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Abstract
Modeling lava flow propagation is important to determine potential hazards to local populations. Thermo-rheological mod-
els such as PyFLOWGO track downflow cooling and rheological responses for open-channel, cooling-limited flows. The 
dominant radiative cooling component is governed partly by the lava emissivity, which is a material property that governs 
the radiative efficiency. Emissivity is commonly treated as a constant in cooling models, but is shown here to vary with tem-
perature. To establish the effect of temperature on emissivity, high spatiotemporal, multispectral thermal infrared data were 
acquired of a small flow emplaced from a tumulus. An inverse correlation between temperature and emissivity was found, 
which was then integrated into the PyFLOWGO model. Incorporating a temperature-dependent emissivity term results in a 
∼5% increase in flow length and < 75% lower total cumulative heat flux for the small flow. To evaluate the scalability of this 
relationship, we applied the modified PyFLOWGO model to simulations of the 2018 Lower East Rift Zone fissure 8 flow, 
emplaced between May 27 and June 3. Our model improves the emplacement match because of the ~ 30% lower heat flux 
resulting in a ∼7% longer flow compared to modeling using a constant emissivity (0.95). This 5–7% increase in length prior 
to ocean entry, realized by an accurate temperature-dependent emissivity term, is critical for developing the most accurate 
model of future flow hazard assessments, particularly if population centers lie in the flow’s path.
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Introduction

Lava flow modeling is a powerful tool for quantitatively 
forecasting lava propagation and subsequently improving 
the accuracy and reliability of lava hazard assessments 
(Ramsey and Harris 2013). This importance is reinforced 
by recent eruptions at Kīlauea (Hawai’i), Piton de la Four-
naise (La Réunion), Etna (Italy), and Pacaya (Guatemala), 
which produced lava flows that posed serious risks to local 
societies. For example, in the summer of 2018, activity at 
Kīlauea volcano emplaced numerous channelized lava flows 

up to 15 km long, destroying over 700 buildings in the Puna 
district (Neal et al. 2019). Flow propagation modeled dur-
ing an ongoing eruption provides useful guidance to hazard 
response coordinators in populated areas so more informed 
risk reduction measures may be enacted (Harris et al. 2019).

Lava flow propagation models require at least some input 
parameters. The length and dispersion of a lava flow are 
controlled by the temperature, effusion rate, crystal/vesicle 
content, and the topographic slope. Temperature is the fore-
most variable because it influences rheology (Harris et al. 
1998; Cashman et al. 1999; Gregg and Fink 2000). Indeed, 
the majority of basaltic lava flow propagation models assume 
that temperature is inversely related to the viscosity (Park 
and Iversen 1984; Dragoni and Tallarico 1994; Harris and 
Rowland 2001). In a hazard response scenario, gathering the 
requisite petrologic (if no prior data are available) to perform 
accurate flow modeling is time-consuming, and can take sev-
eral days to process (Ramsey and Harris 2013). Sometimes, 
thermal properties are estimated or assumed from previous 
field or laboratory studies (e.g., Harris and Rowland 2001; 
Avolio et al. 2006; Bilotta et al. 2012), whereas other recent 
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studies integrate satellite-based Advanced Very High-Reso-
lution Radiometer (AVHRR) and Moderate Resolution Imag-
ing Spectroradiometer (MODIS) thermal infrared (TIR) data 
into flow modeling (e.g., Negro et al. 2008; Herault et al. 
2009; Vicari et al. 2009, 2011). Generally assumed, however, 
is the emissivity of the lava needed to derive the radiant tem-
perature, heat flux, and cooling of the flow over time.

Emissivity is a wavelength-dependent, unitless property 
that determines the efficiency at which radiant energy is emit-
ted by a material. Most natural surfaces are not perfect emit-
ters (i.e., they are not blackbody surfaces). Emissivity is con-
trolled by the atomic vibrational motion of the material and 
the physical properties of the surface such as roughness and 
particle size. Therefore, it varies with composition, vesicu-
larity, and surface expression (e.g., Christensen et al. 2000; 
Abtahi et al., 2002; Vaughan et al. 2005). However, tempera-
ture was never considered a controlling variable. Prior emis-
sivity measurements quantified the effects of surface rough-
ness, state changes (melt vs. solid), and particle size (e.g., 
Simurda et al. 2019; Williams and Ramsey 2019; Thompson 
and Ramsey 2020a). High temperature studies of cooling 
lava found that emissivity is significantly lower than previ-
ous assumed (Abtahi et al. 2002; Lee et al. 2013; Thompson 
and Ramsey 2020a,b). Therefore, it is likely that prior studies 
using a constant emissivity assumption overestimated heat 
flux and cooling rates and underestimated lava flow lengths 
(Harris et al. 1998; Harris and Rowland 2001; Harris 2013; 
Ramsey et al. 2019; Thompson and Ramsey 2020b).

Here, we establish the relationship between emissivity 
and temperature for basalt using ground-based multispectral 
TIR data acquired at a small lava flow emplaced in 2018 
at Kīlauea volcano, Hawai’i. The temperature-dependent 
emissivity relationship we found became the basis for a 
new PyFLOWGO radiant heat flux module. The much larger 
channelized fissure 8 lava flow emplacement during the 2018 
Lower East Rift Zone (LERZ) eruption was modeled using 
this new module to validate this approach. The modified 
model’s effectiveness was assessed using high-resolution 
multispectral TIR data acquired on May 30, 2018.

Background

Kīlauea volcano

Kīlauea is a basaltic shield volcano on the southeast-
ern side of the Island of Hawai’i (HI, USA) that has 
erupted almost continually over the past 500  years. 
Mantle magmas are supplied to two reservoir systems 
below the main summit caldera at Kīlauea. The reser-
voirs are centered ~ 3–5 km beneath the south caldera 
and Keanakāko’i crater (Poland et al. 2014). From there, 
the magmas either ascend to a shallow reservoir and/or 

migrate throughout the > 80-km long rift system (Poland 
et al. 2014). Typically, recent eruptions have been effu-
sive but phreatomagmatic explosive events have also 
occurred at the summit, which varied from short-lived 
to much longer (< 300 years) periods (Swanson et al. 
2014). The effusive lava activity produces both ‘a’ā 
and pāhoehoe (tubed and surface) flows with pāhoehoe 
flows commonly longer-lived (Orr et al. 2013; Poland 
et al. 2014). Prior to May 2018, two main eruption styles 
were observed at Kīlauea volcano: (i) an overturning 
lava lake in the Halema’uma’u Crater from 2008 to 2018 
(Patrick et al. 2013) and (ii) an extensive lava flow field 
emanating mainly from the Pu’u’Ō’ō vent (Wolfe et al. 
1987; Heliker and Mattox 2003; Orr et al. 2013). More 
than 60 separate episodes of lava flows were observed 
over a 35-year period on the East Rift Zone with approx-
imately 4.4  km3 of lava emplaced, mostly as a series of 
tube-fed sheet-like and ropey pāhoehoe flows (Wolfe 
et al. 1987; Heliker and Mattox 2003; Orr et al. 2013; 
Neal et al. 2019).

Lower East Rift Zone eruption

In March 2018, the magma system beneath Kīlauea volcano 
started to pressurize, causing the lava levels at the Kīlauea 
summit and Pu’u’Ō’ō vent to increase (Neal et al. 2019). 
On April 30, 2018, ground deformation was observed down 
the rift system to the east and on May 3, 2018, lava erupted 
along a series of fissures near the Leilani Estates subdivi-
sion on the southeast of the island (Patrick et al. 2019). 
Over the next few weeks, lava erupted from a total of 24 fis-
sures, with activity eventually focusing at the fissure 8 vent 
by May 27, 2018. Within 6 days, lava advanced 12.47 km to 
enter the Pacific Ocean at Kapoho Bay on June 3 (Fig. 1a) 
(Neal et al. 2019). The eruption then remained centralized 
at fissure 8 for the next two months. From May 3 to May 
27, the bulk effusion rates were estimated between 100 and 
500  m3s−1, but average rates increased to a maximum of 
∼2000  m3s−1 reported in July (Neal et al. 2019; Patrick et al. 
2019). Lava fountains ∼80 m high fed spatter that coalesced 
in a ∼30 m wide spillway before flowing into a ∼430 m 
wide perched channel (Fig. 1b–c) (Patrick et al. 2019). Dis-
tally, the channel varied between ∼40 and ∼300 m wide. On 
August 4, effusion ceased after emplacing ∼1  km3 of lava 
(Neal et al. 2019).

PyFLOWGO

FLOWGO is a one-dimensional numerical model that 
forecasts lava propagation confined within an open chan-
nel (Harris and Rowland 2001), which estimates the final 
flow length based on cooling. PyFLOWGO built upon 
the earlier FLOWGO model by improving initialization, 
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iteration, and application criteria (Chevrel et al. 2018). 
The model combines the measured downflow changes in 
thermophysical properties and the best fit between results 
to produce a physically and thermally robust model (Harris 
and Rowland 2001). Downflow variations in velocity are 
calculated by estimating the crystallization, cooling, vis-
cosity, and yield strength of the lava, with crystallization 
being the most influential factor. The model is cooling-
limited with heat flux calculated until cooling increases 
the viscosity and reduces the velocity to a point where 
flow ceases (Fig. 2a) (Harris and Rowland 2001; Harris 
2008). PyFLOWGO does not, however, replicate disper-
sive behavior observed at flow fronts because it models the 
flow in one dimension.

There are three main stages in the PyFLOWGO model: 
(1) determining the velocity of the lava based on a modi-
fied version of Jeffreys’ equations; (2) calculating the heat 
flux from the lava during each propagation step to the next 
segment along the slope profile; and (3) determining the 
change in thermo-rheological conditions at each propaga-
tion step (Harris and Rowland 2001). Here, we address the 
third stage, which in turn impacts the other stages in the 
model.

Briefly, heat flux is originally calculated using a two-
component temperature model of the lava surface represent-
ing the hot molten and cooler crust-covered end-members 

to determine an effective surface temperature ( Teff ) (Eq. 1) 
(Harris and Rowland 2001):

where fcrust is the fraction of surface crust cover, Tc is the 
crust temperature, and Th is the temperature of the exposed 
molten flow. This effective temperature is then used to cal-
culate heat flux (Eq. 3) and determine cooling rates (Harris 
and Rowland 2001). However, the original calculations do 
not account for the change in emissivity between these sur-
faces. A two-component emissivity model was developed to 
account for this change using an effective emissivity ( �eff ) 
dependent on the fraction of the end-member surfaces (Eq. 2) 
(Ramsey et al. 2019):

where �c is the emissivity of the crust (0.95) and �h is the 
emissivity of the hot molten surface (0.60) (Ramsey et al. 
2019). The effective emissivity is combined with the effec-
tive temperature in the heat flux calculations (Eq. 3). This 
study improves on the two-component emissivity approach 
of Ramsey et al. (2019) by measuring the natural emissivity 
of crusted and molten surfaces and linking these to tempera-
ture and crust fraction. Our results show that it is important 

(1)Teff =
[

fcrust ∙ T
4
c
+
(

1 − fcrust
)

∙ T4
h

]0.25

(2)�eff = �c ∙ fcrust + �h ∙
(

1 − fcrust
)

Fig. 1  a Level-1C Sentinel-2B image of the active LERZ fissure 
8 lava flow emplacement acquired on June 22, 2018, with chan-
nels 4 (0.665  µm), 3 (0.560  µm), 2 (0.490  µm) in red, green, blue, 
respectively (Copernicus Sentinel data, 2018). Spatial resolution is 
10  m and the letters (b and c) indicate the approximate position of 

the aerial photographs. b–c Aerial photographs of the fissure 8 lava 
emplacement on May 30, 2018, captured at an altitude of ∼250  m 
from a helicopter (photographs by J.O. Thompson). b The fountain at 
the vent is ~ 80 m high. c Distal lava channel showing approximately 
30–50% crust cover.
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to represent the emissivity of both the crusted and molten 
lava surface because it has an influence on calculated cooling 
rates and ultimately, the modeled final flow length.

Methodology

High‑resolution ground‑based data

The Miniature Multispectral Thermal Camera (MMT-Cam) 
acquires six, well-calibrated, surface radiance measurements 

between 7.5 and 12 µm at high spatial (< 1 m) and temporal 
(< 1 s) resolutions (Thompson et al. 2019). The data are cali-
brated for instrument attenuation and optical transmittance, 
as well as corrected for atmospheric emission and transmis-
sion effects using the SpectralCalc atmospheric simulator 
(Rothman et al. 2013; GATS 2019; Thompson et al. 2019). 
Surface radiance data are separated into surface kinetic 
temperature and emissivity using a modified Temperature-
Emissivity Separation (TES) algorithm (Gillespie et al. 
1998; Thompson et al. 2019). Total heat flux (ɸtot) (Eq. 3) 
and the fraction of exposed melt (Eq. 4) are then calculated 

Fig. 2  a A schematic show-
ing the parameters used in the 
modeling of an active lava flow. 
All six main heat flux terms 
control the lava cooling within a 
channelized lava flow (modi-
fied after Harris 2013). The 
equations for heat flux are as 
follows: radiative (1): Mrad = ελ 
σ (Ts

4 − Ta
4); free or forced 

convection (2): Mconv = hc 
(Ts − Ta); and conductive 
(3): Mcond =  − k[ΔT/√(α π 
t)]. b Temperature image of a 
small tumulus-fed lava flow on 
February 3, 2018, at its final 
length. The spatial resolution 
is ~ 0.015 m. The yellow dashed 
line indicates the main channel 
used in PyFLOWGO simula-
tions, and the white polygon is 
the ROIs used in the analyses.
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from the measured surface temperature ( Ts ), ambient sur-
face temperature ( Ta ) (similar to Tc in Eq. (1)), and spectral 
emissivity ( �

�
):

where � is the Stefan-Boltzmann constant, hc is the heat 
transfer coefficient, k is thermal conductivity, � is thermal 
diffusivity, and A is pixel area. The heat transfer coefficient 
is calculated for a forced convection scenario because windy 
conditions were present during the acquisition periods  
(Harris 2013; Thompson and Ramsey 2020a). The fraction 
of exposed melt on the surface of the flow is calculated based 
on previous work deriving sub-pixel temperatures (Dozier 
1981; Rothery et al. 1988; Harris 2013). In this study, we 
have adapted this to determine the faction of a pixel within a 
dataset that is completely molten and is similar to 1 − fcrust in 
Eqs. (1) and (2), but derived directly from MMT-Cam data:

where Tliq is the liquidus temperature of a Hawaiian basalt 
(Abtahi et al. 2002).

On February 3, 2018, MMT-Cam data were acquired of a 
lava breakout from a tumulus on the coastal plain of Kīlauea 
volcano (Fig. 2b). We measured emissivity and temperature 
on the active region of the tumulus during the entire breakout 
event. The variability in both properties was analyzed and 
modeled for the six individual spectral bands and combined 
averages acquired by the MMT-Cam system. A sample was 
also collected to provide an estimate of vesicularity used in 
the model. Bulk density measurements revealed a bulk rock 
vesicularity of between 26 and 35% with a mean of 30%.

On May 30, 2018, the MMT-Cam was deployed on a 
helicopter over the LERZ to acquire data of the channelized 
flows originating from fissure 8 (Figs. 1, 2, and Suppl. 1). 
During the deployment, data were acquired of the lava foun-
tain, spillway, perched channel, distal lava channels, and 
active flow front at the time (Fig. 1). Surface temperature, 
emissivity, fraction of exposed melt, heat flux, and channel 
widths were derived at each data acquisition location.

Topographic data

The pre-flow slope profile of the fissure 8 lava flow was extracted 
from the 10 m DEM derived from the United States Geological 
Survey’s 7.5-min DEM Quads (National Oceanic and Atmos-
pheric Administration 2007). The profile path was determined 
by overlaying a helicopter-based TIR map of Kilauea’s LERZ 
fissure system produced on June 4, 2018 (U.S. Geological 

(3)ϕtot =
�

�

�
�
∙ �

�

T4
s
− T4

a

��

+
�

hc
�

T4
s
− T4

a

��

+
�

−k
�

ΔT∕
√

� ∙ � ∙ t
���

∙ A

(4)Fraction of exposed melt =
(

Ts − Ta
)

∕
(

Tliq − Ta
)

Survey 2018a). This was the day after the fissure 8 lava flow 
entered the Pacific Ocean at Kapoho Bay. The topography could 
have changed during the early phase of the eruption; however, 

the changes in slope profile were minimal. A syn-eruption DEM 
derived from an airborne Light Detection and Ranging (LiDAR) 
survey was conducted on July 8, 2018, until July 12, 2018 (U.S. 
Geological Survey 2018b). The dataset relieved a minimal 
(7.1% ± 4.1%) change in the channel slope profile as a result 
of the emplaced lava, therefore not significantly impacting the 
model interpretations.

PyFLOWGO modeling

The new temperature-dependent variable emissivity mod-
ule developed from the MMT-Cam data was integrated into 
PyFLOWGO. The module was tested on the small tumulus-fed 
flow to constrain the new input parameters and analyze the sensi-
tivity. The results were compared to the un-modified PyFLOWGO 
results using a constant emissivity value of 0.95 and 0.89, typical 
values used in previous thermal monitoring and modeling studies 
(e.g., Wright et al. 2008; Harris 2013; Patrick et al. 2017).

We first tested the updated PyFLOWGO model to simu-
late the 6.3-m tumulus-fed lava flow at 0.1-m intervals (model 
parameters in Table 1). The slope was calculated based on 
field measurements of the tumulus, with a change in elevation 
of 5.9 m over a horizontal distance of 10.0 m. Active chan-
nel widths were measured using the high spatial resolution 
(< 0.01 m) MMT-Cam data acquired during the emplacement. 
The initial channel width and depth measured at the bocca were 
0.2 m and 0.3 m, respectively. These channel measurements, 
along with initial velocity measurements (~ 1.8  ms−1) acquired 
from the MMT-Cam data, were used to calculate an initial effu-
sion rate of 0.11  m3s−1. All other PyFLOWGO input parameters 
were either obtained from MMT-Cam data (e.g., crust cover 
fraction), through later analysis of samples (e.g., vesicularity), 
or based on assumptions using results from previous investiga-
tions on similar basaltic eruptions (e.g., viscosity) (Shaw 1972; 
Harris and Rowland 2001).

After testing, the modified model was used to simulate 
the 12.47-km-long lava flow that originated from fissure 8 
at 10-m downflow intervals (model parameters in Table 2). 
The initial effusion rate (500  m3s−1) was constrained using 
reported values prior to the flow entering the Pacific Ocean 
on June 3, 2018 (Neal et al. 2019; Patrick et al. 2019). Chan-
nel width measurements were acquired periodically down-
flow using published TIR images (U.S. Geological Survey 
2018a). On June 4, the average widths of the spillway, 
perched channel, and distal channel were 30 m, 340 m, and 
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150 m, respectively (Fig. Suppl. 1). These values were used 
to validate the model results, but were acquired one day after 
the lava flow entered the Pacific Ocean, which may cause 
measurement discrepancies. PyFLOWGO calculates the 
channel width at each downflow propagation step. However, 

over time, channel widths can change, typically increasing 
after first forming. The initial viscosity was assumed to be 
30 Pa·s to account for the increased lava mobility compared 
to the more viscous tumulus-fed lava flow (Shaw 1972;  
Harris and Rowland 2015; Dietterich et al. 2021).

Table 1  The PyFLOWGO input models, modules, and parameters used to simulate the tumulus-fed lava flow

1 ∂φ/∂Tcool = φgrown / (Terupt − Ts); 2ηmelt = ηerupt exp(0.04(Terupt − Tcore)); 3ηr = (1 − Rφ)−2.5; 4τ0 = ρ g h sin(α); 5fcrust = finit exp(α Vmean); 6calculated 
from MMT-Cam data at bocca using Eq. (4)

Models Selection Reference

   Crystallization rate basic1 Harris and Rowland (2001); Chevrel et al. (2018)
   Melt viscosity basic2 Giordano et al. (2008)
   Relative viscosity er3 Einstein-Roscoe model from Chevrel et al. (2018)
   Relative viscosity bubbles no
   Yield strength ryerson4 Ryerson et al. (1988)
   Crust temperature constant Harris and Rowland (2001); Chevrel et al. (2018)
   Effective cover crust basic5 Harris and Rowland (2001), Chevrel et al. (2018)
   Vesicle fraction constant Harris and Rowland (2001); Chevrel et al. (2018)

Heat budget modules Selection Reference
   Radiation Linemi This study
   Conduction yes Harris and Rowland (2001)
   Convection yes Harris and Rowland (2001)
   Rain no Harris and Rowland (2001)
   Viscous heating no Harris and Rowland (2001)

Initial input parameters Value Reference
   Propagation step size (m) 0.1 This study
   Effusion rate  (m3·s−1) 0.11 This study from MMT-Cam data (Thompson et al. 2019)
   Width (m) 0.2 This study from MMT-Cam data (Thompson et al. 2019)
   Depth (m) [h] 0.3 This study
   Gravity (m·s−2) [g] 9.81
   Eruption temperature (K) 1473 This study from MMT-Cam data (Thompson et al. 2019)
   Lava viscosity (Pa·s) 220.0 Shaw (1972); Harris and Rowland (2015)
   Crystal fraction 0.1 This study from MMT-Cam data (Thompson et al. 2019)
   DRE density (kg·m−3) [ρ] 2744 Shaw (1972); Harris and Rowland (2015)
   Vesicle fraction 0.3 This study
   Liquidus temperature (K) 1235 This study from MMT-Cam data (Thompson et al. 2019)
   Basal temperature (K) 623 This study from MMT-Cam data (Thompson et al. 2019)
    Distance from core to base (%) 20.0 Harris and Rowland (2001); Chevrel et al. (2018)
   Wind speed (m·s−1) 2.68 This study
   Air CH 0.0036 Harris and Rowland (2001); Chevrel et al. (2018)
   Air temperature (K) 310.3 The study
   Air density (kg·m−3) 0.4412 Harris and Rowland (2001); Chevrel et al. (2018)
   Air S. heat capacity (J·kg−1·K−1) 1099 Harris and Rowland (2001); Chevrel et al. (2018)
  Buffer between Tcore and Thot(K) 20.0 Harris and Rowland (2001); Chevrel et al. (2018)
  Crust cover  fraction6 0.1 This study from MMT-Cam data (Thompson et al. 2019)
  Velocity dependency of crust (m·s−1)  − 0.16 Harris and Rowland (2001); Chevrel et al. (2018)
  Crust temperature (K) 623 This study from MMT-Cam data (Thompson et al. 2019)
  Emplacement crystal growth 0.08 Harris and Rowland (2001); Chevrel et al. (2018)
  Solid temperature (K) 1237 Putirka (1997)
  Latent heat of crystallization (K·kg−1) 350,000 Harris and Rowland (2001); Chevrel et al. (2018)
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Results

Downflow variations in thermal properties

Tumulus‑fed lava flow

The downflow evolution of two thermal properties (surface 
temperature and emissivity) and two thermophysical param-
eters (fraction of exposed melt and heat flux) was observed 

during the tumulus-fed lava emplacement over a 40-min period 
(Fig. 3). The MMT-Cam data transects show high initial tem-
peratures (up to 1450 K) 1–2 m and 3–4 m from the bocca, 
where the largest active breakouts were observed. As the 
emplacement progressed, the highest temperatures progressed 
farther from the bocca, with major peaks at 3–4 m, ∼4.7 m, 
and 5.2–6.3 m (Fig. 3a). Lower emissivity values (> 0.65) cor-
related with these highest temperatures, especially at 3.5–3.8 m 
and 5.5–6.3 m (Fig. 3b). The fraction of exposed melt is similar 

Table 2  The PyFLOWGO input 
parameters that differ from 
those in Table 1 and which 
were used to simulate the LERZ 
fissure 8 lava flow

Initial input parameters Value Reference

 Propagation step size (m) 10.0 This study
 Effusion rate  (m3·s−1) 500 This study from MMT-Cam data (Thompson et al. 2019)
 Width (m) 10.0 This study from MMT-Cam data (Thompson et al. 2019)
 Depth (m) 5.0 This study
 Lava viscosity (Pa·s) 30.0 Shaw (1972); Harris and Rowland (2015)
 Vesicle fraction 0.2 This study
Buffer between Tcore and Thot (K) 30.0 Harris and Rowland (2001); Chevrel et al. (2018)
Crust cover fraction 0.5 This study from MMT-Cam data (Thompson et al. 2019)
Emplacement crystal growth 0.3 Harris and Rowland (2001); Chevrel et al. (2018)

Fig. 3  Temporal transects of 
the a surface temperature, b 
six-point average emissivity, c 
fraction of exposed melt, and d 
heat flux along the central chan-
nel of the 6.3-m tumulus-fed 
lava flow. The original bocca is 
at 0 m (see Fig. 2b). The MMT-
Cam data were acquired at an 
approximate distance of 10 m 
from the target. The transect 
line color transition from purple 
to yellow with time. The spatial 
resolution is ~ 0.015 m

Page 7 of 19    41Bulletin of Volcanology (2021) 83: 41



1 3

to the temperature with an aerial exposed melt fraction near 
0.99 between 1–2 and 3–4 m and a minima of 0.15 in the less 
active regions. Higher fractions of exposed melt were observed 
farther from the bocca as time progressed. Heat flux data were 
similarly variable, with maximum values of 0.18 MW observed 
(Fig. 3d). Overall, the highest thermal values (lowest emissiv-
ity) transition farther from the bocca with time (each transect 
line in Fig. 3 from purple to yellow, at ~ 0.5-s intervals).

2018 fissure 8 lava flow

The helicopter-borne MMT-Cam acquired data at three 
locations along the fissure 8 lava channel. The targeted sites 
were the ∼80-m-high lava fountain at the vent, the perched 
lava channel, and the distal lava channels. At the vent, the 
highest temperatures, fraction of exposed melt, and total 
heat flux were observed at the base of the fountain, where 

the emissivity values are the lowest (Fig. 4). The fraction of 
exposed melt clearly shows the pathway of molten lava. The 
TIR data also highlighted smaller breakouts of molten lava to 
the south of the vent, away from the main channel. Generally, 
the average emissivity was the lowest around the vent and 
in some channel pathways in the spillway. It was also lower 
above the lava fountain likely due to the absorption of  SO2.

MMT-Cam data of the perched lava channel revealed a 
complex surface of molten lava and rafted crust (Fig. 5). 
Rafted plates dominated the surface of the channel (> 80%). 
The average emissivity was moderate, with the majority of the 
channel surface having a value of ∼0.75. Ribbon-like chan-
nels of lower emissivity (as low as 0.6) correlate with areas of 
molten lava. Heat flux values were lower in the perched chan-
nel compared to the vent region; however, elevated flux was 
detected in small areas suggesting the presence of subsurface 
lava pathways. Overall, the thermal properties of the perched 
lava channel indicate a fairly well-insulated flow.

Fig. 4  Thermal properties of the fissure 8 vent region
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The distal lava channel was comprised of diverse mor-
phologies with variable thermal properties, including 
poorly to well-insulated rafted portions, and small roofed 
over segments (Fig. 6). The surface temperature and frac-
tion of exposed melt data distinguish between cooler 
crusted lava rafts and exposed molten regions. Surface 
temperatures up to 1475 K were measured on the molten 
surfaces, compared to average temperature of ∼1000 K on 
the crusted rafts. A similar difference between molten and 
crusted regions was observed in the fraction of exposed 
melt, with average calculated values of ∼0.90 and ∼0.55, 
respectively. The cooler crusted lava rafts were constrained 
to the center of the channels whereas the molten regions 
were located along channel margins. Not surprisingly, the 
greatest heat flux was observed in the main channel along 
those margins. The lateral variability in thermal proper-
ties was the greatest in wider channels. Margins presented 
the lowest emissivity regions, with values as low as ∼0.6, 

suggesting the presence of a complex surface of cooling 
lava and minor breakout/overflow events.

Variable emissivity module

MMT-Cam measurements of the tumulus-fed lava were 
first performed to establish the relationship between 
emissivity and temperature for a basaltic melt (~ 50 
wt.%  SiO2). Lava temperatures ranged from 900 to 
1450 K (Figs. 7a and Suppl. 2). The 8.04, 8.55, 9.55, 
and 10.04 µm bands revealed a strong inverse correla-
tion between surface temperature and emissivity. There 
was a minor inverse relationship in the 8.99 µm band 
and a positive relationship in the 11.35 µm band (Suppl. 
Fig. 2). Additionally, the absorption shallows and broad-
ens during cooling (Fig. 7a). Trends were then com-
bined with equal weighting (as the bands have the same 
full width half maximum) to characterize the average 

Fig. 5  Thermal properties of the fissure 8 perched lava channel region
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emissivity dependency across the entire TIR region. The 
combined relationship revealed an inverse correlation 
(Fig. 7b).

The emissivity relationships established with MMT-
Cam data were used to modify the radiant heat flux cal-
culations of PyFLOWGO, specifically to vary emissivity 
with lava surface temperature. Regression analysis indi-
cated that both linear and quadratic models accurately 
represent the relationship between surface temperature 
and emissivity of lavas during cooling (Figs.  7b and 
Suppl. 2 and Suppl. Table 1). The linear regression was 
chosen for module development into the PyFLOWGO 
model because of its relative simplicity and higher coef-
ficient of determination (∼0.94). The average 6-point 
emissivity values were used, as no perceivable difference 
was achieved using the more complex, separate emissivity 
band regressions.

Lava flow propagation modeling

Tumulus‑fed lava flow

PyFLOWGO modeling revealed that the final f low 
length increased by ∼5% using the new variable emis-
sivity module compared to the previous constant emis-
sivity (0.95) module. Importantly, the longer f low 
length better matched the field observations (Figs. 8 
and 9). The increased length is a result of lower heat 
f lux (reduced cooling rate), which maintains higher 
temperature and therefore lower viscosities and crys-
tallization, and, ultimately, delays stopping (Figs. 8b, 
d, e, and f). The greatest impact was observed within 
the final 20% of the flow. For example, at 6.0 m, where 
the constant emissivity (0.95) module simulated the 
flow stalling, the variable emissivity module estimated 

Fig. 6  Thermal properties of the fissure 8 distal channel region
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∼75% less heat flux and 4.9–5.4% higher temperatures 
(Figs. 8b, d–f).

The new variable emissivity module for PyFLOWGO 
was validated by comparing the modeled channel widths, 
surface temperature, and total heat flux results with those 
derived from MMT-Cam data (Figs. 8c–e). The modeled 
channel widths show a good correlation with MMT-
Cam results until the flow reached a length of ∼4.5–5 m. 
Beyond 4.5 m, the tumulus-fed lava flow separated into 
multiple smaller channels causing the width of the main 
channel to decrease, something that is not simulated 

by PyFLOWGO. The field surface temperature meas-
urements show a wide variation due to the small scale 
(< 0.1 m) changes in surface cooling downflow that is 
likely missed in models. The total heat flux calculated 
in both the updated and unmodified PyFLOWGO model 
was < 100% higher than those derived from the MMT-
Cam data (Fig. 8e). The disagreement in values increased 
with flow length and was over an order of magnitude dif-
ferent farther downflow.

In these PyFLOWGO model simulations, there were 
minimal differences between the emissivity modules for 
the initial ∼50% of the flow length (Fig. 9). The greatest 
difference was observed in the final ∼20% with the vari-
able emissivity module producing a longer flow. Viscos-
ity validation calculations are within an order of magni-
tude of the model results. Generally, the rates of change 
in values of thermo-rheological properties (e.g., Δv/Δx) 
using this variable emissivity module were compara-
tively slower with propagation and flow evolution. For 
example, the rate of change in mean velocity is ∼3.2% 
slower, which provides improved insights into when 
a lava flow may reach a downflow location (Fig. 9d). 
Similar trends were observed in the other properties 
(Figs. 9a–c).

2018 fissure 8 lava flow emplacement

The variable emissivity module resulted in a better match 
to the actual length of the fissure 8 lava flow, increasing by 
∼7%, from 10.68 to 12.47 km (Figs. 10 and 11). Similar 
to the tumulus modeling, the increase was caused by the 
reduction in cooling rates as a result of lower calculated 
radiant heat flux (∼32%). The variable emissivity module 
also simulated comparatively higher temperatures (∼9%) 
throughout the flow length, as a result of slower cooling 
rates. The differences between the two emissivity modules 
increased progressively with distance (Fig. 10).

The variable emissivity PyFLOWGO results of the fis-
sure 8 lava flow emplacement were validated by compar-
ing the modeled channel widths, surface temperatures, and 
heat flux with field measurements (Fig. 10 and Suppl. 1). 
There is strong agreement between the model results and 
the field measurements, with the variable emissivity module 
having a better agreement at greater flow lengths (> 9 km). 
The greatest difference was observed in the proximal region 
(0.1–4.0 km from the vent) where the wide perched lava 
channel formed. The thermo-rheological results calculated 
using the variable emissivity module were similar to the 
original emissivity module but were more consistent with 
slower cooling rates associated with less efficient radiant 
heat flux (Fig. 11). This caused lower crust cover fractions 
and viscosities, as well as higher core temperatures and 
mean velocities to be simulated with distance, compared to 

Fig. 7  a Spectral emissivity change during lava cooling and physical 
state change from 1450 to 950 K. The data were acquired using the 
MMT-Cam of the tumulus-fed lava flow. The error bars represent the 
2-sigma standard deviation of the emissivity values. � in a represents 
the average 6-point emissivity at each surface temperature. b Six-
point average emissivity dependent surface temperature plot calcu-
lated from MMT-Cam data of the entire 6.3-m tumulus-fed lava flow 
(ROI shown in Fig. 2b). The gray region highlights the 2-sigma vari-
ance of emissivity and the black line represents the mean. The orange 
and green lines represent the computed linear and quadratic regres-
sions, respectively. Note, only a random 50% of the data are plotted 
here due to graphic limitations, but all the data are used in the calcu-
lations.
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previous modeling efforts. Overall, the average rate change 
of these thermo-rheological properties was ∼7% lower using 
the variable emissivity module and the ocean entry length 
was more consistent with the field measurements for all the 
results (12.47 km).

Discussion

This study found that the modeled heat flux is overestimated 
compared to field measurements (Fig. 8), similar to previ-
ous studies (Ramsey et al. 2019). This could be attributed to 
two possibilities. First, the across-flow thermal variability is 

poorly constrained by the model. Typically, there is a non-
linear temperature gradient resulting in non-uniform heat 
flux across the flow channel. The discretized calculation in 
PyFLOWGO oversimplifies this variability by assigning 
a singular thermal component to the entire width for each 
propagation increment (e.g., every 0.1 m for the tumulus-
fed flow) based on the linear two-component thermal mix-
ing calculation (Eq. 1). The MMT-Cam has a higher spatial 
resolution (< 0.01 m) both across and downflow, capturing 
the spatial complexity of the thermal variability. The heat 
flux is calculated for each image pixel and all the values 
summed over a comparable area to the model. Furthermore, 
as the channel width increases, the model-calculated heat 

Fig. 8  Comparison between the a emissivity, b effective temperature, 
c channel width, d surface temperature, e total heat flux, and f lava 
core temperature produced by the PyFLOWGO model during the 
tumulus-fed lava flow. These were computed using the variable emis-
sivity module (black solid line) and constant emissivity module (blue 

and orange dashed line). Input parameters are in Table 1. Red vertical 
line represents the measured final flow length. Field measurements 
(red dots) derived from MMT-Cam data are used to validate channel 
widths, surface temperatures, and total heat flux results
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flux will become increasingly overestimated. Second, the 
air directly above the flow is heated producing a thermal 
gradient between the camera and the surface. This gradient, 
if not accurately corrected, may lead to an inaccurate heat 
flux attributed to the lava surface.

Channel widths are incorrectly modeled in two locations. 
PyFLOWGO overestimates the channel width in the final 
∼20% of the flow due to the loss of a main channel and 
divergence of the lava into multiple smaller channels. The 
model becomes poorly constrained in this situation (Harris 
and Rowland 2001). The agreement was improved by com-
bining the widths of the multiple channels observed at the 
flow fronts in the TIR data. This increased the final channel 
widths for the tumulus-fed and fissure 8 lava flow emplace-
ments to ~ 2 m and ~ 1800 m, respectively. The fissure 8 
lava flow emplacement simulations also underestimate the 

width of the proximal, well-insulated, perched lava channel 
because the model is not designed to simulate well-insulated 
roofed channels (see Patrick et al. 2019; Figs. 1b, 5, and 
10b). Nevertheless, PyFLOWGO was able to accurately 
model the exposed channel emanating from this region and 
the ocean entry length, implying a completely exposed chan-
nelized flow is not required for accurate modeling.

A similar relationship is observed between the model 
results and field measurements of surface temperature and 
viscosity (Figs. 8, 9  and 10). The field measurements vary 
randomly compared to the model results. This variability is a 
result of the complex nature of lava surfaces during propaga-
tion and cooling, the small-scale interaction with pre-exist-
ing topography, and the discrete sampling bias of the field 
measurements. Nevertheless, the field measurements do con-
strain these results in the model with the surface temperature 

Fig. 9  Thermo-rheological variations of the tumulus-fed lava flow 
comparing the PyFLOWGO model simulation results using the vari-
able emissivity (black solid line) and constant emissivity (blue and 
orange dashed line) modules. The results using the original emissivity 

module consistently under predicted the actual flow length (red ver-
tical line). Field measurements (red dots) were derived from MMT-
Cam and geometry data of the tumulus-fed lava flow of viscosity 
using a modified Jeffreys’ equation (Nichols 1939)
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and viscosity results within 25% and an order of magnitude, 
respectively. The fissure 8 lava flow modeled velocity results 
near the vent and along the proximal lava spillway agree 
with other velocity measurements taken in the field (Patrick 
et al. 2019; Dietterich et al. 2021). Proximally (< 2 km), the 
modeled velocities oscillated between ~ 10 and 28  ms−1 with 
other field studies measuring velocity oscillating between ~ 5 
and 20  ms−1, providing validation for the fissure 8 lava flow 
emplacement model results.

During the development of the variable emissivity 
module, scatter in the MMT-Cam temperature and emis-
sivity data led to some uncertainty in the calculated linear 

regression (Fig. 7b). The effect of this uncertainty on the 
PyFLOWGO results was determined using a Monte Carlo-
like methodology. This constrained the variability in the 
final flow length by randomly repeating the flow propa-
gation simulations 10,000 times (Fig. 12). The regression 
constants were randomly generated over the 2-sigma stand-
ard deviation data range in a normal Gaussian distribution 
(Figs. 12b and d). The uncertainty in the final length of the 
tumulus-fed lava flow was ∼0.5% with a total variability of 
∼3% (Fig. 12a), whereas the uncertainty in the final length 
of the fissure 8 lava flow was ∼2% with a total variability 
of < 1% (Fig. 12c). Therefore, uncertainty due to the linear 

Fig. 10  Comparison between the a surface temperature, b channel 
width, c emissivity, d effective temperature, e radiant heat flux, and 
f total heat flux result during the 2018 fissure 8 lava flow emplace-
ment from May 27 to June 3. The thermal properties of the lava flow 
were simulated using the variable emissivity module (black solid 
line) and constant emissivity ( � = 0.95) module (blue dashed line) in 

the PyFLOWGO model. Field measurements (red dots) derived from 
TIR maps and MMT-Cam data of the downflow surface temperatures, 
channel widths, and heat flux are compared with the model results. 
The input parameters are given in Tables 1 and 2 and the red vertical 
line represents the ocean entry length observed on June 3, 2018
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regression choice is significantly less than the improvement 
in accuracy of final flow length achieved by implanting the 
variable emissivity module (< 7%).

The greatest deviation in emissivity between the mod-
ules was observed between the lava liquidus (∼1425 K) 
and solidus (900–1000 K) temperatures (Cashman et al. 
1999; Gottsmann et al. 1999), causing a similar trend in 
the thermo-rheological properties (Fig. 11). Viscosity has 
a strong control on the other properties in the model and 
flow length as it is calculated based on the derived core 
temperature using Dragoni’s (1989) equation. The greatest 
difference in derived properties calculated by using the vari-
able emissivity module in PyFLOWGO was observed far-
ther downflow from the vent/bocca. The difference between 
the two modules (variable and constant emissivity of 0.95) 
became most significant (> 30%) where the core temperature 

decreased below 1235 K (e.g., at ∼10.5 km in the fissure 8 
lava emplacement) (Figs. 9 and 11). The greatest increase 
in emissivity is observed at lava temperatures lower than 
the liquidus as a result of crystallization and surface crust 
formation, including viscoelastic and glassy crusts (Fig. 7) 
(Thompson and Ramsey 2020b). This is diagnostically 
observed in the emissivity data by a broadening and shal-
lowing of the absorption features (e.g., Fig. 7a), as a result of 
molecular structural and vibrational changes during cooling 
and crystal/crust formation (Grzechnik and McMillan 1998; 
Lee et al. 2013).

As a result of this study and implementation of the 
variable emissivity module in PyFLOWGO, cooling 
rates are better constrained through improved radiant 
heat flux, crust formation, and viscosity calculations. The 
variable emissivity relationship for calculating radiant 

Fig. 11  Thermo-rheological properties of the 2018 fissure 8 lava flow 
emplacement (May 27 to June 3) comparing the PyFLOWGO model 
results using the variable emissivity (black solid line) and constant 
emissivity (blue dashed line) modules. The results using the constant 

emissivity module consistently under predict the actual flow length as 
a consequence of higher cooling rates. The red vertical line represents 
the ocean entry length observed on June 3, 2018
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heat flux within PyFLOWGO improves the constraint on 
other thermo-rheological/physical properties derived by 
the model. The variable emissivity relationships more 
accurately represent the thermal changes observed in 
nature over the use of single emissivity value, resulting 
in a ~ 2 km increase in the flow length prior to the ocean 
entry (for a flow ~ 12 km long). If the variable emissivity 
module was applied to longer subaerial lava flows at Etna 
or Piton de la Fournaise, models using this variable emis-
sivity model could predict final flow lengths several kilo-
meters longer. These extra kilometers could cause large 
socioeconomic impacts to these areas, including to resi-
dences, industries, and transportation networks. Therefore, 
it is critical to accurately model lava flows in these regions 
to provide hazard response agencies with as much reliable 

information as possible to ultimately reduce the risk lava 
flows pose to local societies.

However, this new temperature-dependent emissivity 
module is only applicable for lava with similar eruption and 
liquidus temperatures as the Hawaiian basalts modeled in 
this investigation. For example, lavas with different silica 
and alkali contents will have unique eruption and liquidus 
temperatures. Therefore, these would have a different temper-
ature-dependent emissivity variability (Lee et al. 2013). As a 
result, similar investigations need to be conducted to evaluate 
the variability in emissivity with temperature for a variety of 
lava compositions. Additionally, the initial viscosity estimate 
has a limited influence on the final flow length. For example, 
if the initial viscosity was increased from 30 to 200 Pa s in 
the fissure 8 lava flow emplacement model, the ocean entry 

Fig. 12  The variability caused by the temperature-dependent emis-
sivity regression model uncertainty (a and c) in the final flow length 
of the b tumulus-fed lava flow and d LERZ fissure 8 lava flow. 
The Monte Carlo-like methodology was performed by running 

PyFLOWGO 10,000 times. The emissivity distributions (a and c) 
represent the average emissivity computed during the entire modeling 
duration. In comparison, the flow lengths achieved using the constant 
emissivity of 0.95 were b 6.0 m and d 10.68 km
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length would increase by ~ 100 m (~ 0.7%). This is compared 
to the ~ 2 km increase in final flow length achieved by using 
the variable emissivity module. Nevertheless, more stud-
ies are required to evaluate these and other thermophysical 
parameters influence on models. These investigations could 
be accomplished in a laboratory or the field to enable similar 
lava flow propagation modeling, developed in this study, to 
be applied to more lava flows in near real-time.

This study has highlighted multiple potential avenues for 
future investigation in lava flow propagation modeling and 
the data required to improve these models. Investigations 
are required to increase the ability to model the across-flow 
variability and accurately adapt these measurements during 
propagation. Additionally, we need to increase our under-
standing of the petrological implications of varying emissiv-
ity in these models to improve the physical and rheological 
calculations. An increase in high-spatiotemporal (< 10 mm 
spatial and < 1-s temporal resolution) multispectral (> 5 
spectral bands) TIR data is required to conduct these inves-
tigations in situ and ultimately further improve lava flow 
modeling to reduce the risks posed to nearby populations.

Conclusion

Emissivity is an important material property that must 
be considered in calculations of radiative cooling expe-
rienced by molten lava during propagation and cooling. 
The efficiency by which a surface cools radiatively is 
strongly controlled by the physical state of the surface 
and consequently the surface temperature, as well as 
other properties (e.g., composition and surface morphol-
ogy). Variable emissivity is shown to have a measure-
able effect on heat flux (> 30% decrease), which trans-
lates to the potential of longer flows (~ 7% increase). 
Lava propagation modeling assuming a constant emis-
sivity value close to 1.0 in heat flux calculations will 
underestimate the final f low length resulting in inac-
curate lava flow hazard potential.

Here, we used high-resolution multispectral TIR data of a 
tumulus-fed lava flow on Kīlauea volcano to derive the com-
plete thermal evolution and the correlation between emissiv-
ity and temperature during propagation. The relationship was 
used to develop a new variable emissivity module that was 
integrated into the PyFLOWGO model. This improved the 
accuracy of calculated thermo-rheological properties during 
flow propagation and cooling. The modified PyFLOWGO 
model was used to simulate the 2018 fissure 8 lava flow 
emplacement at Kīlauea volcano. These results were com-
pared with those derived using the original PyFLOWGO 
model and validated using field observations. The variable 
emissivity module produced a lower final heat flux (~ 75%) 

and a more accurate length fit (increased by ~ 7%; ~ 2 km) 
compared to using a constant emissivity.

This study has shown that PyFLOWGO already models 
lava propagation quite well when the input parameters are 
well known and well constrained. As such, the model is 
highly adaptive, having been applied to a variety of flows 
on Earth and other terrestrial bodies in the past (e.g., Row-
land et al. 2004; Harris et al. 2019; Ramsey et al. 2019). All 
lava flow modeling is ultimately limited by the accuracy 
of input parameters and prior thermo-rheological measure-
ments of the lava, as well as the ability to accurately simulate 
the physical and chemical processes occurring as the lava 
propagates. The modified PyFLOWGO model developed 
here, using a new variable emissivity module developed 
from unique in situ measurements of basalt temperature 
and emissivity, increased the model’s accuracy. It is hoped 
that the development of this new module will increase its 
accuracy and reduce the processing time in future eruptions, 
which will better inform hazard assessments and reduce the 
vulnerability of local populations.
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