic information, as illustrated 
by the Kassandra project (n.d.) for planning resilient urban 
growth in times of climate change (Fig. 1). Continuing goals 
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are to capture the limitations and uncertainty of the data 
displayed, to consider cascading and coincidental hazards 
and to show gradations in threat. A potential drawback is 
that maps of increasing complexity can become less intuitive 
(Schmidt et al. 2011), and so, for operational purposes, com-
promises can be expected between how much information is 
displayed and how readily it is understood.

(4) Increasing efforts for effectively communicating 
uncertainty before and during an emergency. This is a 
recurring topic and highlights a protracted problem. Meth-
ods for forecasting the basic features of an eruption (such 
as size, style, volume and duration) are still in development 
and hence forecasts are still uncertain. New work has thus 
focused on methods for better managing and communicat-
ing uncertainty (e.g. Doyle et al. 2014a, b a,b, Harris 2015), 
for designing simple volcanic alert systems (Fearnley et al. 
2017) and for exploring the benefits of legally binding pro-
tocols on how this information is presented (Bretton et al. 
2018a, b a, b). Artificial intelligence and machine learning 
are also promising tools for removing bias in interpreting 
data and reducing delays in decision making. In medical 
circles, for example, such tools have provided diagnoses 
that are more reliable than those by human experts (Savage 
2020), while machine learning has shown promise in iden-
tifying volcanoes with analogous behaviour to assist fore-
casting procedures (Costa et al, 2019). Investing in these 
support tools is a priority for scientists in charge and deci-
sion makers.

Transferring experience across generations

Transferring experience between generations is the sec-
ond key field for development in the next decade. While 
the skills for the collection and analysis of monitoring data 
are routinely passed on through training and volunteer pro-
grammes at volcano observatories, intangible skills—from 
confidence in interpreting and communicating data to man-
aging the stress of responsibility during a crisis—are rarely 
addressed (but see Newhall (2021)). In the case of emer-
gency response, the traditional method of transferring expe-
rience through mentoring and internships is complicated by 
the limited resources and opportunities available for these 
activities and the practicalities and logistics involved (e.g. 
allowing trainees from external institutions or countries to 

observe discussions by scientific advisory committees or by 
emergency managers during a crisis).

For members of volcano observatories, experience is nor-
mally transferred by attending bespoke international confer-
ences (Pallister 2019), such as IAVCEI’s Cities on Volcanoes 
programme, or through simulation exercises (Marzocchi and 
Woo 2007; Constantinescu et al. 2016; Lowenstern et al 
2022). The methods are supportive but cannot always be 
fully realised. For example, the cost of international meet-
ings can present financial and language barriers to prospec-
tive participants. Exercises provide opportunities to improve 
operational procedures (Doyle et al. 2015), but they cannot 
replicate the pressure and responsibility of a live emergency. 
To address such limitations, civilian emergency services use 
body-worn cameras during crises to train staff in respond-
ing to low-frequency high-risk situations. Although not 
without controversy (Lum et al. 2019), such cameras have 
proved invaluable for recalling incidents accurately, trans-
ferring experience and reviewing and improving decision 
making (SHP 2018, Richards et al. 2018 and practitioners’ 
pers. comm.), and they show promise as a potential asset in 
volcanic emergencies.

Prospects for the future

Great strides have been made in preparing for volcanic 
emergencies since the basic requirements were codified 
more than four decades ago (Fournier d’Albe 1979). Sci-
entific advances have increased understanding of how vol-
canoes behave; technological advances have increased the 
range and quality of techniques available for monitoring 
volcanoes and for processing the data obtained; advances 
in governance have promoted agreed policies on disaster 
risk reduction; and advances in social-science studies have 
increased awareness of how populations react under stress. 
Nevertheless, gaps remain in the smooth transformation of 
new data into useful and practical information. A dichotomy 
still exists between the products of academic research and 
the need for practical applications, which in turn reflects 
dichotomies between research-based and observatory-based 
scientists, between countries rich and poor in resources for 
emergency management and even between planning for cri-
ses at frequently and rarely erupting volcanoes. Resolving 
these dichotomies will drive a step change in the support 
available to practitioners for designing new and effective 
emergency procedures and, with these, for better protect-
ing vulnerable communities against the threat from volcanic 
behaviour.

Acknowledgements  We thank Chris Newhall, Kathy Cashman, 
Andrew Harris and an anonymous reviewer for their recommendations 

Fig. 1   Example of the outputs produced by the Kassandra decision 
support system. The simplified illustration shows the optimum com-
bination of parameters for minimizing hurricane vulnerability in the 
community of Coulibistrie, Dominica, WI 
(source: University of Portsmouth and Kassandra internal report). It displays 
the main data input (top), output (centre) and an example of the components 
for one of the resilience parameters (for infrastructure ) used by the Kassandra 
system. Although the example shown is for hurricanes, the parameters could be 
adapted to evaluate the changes in resilience to volcanic hazards from different 
decision scenarios

◂

Page 5 of 8    56Bulletin of Volcanology (2022) 84: 56



1 3

on improving our manuscript and for guiding us to the final dichoto-
mies to be resolved.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
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included in the article's Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
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need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.
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