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Abstract
Stable isotope analysis provides valuable insights into the ecology of long-distance migratory birds during periods spent 
away from a specific study site. In a previous study, Swedish great reed warblers (Acrocephalus arundinaceus) infected 
with haemosporidian parasites differed in feather isotope ratios compared to non-infected birds, suggesting that infected and 
non-infected birds spent the non-breeding season in different locations or habitats. Here, we use a novel dataset comprising 
geolocator data, isotopes, and haemosporidian infection status of 92 individuals from four Eurasian populations to investigate 
whether parasite transmission varies with geography or habitats. We found that the probability of harbouring Plasmodium 
and Leucocytozoon parasites was higher in birds moulting in the eastern region of the non-breeding grounds. However, no 
geographic pattern occurred for Haemoproteus infections or overall infection status. In contrast to the previous study, we did 
not find any relationship between feather isotope ratios and overall haemosporidian infection for the entire current dataset. 
Plasmodium-infected birds had lower feather δ15N values indicating that they occupied more mesic habitats. Leucocytozoon-
infected birds had higher feather δ34S values suggesting more coastal sites or wetlands with anoxic sulphate reduction. As 
the composition and prevalence of haemosporidian parasites differed between the old and the current dataset, we suggest 
that the differences might be a consequence of temporal dynamics of haemosporidian parasites. Our results emphasize the 
importance of replicating studies conducted on a single population over a restricted time period, as the patterns can become 
more complex for data from wider geographical areas and different time periods.
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Introduction

Investigating the ecology of long-distance migratory spe-
cies is challenging, because it is rarely possible to follow 
birds year-round. This is particularly true for songbirds that 
typically show weak migratory connectivity (Webster et al. 
2002; Finch et al. 2017), i.e., individuals from a given breed-
ing location commonly disperse to multiple non-breeding 
areas where they co-occur with birds of many different 
breeding origins. In the late twentieth century, research-
ers started to use methods for analysing the composition of 
stable isotopes from metabolically inert materials, such as 
feathers and claws (Chamberlain et al. 1996; Hobson and 
Wassenaar 1996). This enabled studying migratory con-
nectivity and investigating questions which were previously 
difficult to address with traditional methods like the analysis 
of ring re-encounters. Early examples of the use of stable 
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isotope analyses included non-breeding habitat dependent 
spring arrival in American redstarts Setophaga ruticilla 
(Marra et al. 1998), identification of migratory divides in 
willow warblers Phylloscopus trochilus (Chamberlain et al. 
2000) and migration-dependent assortative mating in Eura-
sian blackcaps Sylvia atricapilla (Bearhop et al. 2005).

Although stable isotope analyses have provided many 
new and valuable insights into the annual cycle of migra-
tory species, the method has often yielded relatively low 
geographic resolution even when combining the information 
of isotope ratios for multiple elements (Hobson et al. 2012; 
García-Pérez and Hobson 2014; Veen et al. 2014). Also, it 
is not always clear whether differences in isotope composi-
tion actually arose from tissues grown in distinct geographi-
cal areas, or from differential habitat use within a common 
non-breeding area (Chamberlain et al. 2000; Yohannes et al. 
2008b). Such conflicting interpretations could potentially be 
resolved by combining isotopic data with geolocator-derived 
positions from the same individuals (Hallworth et al. 2013; 
Cherel et al. 2016; Glew et al. 2018; Seifert et al. 2018).

Identifying the non-breeding whereabouts of migratory 
birds is crucial not only to understand their non-breeding 
ecology but also for unravelling patterns of interaction 
between these birds and their parasites. In a previous study, 
haemosporidian-infected great reed warblers breeding in 
Sweden were found to have significantly higher feather 
δ13C and δ15N, and lower δ2H and δ34S values compared to 
non-infected birds (Yohannes et al. 2008b). Because great 
reed warblers undergo a complete moult in Africa (Pear-
son 1975; Hedenström et al. 1993), and the blood parasites 
infecting great reed warblers are mainly or exclusively trans-
mitted in sub-Saharan Africa (Bensch et al. 2007), these 
results suggested that either the geographic location or the 
habitat where the birds moulted was associated with dif-
ferent rates of parasite transmission. An initial alternative 
explanation that parasite infections could directly affect the 
isotope values was rejected by a controlled infection experi-
ment in moulting Eurasian siskins Spinus spinus (Yohannes 
et al. 2011), which found that even intense malaria infec-
tions did not alter feather δ13C and δ15N isotopic signa-
tures. Finally, both stable isotope analyses (Yohannes et al. 
2008a) and repeated geolocator tracking (Hasselquist et al. 
2017) have revealed that great reed warblers seem faithful to 
their non-breeding areas in successive years. This is impor-
tant, because primary haemosporidian infections typically 
become chronic (Asghar et al. 2015) and, therefore, infec-
tions of older birds may have originated from any of the 
previous non-breeding periods. Hence, a recorded infection 
in a particular year should still reflect the same non-breeding 
location as inferred from stable isotopes or geolocators in 
the years following the primary infection.

In the present study, we aimed at revisiting the previ-
ously observed patterns of different feather isotopic values 

of infected and non-infected great reed warblers (Yohannes 
et al. 2008b). To this end, we combined published light-
level geolocation data from 92 great reed warblers from four 
Eurasian (Sweden, Czech Republic, Bulgaria, and Turkey) 
breeding populations (Koleček et al. 2016; Brlík et al. 2020) 
with analyses of haemosporidian infections and feather sta-
ble isotope compositions (δ13C, δ15N and δ34S) of the same 
individuals. The first non-breeding residency areas (moult-
ing sites) of birds tracked from these populations are located 
between 5 and 15°N and span ~ 4000 km from Liberia in the 
west to Sudan in the east. Since the non-breeding sites are 
strongly overlapping for the birds from the different breed-
ing populations (low migratory connectivity), this data set 
offers a novel opportunity to more deeply dissect the patterns 
reported by Yohannes et al. (2008b) where no information 
on the location of the moulting sites was available.

Based on the findings of Yohannes et al. (2008b), we pre-
dict that infected birds should have higher δ13C and δ15N val-
ues (suggesting  C4 plant dominated and drier habitats) and 
lower δ34S values (suggesting more inland sites) compared 
with non-infected birds. If this pattern is driven by geo-
graphical variation in parasite transmission rate, we expect 
haemosporidian infections to be related to latitude and/or 
longitude of the moulting area inferred from the geoloca-
tor data. Alternatively, if parasite transmission rates differ 
between habitats within a common non-breeding area, we do 
not expect a significant relationship between the geographic 
position of non-breeding locations and parasite prevalence. 
The extent to which we will be able to disentangle the rela-
tionships between non-breeding sites and haemosporidian 
infections also depends on whether there are clear geo-
graphic gradients in the isotopic signatures, or whether the 
stable isotope ratios are more related to habitats within the 
geographic regions.

Materials and methods

We used data pertaining to 92 adult great reed warblers (36 
females, 55 males, and 1 unsexed) equipped with light-level 
geolocators in 2008–2016 at four breeding sites: Sweden 
(SE, Lake Kvismaren; 59°10ʹ N, 15°24ʹ E; n = 35), Czech 
Republic (CZ, Hodonínské and Mutěnické ponds; 48°53ʹ 
N, 17°03ʹ E; n = 34), Bulgaria (BG, Kalimok wetlands; 
44°00ʹ N, 26°26ʹ E; n = 19), and Turkey (TR, Cernek Gölü, 
Kızılırmak Deltası, 41°39ʹ N, 36°02ʹ E; n = 4). The birds 
were captured using mist nets, sexed based on the shape of 
the cloacal protuberance and the presence of brood patch, 
and aged according to Svensson (1992). The geolocators 
were retrieved in the following year, with the exception of 
four birds that were recaptured after 2 years. For detailed 
numbers of deployed and retrieved devices, see ESM 
Table S1. Basic technical information on the devices is 
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specified in Koleček et al. (2016, 2018), Brlík et al. (2020) 
and Emmenegger et al. (2021).

Along with the light data for geolocating their non-
breeding grounds, there were also blood and feather samples 
available for all these 92 birds. Blood was sampled from the 
brachial vein both before deployment and after retrieval of 
the geolocators, and stored in SET buffer or absolute EtOH 
for molecular analysis of haemosporidian parasites. Upon 
geolocator retrieval, we also sampled a third tail feather (SE 
and TR), a second tertial (CZ), or the distal part of a fifth 
primary (BG) for stable isotopic analysis. All these feathers 
are assumed to be grown in Africa during the first part of the 
non-breeding period when the great reed warblers conduct 
their complete feather moult (De Roo and Deheegher 1969; 
Pearson 1975; Hanmer 1979; Bensch et al. 1991; Heden-
ström et al. 1993). We also collected each of the three feather 
types from 30 adult individuals breeding in the SE, CZ, 
and BG populations in 2018 to check for intra-individual 
variation in stable isotope signatures. No statistically sig-
nificant effect of feather type on stable isotope composition 
was observed using a series of three simple linear mixed-
effects models for each stable isotope (δ13C, δ15N, δ34S) with 
feather type as a fixed effect (factor with three levels) and 
individual identity as a random intercept (feather type; δ13C: 
F2,58 = 0.26, P = 0.772; δ15N: F2,58 = 1.39, P = 0.256; δ34S: 
F2,58 = 3.05, P = 0.055; ESM Fig. S1).

We determined the spatiotemporal migration patterns 
using GeoLight 1.03 (Lisovski and Hahn 2012), following 
the procedure given in Emmenegger et al. (2014). In short, 
we applied the threshold method to determine sunrise and 
sunset times from the geolocator-recorded light data for each 
day (Hill 1994). Then, each geolocator was calibrated, by 
calculating an individual sun elevation angle (SEA) from the 
light data recorded during the post-breeding and (if avail-
able) pre-breeding period (in-habitat calibration; Lisovski 
et al. 2012). The resulting SEAs varied between − 6.5° and 
3.1° depending upon the type of geolocator, habitat, and 
individual bird behaviour. After excluding sun events outside 
two interquartile ranges (k) with the loessFilter function, 
we used the SEAs to determine stationary periods using the 
changeLight function (threshold = 0.9 quantile of change 
point probability, minimum stationary period = 3 days). We 
merged stationary periods when average positions of con-
secutive non-breeding sites were not farther than approxi-
mately 200 km. We used an average of the individual SEAs 
obtained from on-bird calibration for calculating sub-Saha-
ran non-breeding locations. We defined the position of each 
non-breeding site as the peak of the frequency distributions 
(mode) of both latitudes and longitudes of the daily posi-
tions within this stationary period. In this study, we used the 
location of the first non-breeding site as the measure of the 
geographic position of a bird’s wintering site. The first non-
breeding site is used by the great reed warblers during their 

complete feather moult that is conducted from mid-October 
to mid-December (Jenni and Winkler 2020). We chose to 
use primarily the location of the first non-breeding site, 
because this is the period when the feathers used in the iso-
tope analyses were growing and the birds are stationary for 
several months (median 89 days, IQR 34 days, min 57 days, 
max 238 days) allowing for rather precise geolocator-based 
estimates of longitude and latitude. For additional details on 
geolocator specifications and return rates, see Koleček et al. 
(2016, 2018) and Brlík et al. (2020).

To assess the haemosporidian infection status of the sam-
pled birds, DNA was extracted and purified using stand-
ard protocols described previously (Yohannes et al. 2008b; 
Ciloglu et al. 2019) and diluted to a concentration of 25 ng/
µl. We employed a multiplex PCR protocol (Ciloglu et al. 
2019) to screen the samples for genus-specific infections 
of Haemoproteus, Plasmodium, and Leucocytozoon para-
sites. This protocol has been shown to be highly effective at 
detecting and identifying both single and mixed infections 
from all three haemosporidian genera (Ciloglu et al. 2019). 
All samples were also analysed by standard nested PCR 
(Hellgren et al. 2004) followed by sequencing of positive 
samples with the forward primer using Big-Dye on an ABI 
PRISM™ 3100 sequencer (Applied Biosystems, FL, USA). 
Finally, the derived chromatograms were edited in Geneious 
v. R11 (https:// www. genei ous. com) and the sequences com-
pared against parasite lineages registered in the MalAvi data-
base (Bensch et al. 2009).

To determine the known transmission areas of the para-
site lineages detected, we also queried the MalAvi database 
(Bensch et al. 2009), which can be searched for parasite lin-
eages found in obligate resident species or in juveniles of 
migratory species to delimit potential transmission areas. 
For each parasite lineage, we collated records of locally 
hatched juveniles and/or adults of all obligate resident spe-
cies, as detection of parasites in these individuals indicates 
local transmission. While we acknowledge the recent taxo-
nomic revisions that have placed certain Haemoproteus 
lineages into the genus Parahaemoproteus (Galen et al. 
2018), we have chosen to retain the designation Haemopro-
teus to maintain consistency with the nomenclature used 
in Yohannes et al. (2008b). This facilitates direct compari-
sons of our findings with previous research. Any references 
to Haemoproteus in our work should be interpreted in this 
context.

Prior to stable isotope analysis, feathers were washed in 
2:1 chloroform:methanol solution for 24 h, then rinsed with 
distilled water, and left to air-dry for 24 h. Feather kera-
tin samples of about 0.3 mg, pre-weighed in tin cups, were 
combusted using the vario micro-cube elemental analyser 
(Elementar, Analysensysteme, Germany) and the resultant 
 CO2,  N2, and  SO2 gases were introduced into a Micromass 
Isoprime isotope ratio mass spectrometer (Isoprime, Cheadle 

https://www.geneious.com


110 Oecologia (2024) 204:107–118

1 3

Hulme, UK) via a continuous flow-through inlet system. 
Sample 13C/12C, 15N/14 N, and 34S/32S ratios are expressed 
in the conventional delta (δ13C, δ15N, and δ34S) notation in 
parts per million (‰). These values are relative to the fol-
lowing standards: the Vienna Pee Dee Belemnite (VPDB) 
for carbon, atmospheric  N2 for nitrogen, and sulphanila-
mide-calibrated and traceable to NBS-127 (barium sulphate, 
δ34S =  + 20.3‰) for sulphur. Internal laboratory standards 
indicate that our measurement errors (SD) were ± 0.15‰, 
0.05‰, and 0.05‰ for δ15N, δ13C, and δ34S, respectively. 
Stable isotope analysis was conducted in the Stable Isotope 
Laboratory at the Institute of Limnology, University of Kon-
stanz, Germany.

For all subsequent analyses, we summarised the parasite 
infection status across both sampling occasions (geoloca-
tor deployment and retrieval). When the bird was scored as 
infected at least once, we treat the bird as infected (if the bird 
was scored as infected in the first year, but as non-infected 
in the second year, we assume that the infection was not 
detected in the second year). To test for the effect of geo-
graphic position of the moulting site and habitat used during 
feather growth, we fitted a binomial generalised linear model 
in the brms package (Bürkner 2021; for details, see below) 
with overall blood parasite infection status (0—uninfected, 
1—infected) as a binary response variable and longitude and 
latitude of the first non-breeding site as well as stable iso-
tope ratios (δ13C, δ15N, and δ34S) from feathers moulted in 
Africa as predictors. To directly compare the current results 
with the results of Yohannes et al. (2008b; where they did 
not screen for Leucocytozoon infections and had only one 
sampling occasion), we additionally fitted a separate model 
for the Swedish birds wherein we did not consider the detec-
tion of Leucocytozoon infections and used only the infection 
status (by genera Haemoproteus and/or Plasmodium) upon 
geolocator deployment.

We also fitted an analogical multilevel (multiple-
response) model with genus-specific infection status (0—
uninfected, 1—infected) for each genus as the response vari-
able and the same predictors. The models were formulated 
in the brms package (Bürkner 2021). This package enables 
flexible model specification and model estimates are con-
ducted in Stan using Markov chain Monte Carlo (MCMC) 
sampling via adaptive Hamiltonian Monte Carlo (Hoffman 
and Gelman 2014; Stan Development Team 2021). The 
binary responses were specified as Bernoulli (0/1) response 
and we used default non-informative priors. Models were 
run with a total of 2 chains for 2000 iterations each, with 
a burn-in period of 1000 iterations per chain, which was 
sufficient to achieve adequate mixing and convergence (all 
R̂ values were equal to 1.00; for trace plots see ESM Fig. 
S2). Predictors were considered statistically significant if the 
95% credible intervals did not include zero. To test whether 
isotopic signatures reflect geography, we used Pearson’s 

correlation between feather δ13C, δ15N, and δ34S values with 
latitude and longitude of the first non-breeding site. All data 
analyses were conducted in R (R Core Team 2020).

Results

Overall, 74% of the 92 individuals were scored positive for 
blood parasite infection. The prevalence did not significantly 
differ between the sampling sites (SE: 66%, CZ: 76%, BG: 
84%, TR: 75%; Fisher’s exact test P = 0.499). The infections 
comprised 36 Haemoproteus, 45 Plasmodium, 9 Leucocyto-
zoon, and 19 mixed-genus infections (13 Haemoproteus and 
Plasmodium, 2 Plasmodium and Leucocytozoon, 1 Haemo-
proteus and Leucocytozoon, and 3 infected with all three 
genera). The query of the MalAvi database revealed that 
most of the common parasite lineages have known transmis-
sion areas in sub-Saharan Africa. Only parasite lineages rare 
to great reed warbler have well-documented transmission 
areas outside the non-breeding range of great reed warblers. 
For an overview of all the parasite lineages and their known 
transmission areas, see Fig. 1.

The first non-breeding sites (i.e., moulting sites) spanned 
across an extensive part of sub-Saharan Africa and showed 
varying degrees of overlap between the breeding populations 
(Fig. 2). Feather δ13C values did not statistically significantly 
correlate with the location of the first non-breeding site (lati-
tude: r = 0.026, P = 0.809; longitude: r = 0.139, P = 0.185). 
Feather δ15N values weakly positively correlated with lati-
tude (r = 0.235, P = 0.024) but not with longitude (r = 0.002, 
P = 0.986). Feather δ34S values did not significantly correlate 
with latitude (r = − 0.148, P = 0.162) but were negatively 
related to longitude of the first non-breeding site (r = − 0.46, 
P < 0.001).

There was no significant effect of the first non-breeding 
site location and feather stable isotope profiles on overall 
blood parasite infection (Table 1a). At the genus-specific 
level, Plasmodium-infected birds were located more to the 
east during the non-breeding period than birds without Plas-
modium infections ( ̂�  = 0.08 ± 0.03, 95% CrI: 0.02, 0.15; 
Table 1b, Fig. 2, ESM Fig. S3). Similarly, Leucocytozoon-
infected birds tended to be located more to the east during 
the non-breeding period than birds without Leucocytozoon 
infections ( ̂�  = 0.10 ± 0.05, 95% CrI: 0, 0.21; Table 1b). 
Moreover, Plasmodium-infected birds had lower feather 
δ15N values than birds without Plasmodium infections ( ̂�  = 
− 0.27 ± 0.15, 95% CrI: − 0.58, − 0.01; Table 1b) and Leuco-
cytozoon-infected birds had higher feather δ34S values than 
birds without Leucocytozoon infections ( ̂�  = 0.65 ± 0.35, 
95% CrI: 0.02, 1.39; Table 1b). There were no statistically 
significant differences between birds infected and non-
infected by Haemoproteus in the location of non-breeding 
sites or feather isotope profiles (Table 1b). There was no 
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statistically significant effect of the second non-breeding site 
location on overall blood parasite infection or genus-specific 
infection status (Table S2).

In terms of the overall infection status of Swedish birds 
upon geolocator deployment (excluding Leucocytozoon 
infections to make the results comparable to Yohannes 
et al. 2008b), infected birds had lower feather δ15N values 
( ̂�  = − 1.02 ± 0.39, 95% CrI: − 1.89, − 0.32) and tended 
to be located more to the east than uninfected birds ( ̂�  = 
0.14 ± 0.08, 95% CrI: 0.01, 0.31; Table 1c).

Discussion

In the present study, we revealed several associations 
between haemosporidian infections, geography, and habitat 
use during the non-breeding period by combining data from 
light-level geolocation and stable isotope analysis. The well-
known migratory system of the great reed warbler and its 
diverse haemosporidian parasites allowed not only to take a 

more nuanced view on genus-specific associations between 
infections and habitat use, but also to compare the Swedish 
part of the newly acquired data (collected 2008–2016) with a 
study conducted earlier on the same population (1999–2004; 
Yohannes et al. 2008b). Importantly, the current dataset 
provides geographic information on the location of non-
breeding sites of individual birds screened for haemospo-
ridian infections that was not available for birds examined 
by Yohannes et al. (2008b). Interestingly, the findings in 
the current study do not support the relationships between 
haemosporidian infection status and stable isotope values 
found by Yohannes et al. (2008b).

Associations between infections, non‑breeding 
geography, and habitat use

The population-specific overall prevalence did not signifi-
cantly differ, even though these birds originate from distant 
parts of the species’ breeding range, indicating that most of 
these parasites are transmitted on the tropical non-breeding 

Fig. 1  Overview of haemosporidian lineages and the frequencies 
with which we detected them among the infected individuals in our 
study. TR—Turkey, BG—Bulgaria, CZ—Czech Republic, and SE—
Sweden. For a reference, we also list the lineage frequencies as deter-

mined by Yohannes et al. (2008b) and the known transmission areas 
derived by records of these lineages in the MalAvi database (Bensch 
et al. 2009)
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grounds, where individuals from all study populations partly 
overlap. Earlier investigations conducted in the Sahel region 
were able to determine transmission areas of some of the 
haemosporidian lineages commonly found to infect great 
reed warblers (e.g., the Haemoproteus lineage GRW1 and 
the Plasmodium lineage GRW4) by sampling resident bird 
species in Africa (Waldenström et al. 2002). This was fur-
ther supported by our query of the MalAvi database (Bensch 
et al. 2009) that revealed that most of the haemosporidian 
lineages we found have known transmission areas in sub-
Saharan Africa and only few of the rather low-prevalent 
parasite lineages have documented transmission outside the 
non-breeding areas (Fig. 1). This pattern corroborates that 
the few low-prevalence parasite lineages transmitted out-
side the non-breeding period should not severely affect the 
main results of this study and that non-breeding locations 
and habitats are good candidates for factors influencing the 
risk of infection in these migratory hosts.

Although the overall prevalence was similar, the prev-
alence of the three haemosporidian genera as well as the 
relative frequencies of the parasite lineages differed substan-
tially among populations. These differences can be partly 
attributed to the parallel migration pattern of the great reed 
warbler (Koleček et al. 2016) but are, at the same time, likely 
obscured by the largely overlapping non-breeding ranges of 
adjacent breeding populations (Fig. 2). Nevertheless, neither 

the geographic location nor the isotopic signature of the 
non-breeding site was related to the overall blood parasite 
infection status. Even though birds from individual breeding 
populations spread across large parts of sub-Saharan Africa 
(Fig. 2), the local conditions at these sites might differ less 
than expected by the mere geographic distance of individual 
non-breeding sites, as great reed warblers tend to favour wet-
lands and tall grasslands year-round (Dyrcz 2020). Alterna-
tively, the resolution of light-level geolocation and stable 
isotope analysis may not be fine enough to capture the gen-
eral associations between the risk of infection by haemospo-
ridian parasites and the isotopic origin of diet, as well as the 
actual habitat patches used during the non-breeding season 
(see also the section “Limitations and conclusions”). Also, if 
a considerable proportion of the infections were transmitted 
elsewhere than at the moulting sites of the feathers that were 
analysed for stable isotopes, this could explain the lack of 
correlation between infection status and isotopic signature 
(see also the section “Limitations and conclusions”).

However, when looking at the level of parasite genera, 
we found several correlations between feather isotopic sig-
natures and parasite infection status providing coherent 
explanations for the different habitat requirements of the 
vector groups that transmit the different parasite genera at 
the African non-breeding sites. Plasmodium-infected birds 
had significantly lower feather δ15N values. This indicates 

Fig. 2  Location of first sub-Saharan non-breeding grounds of great 
reed warblers from four breeding populations (Sweden—SE, Czech 
Republic—CZ, Bulgaria—BG, and Turkey—TR) infected by differ-

ent haemosporidian parasites of the genera Haemoproteus (H), Plas-
modium (P), and Leucocytozoon (L). None—non-infected individuals
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that, compared to birds without Plasmodium infections, they 
occupied more mesic habitats (Heaton et al. 1986; Sealy 
et al. 1987; van der Merwe et al. 1990; Ambrose 1991). 
This linkage might be mostly driven by insect vectors, as 
Plasmodium parasites are mainly transmitted by mosquitoes 
of the family Culicidae. Compared to Ceratopogonidae and 

Hippoboscidae (typical vectors of Haemoproteus parasites) 
and Simuliidae (major vectors of Leucocytozoon parasites), 
mosquitoes are closely associated with natural or artificial 
water bodies as habitat for their larvae (Laird 1988; Gu et al. 
2006). Our finding is thus in line with the results of a meta-
analysis demonstrating that the global distributions of differ-
ent haemosporidian genera are shaped by different climatic 
and environmental variables. The meta-analysis showed that 
the distribution of Plasmodium parasites, but not of other 
parasite genera, was governed primarily by wetland avail-
ability and vegetation density (Fecchio et al. 2021).

In contrast, Leucocytozoon-infected birds had higher 
feather δ34S values, indicating that they moult closer to the 
coast where the δ34S values are known to be enriched in 34S 
compared to inland areas (Lott et al. 2003; Zazzo et al. 2011; 
Brlík et al. 2022), or in wetlands where sulphate reduction 
may occur under largely anaerobic conditions (Thode 1991). 
Nevertheless, these conditions do not fully correspond to 
the most common environmental requirements of simuliid 
flies, the vectors of Leucocytozoon, whose larvae are adapted 
to lotic waters and are typically confined to mountain and 
foothill streams, although some species occur at large rivers 
and can tolerate poor water quality (Palmer and de Moor 
1998). It is possible that certain Leucocytozoon vectors in 
sub-Saharan Africa have more diverse habitat preferences 
than currently understood, or that other environmental or 
ecological factors play a role in shaping these patterns. 
Future investigations are needed to fully understand the 
complex relationships between Leucocytozoon parasites, 
their vectors and the moulting habitats of their bird hosts. 
In the above mentioned global meta-analysis, Leucocytozoon 
distribution was mostly driven by elevation and rain (Fec-
chio et al. 2021).

We also found that the probability of harbouring Plasmo-
dium was higher in birds moulting in the eastern part of the 
non-breeding grounds and a similar tendency was detected 
for Leucocytozoon-infected birds. In contrast, there was nei-
ther such a geographic pattern for Haemoproteus-infected 
individuals nor for the overall infection status of the birds 
examined. Even though the migratory connectivity in great 
reed warblers is known to be rather weak, there is still a 
parallel migration pattern with the birds roughly maintaining 
the longitudinal arrangement of their breeding populations at 
their stopovers and non-breeding sites (Koleček et al. 2016). 
Therefore, some of the relationships between infections and 
non-breeding longitude could also be related to the condi-
tions at the distinctly separated breeding sites. However, 
because most of the common parasite lineages are thought 
to be solely transmitted in sub-Saharan Africa, the latter 
explanation can only be relevant for some less-well-known 
parasite lineages, particularly for those which seem to have 
well-established transmission areas outside sub-Saharan 
Africa (see Fig. 1). For future haemosporidian studies, we 

Table 1  Results of binomial GLMs with longitude and latitude of the 
first non-breeding sites, as well as feather δ13C, δ15N, and δ34S val-
ues explaining the variation in (a) overall haemosporidian infection, 
(b) genus-specific infection status (multiple-response GLM: Haem—
Haemoproteus, Plas—Plasmodium, Leuc—Leucocytozoon), and (c) 
overall haemosporidian infection status (Haemoproteus and Plasmo-
dium only—see the section “Materials and methods”) in the Swed-
ish subsample for comparative purposes with the previous study by 
Yohannes et al. (2008b)

�̂  denotes the posterior mean, and LL and UL represent lower and 
upper limits of the 95% credible interval, respectively. Statistically 
significant values are shown in bold

�̂  ± SE LL UL

(a) Overall infection status
Intercept 3.37 ± 3.02  − 2.35 9.31
Latitude  − 0.05 ± 0.09  − 0.22 0.12
Longitude 0.02 ± 0.03  − 0.04 0.09
δ13C 0.14 ± 0.08  − 0.02 0.29
δ15N  − 0.16 ± 0.15  − 0.46 0.12
δ34S 0.23 ± 0.20  − 0.16 0.62
(b) Genus-specific infection status
Intercept (Haem)  − 2.05 ± 2.58  − 7.06 3.11
Intercept (Plas) 2.02 ± 2.76  − 3.20 7.42
Intercept (Leuc)  − 11.51 ± 5.41  − 22.98  − 1.27
Latitude (Haem)  − 0.01 ± 0.08  − 0.18 0.14
Longitude (Haem)  − 0.01 ± 0.03  − 0.06 0.05
δ13C (Haem) 0.03 ± 0.07  − 0.11 0.16
δ15N (Haem) 0.12 ± 0.14  − 0.13 0.40
δ34S (Haem) 0.12 ± 0.17  − 0.21 0.44
Latitude (Plas)  − 0.06 ± 0.08  − 0.23 0.10
Longitude (Plas) 0.08 ± 0.03 0.02 0.15
δ13C (Plas) 0.02 ± 0.07  − 0.12 0.15
δ15N (Plas)  − 0.27 ± 0.15  − 0.58  − 0.01
δ34S (Plas) 0.11 ± 0.18  − 0.21 0.48
Latitude (Leuc) 0.04 ± 0.15  − 0.27 0.31
Longitude (Leuc) 0.10 ± 0.05 0.00 0.21
δ13C (Leuc)  − 0.02 ± 0.11  − 0.26 0.21
δ15N (Leuc) 0.17 ± 0.25  − 0.33 0.63
δ34S (Leuc) 0.65 ± 0.35 0.02 1.39
(c) Overall infection status Sweden
Intercept 6.16 ± 5.86  − 4.99 18.22
Latitude 0.10 ± 0.16  − 0.22 0.42
Longitude 0.14 ± 0.08 0.01 0.31
δ13C 0.17 ± 0.16  − 0.12 0.50
δ15N  − 1.02 ± 0.39  − 1.89  − 0.32
δ34S 0.50 ± 0.49  − 0.39 1.56
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urge for more focus on screening also individuals of local 
(e.g., African) resident species, rather than solely winter-
ing individuals of (e.g., Palaearctic) migrant species, to get 
a clearer picture of the transmission areas of the growing 
number of known haemosporidian lineages.

Comparison of the Swedish population 
with the data from Yohannes et al. (2008b)

When comparing the infections of the Swedish great reed 
warblers sampled in this study with those in Yohannes et al. 
(2008b) collected about 15 years earlier, there is a notable 
difference both in overall infection prevalence and parasite 
assemblage (Fig. 1). In particular, the Plasmodium lineages 
GRW2 and GRW4 made up a lower proportion among the 
infected birds in the recent Swedish data set (0% and 13.6%) 
compared to the data set of Yohannes et al. 2008b (10.1% 
and 32.9%). This indicates that a large proportion of the vari-
ation is probably due to temporal changes in the host–para-
site–vector system. A relevant comparison can only be made 
for Haemoproteus and Plasmodium [routinely detected by a 
nested PCR protocol described in Hellgren et al. (2004)], as 
Yohannes et al. (2008b) did not screen for Leucocytozoon 
parasites (detected in the current study by a newer multiplex 
PCR protocol; Ciloglu et al. 2019). While Yohannes et al. 
(2008b) detected infections in 48% of the screened individu-
als, the Swedish breeding birds in the present study had an 
overall prevalence of 66% of which 63% were infected by 
at least one of the two parasite genera that Yohannes et al. 
(2008b) also screened for. Although the detection method 
used in the current study (multiplex PCR; Ciloglu et al. 
2019) has a slightly higher sensitivity than the nested PCR 
used by Yohannes et al. (2008b), this did not lead to a sta-
tistically significant difference in overall prevalence deter-
mined by the two methods in the samples comparatively ana-
lysed by Ciloglu et al. (2019). Our current double-sampling 
design revealed 13 instances where birds, having initially 
tested positive, later tested negative. These instances may 
hint at false negatives. Although we cannot directly estimate 
the proportion of false negatives from a single sample of the 
previous study by Yohannes et al. (2008b), this may add to 
the explanation of the discrepancy in prevalence between the 
two studies. The single sampling by Yohannes et al. (2008b) 
might have missed certain chronic infections, not detectable 
in the blood or where infection intensity was so low that the 
single nested PCR reaction failed to detect it. Therefore, 
contrasting studies with different methodologies necessi-
tates caution. Moreover, the difference in prevalence that 
varied from 48 to > 60% is largely in line with the findings 
of a past study on the temporal dynamics of haemosporidian 
infections in the same Swedish great reed warbler breeding 
population, which found prevalence to be fluctuating and 
slightly increasing over time (Bensch et al. 2007).

However, in terms of changes in the parasite assemblage, 
methodological differences could contribute more substan-
tially to the differences between Yohannes et al. (2008b) 
and the present study. Considering the large proportion of 
co-infections with several parasite genera in the current 
study, the improved separation of co-infections achieved by 
the multiplex PCR approach could lead to a different rela-
tive frequency of both parasite genera and lineages. While 
the nested PCRs detect Haemoproteus and/or Plasmodium 
together in one reaction, there is a risk that the reactions 
favour one of the two genera in a mixed-genus infection 
(often the infection with the higher infection intensity). 
However, as 8 of the 11 parasite lineages found by Yohannes 
et al. (2008b) were not detected in the current Swedish data-
set, the effect of the two detection protocols is likely small 
(note that the higher number of parasite lineages detected by 
Yohannes et al. 2008b can be mainly due to lower sample 
size in the current Swedish data). Overall, the differences 
between the previous and the current data rather suggest that 
this host–parasite system is quite dynamic and may show 
changes in prevalence of individual haemosporidian lineages 
within timeframes of about 2 decades.

The spatiotemporal dynamics in drought and rain periods 
in sub-Sahara Africa (Berntell et al. 2018; Ekolu et al. 2022) 
could also explain some of the variation between Yohannes 
et al. (2008b) and the current study. Furthermore, the current 
study used only individuals that survived and successfully 
returned with geolocators, which could potentially have led 
to a sample biased towards more resilient or successful indi-
viduals compared to Yohannes et al. (2008b), which was 
not part of a tracking study. It is also interesting to note 
that GRW2 is known to have negative consequences for the 
great reed warbler host (Westerdahl et al. 2005; Asghar et al. 
2011, 2012), which may result in a lower return rate to the 
next breeding season, thus possibly explaining the very low 
prevalence of this Plasmodium lineage in the current data 
set.

Limitations and conclusions

Our study provided the first insights into the parasite genus-
specific relationships between infection patterns and isotopic 
signatures in the feathers of the hosts. Besides these specific 
findings, we also discuss some limitations of our study sys-
tem that may have led to differences between the current 
study and the study by Yohannes et al. (2008b) and why we 
could not provide more definitive answers to the question 
of how geography or non-breeding habitat relates to blood 
parasite infections.

It has been shown that great reed warblers are not station-
ary during the entire period they spent south of the Sahara 
but often undertake intra-tropical movements (Lemke et al. 
2013; Hasselquist et al. 2017; Koleček et al. 2018). After 
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crossing the Sahara in August/September, they typically stay 
at a first non-breeding site in the Sahel until November or 
December, where they most likely undergo complete moult 
(De Roo and Deheegher 1969; Pearson 1975; Bensch et al. 
1991; Hedenström et al. 1993). It cannot be fully excluded, 
however, that some individuals may have arrested moult 
and finished it at the second non-breeding ground that can 
be 250–2500 km away from the first non-breeding site 
(Koleček et al. 2018) and thus, in such cases, the feather 
isotope profiles would not match the first non-breeding site. 
This is, however, not likely for the Swedish birds, because 
in 40 years of studying this population, no individuals have 
been observed with two ‘types’ of flight and tail feathers 
that differ in shading and wear (own unpublished obser-
vations). Similarly, some of the infections might not stem 
from the first non-breeding site but from any subsequent 
site which could introduce noise to our data and weaken any 
associations between geography, habitat, and haemosporid-
ian infection. However, note that the location of the second 
non-breeding sites did not appear to predict haemosporidian 
infections (ESM Table S2).

We also acknowledge that the positioning precision of 
light geolocation is limited (Lisovski et al. 2012) and we 
may therefore be unable to geographically match possible 
vector habitats, such as patchy wetlands within an otherwise 
dry area. The currently available remedy for this limitation 
would be to use miniature archival GPS devices that allow 
much higher spatial resolution (Hallworth and Marra 2015; 
Yanco et al. 2022). Finally, feather stable isotope signatures 
may reflect the local habitat more or less accurately depend-
ing upon the mobility of flying insects between isotopically 
different habitats (Quinby et al. 2020).

Even if our study could not fully disentangle the causes 
of the parasite genus-specific patterns we found, it provides 
a first indication that habitat use within moulting sites might 
contribute to the infection patterns found in great reed war-
blers. There are also hints towards parasite genus-specific 
relationships probably related to vector-specific habitat 
requirements. In the context of the comparison of the current 
study with the previous study by Yohannes et al. (2008b), we 
argue that upscaling studies from a single population and a 
few years is important as the resulting patterns can be more 
complex for data from wider geographical areas and longer 
time periods. Future tagging with small programmable 
archival GPS tags could yield precise locations of transmis-
sion areas, allowing for a more accurate appraisal of differ-
ences between parasitized and unparasitized individuals. In 
addition, future studies focusing on co-infections would be 
particularly interesting as they could shed light on potential 
interactions between different parasite lineages, providing 
a more comprehensive understanding of the dynamics and 
impact of multiple haemosporidian infections on their avian 
hosts.
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