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Abstract
The Millennium Eruption (AD 946–947) of Changbaishan Tianchi Volcano is one of the largest known eruptions in
recorded history. With the help of previously published isopachs and distal ash thicknesses, we re-calculate the bulk volume
of its distal eruptive product, the B-Tm ash, as 27–62 km3 and the total eruption volume as 40–98 km3. The updated
volume estimates are around half of those estimated by previous studies of this seminal eruption. Our work shows that the
Millennium Eruption is a VEI-6 eruption, rather than VEI-7 as previously envisaged, and its magnitude is also lower than
previously thought. This has implications for regional frequency-magnitude relationships and may also partially explain the
limited regional, rather than global, climatic effects of the Millennium Eruption.
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Introduction

The Millennium Eruption (ME) of Changbaishan Tianchi
Volcano, on the border of China and North Korea, took
place in AD 946–947 (Xu et al. 2013; Oppenheimer et al.
2017). Previous works have classified it as a VEI-7 (100 to
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1000 km3; Volcanic Explosivity Index) eruption, and it is
therefore recognized as one of the most powerful volcanic
eruptions in recorded history (Newhall et al. 2018). There
were two eruption phases during the ME, which produced
comenditic and trachytic pyroclastic fall and flow deposits
(Machida et al. 1990; Liu et al. 1998; Horn and Schmincke
2000). Tephra deposits from the ME were mainly dispersed
to the east (Machida and Arai 1983), in line with the
prevailing wind. Distal ash of the ME, also known as
the Baegdusan-Tomakomai (B-Tm) ash, can be found as
visible units within sedimentary sequences across the Sea
of Japan and Japan (Fig. 1 and references therein), more
than 1200 km from the volcano, and as a non-visible
(cryptotephra) layer within the Greenland ice cores (Sun
et al. 2014).

The total bulk volume of the eruption was previously
estimated as ∼ 96–172 km3 (Liu et al. 1996; Liu et al.
1998; Horn and Schmincke 2000). Details on how estimates
of 120 and 172 km3 (Liu et al. 1996; Liu et al. 1998)
were derived were not given, and recent studies on eruptive
products of the ME (e.g., McLean et al. 2016) have not been
integrated to update or confirm previous volume estimates.
These concerns motivate the present work, which re-
estimates the minimum and maximum total bulk volumes of
the ME. We re-calculate minimum and maximum volumes
of the B-Tm ash based on isopachs from previous studies
and newly constructed isopachs. Minimum and maximum
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volumes of other eruptive products are assigned based on
the most recent studies.

The B-Tm ash

We have compiled 76 thickness measurements (see Sup-
plementing Document for raw data) of the B-Tm ash from
previous works (Fig. 1; Utkin 1977; 1989; Machida and
Arai 1983; Machida et al. 1990; Machida and Arai 2003;

Furukawa and Nanayama 2006; Okuno et al. 2011; Hughes
et al. 2013; Chen et al. 2016; Ikehara et al. 2017; Derkachev
et al. 2019; Nakanishi et al. 2020; Razjigaeva et al. 2020).
Thickness data that are reported to be reworked or con-
tain non-pyroclastic materials are excluded. The B-Tm ash
was observed in the west of the volcano as cryptotephra
(Sun et al. 2015), which cannot be used for helping isopach
construction.

Horn and Schmincke (2000) and Machida and Arai
(2003) previously constructed two sets of isopachs for the

Fig. 1 a, b B-Tm ash isopachs
(solid lines; cm) digitized from
Horn and Schmincke (2000) and
Machida and Arai (2003),
respectively. Data sources
marked in a. Dashed isopachs in
b are constructed in this work; c
constructed B-Tm ash extent
(solid line) from Machida and
Arai (2003) and 1-cm and
0.1-cm isopachs from this work
(dashed lines). Crosses are
locations with no B-Tm ash
observed (Furuta et al. 1986).
See Supporting Document for
more details on why they are not
used to constrain the 0.1-cm
isopach constructed in this work
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B-Tm ash (Fig. 1a and b). The former set has been used
for volume calculation of the B-Tm ash. The latter only
has the 10-cm, 5-cm, and > 0-cm isopachs, which are
not fully enclosed. They have not been used for volume
estimates. The B-Tm ash extent (i.e., the > 0-cm isopach)
fromMachida and Arai (2003) will not be used here because
the B-Tm ash has been found outside this extent: it was
found as cryptotephra layer in Lake Kushu, northwest of
Hokkaido (Chen et al. 2016) and a thin tephra layer (< 1
mm) in Lake Suigetsu, central Honshu (McLean et al. 2016)
in Japan (Fig. 1c).

We complete the 10-cm and 5-cm isopachs of Machida
and Arai (2003), which have much greater isopach areas
(Table 1) than those published in Horn and Schmincke
(2000). Additional 1-cm and 0.1-cm isopachs for the B-
Tm ash (Fig. 1b and c, and Fig. 2) are also constructed
(see Supplementing Document on how the isopachs are
constructed) such that they could be combined with
isopachs of Machida and Arai (2003) to estimate the
maximum volume of the B-Tm ash. The 0.1-cm isopach
is constructed with uncertainty. How it would affect the
maximum volume estimate will be examined.

Comparing isopachs with thickness measurements

Measured thicknesses of the B-Tm ash do not consistently
thin with distance from the vent (Fig. 2). The cause of
such a variability is not clear (e.g., varied dispersal patterns

and post-depositional processes). It is thus difficult to
estimate its volume accurately. Alternatively, if we prove
that thicknesses predicted by the isopachs are mostly greater
than individual thickness measurements, these isopachs can
be used to calculate the maximum volume of the B-Tm
ash. We are most interested in the maximum volume here
because (1) isopachs of Machida and Arai (2003) have not
been used for volume estimate, and they have much greater
areas compared to those from Horn and Schmincke (2000);
(2) a better-constrained maximum volume of the B-Tm ash
could potentially help us confirm or reassign the VEI of the
ME as the volume of the B-Tm ash takes up a large portion
of the total eruption volume of the ME in previous studies
(Table 2).

We compare thickness measurements of the B-Tm
ash with isopachs of Machida and Arai (2003) and the
newly constructed 1-cm and 0.1-cm isopachs, and find
that within the 1-cm isopach, there are 26, 44, and 4
thickness observations that are consistent, thinner, and
thicker, respectively, than thicknesses inferred from the
isopachs (Fig. 2; the other two thickness measurements
are outside the 1-cm isopach shown in Fig. 1c). Thickness
observations within the 10-cm isopach and north of 42◦ N
(which corresponds to half of its area) are 3-cm thick or
thinner, suggesting that northern halves of the 10-cm and
5-cm isopachs of Machida and Arai (2003) should have
much smaller areas. These checks confirm that the isopachs
of Machida and Arai (2003) and the newly constructed

Table 1 Isopach information of tephra fall deposits of the ME and the
tephra from the 1815 Tambora eruption. Blue and red cells: isopach
data used for volume calculation of the B-Tm ash. Yellow cells are
isopach areas extrapolated based on the 10-cm and 5-cm isopachs

assuming a linear relationship in the log(thickness)-
√
isopach area

plot. Isopach areas measured with the R package “geosphere” (R Core
Team, 2017; Hijmans, 2019)
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1-cm isopach can be reliably used for the maximum volume
estimation of the B-Tm ash.

Volume estimation

Here we use the segmented exponential functions proposed
by Fierstein and Nathenson (1992) to estimate the maximum
volume of the B-Tm ash (Fig. 4). This method estimates the
volume of tephra deposits by segments, and each segment is
defined by the available isopachs. The volume within each
segment is the volume of a tephra deposit from Isopach
A to Isopach B. Exponential thinning is assumed within
each segment on the log(thickness)-

√
ispach area plot. This

method is chosen because using other methods introduces

additional uncertainties in fitting the isopach data to certain
types of curves on the log(thickness)-

√
ispach area plot

(especially given just four data points), and the results might
not represent the maximum estimate. In addition, volume
of proximal tephra of the ME will be estimated separately
later based on proximal isopachs. One main advantage
of other methods (Pyle 1989; Bonadonna and Houghton
2005; Bonadonna and Costa 2012), i.e., the ability to infer
the proximal thinning pattern of tephra deposits based on
limited isopachs, would not apply to this work.

The volumes of the B-Tm ash calculated from isopachs
of Horn and Schmincke (2000) and isopachs published
by Machida and Arai (2003) plus our newly constructed
ones are 26.66 and 62.48 km3, respectively, based on Eq.

Fig. 2 B-Tm ash observed
thicknesses compared with
isopachs shown in Fig. 1b and c.
Extents of a and b correspond to
gray and yellow panes in
Fig. 1b, respectively. White,
blue, and red points correspond
to observations that are thinner,
consistent, and thicker than
thicknesses inferred from the
isopachs. Observations masked
by the gray box in b are
presented in a

74   Page 4 of 10 Bull Volcanol (2021) 83: 74



Table 2 Bulk volumes of different eruptive products of the ME and their sum from this work and previous studies

13 of Fierstein and Nathenson (1992). The one- and two-
segment exponential functions of Pyle (1989) and Fierstein
and Nathenson (1992) are applied to isopach data of Horn
and Schmincke (2000) for better comparison as the same
methods were used in their work, and the calculated vol-
umes are 32.99 and 26.69 km3, respectively. The two values
are within the range of 26.66–62.48 km3. It is noted that
the reported volumes here include the volume of the proxi-
mal ash which is determined based on the distal 10-cm and
5-cm isopachs. In calculating the maximum total eruption
volume later, this portion of volume will be replaced by the
tephra volume calculated based on the proximal isopachs.

Our uncertainty in constructing the 1-cm and 0.1-cm
isopachs has limited influence on the maximum volume

estimate. A ±20% variation in both the 1-cm and 0.1-cm
isopach areas leads to a±6.7% (58.29–66.59 km3) variation
in calculated maximum volume. A ±20% variation in the
0.1-cm isopach area leads to a ±2.9% (60.70–64.27 km3)
variation in calculated maximum volume.

Comparison with previous studies and tephra
deposit of the 1815 Tambora eruption

The volume of the B-Tm ash was previously estimated as
63–100 km3 (Horn and Schmincke 2000). Using the same
set of isopachs, our estimated volume is 26.66 km3. The
estimated maximum volume from this work (62.48 km3) is
close to but still below the previous lower limit, and the
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calculated volumes from our work also include the proximal
volume which will be subtracted later in calculating the total
eruption volume. Limited information was provided about
how the previous volume was calculated, but we notice that
with the one- and two-segment exponential functions of
Fierstein and Nathenson (1992), using the longest isopach
axis of Horn and Schmincke (2000) (Table 1), rather than of
the square rooted isopach areas, results in volumes of 92.73
and 81.46 km3, respectively. These values are consistent
with previous estimate, but overestimate the true volume
due to using incorrect data.

Tephra volume of the 1815 Tambora eruption, the most
recent VEI-7 eruption, was estimated to be 90–133 km3

(Self et al. 2004; Kandlbauer and Sparks 2014) using
isopach-based methods. The isopach data of the tephra from
the Tambora eruption reported in Kandlbauer and Sparks
(2014) are compared with those of the B-Tm ash here. For
the isopachs of Horn and Schmincke (2000) corresponding
to our minimum B-Tm ash volume, their 20-cm and 5-cm
isopach areas are 10.3% and 47.1% of those of the 1815
Tambora tephra deposit, respectively (Table 1). The ratios
are 52.9%, 80.5%, and 56.7% for the 20-cm, 5-cm, and
0.1-cm isopachs used for the maximum volume calculation
(Table 1). The comparison confirms that the B-Tm ash
volume was overestimated previously.

Proximal tephra

Liu et al. (1998) and Horn and Schmincke (2000)
constructed isopachs for total and Phase 1 proximal tephras
of the ME, respectively. The two sets lead to volume
estimates of 21.66–23.24 km3 (with the one- and two-
segment exponential models) and 4.2 km3 (Horn and
Schmincke 2000), respectively.

The isopachs of Liu et al. (1998) are compared with the
summed thicknesses of tephra deposits from the ME reported
in recent works (Machida et al. 1990; Sun et al. 2017; Pan
et al. 2020) at sample sites to the east of the volcano (Fig. 3).
Thicknesses of potentially post-ME tephras (due to the
dispute over the presence of post-ME eruptions; Wei et al.
2013; Sun et al. 2017; Pan et al. 2017; Pan et al. 2020) are
also included as we are more concerned with the maximum
thickness. All available observations are at least 50–250 cm
thinner than predictions from the isopachs, showing that in
the east of the volcano, isopachs of Liu et al. (1998) greatly
overestimate the tephra thickness distribution.

We thus use 23.24 km3 to denote the maximum volume
of the proximal ME tephra (i.e., the sum of Phase 1 and
2 volumes). We use 4.2 km3 and the proximal volume
of the B-Tm ash calculated based on isopachs of Horn
and Schmincke (2000) to denote minimum volumes of the
proximal Phase 1 and 2 tephras, respectively. The latter is
adopted because studies have confirmed the presence of
Phase 2 tephra close to the vent (Machida et al. 1990; Pan
et al. 2017), and tephra thickness tends to have a greater
thinning rate in the area close to the vent (Pyle 1989).

Extra-caldera ignimbrites

Horn and Schmincke (2000) estimated that the volume of
the ME ignimbrites ranged from 12.3 to 17.5 km3 (Phase
1: 8.4–11 km3; Phase 2: 3.9–6.5 km3). Zhao et al. (2020)
estimated that the volume in China was∼7 km3 (Fig. 3), and
found that extents of the ignimbrites in China are smaller
than those mapped by Horn and Schmincke (2000).

Here the maximum extra-caldera ignimbrite volume is
assumed to be 13 km3, which is the sum of the volume in
China (7 km3; Zhao et al. 2020), a quarter (11×0.25 = 2.75

Fig. 3 Proximal ME tephra
isopachs (unit: cm) from Liu
et al. (1998). Total thicknesses
(cm) of ME tephras digitized
from recent works are marked
with references given. Fall
deposits that might be from
post-ME eruptions (due to the
dispute over the presence of
post-ME eruptions) are treated
as ME tephras. Inset figure
shows the extent of the main
figure with reference countries
and region labeled
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km3) of maximum Phase 1 ignimbrite volume estimated by
Horn and Schmincke (2000), and half (6.5 × 0.5 = 3.25
km3) of maximum Phase 2 ignimbrite volume estimated
by (Horn and Schmincke 2000; Table 2). The latter two
denote the assumed Phases 1 and 2 extra-caldera ignimbrite
volumes in North Korea because Horn and Schmincke
(2000) estimated that Phase 1 ignimbrite covered a half
circle area to the north around the vent (Fig. 2 in their
work), which is mostly in China, suggesting that the Phase
1 ignimbrite extent in North Korea must be smaller than a
quarter of its total area (the southeast quadrant with respect
to the vent is within the North Korean territory); the area
ratio of Phase 2 ignimbrite in North Korea is smaller than
half of its total area as mapped by Horn and Schmincke
(2000). The proposed volume thus maximizes volumes of
the ME ignimbrites in North Korea, and takes into account
the most recent and more detailed estimate of their volume
in China. The minimum extra-caldera ignimbrite volume is
assumed to be 9.33 km3, which is the estimated volume in
China from Zhao et al. (2020) times the inverse of its area
ratio (3/4) in China around the volcano.

Intra-caldera ignimbrites

No published studies suggest that a large portion of
ignimbrites was preserved within the caldera or indicate
significant ponding of ignimbrites during the ME. The
intra-caldera ignimbrite volume from the ME has not been
considered in previous works. Assigning its value is thus
subject to significant uncertainty. NoME ignimbrites can be
found at the currently exposed inner caldera wall. Within the
caldera and above the caldera lake level, pyroclastic deposits
prior to the ME are exposed (Wei et al. 2013). Pyroclastic
fall, flow, and surge deposits that were deposited either
from or after the ME (Wei et al. 2013) are locally exposed,
suggesting that the extent of massive and thick intra-caldera
ignimbrites, if present, cannot exceed the caldera lake
surface. Here a dummy volume of 4.9 km3, the product
of the caldera lake surface area (9.8 km2) and an assumed
thickness of 500 m, is used to denote the maximum intra-
caldera ignimbrite volume. The thickness chosen is arbitrary
but is considered sufficiently large. We note here that the
average depth of the caldera lake today is 213 m. The
minimum intra-caldera ignimbrite volume is set to be 0 km3,
which is a more likely estimate given evidence listed above.

Total volume, VEI, andmagnitude of theME

Minimum and maximum total bulk volumes of the ME are
calculated as 40.19 and 97.70 km3, respectively, based on

volumes assigned for each eruptive product stated above
(Table 2). In calculating the maximum, after taking the sum,
the double-counted volume of proximal ash and the B-Tm
ash is subtracted (Fig. 4c). It is stressed that the volume
range is defined based on the minimum and maximum total
volumes of the ME, not ± one or two standard deviations
from the mean. The maximum volume is estimated based
on maximized volumes of all eruptive products of the ME:
we have proved that isopachs of the proximal ash and
the B-Tm ash used for their maximum volume calculation
greatly overestimate their thickness distributions; ignimbrite
volumes are also maximized in calculating the maximum
total volume, and a dummy volume for intra-caldera
ignimbrites, which is highly likely to be a lot greater than
their true volume if present, is assumed and included as
well. The true total volume of the ME thus has to be a lot
smaller than 97.7 km3.

One well-accepted total eruption volume of the ME
is 96 ± 19 km3, which was calculated by assuming a
volume range of 63–100 km3 for the B-Tm ash (Horn and
Schmincke 2000), but its volume is updated to 26.66 km3

based on the same isopachs in this work. We therefore
conclude that the ME is a VEI-6 (10–100 km3) eruption,
rather than VEI-7 as widely assumed in previous studies.

The magnitude of the ME has been assumed to be 7.4
previously (Hayakawa and Koyama 1998). Estimating its
magnitude accurately is difficult because robust data on
bulk densities of different eruptive materials are currently
not available. We estimate updated magnitude values by
somewhat arbitrarily assuming average bulk densities of
1500, 1000, and 600 kg/m3. Given the updated maximum
volume of 97.7 km3, the magnitudes are estimated as 7.2,
7.0, and 6.8; the corresponding values are 6.8, 6.6, and 6.4
if the minimum volume (40.19 km3) is used for calculation.
The above calculation suggests that the magnitude of
the ME must be lower than 7.4, and its true value lies
somewhere in between 6.4 and 7.2.

Significance

The previously estimated eruption volume (∼96–172 km3)
has been used in all previous studies on the ME, its eruptive
products, and how the eruption interacted with global
climate. It is imperative to update the eruption volume of
the ME to the more robust and evidence-based estimate of
40.19–97.90 km3 from this work.

Revising the VEI of the ME from 7 to 6 indicates that
there are only two, rather than three, VEI-7 eruptions (i.e.,
the 1257 Samalas eruption and the 1815 Tambora eruption;
Newhall et al. 2018) in the last 2000 years. Our updated
eruption volume of the ME also suggests that its magnitude
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Fig. 4 Log(thickness) − √
isopach area plots. a Isopach data from

Horn and Schmincke (2000); b isopach (10-cm and 5-cm) data from
Machida and Arai (2003) and the present work (1-cm and 0.1-cm).
Tephra volumes in different square roots of isopach area ranges are
marked; c: proximal isopach data (orange points and lines) of the
ME based on Liu et al. (1998). Green point: the 10-cm B-Tm ash

isopach data of Machida and Arai (2003). Green line: the thinning pat-
tern based on 10-cm and 5-cm isopachs of Machida and Arai (2003).
Shaded areas correspond to double-counted volumes in calculating the
total ME tephra volume. Their volumes are labeled with corresponding
colors. All isopach data given in Table 1

is lower than previously thought. These suggest that global
magnitude-frequency relationships for the most recent large
explosive volcanic eruptions need to be revised.

The ME had limited regional climatic effects, rather
than global or hemispheric impact (Xu et al. 2013). Global
volcanic aerosol forcing by the ME was smaller than
that from the 1815 Tambora eruption (Sigl et al. 2015),
although sulfur released from the ME might be greater than
the Tambora eruption (Iacovino et al. 2016). These two
seemingly conflicted arguments might be partially resolved
by our work, which shows that sulfur released from the
eruption might be overestimated in previous studies as it was
calculated based on a total volume (96 km3 estimated from

(Horn and Schmincke 2000)) that is close to the maximum
volume estimated in this work.

Supplementary information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s00445-021-01487-8.
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