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Abstract
Forest canopies maintain a high proportion of arthropod diversity. The drivers that structure these communities, however, are 
poorly understood. Therefore, integrative research connecting tree species identity and environmental stand properties with 
taxonomic and functional community composition of canopy arthropods is required. In this study, we investigated how the 
taxonomic, functional and trophic composition of arboreal spider communities is affected by tree species composition and 
associated differences in canopy structure and prey availability in temperate forests. We sampled canopy spiders as well as 
their potential prey using insecticidal fogging in monospecific and mixed stands of native European beech, native Norway 
spruce and non-native Douglas fir. Trophic metrics were obtained from stable isotope analysis and structural canopy proper-
ties were assessed with mobile laser scanning. Monospecific native spruce stands promoted local canopy spider abundance 
and diversity, but native beech and beech–conifer mixtures had the highest diversity at landscape scale. Spider community 
composition differed between monospecific stands, with broadleaf–conifer mixtures mitigating these differences. Irrespec-
tive of tree species identity, spider abundance, taxonomic diversity, functional richness and isotopic richness increased in 
structurally heterogeneous canopies with high prey abundances, but functional evenness and trophic divergence decreased. 
Our study shows that canopy spiders are differentially affected by tree species identity, canopy structure and prey availabil-
ity. Broadleaf–conifer mixtures mitigated negative effects of (non-native) conifers, but positive mixture effects were only 
evident at the landscape scale. Structurally heterogeneous canopies promoted the dominance of only specific trait clusters. 
This indicates that intermediate heterogeneity might result in high stability of ecological communities.
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Introduction

Forests are important safeguards of biodiversity in times 
of global biodiversity loss (Seibold et al. 2019; Hill et al. 
2019). Yet, arthropods as the most diverse group of eukary-
otes (Stork 2018) are on the decline in forest ecosystems 
(Seibold et al. 2019; Staab et al. 2023). Much of this arthro-
pod diversity depends on forest canopies as habitats (Naka-
mura et al. 2017), but because tree canopies are hard to 
access, their associated biodiversity remains understudied, 
especially in temperate forests (Ulyshen 2011; Floren et al. 
2022). Compared to the more intensively studied forest floor 
and subcanopy (see Burrascano et al. 2021), where stand 
characteristics such as canopy openness and herb cover play 
key roles in structuring arthropod communities (Ziesche 
and Roth 2008; Kriegel et al. 2021), canopy arthropods are 
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commonly more directly affected by tree species identity 
(Pedley et al. 2014; Floren et al. 2022).

Diversification of tree communities can increase associ-
ated biodiversity of forests and improve forest adaptability 
to changing environments (Wagner et al. 2014; Ampoorter 
et al. 2020). Especially broadleaf–conifer mixtures have 
commonly been reported to show positive mixture effects 
due to their phylogenetic differences resulting in comple-
mentary functional effects (Schwarz and Bauhus 2019; 
Haberstroh and Werner 2022). In Central Europe, the natu-
rally dominating broadleaved beech (Fagus sylvatica L.) and 
fast-growing Norway spruce (Picea abies (L.) H.Karst.) as 
an economically important tree, are promising candidates 
for such mixtures (Pretzsch et al. 2012). Further, non-native 
tree species are increasingly considered for climate change-
adapted management (Thurm and Pretzsch 2016). Particu-
larly, the Northern American Douglas fir (Pseudotsuga men-
ziesii (Mirbel) Franco) is broadly considered as suitable for 
Central Europe (Thomas et al. 2022). However, non-native 
tree species could potentially threaten local biodiversity 
and ecosystem functioning (Tallamy et al. 2021), calling for 
research on ecological consequences (Schmid et al. 2014; 
Thomas et al. 2022).

Previously, broadleaf–conifer mixtures were often 
shown to mitigate rather than promote arthropod diver-
sity (Barsoum et al. 2014; Oxbrough et al. 2016; Matevski 
and Schuldt 2023). Non-native trees were reported to have 
negative effects mostly on diversity and abundance of her-
bivorous arthropods (Tallamy et al. 2021; Berthelot et al. 
2023). It is expected that non-native trees host no or few 
specialist arthropods in their new range (Roques et al. 2006), 
and as generalists are less efficient in their use of resources 
compared to specialists, the same resources may sustain 
less individuals (García et al. 2018). Yet, negative effects of 
non-native trees were less evident for predatory arthropods 
when only considering abundances and taxonomic diversity 
(Oxbrough et al. 2016; Matevski and Schuldt 2023), whereas 
expanding the scope to functional divergence and trophic 
complexity unraveled negative effects (Wildermuth et al. 
2023; Matevski and Schuldt 2023). However, most studies 
to date have focused on lower forest strata, especially the 
forest floor, and the effects of non-native trees on canopy 
fauna are still little understood (Gossner and Ammer 2006).

While for herbivorous canopy arthropods, tree species 
identity and non-nativeness with their specific resources 
are major drivers for diversity and abundance (Leidinger 
et al. 2021; Tallamy et al. 2021), arboreal predators such 
as spiders are expected to rely more on canopy structure 
and general food availability (Korenko et al. 2011). Sur-
prisingly, tree species identity often has stronger effects on 
arthropod predator community composition than local stand 
structure or prey availability (Mupepele et al. 2014). None-
theless, structural heterogeneity of forest stands is known 

to generally increase abundance and diversity of associated 
arthropods (Müller et al. 2018; Rappa et al. 2023), e.g., 
due to increasing availability and diversity of habitats and 
resources via higher space filling (Müller et al. 2018). How-
ever, the effects of canopy structure have so far mostly been 
investigated for impacts on taxonomic arthropod commu-
nity composition (Heidrich et al. 2020; Ramos et al. 2022). 
Better linking of tree identity and canopy properties with 
arthropods and their ecological role requires information on 
functional community composition and trophic interactions 
(Haddad et al. 2009; Cadotte et al. 2011).

Canopy structural heterogeneity is assumed to play a par-
ticularly important role for spiders (Araneae), as they rely 
on available structures for web attachment or shelter (Halaj 
et al. 2000; Korenko et al. 2011; Butz et al. 2023). Conifers 
in particular feature beneficial fine-scale structures and high 
prey abundances, increasing spider abundances compared 
to broadleaved trees (Ozanne 1999; Korenko et al. 2011). 
Arthropod predators such as spiders are important links in 
food webs, providing pest control by an estimated extent 
greater than that provided by birds, while being an impor-
tant food source for birds themselves (Nyffeler et al. 2018). 
In Europe, 25–30% of the spider fauna is associated with 
forests (Blick et al. 2019). Yet, canopy-associated spiders 
are sparsely studied, although up to 40% of forest spider 
species live predominantly in the canopy (Otto and Floren 
2007). The key ecological role of spiders therefore calls for 
increased consideration of canopy spiders and their function-
ing for our basic ecological understanding and applications 
such as nature conservation and forest management (Pedley 
et al. 2016; Milano et al. 2021). In their functioning as top-
down control agents, spider trophic niches are a particularly 
important proxy for trophic interactions, with broader feed-
ing niches and more complex trophic interactions possibly 
increasing the resilience of the whole system (Poisot et al. 
2013; Michalko and Pekár 2016). Stable isotope analysis 
is a method that has become increasingly popular to study 
trophic interactions (Potapov et al. 2019). Natural isotope 
ratios of 13C/12C (δ13C) and 15N/14N (δ15N) reflect trophic 
positions and dietary sources (Post 2002). In animal tissue, 
δ13C and δ15N differ depending on the food sources: 13C 
concentrations differ between basal carbon sources (e.g., 
leaves, detritus or microbes), and 15N is enriched at each 
trophic level (Post 2002). Therefore, dual analysis of δ13C 
and δ15N allows to determine animal trophic niches (Potapov 
et al. 2019). Previous research has shown that the trophic 
niches of ground-dwelling spiders can be altered and sim-
plified by admixture of broadleaved forests with non-native 
conifers, while conifers generally promote spider isotopic 
richness (Wildermuth et al. 2023).

In this study, we investigated how the taxonomic, func-
tional and trophic composition of arboreal spider communi-
ties is affected by changes in tree species composition and 
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associated differences in canopy structure and prey availabil-
ity in temperate forests. A comprehensive sampling of can-
opy spiders requires elaborate and rarely deployed sampling 
techniques which enable capturing non-flying as well as fly-
ing taxa (Floren 2010; Floren et al. 2022). We therefore used 
insecticidal fogging to study mixed and monospecific stands 
of native European beech, native Norway spruce and non-
native Douglas fir. The trophic niches of spiders were subse-
quently analyzed using stable isotope analyses. We assessed 
structural canopy features with high-resolution mobile laser 
scanning. We hypothesized that (i) native Norway spruce, 
but not non-native Douglas fir, promotes spider abundance, 
biomass, functional richness and isotopic richness compared 
to European beech. We further hypothesized that (ii) canopy 
spiders show tree species identity-dependent differences in 
community composition and trophic niche, and that (iii) 
broadleaf–conifer mixtures mitigate tree species identity 
effects. Lastly, we hypothesized that (iv) independent of tree 
species identity, canopy structural heterogeneity has strong 
positive effects on spider taxonomic and functional richness.

Methods

Study site

The 20 study plots were located in the managed, temperate 
Solling forest in Lower Saxony, Germany (N51.666, E9.569; 
300 m.a.s.l.; Appendix S1: Fig. S1, Table S1). The climate 
of the study area is characterized by mean annual tempera-
tures of 7–8 °C and mean annual precipitation between 800 
and 950 mm  (NIBIS® Kartenserver 2021). The forest is 
dominated by naturally regenerating European beech (F. syl-
vatica) and planted Norway spruce (P. abies), with a small 
proportions of monospecific and admixed stands of planted 
non-native Douglas fir (P. menziesii). We investigated five 
stand types: monocultures of European beech, Douglas fir 
and Norway spruce and the mixtures of European beech with 
each of the two conifers. We sampled four plots of each stand 
type resulting in a total of 20 plots. Sampling plots consisted 
of four to six trees which were fogged. The mean distance 
between plots was 1066 m (± 619 m; standard error), with a 
minimum distance of 100 m. Plot locations were chosen out-
side of protected areas and with consideration of plot acces-
sibility with the fogging machine and low exposure to wind. 
Across plots, average tree age was 50.3 ± 6.3 years (Appen-
dix S1, Table S1). Plots had equal proportions of trees of the 
admixed species and low densities of understory vegetation. 
The canopies in each plot slightly overlapped. Stem densities 
and tree heights varied due to limited suitable sampling loca-
tions. These structural differences, however, were accounted 
for and analyzed statistically. Due to the small proportion of 
planted Douglas fir and suitable sampling locations across 

the forest, Douglas fir plots were located in small patches, 
surrounded by beech or Norway spruce. The highly targeted 
fogging sampling, however, ensured exclusive sampling of 
Douglas fir in these plots.

Arthropod data

Arthropod and leaf sampling

We fogged all plots between May 31 and July 3, 2021 under 
dry and windless conditions, using the thermal fog genera-
tor Swingfog SN 50 (Swingtec, Isny, Deutschland) and 1% 
natural pyrethrum solution. We chose this sampling time 
because the active periods of most Central European spi-
der species cover June (Nentwig et al. 2021). The targeted 
canopy area was effectively fogged for 5–10 min. We placed 
four white collecting sheets of 2 × 3 m as closely grouped as 
possible to each plot to collect falling arthropods from the 
canopy. We raised the collecting sheets on poles to ~ 1 m 
above ground to prevent ground-associated arthropods from 
entering (Floren 2010). After each fogging, we waited for 
2 h of drop-down time. Using fine brushes, we carefully 
swept all arthropods per collecting sheet together and stored 
them in 70% ethanol. We excluded one Douglas fir plot (1.2) 
from all subsequent analyses due to inadequate fogging. We 
sampled canopy leaves for the trophic baseline calibration 
on all plots, using a slingshot and a manual rope chain saw. 
We cut off one branch from the mid-canopy (~ 15–20 m) in 
one tree of each tree species per plot.

Identification, functional diversity and prey availability

We identified all adult spiders to species level and derived 
the mean body lengths of females and males, using estab-
lished keys and online sources (Appendix S1). Based on 
these size measurements, we estimated biomasses for all 
male and female specimens individually, using the linear 
regression from Penell et al. (2018). Specimens which could 
not be identified to species level were excluded from our 
analyses. We assigned all species to their guilds (orb, sheet 
and space web weavers; ambush, and other hunters) after 
Cardoso et al. (2011) and derived the phenological length (in 
months) of active adult spiders from Nentwig et al. (2021). 
Guild and phenology of activity are key determinants of 
spider resource use, and therefore of their functional impact 
(Cardoso et al. 2011).

Using the R package “FD” (Laliberté et al 2014), we cal-
culated the following functional diversity indices based on 
guild, phenology and mean biomass (Cardoso et al. 2011) 
at the plot level: unweighted functional richness (FRic) and 
relative biomass-weighted functional divergence (FDiv) 
and functional evenness (FEve; Villéger et al. 2008, see 
Appendix S1 for further explanation). As a proxy for prey 
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availability, we counted Diptera, Hymenoptera and Sternor-
rhyncha in each sample, which together make up > 90% of 
spider prey in temperate forests (Nentwig 1985).

Stable isotope analysis

We analyzed the trophic niche structure of spider species 
comprising the top 80% of abundance per plot, reflecting the 
dominant community and thus the main functional impact 
(Krause et al. 2021). Isotopic analysis of carbon and nitro-
gen ratios (δ13C and δ15N) was conducted by the Centre 
for Stable Isotope Research Analysis at the University of 
Göttingen. For detailed description of spider and leaf sam-
ple (baseline) preparation and the stable isotope analysis 
pipeline see Appendix S1. To compensate for variation in 
the isotopic baseline between plots, we calibrated all spider 
isotopic ratios with mean δ values of leaves from the respec-
tive plot (Lu et al. 2022). Calibrated ratios henceforth are 
denoted as Δ13C and Δ15N.

We calculated all isotopic metrics of spider communities 
at the plot level. As one-dimensional isotopic metrics, we 
included isotopic mean, minimum, maximum and range of 
Δ13C and Δ15N. Minimum and maximum values can reveal 
extreme values, indicating unique basal resources, and the 
isotopic ranges reflect on the breadth of used resources and 
trophic levels, i.e., the diversity of consumed prey (Krause 
et al. 2021). Equivalent to the functional diversity indices, 
multidimensional isotopic metrics included unweighted iso-
topic richness (IRic) and relative biomass-weighted isotopic 
divergence (IDiv) and isotopic evenness (IEve). Further, we 
analyzed the isotopic uniqueness (IUni). These indices are 
based on Villéger et al. (2008) and were adapted for isotopic 
values by Cucherousset and Villéger (2015). See Appendix 
S1 for further explanation of the multidimensional isotopic 
metrics.

Forest structural data

Within 1 week after arthropod sampling, we scanned each 
plot with a mobile laser scanner (Zeb-Horizon, Geoslam, 
Nottingham, UK). Acquiring 300,000 points per second, the 
scanner has an accuracy of up to 3 cm and a maximum range 
of 100 m. Holding the scanner in the hand, we moved in a 
spiral trajectory from the center of the fogging area to the 
outside, ensuring a buffer of 2 m around the fogged area.

The calculated indices of tree structure were the over-
all vegetation volume, the mean effective number of verti-
cal canopy layers (ENL), mean horizontal canopy gap area 
(mean gap area), the coefficient of variation of horizontal 
canopy gap area per plot (CV gap area), the CV of intra-
canopy gap height in the canopy per plot (CV ICG height) 
and the box dimension as a measure of structural complexity 
(Seidel 2018). For the quantification of intra-canopy gaps, 

we adapted the quantification of horizontal gaps for the 
empty space within the canopy. Structural canopy proper-
ties such as vertical layering, gap sizes and three-dimen-
sional complexity are important drivers of forest arthropods, 
including spiders (Halaj et al. 2000; Heidrich et al. 2020). 
We initially calculated all structural variables for cropped 
point clouds of radii from 1 to 12 m from the sampling 
center, using the R package “LidR” (Roussel et al. 2020). 
We observed that the stand structural complexity reached an 
asymptote at 9 m radius on all fogging sites. Therefore, we 
decided to only consider a radius of 9 m around the center 
of the fogging area in our analyses. This radius included the 
sampling area plus an approximate 4 m buffer. For detailed 
descriptions of the point cloud processing, see Appendix S1.

Statistical analyses

All subsequent statistical analyses were conducted with R 
4.2.1 (R Core Team 2022). We used the package “vegan” 
(Oksanen et al. 2022) to calculate spider species richness, 
effective number of species and evenness on sample  and 
plot level. We split our analyses into two steps, (i) analyzing 
stand type effects on spider responses and environmental 
properties (prey abundance and structural attributes) while 
integrating total vegetation volume in the model and (ii) ana-
lyzing the effects of canopy structural properties and prey 
availability, while integrating stand type as random effect. 
We integrated vegetation volume into the stand type analy-
sis to correct for biases by differing sampled tree volumes, 
as canopy fogging is a highly targeted sampling approach 
with defined spatial sampling extent (Floren 2010). Includ-
ing stand type as random effect in (ii) allowed to analyze 
environmental variables across stand types.

In the modeling step (i), we analyzed all spider responses 
(abundance, biomass, diversity indices, functional diversity 
indices, isotopic metrics) and structural stand attributes at 
the plot level in linear models with stand type and vegetation 
volume as fixed effects (vegetation volume was not included 
in the analysis of structural stand attributes). Further, we 
extended this model for analyses at the sample level (per 
collecting sheet) to a linear mixed-effects model, with spi-
der abundance, biomass, diversity and prey abundance as 
response and including plot as random effect, using the R 
package “lme4” (Bates et al. 2014). We applied pairwise 
Tukey HSD post hoc tests for stand type comparisons, using 
the “multcomp” package (Hothorn et al. 2008). In modeling 
step (ii), we analyzed spider responses at plot level in linear 
mixed-effects models with structural properties and prey 
abundance as fixed effects and stand type as random effect. 
As in (i), we added a sample-level analysis for abundance, 
biomass and diversity and included plot and stand type as 
crossed random effects. For further details on model selec-
tion and fitting, see Appendix S1.
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To investigate the influence of stand type on spider rich-
ness at the landscape scale, we used abundance-based rare-
faction and short-range extrapolation of the species richness 
at stand level across plots, and at the level of pooled mixed 
and monoculture stands across stand types. This approach 
is based on effective species numbers and allows for robust 
abundance-weighted diversity estimates for double the sam-
ple size (Hsieh et al. 2016). We conducted this analysis for 
the Hill numbers q = 0, 1 and 2, using the “iNEXT” package 
(Hsieh et al. 2016). Hill number q = 0 is equivalent to spe-
cies richness, q = 1 reflects the effective number of species 
(the exponent of the Shannon diversity) and q = 2 reflects 
the number of dominant species (inverse Simpson diversity; 
Hsieh et al. 2016).

To investigate differences in spider community com-
position at sample and plot scale between stand types, we 
applied two-dimensional nonmetric multidimensional scal-
ing (NMDS), using the package “vegan” (Oksanen et al. 
2022). We used the Morisita–Horn index for distance esti-
mations, which emphasizes dominant species and thus is 
resistant to undersampling (Magurran and McGill 2011). 
Using the NMDS axes scores (“envfit” function), structural 
properties were fitted post hoc to the ordination. Implement-
ing an analysis of similarity (ANOSIM, N = 9999) with post 
hoc pairwise comparison, using the package “pairwiseAd-
onis” (Martinez Arbizu 2017), we tested for significant dif-
ferences in community composition between stand types. 
To investigate whether individual stand types are charac-
terized by particular spider species, we conducted indica-
tor species analyses, using the package “labdsv” (Roberts 
2019) and considered only species with at least ten recorded 
individuals.

Results

We sampled 815 undamaged adult spider specimens com-
prising 45 species (Appendix S1, Table S2). They repre-
sented five guilds, with most spiders being web weavers: 
space web (Dictynidae, Theridiidae) and orb web weavers 
(Araneidae, Tetragnathidae) comprised 79.8% of all indi-
viduals (650/815) and 48.9% of all species (22/45). These 
proportions were similar across stand types (Appendix 
S1: Table S2). Prey abundances were significantly higher 
in monospecific spruce (1170 ± 104), beech–spruce mix-
tures (490 ± 90) and monospecific Douglas fir (1014 ± 341) 
than in monospecific beech stands (74 ± 6; F(4,13.9) = 3.14, 
p < 0.001; p < 0.01; p < 0.01). Further, prey abundances were 
higher in monospecific spruce than in beech–Douglas fir 
mixtures (330 ± 77; p < 0.05). Structural stand attributes at 
plot level did not differ significantly between stand types, 
but in trend structural complexity and vertical layering were 

highest in spruce, and mean gap area was highest in Douglas 
fir (Appendix S1: Table S3).

Abundance, taxonomic diversity and community 
composition

At the sample level (per collecting sheet = local), monospe-
cific spruce stands harbored significantly higher spider abun-
dances (Fig. 1a) and biomass (48.1 mg ± 12.7) than mono-
specific beech (F(4,12.9) = 3.53, p < 0.005; 3.15 mg ± 0.92, 
F(4,12.8) = 3.88, p < 0.005). Further, local diversity was signif-
icantly higher in monospecific spruce than in monospecific 
beech (species richness: F(4,12.9) = 2.87, p < 0.05; Fig. 1b; 
effective number of species: F(4,12.8) = 2.36, p < 0.05; Appen-
dix S1: Table S4). At plot level, spider abundances also were 
higher in monospecific spruce than in monospecific beech 
stands, but this difference was only marginally significant 
(F(4) = 2.88, p = 0.08; Fig. 1c). Spider biomass and diversity 
did not differ significantly between stand types at the plot 
level (Fig. 1d, Appendix S1: Table S5).

Species accumulation and extrapolation curves at the 
landscape scale based on Hill numbers showed that mon-
ospecific and mixed beech stands had the highest species 
diversity, whereas monospecific conifer stands had signifi-
cantly lower species numbers (Fig. 1e, f). Overall, mixtures 
tended to have higher spider species numbers than monocul-
tures (non-significant; Fig. 1g, h).

Vegetation volume neither correlated significantly with 
local and plot-level canopy spider abundance nor diversity. 
Spider abundance, biomass and species richness corre-
lated positively with structural complexity (box dimension; 
Fig. 2a), effective number of vegetation layers (ENL), the 
variability of intra-canopy gap heights (CV ICG height) and 
prey abundance (Fig. 2b). Box dimension, ENL and CV ICG 
height further correlated positively with the spider effec-
tive number of species (Fig. 2c). Spider species evenness 
decreased with increasing variation of horizontal canopy gap 
area and prey availability (Fig. 2d), but increased with mean 
gap area (Appendix S1: Table S6). At plot level, the patterns 
were largely the same (Appendix S1: Table S7).

Spider communities at the local scale differed signifi-
cantly between all monospecific stands, with spruce mono-
cultures also differing from both mixture types (ANOSIM 
p < 0.05 for all comparisons). While beech–Douglas fir 
mixtures did not differ significantly from monospecific 
beech and Douglas fir stands, or from spruce–beech mix-
tures, the latter differed significantly from monospecific 
beech and spruce stands (p < 0.05; Appendix S1; Table S8). 
Box dimension, CV gap area and CV ICG height corre-
lated with spider communities that were characteristic for 
coniferous stands. Mean gap area correlated with typical 
Douglas fir communities (Fig. 3, Appendix S1: Table S9). 
At the plot scale, stress values of the NMDS rose to > 0.25 
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and no significant differences between stand types could be 
observed.

The indicator species analysis revealed no significant 
indicator species in Douglas fir and beech–conifer mixtures. 
Monospecific beech stands had one marginally significant 
indicator species (Nigma flavescens (Walckenaer, 1830); 
p = 0.1) which is a space web weaver. Spruce stands had 
three significant indicator species (Anelosimus vittatus (C. 
L. Koch, 1836), Philodromus collinus C. L. Koch, 1835, 
Platnickina tincta (Walckenaer, 1802); for all p < 0.05), 
representing two space web weavers and one hunting spider 
(P. collinus).

Functional diversity

Most functional indices showed non-significant trends 
between stand types (Fig. 4a, Appendix S1: Table S10). 
Only spider functional evenness differed significantly 
between stand types, with higher evenness in monospe-
cific beech than in monospecific spruce stands (F(4) = 4.26, 
p < 0.05; Fig. 4b).

Spider functional richness (FRic) correlated positively 
with total vegetation volume, ENL, mean gap area and CV 
ICG height (Fig. 4c). Further, FRic correlated negatively 
with CV gap area. Functional evenness (FEve) correlated 
negatively with CV ICG height (Fig. 4d) and prey abun-
dance, and positively with CV gap area (Appendix S1: 
Tables S10, S11).

Trophic niches

Mean ∆13C of spiders was significantly higher by 3.01 ‰ in 
monospecific beech stands compared to monospecific spruce 
stands (p < 0.01; Fig. 5a), and in trend higher by 2.03 ‰ 
compared to monospecific Douglas fir stands (F(4) = 5.5, 
p = 0.12; not significant). Further, minimum and maximum 
∆13C of spiders were significantly higher in beech than in 
spruce stands, with minimum ∆13C also being higher in 
beech compared to beech–spruce mixtures. In trend, mean 
spider ∆15N was higher by 2.46 ‰ in monospecific beech 
stands compared to monospecific spruce stands (F(4) = 2.95, 
p = 0.11; not significant; Fig. 5b). Multidimensional isotopic 
metrics of spider trophic niches did not differ significantly 
between stand types (Appendix S1: Table S12).

No isotopic metric correlated significantly with total veg-
etation volume. Mean, minimum and maximum ∆13C and 

∆15N of spiders correlated negatively with prey abundance 
(Fig. 5c, d). The ranges of spider ∆13C and ∆15N correlated 
negatively with CV gap area. Further, range ∆13C of spi-
ders correlated positively with mean gap area and CV ICG 
height, and isotopic richness (IRic) with CV ICG height 
(Fig. 6a). In contrast, isotopic divergence (IDiv) of spiders 
correlated negatively with box dimension (Fig. 6b), but posi-
tively with mean gap area (Appendix S1: Table S13).

Discussion

Our results suggest that at local scales, native Norway 
spruce, but not non-native Douglas fir, promotes canopy spi-
der abundance and diversity. At landscape scale, however, 
native beech and beech–conifer mixtures showed the highest 
species turnover and therefore highest overall species rich-
ness. Beech–conifer mixtures further mitigated differences 
in spider community composition between beech and conifer 
monocultures. These results indicate that broadleaf–conifer 
mixtures may maintain canopy spider diversity and native 
communities in European beech forests. Monospecific 
patches of conifers, however, host distinct spider communi-
ties and are only beneficial for spider abundance and diver-
sity locally and only in case of native conifers. Independent 
of tree species identity, structurally heterogeneous canopies 
increased spider abundance, diversity, and functional rich-
ness, but very high levels of heterogeneity led to dominance 
of few spider traits (low functional evenness and isotopic 
divergence). This indicates that intermediate rather than very 
high heterogeneity might stabilize canopy spider communi-
ties via balanced richness and evenness of traits.

Stand type effects on taxonomic, functional 
and trophic diversity

At the local scale, canopy abundance and diversity were 
promoted by native spruce compared to native broadleaved 
beech, but not by non-native Douglas fir (Fig. 1a, b). This 
supports our first hypothesis that native conifers promote 
spider abundance and diversity but, opposed to findings on 
the forest floor (Matevski and Schuldt 2023), non-native 
conifers do not. We suggest that in the canopy, tree species 
identity effects are more important (Gossner and Ammer 
2006; Floren et al. 2022), while beneficial effects of coni-
fers on generalist predators on the forest floor are strongly 
linked to general stand characteristics like light availability 
and herb cover (Ziesche and Roth 2008; Kriegel et al. 2021). 
However, also in the canopy general positive effects of coni-
fers on spider communities were observed (Ozanne 1999; 
Korenko et al. 2011).

The question to ask is therefore which tree species iden-
tity effects are leading to the lack of positive conifer effects 

Fig. 1   a, b Local (sample-level) spider abundance and richness per 
stand type, c, d plot-level spider abundance and richness per stand 
type (not significant), e, f abundance-based species accumulation 
and extrapolation curves at stand scale with q = 0, 1, g, h abundance-
based accumulation and extrapolation curves at landscape scale with 
q = 0, 1. Shaded areas represent 95% confidence bands

◂
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in the canopy of non-native Douglas fir. However, our study 
only found non-significant trends of higher stand-scale 
structural complexity and prey availability, and smaller 
canopy gaps in spruce compared to non-native Douglas fir. 
Therefore, either unmeasured structural factors may be key 

drivers of the observed differences in spider communities, 
or our number of sampling plots was too small to detect 
stand-scale differences in structure. Possible unmeasured 
drivers could be differences in microscale structure, such 
as bark texture or needle density (Halaj et al. 1998; Blick 

Fig. 2   Relationships between box dimension (structural complexity) and local (sample-level) a spider abundance and c effective number of spe-
cies ± standard error. Relationships between prey abundance (log-transformed) and local b species richness, and d evenness

Fig. 3   Nonmetric multidi-
mensional scaling (NMDS) 
ordination of spider com-
munity composition per stand 
type. Stress < 0.2. Red crosses 
represent spider species. Filled 
symbols represent study plots 
and stand types. Ellipses show 
standard deviation of stand 
type point scores. Blue arrows 
show significant correlations of 
environmental variables with 
axes scores
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and Gossner 2006), which might reduce suitability or num-
ber of structures for web building and shelter (Oxbrough 
et al. 2005; Korenko et al. 2011). In combination with (non-
significant) macroscale structural differences, such as less 
dense canopies, this may impact overwintering of spiders 
and their prey organisms, with strongly reduced arthropod 
abundances in non-native Douglas fir in winter compared to 
native spruce (Gossner and Utschick 2004). These season-
ality effects might also drive the observed low abundances 
in broadleaved beech, where many arthropods are forced to 
move to the ground after leaf drop, which will also reduce 
canopy arthropod numbers in summer (Gil 2009).

Another possible driver of the lack of positive conifer 
effects in Douglas fir might be the lack of shared evolution-
ary history with native prey and spider communities (Tal-
lamy et al. 2021). Douglas fir was shown to only host a frac-
tion of its specialized associated arthropods when planted 
in Europe (Roques et al. 2006), and herbivorous arthropods 
are generally profoundly reduced and altered in their com-
munity composition by non-native plants compared to native 
plants (Tallamy et al. 2021; Berthelot et al. 2023). While 
we acknowledge that generalist predators should not be 
strongly impacted by tree species-specific community com-
position of their prey, we emphasize that tree-specific spider 

communities in our and previous studies cannot simply be 
explained by structure and prey availability (Mupepele et al. 
2014). Further, spiders indeed can show prey specialization 
(García et al. 2018; Mezőfi et al. 2020). In line with this, we 
did not record any indicator species on Douglas fir, while 
native spruce hosted three significant indicator species. Yet, 
these indicator species should theoretically benefit from both 
conifer species, as Philodromus collinus is generally associ-
ated with conifers and the space web weaving indicator spe-
cies (Anelosimus vittatus, Platnickina tincta) should benefit 
from the needles of either species to attach their small-scale 
webs (Halaj et al. 1998; Mupepele et al. 2014). We conclude 
that tree species identity effects beyond structure and gen-
eral prey availability may determine that non-native conifers 
do not support the same local diversity of canopy spiders 
as native conifers (Pedley et al. 2014). Notably, prey abun-
dances were several times higher in spruce than in native 
beech, which may indicate that high spider abundances 
do not necessarily imply improved pest control, but rather 
reflect high abundances of potential pest species.

Supporting our second hypothesis, tree species iden-
tity effects in our study were further underlined by pro-
nounced differences in spider community composition 
between monospecific stands (Fig. 3). This concurs with 

Fig. 4   a, b Functional richness and evenness per stand type and c, d their relationships with CV ICG height
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previous studies, showing that conifers are associated with 
different arthropod communities than native broadleaved 
forests (Pedley et al. 2014; Matevski and Schuldt 2020; 
Kriegel et al. 2021). In line with this, the indicator spe-
cies of monospecific beech stands, Nigma flavescens, is a 
specialized space web weaver, building its nets on leaves 

of broadleaved trees (Nentwig et al. 2021). Again, this 
emphasizes that also for generalist species, tree species 
identity can be a strong driver of community composi-
tion and, supported by our indicator species analysis, tree 
species-specific spiders do exist in the canopy (Mupepele 
et al. 2014).

Fig. 5   Mean ∆13C and ∆15N per stand type (a, b) and their relationships with prey abundance (c, d; log-transformed)

Fig. 6   Relationships between a CV ICG height and isotopic richness (IRic) and b box dimension (structural complexity) and isotopic divergence 
(IDiv)
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In line with our third hypothesis, local differences in spe-
cies richness and abundance between spruce and beech were 
mitigated in mixtures of the two tree species (Fig. 1a, b). 
Further, spider community compositions in mixed stands 
were intermediate between the respective monospecific 
stands, mitigating tree species identity effects (Fig. 3). This 
supports previous studies on the forest floor, reporting miti-
gating effects of tree species mixtures on generalist predator 
abundance and diversity (Kriegel et al. 2021; Matevski and 
Schuldt 2023), indicating averaging trade-off effects (van der 
Plas et al. 2016). However, while beneficial effects of spruce 
on spider abundance and diversity became smaller at the plot 
scale, they reversed at the landscape scale: both conifers 
markedly showed the lowest diversity, whereas mixed and 
monospecific beech stands had the highest spider diversity 
(Fig. 1e, f). When pooling all monospecific and all mixed 
stands, we even observed a general positive mixture effect at 
the landscape scale (Fig. 1g, h). This corroborates reports of 
low spatial arthropod species turnover in conifers (Oxbrough 
et al. 2016; Matevski and Schuldt 2020) and indicates ben-
eficial effects of tree diversification (Ampoorter et al. 2020; 
Matevski and Schuldt 2020). Notably, we recorded nine spe-
cies exclusively in mixed stands, but their low abundances 
do not allow robust conclusions on their uniqueness to mix-
tures. Comparing our results on canopy spiders to previous 
studies on the forest floor suggests that tree species identity 
and their admixture differentially impact forest floor- and 
canopy-associated arthropods (Pedley et al. 2016). In con-
clusion, conservation of canopy arthropod communities 
in European forests can only be safeguarded when native 
broadleaves are admixed.

Partially contradicting our first hypothesis, we did not 
observe significant differences in functional or isotopic 
richness between stand types (Fig. 4a), suggesting that 
major canopy spider functional groups can be sustained by 
all investigated stand types and that the spider communi-
ties feed on similar ranges of prey (Michalko et al. 2019). 
However, spider functional evenness was higher in beech 
than in spruce stands, indicating that the high abundances 
in spruce result in only few trait clusters, whereas the few 
spiders in beech have very different functions (Fig. 4b). This 
supports findings on the forest floor, showing that mono-
specific conifer plantations lead to functional homogeniza-
tion of spiders (Matevski and Schuldt 2023). Further, we 
found marked differences in the trophic niches of canopy 
spiders between stand types, with ∆13C and ∆15N being the 
highest in monospecific beech stands and low in coniferous 
stands (Fig. 5a, b). Notably, the ∆13C pattern is the same 
as observed on the forest floor, while ∆15N contrasts pat-
terns of ground-dwelling spiders (Wildermuth et al. 2023). 
High ∆13C values indicate that the food web is fueled by 
detrital resources (“detrital shift”; Potapov et al. 2019), 
whereas low ∆13C values indicate a rather herbivore-fueled 

food web (Krause et al. 2021; Wildermuth et al. 2023). This 
suggests that prey organisms in conifer canopies predomi-
nantly consume decaying material, microbes and fungi, 
while prey in beech stands mostly consume living leaves 
(Pollierer et al. 2023). However, the observed ∆13C patterns 
may also reflect different feeding strategies of tree species 
specific herbivore communities, such as the selective use of 
easy to digest plant compounds with high ∆13C (Pollierer 
et al. 2023). High ∆15N values in beech stands hint toward 
an additional trophic level compared to coniferous stands 
(Scheu and Falca 2000), likely reflecting more pronounced 
intra-guild predation in beech (Wildermuth et al. 2023). In 
fact, prey abundances were lowest in beech stands and had a 
negative relationship with ∆15N (Fig. 5d). Such a top-heavy 
food web as in beech may be explained by the phenology 
of deciduous trees, which do not provide resources for 
herbivores during winter (Pollierer et al. 2023). This also 
indicates that pest control provided by spiders may be more 
pronounced in beech than in coniferous stands, even though 
spiders are more abundant in conifers. Tree species mixtures 
mitigated these effects, supporting our second hypothesis 
and consolidating their potential as buffer against potentially 
negative tree species identity effects.

Habitat heterogeneity and prey availability

Despite not differing significantly between stand types, we 
identified forest stand structure as a strong driver of spider 
communities, supporting our fourth hypothesis. Heteroge-
neous heights of intra-canopy gaps, high vertical layering 
and structural complexity promoted spider abundance and 
diversity, coupled with positive effects of prey abundance 
(Fig. 2a–c). Previous studies suggested that especially non-
flying taxa such as spiders benefit from structurally complex 
environments (Halaj et al. 2000; Ramos et al. 2022). Some 
studies even reported that canopy structure explains more 
variance in canopy spider abundance and species richness 
than prey availability (Halaj et al. 1998; Butz et al. 2023). 
Structural complexity and vertical vegetation layering pro-
mote arthropod abundances and diversity via higher space-
filling, which increases total habitat and resource availability 
(Müller et al. 2018; Knuff et al. 2020; Rappa et al. 2023). 
However, although canopy gaps are known to be crucial for 
forest arthropod diversity, previous studies mostly investi-
gated gaps interrupting the canopy (Heidrich et al. 2020; 
Junggebauer et al. 2021). Yet, the canopy is a three-dimen-
sional habitat, and intra-canopy gaps should be considered, 
as for instance also removal of low canopy structures will 
alter the available habitat (Dial et al. 2006). The variation 
in intra-canopy gap height had a strong positive relationship 
with multiple spider responses, emphasizing the advantages 
of assessing canopy structure with high-resolution laser 
scanning (Müller et al. 2018; Seidel 2018). We propose that 
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variation in intra-canopy gap height promotes vertical avail-
ability of hunting grounds, while—in combination with ver-
tical layering—spatial separation of these habitats is assured 
(Müller et al. 2018; Knuff et al. 2020).

Structurally heterogeneous canopies further promoted 
spider functional and isotopic richness (Figs. 4c, 6a), sug-
gesting that habitat heterogeneity increases the total trait 
space via increasing habitat availability and habitat diversity 
(Stein and Kreft 2015). However, heterogeneous canopies 
also decreased functional evenness and isotopic divergence, 
indicating promotion of trait clusters in the functional and 
trophic niche space respectively (Figs. 4d, 6b). This effect 
was also coupled with increasing prey availability (Fig. 2d). 
Further, variability of horizontal gap sizes decreased spider 
functional richness and isotopic ranges, indicating a limited 
trophic diversity of consumed prey. This may indicate that 
high structural complexity promotes functional similarity of 
spiders via spatial partitioning and increased abundance of 
prey with high trophic similarity (Müller et al. 2018; Tsang 
et al. 2023). Yet, this similarity can be mediated by canopy 
gaps, as we also found an increase in contrasting trophic 
traits (isotopic divergence) with larger horizontal gap size, 
and increasing functional evenness with variation in hori-
zontal gap size. This suggests that, although structurally het-
erogeneous canopies might not increase all functional spider 
traits evenly, with resource availability promoting dominant 
traits, canopy gaps and their heterogeneity in size can foster 
functional dissimilarity. The latter underlines that multiple 
heterogeneity attributes might have differing relationships 
with canopy arthropods and that in sum, intermediate habitat 
heterogeneity might balance positive and negative impacts 
(Heidrich et al. 2020; Swart et al. 2020). This would also 
lead to higher ecological stability of communities via even 
occupation of dissimilar niches (Godoy et al. 2018; Tsang 
et al. 2023).

Conclusions

Our study shows that canopy spider communities are dif-
ferentially driven by tree species identity, canopy structure 
and prey availability. As spider community composition 
strongly differed depending on tree species identity and 
species turnover was low in non-native trees, native trees 
should be of great conservational interest. However, broad-
leaf–conifer mixtures showed buffering against negative tree 
species identity effects, while promoting spider diversity at 
the landscape scale. Monospecific plantations of non-native 
Douglas fir in Central Europe should therefore not be rec-
ommended, but admixtures with native beech potentially 
promote canopy spider diversity, indicating that they may 
be a more suitable management option when also consid-
ering biodiversity conservation. Structurally heterogeneous 

canopies and prey availability promoted the richness of spi-
der species and traits, but it also fostered dominance of only 
few trait clusters. This indicates that heterogeneity-diversity 
relationships are not just linear positive, and intermediate 
heterogeneity might result in more stable ecological com-
munities. Our study shows that findings of beneficial conifer 
effects from the ground stratum cannot be transferred to the 
canopy—even for generalist predators such as spiders—as 
tree species identity and intra-canopy structure are inti-
mately linked with canopy spider communities.
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