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Abstract
Since Baker’s attempt to characterize the ‘ideal weed’ over 50 years ago, ecologists have sought to identify features of species 
that predict invasiveness. Several of Baker’s ‘ideal weed’ traits are well studied, and we now understand that many traits can 
facilitate different components of the invasion process, such as dispersal traits promoting transport or selfing enabling estab-
lishment. However, the effects of traits on invasion are context dependent. The traits promoting invasion in one community 
or at one invasion stage may inhibit invasion of other communities or success at other invasion stages, and the benefits of 
any given trait may depend on the other traits possessed by the species. Furthermore, variation in traits among populations 
or species is the result of evolution. Accordingly, evolution both prior to and after invasion may determine invasion out-
comes. Here, we review how our understanding of the ecology and evolution of traits in invasive plants has developed since 
Baker’s original efforts, resulting from empirical studies and the emergence of new frameworks and ideas such as community 
assembly theory, functional ecology, and rapid adaptation. Looking forward, we consider how trait-based approaches might 
inform our understanding of less-explored aspects of invasion biology ranging from invasive species responses to climate 
change to coevolution of invaded communities.
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Introduction

The question of how species successfully invade new areas 
has fascinated scientists for over a century (Darwin 1859). 
By studying ruderal and agricultural weeds invading empty 
niches, Herbert Baker began to identify characteristics asso-
ciated with invasiveness, which resulted in a list of traits 
describing the ‘ideal weed’ (Baker 1965, 1974). Work in 
subsequent decades examined a wide range of traits using 
comparative approaches of taxonomically-related species 
and regional floras (reviewed in Pysek and Richardson 

2007). With these studies came an increasing realization 
that factors contributing to invasiveness are strongly influ-
enced by the stage of invasion, characteristics of the intro-
duced range, and which species groups are being compared. 
These realizations, combined with discrepancies across stud-
ies, resulted in some skepticism that traits associated with 
invasiveness could be generalized (e.g., Kolar and Lodge 
2001; Moles et al. 2012). However, there is support for the 
idea that invasive species differ from non-invasive native 
and non-native species in key attributes depending on the 
environmental context (van Kleunen et al. 2015). Here, we 
explore how ecological and evolutionary theory has refined 
our understanding of the ‘ideal weed’. We do not provide an 
exhaustive review of all traits but rather an overview of key 
functional and evolutionary frameworks in which progress 
has been made.
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Linking traits to invasiveness: ecological 
frameworks

Baker’s ‘ideal weed’ possessed a general-purpose pheno-
type (e.g., high phenotypic plasticity, flexible germina-
tion cues, general dispersal and pollination mechanisms), 
life history traits that permit reproduction from a single 
individual (selfing, vegetative reproduction), rapid growth, 
and high, continuous seed output (Baker 1974). Several 
of these characteristics are well studied and appear to be 
common when evaluated across different invasive taxa 
such as high germination success across environments 
(Wainwright and Cleland 2013), selfing (Razanajatovo 
et al. 2016), and rapid growth rate (van Kleunen et al. 
2010), while others are less studied (e.g., seed longev-
ity, continuous seed output). In recent decades, research-
ers have broadened the search for ‘weedy’ characteristics 
to include traits related to resource acquisition and use 
that underlie rapid growth, competitive ability, and even 
stress tolerance. Syntheses of regional and global floras 
have demonstrated that, relative to non-invasive species, 
invasive species are generally larger, have higher specific 
leaf area (SLA), allocate relatively more biomass to leaves 
and stems at the expense of roots, and use resources more 
efficiently (e.g., Daehler 2003; van Kleunen et al. 2010; 
Ordonez 2014; Funk et  al. 2016). However, there are 
exceptions to every rule.

Identifying traits associated with invasive species is 
hindered by differences in how invasiveness is defined, 
bias in species selection for experiments, and challenges 
comparing species at different stages of invasion (van 
Kleunen et al. 2015; Hulme and Bernard-Verdier 2018). 
However, several useful frameworks have been developed 
to evaluate traits within relevant contexts. First, many 
researchers recommend controlling for a species’ com-
monness when selecting species for experiments as com-
parisons among common invasives and rare non-invasive 
species may lead to spurious conclusions (Dawson et al. 
2012). For example, invasive species appear to be more 
competitive than co-occurring natives (Vila and Weiner 
2004; Kuebbing and Nunez 2016; Golivets and Wallin 
2018); however, many of these studies focus on particu-
larly aggressive and common invaders. In a comparison of 
annual plants in Germany, Zhang and van Kluenen (2019) 
found that invasive species were stronger competitors only 
when comparing common invaders with rare natives. In 
essence, comparing species that are similarly successful 
(e.g., reached similar abundances in a community) should 
allow researchers to identify traits that promote inva-
sion in particular, rather than commonness more gener-
ally. In another effort to standardize how invasiveness is 
defined, Catford et al. (2016) proposed comparing traits 

of invasive species within invasiveness categories based 
on four demographic dimensions: local abundance, geo-
graphic range, environmental range, and spread rate. One 
trait may promote invasiveness along one dimension (e.g., 
fast growth rates lead to high abundance at a given site) 
but limit invasion along another (e.g., high resource avail-
ability needed to sustain fast growth rates may limit envi-
ronmental range). Time since introduction and propagule 
pressure would ideally be incorporated into invasiveness 
categories (Catford et al. 2016), but these data are not 
available for many species.

Perhaps the most comprehensive effort to link traits to dif-
ferent stages of invasion is that of van Kluenen et al. (2015) 
who proposed a nested, multi-scale approach (Fig. 1). Iden-
tifying a universal set of traits that explains invasiveness is 
challenging because traits are dependent on environmental 
context, including specific abiotic and biotic factors arising 
from, for example, climate (regional scale) and community 
composition (local scale). By accounting for spatial scale, 
the framework proposed by van Kluenen et al. (2015) avoids 
inappropriate comparisons of traits across different stages of 
invasion and resolves inconsistencies associated with context 
dependency. For example, studies have found that invasive 
species can have smaller, similar, or larger seeds compared 
to native or non-invasive species (e.g., Lake and Leishman 
2004; Ordonez et al. 2010; Divisek et al. 2018). However, 
this inconsistency likely reflects different ecological filters 
or processes across stages: smaller seeds are likely to be 
dispersed to new sites, but larger seeds have more resources 
for establishment and growth (van Kluenen et al. 2015). 
Conversely, some traits may enhance invasiveness at mul-
tiple stages of invasion. For example, fast growth rates can 
assist with colonization of new or disturbed habitats (Fig. 1, 
stage c), lead to priority effects (Fig. 1, stage d; Wainwright 
et al. 2012), and ultimately affect competition outcomes in 
established communities (Fig. 1, stage e; Zhang and van 
Klueunen 2019).

Finally, a trait-based community assembly framework 
may also elucidate mechanisms of invasion (Tilman 2004; 
Hulme and Bernard-Verdier 2018; Pearson et al. 2018). 
Community assembly theory allows for both stochastic 
(e.g., dispersal) and niche-based (e.g., stress) processes at 
various scales. Species composition within a community 
is determined by a series of ecological filters that sort spe-
cies based on their traits (Fig. 2a). As an example, seed 
predation is a strong biotic filter on recruitment in some 
systems and this may favor species with smaller seeds that 
are more likely to evade predation from rodents (Pearson 
et al. 2018, Fig. 2b). Investigating how trait-performance 
relationships change when a filter is manipulated can 
indicate if non-native invaders are succeeding by acting 
like the natives (shift along common slope) or by doing 
something different (under- or overperforming species 
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in Fig. 2b). Trait analyses can also determine if invasive 
species occupy empty niches. Work in desert annual com-
munities in the southwest U.S. show that invasive annuals 
have unique trait combinations that allow them to grow 

fast and use water efficiently (Huxman et al. 2008; Angert 
et al. 2009; Fig. 2c). Below, we expand on how traits and 
trait plasticity interact with abiotic and biotic filters to 
regulate invasion.

Ecological Traits Evolu�onary Hypotheses & Processes
a) Has the species been introduced? •A�rac�veness to humans (floral 

display)
•Ease of cul�va�on (germina�on 

traits)

•Anthropogenically Induced 
Adapta�on to Invade Hypothesis1

•Evolu�on of traits promo�ng 
transport (e.g., seed mimicry)

b) Is the appropriate environment present? •Clima�c op�mum (water-use 
efficiency, phenology)
•Nutrient use (nutrient-use efficiency, 

root foraging)
•Environmental tolerance 

(phenotypic plas�city)

•Rapid local adapta�on facilitated by 
admixture and reduced constraint
•Evolu�on of increased plas�city
•Adapta�on to human disturbance
•Darwin’s Pre-Adapta�on Hypothesis2

c) Can it reach the appropriate sites? •Efficiency of dispersal vector
•Dispersal traits (terminal velocity)
•Propagule number
•Seed bank longevity

•Dispersal trait evolu�on via natural 
and spa�al selec�on

d) Can it quickly occupy a vacant niche? •Dispersal traits
•Priority-effect traits (germina�on 

�me and rate), vegeta�ve spread, 
fecundity)

•Evolu�onary rescue
•Rapid adapta�on to disturbance
•Evolu�on of increased plas�city

e) Can it replace na�ve occupants? •Compe��ve ability (allelopathy, 
vegeta�ve growth, height)
•Defense against generalist 

herbivores and pathogens

•Evolu�on of Increased Compe��ve 
Ability3

•Evolu�onary Imbalance Hypothesis4

•Darwin’s Naturaliza�on Hypothesis5
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Fig. 1  As noted by van Kleunen et  al. (2015) and others (see main 
text), different traits may be favored at different stages of invasion and 
their importance may shift from local to regional scales. These traits 
may be characteristics of the invading species (“Ecological Traits”) 

or modified by evolution pre- or post-introduction as suggested by 
a number of hypotheses. Schema modified from van Kleunen et  al. 
(2015). 1Hufbauer et al. (2012), 2Ricciardi and Mottiar (2006), 3Blos-
sey and Notzold (1995), 4Fridley and Sax (2014), 5Darwin (1859)

Dispersal

Abiotic

Biotic

Species pool

Local community Seed mass

R
ec

ru
itm

en
t

a b

Water-use efficiency

R
el

at
iv

e 
gr

ow
th

 ra
te

cNative
Invasive

under-performing 
outlier

over-performing 
outlier

Fig. 2  a Species composition within a local community is deter-
mined by a series of ecological filters that sort species based on their 
traits. In this example, both native (blue) and non-native (orange) 
species are represented in the local community (adapted from Funk 
2021). b Analyses that compare trait values with relative abundance 
or performance in the presence of an ecological filter can determine 
how invaders succeed; by acting like the natives (shift along com-
mon slope) or doing something different (not aligned with slope). In 
this example, seed predation, a strong biotic filter in some systems, 
favors species with smaller seeds that are more likely to evade preda-

tion from rodents (adapted from Pearson et al. 2018). Some invasive 
species may under- or over-perform relative to expectations and this 
information may be used to understand and potentially manipulate 
the invasion process. c Multivariate trait analyses can identify mecha-
nisms of invasion. For example, two invasive desert annuals have 
higher growth rates than expected based on water use traits. This pat-
tern suggests that these invaders may not be constrained by growth-
conservation trade-offs associated with different rainfall environments 
(adapted from Huxman et al. 2008 and Angert et al. 2009)
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Traits and abiotic filters

Many invasive species thrive in resource-rich environments 
(Huenneke et al. 1990; Davis et al. 2000; Gross et al. 2005; 
Sardans et al. 2017). Environments with ample light, water, 
or nutrient availability could favor fast-growing species 
that quickly take up available resources. Species associated 
with a resource acquisitive strategy have trait values aligned 
with the ‘fast-return’ end of leaf, plant, and root economic 
spectra (Wright et al. 2004; Diaz et al. 2016; Weigelt et al. 
2021). This includes cheaply constructed, short-lived tissues 
designed for high rates of carbon and nutrient assimilation 
(e.g., low leaf mass per area, high leaf and root nitrogen 
concentration, low tissue density) and biomass allocation 
patterns that favor light interception and growth (e.g., van 
Kleunen et al. 2011; Paquette et al. 2012; Funk and Wolf 
2016). These species may alter the system in a way that pre-
vents slower-growing species from establishing and domi-
nating. For example, the proliferation of invasive grasses 
in many systems suppresses woody seedling establishment 
via competition for limiting resources or increased fire fre-
quency leading to a type conversion (e.g., Cabin et al. 2002; 
Yelenik and Levine 2010; Elgar et al. 2014) or invasion by 
other species (D’Antonio et al. 2017).

Many species can also invade low resource environments 
and they succeed by employing a wide range of strategies 
(reviewed in Funk 2013). Community assembly theory 
predicts that strong abiotic filters in stressful environments 
will result in co-occurring species with similar traits (e.g., 
habitat filtering; Weiher and Keddy 1999) and there is some 
evidence for this in invaded systems. For example, species 
invading low resource systems are similarly or more effi-
cient at using limiting resources relative to native species 
adapted to those systems (Funk and Vitousek 2007; Cavaleri 
and Sack 2010; Heberling and Fridley 2013). There is also 
evidence that invasive species can succeed in low resource 
environments by possessing resource acquisitive traits. 
While native and invasive non-native annuals in semi-arid 
Mediterranean-climate ecosystems are similar with respect 
to most traits, invasive annuals were taller and had larger 
seeds and thinner roots—which likely enhances establish-
ment and resource acquisition (Funk et al. 2016). Pheno-
logical differences, such as early germination, may allow 
invasive species to avoid competition from co-occurring 
species in low resource environments (Gioria and Pysek 
2017). Early phenology coupled with high resource-use 
efficiency or rapid growth may be particularly effective in 
low resource environments, such as deserts and coastal sage 
scrub in the southwestern U.S. (Kimball et al. 2011; Valliere 
et al. 2019). In sum, the fast growth rates and competitive 
strategies hypothesized by Baker appear to promote inva-
sion in a range of habitats, but the specific physiological 
traits underlying these strategies differ across environments. 

Resource acquisition traits may be particularly useful in high 
resource environments, while efficient resource use or com-
petitive strategies like early phenology may lead to invasion 
success in low resource environments.

Finally, a central tenet of Baker’s ideology is that some 
invaders display broad environmental tolerance and are able 
to move past environmental filters (e.g., Fig. 2a) by pos-
sessing traits that promote high fitness under low and high 
resource conditions. Some invasive species exhibit broad 
environmental tolerance by not conforming to growth-stress 
tolerance tradeoffs. For example, Norway maple (Acer pla-
tanoides) is a common invader in North American forests 
and has high survival under low light conditions and high 
growth rates in full sun (Martin et al. 2010). Tree of heaven 
(Ailanthus altissima) is one of the most invasive woody spe-
cies in Europe and North America and its broad geographic 
distribution is driven by a combination of traits aligned 
with high resource acquisition as well as the ability to alter 
morphological traits and biomass allocation patterns across 
environments (Kowarik and Säumel 2007; Petruzzellis et al. 
2018). The importance of broad environmental tolerance 
through phenotypic plasticity is discussed below.

Traits and biotic filters

During the invasion process plants may escape specialist 
enemies that limit their population growth in the native 
range (the Enemy Release Hypothesis, Elton 1958; Keane 
and Crawley 2002). Such escape is typically transient, how-
ever, as invaders accumulate new enemies over time (e.g., 
Schultheis et al. 2015). The initial escape from enemies 
could allow for rapid establishment but, over longer time-
scales, three traits of invaders may make them particularly 
adept at overcoming the biotic filter created by enemies 
and promoting invasion. First, ruderal invaders can escape 
their enemies by virtue of their high dispersal, short lifes-
pan, and low allocation to defense, freeing up resources for 
rapid growth or competitive ability (the Plant Apparency 
Hypothesis, Feeny 1976; Rhoades and Cates 1976). Second 
and relatedly, many invaders appear to have high growth 
rates, which tend to reduce the cost of damage (related to 
the Growth Rate Hypothesis in plant defense theory, Coley 
1988). This high growth rate means that invaders can with-
stand high amounts of enemy damage with limited effects 
on fitness (i.e., invaders are highly tolerant). Consistent with 
this idea, in a multi-species study, invasive vines received 
just as much herbivory as natives or naturalized species, 
but were also more tolerant of damage (Ashton and Ler-
dau 2008), although other multispecies studies and meta-
analyses find that invasives are similarly (Schultheis and 
MacGuigan 2018) or even less tolerant to herbivory than 
natives (Chun et al. 2010). Third, native generalist enemies 
may have reduced preferences for non-native species with 
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which they have no evolutionary history (e.g., Schaffner 
et al. 2011; Macel et al. 2014), although this appears not 
to be a general phenomenon across invasive species (Lind 
and Parker 2010). Thus, both innate traits of the invader that 
Baker hypothesized would facilitate invasion (high dispersal 
and fast growth rates) and the match between invader traits 
and the invaded community (native generalist consumers 
avoiding invasive plants) may reduce the capacity for ene-
mies to limit invader population growth.

Like enemies, mutualists may also be left behind dur-
ing the invasion process. As a result, successful invaders 
might be less dependent on mutualists (e.g., facultative 
rather than obligate mutualists), more generalist and able 
to interact with a wide variety of partners as predicted by 
Baker (including some with which no evolutionary history 
is shared), or rely on co-invasion of mutualist partners (see 
Traveset and Richardson 2014 for a review of mutualism and 
invasion). For example, selfing was one of Baker’s ‘ideal 
weed’ characteristics because it would allow reproduction 
in the absence of suitable pollinators and at low popula-
tion densities. Selfers do appear to be overrepresented in 
invasive taxa (Razanajatovo et al. 2016) although it is not 
clear whether this is because of the advantages of selfing 
when suitable pollinators aren’t available or because of Allee 
effects. For other species that fail to meet Baker’s criteria of 
generalized dispersal or pollination mechanisms (or general-
ized mutualisms more generally), like that of highly special-
ized figs which require a specific species of wasp pollinator 
or pines limited by appropriate mycorrhizae, invasion can 
still occur but only once the mutualist also invades.

Baker highlighted high competitive ability as a character-
istic of invasive species, although his focus was on competi-
tion through “special means” such as allelopathy and chok-
ing growth (Baker 1974). In practice, invasive plant species 
may coexist with and outcompete natives through a variety 
of mechanisms. Niche differentiation, where species possess 
different strategies of resource use, may allow for coexist-
ence of native and non-native invasive species (MacDougall 
et al. 2009). In this case, invasive species are functionally 
different than the natives, either by possessing novel traits 
(e.g., nitrogen fixation or allelopathy) or by using resources 
in different ways (e.g., shallow versus deep roots) or at dif-
ferent times (e.g., early versus late phenology). For exam-
ple, in many Mediterranean climate systems, invasive annual 
species display different phenology and function compared 
to the largely perennial or woody native communities (Funk 
et al. 2016). Alternatively, invasive species may succeed by 
possessing highly competitive traits (e.g., fitness differences 
or competitive trait hierarchy, Kunstler et al. 2012; Mayfield 
and Levine 2010). As an example, functional similarity did 
not predict competitive outcomes between native species 
and a focal invader in a California grassland; instead, com-
petitive natives possessed trait values consistent with high 

rates of belowground resource acquisition and allocation to 
aboveground tissue (Funk and Wolf 2016). Other studies 
have found that both niche and fitness differences operate 
within a given community (Conti et al. 2018; Gallien et al. 
2015). For example, Fried et al. (2019) found that native spe-
cies with flowering phenology similar to a focal invader were 
adversely impacted by the presence of the invader (niche dif-
ferences). At the same time, native species with larger seeds 
and higher rates of resource acquisition (fitness differences) 
were more competitive with the invader. As the relative 
importance of competition mechanisms is likely to change 
at fine scales across resource gradients (Gallien and Carboni 
2017), experiments that manipulate resource availability and 
directly measure competition outcomes are likely to eluci-
date the mechanisms by which non-native invasive species 
can coexist with or competitively exclude native species.

Moving from trait to traits

Baker hypothesized that species possessing more ‘ideal 
weed’ traits would be more invasive: “probably no existing 
plant has them all; if such a plant should evolve it would 
be a formidable weed, indeed” (Baker 1965). Trade-offs 
likely limit the capacity for any species to possess all ‘ideal 
weed’ traits (e.g., allocation to fast growth may come at 
the expense of allelochemical production), but particular 
trait combinations may act synergistically (e.g., fast growth 
may be needed to fuel high and continuous seed produc-
tion). Thus, focusing on a single trait or a small handful of 
traits may not accurately characterize invasiveness; rather, 
exploring multidimensional functional differences between 
invasive and non-invasive species may yield greater insight 
into mechanisms of invasion (Divisek et al. 2018; Hulme 
and Bernard-Verdier 2018; Renault et al. 2022). Traits may 
act in non-additive ways, as certain combinations of traits 
lead to success in particular conditions. For example, species 
with high rates of resource uptake and poorly defended tis-
sues have the most to gain from enemy escape (Blumenthal 
2006). Finally, different traits can result in similar fitness 
(alternative designs, Marks and Lechowicz 2006) highlight-
ing the need to consider multiple traits. For example, pros-
trate plants with strong lateral spread may shade out native 
plants just as effectively as tall plants (Fried et al. 2019). 
Thus, a multi-trait approach that accurately characterizes 
light use would be more meaningful than comparisons of 
mean height among invasive and non-invasive species.

Many researchers have emphasized that traits or suites of 
traits interact with other processes, such as habitat suitability 
and socioeconomic factors, to influence invasion. In an effort 
to identify patterns of species-ecosystem interactions leading 
to invasion, Kueffer et al. (2013) coined the term ‘invasion 
syndrome’ which Novoa et al. (2020) redefined as ‘‘a combi-
nation of pathways, alien species traits, and characteristics of 



256 Oecologia (2023) 203:251–266

1 3

the recipient ecosystem which collectively result in predict-
able dynamics and impacts, and that can be managed effec-
tively using specific policy and management actions’’. This 
synthetic approach involves an iterative process of identify-
ing similar invasion events and their associated syndromes 
(pathways, traits, ecosystem characteristics). As an example, 
Novoa et al. (2020) point to invasive plant species in high 
elevation areas, which tend to share a broad environmental 
tolerance and a similar pathway of introduction along trans-
portation corridors from low and mid elevation areas. Thus, 
managing for invasive plant species in high elevation areas 
entails limiting the spread of introduced species along cor-
ridors. However, as our review highlights, traits and species 
interactions within communities are dynamic, so an invasion 
syndrome approach would have to be flexible, potentially 
weakening the value of this framework.

Traits are not static: the role of phenotypic plasticity 
in invasions

Phenotypic plasticity, or the ability of a plant to adjust its 
phenotype in response to environmental variation, was a 
defining feature of Baker’s ‘ideal weed’ (Baker 1965). Plas-
ticity could facilitate establishment in novel environments 
through several mechanisms. First, Baker and others hypoth-
esized that plasticity could lead to success in a wide range 
of novel environments (the general-purpose genotype, Baker 
1965; or ‘jack-of-all-trades' hypothesis Richards et al. 2006). 
Consistent with this hypothesis, plasticity is associated with 
increased species range size (Goldberg and Price 2022). Sec-
ond, plasticity could lead to high success in certain envi-
ronments (the ‘master-of-some' hypothesis). For example, 
invaders may be particularly adept at capitalizing on high 
resource conditions (Richards et al. 2006; Davidson et al. 
2011), opening ‘invasion windows’ when resources become 
abundant that allow for explosive population growth (Davis 
et al. 2000). Third, as we discuss in “Evolutionary consid-
erations” section, plasticity can facilitate rapid evolution.

Empirical evidence for the role of plasticity in invasions 
is mixed, however. While several large multi-species stud-
ies or meta-analyses find that invaders are more plastic 
than natives or non-invasive non-natives (Davidson et al. 
2011; Zettlemoyer et al. 2019), others find that on average 
invasive and non-invasive species do not differ in plastic-
ity (Palacio-Lopez and Gianoli 2011; Godoy et al. 2011). 
Interestingly, heightened plasticity is only adaptive and helps 
maintain fitness in a subset of species and only in response to 
resource increases; non-invasive plant taxa were better able 
to maintain fitness homeostasis in low resource conditions 
(Davidson et al. 2011). One possibility for these conflicting 
empirical observations is that plasticity, like other traits, may 
only be advantageous during certain invasion stages (Fig. 1). 
A large, phylogenetically-controlled study investigating 

phenological plasticity in response to warming found that 
on average invasive species show strong phenological shifts 
in response to warming, while native species do not (Zet-
tlemoyer et al. 2019). These phenological shifts were strong-
est for species characterized as invasive and much weaker for 
non-invasive non-native species, and phenological plasticity 
was stronger for species that had invaded long ago, sug-
gesting that phenological plasticity may be most important 
during the spread and impact stages and may increase over 
time through evolution (Zettlemoyer et al. 2019).

Evolutionary considerations

Baker and G. Ledyard Stebbins brought together evolu-
tionary biologists and ecologists to consider the problem 
of invasive species and, in doing so, inserted an evolution-
ary perspective into the field of invasion biology (Barrett 
2015). Evolutionary studies of invasive species were rela-
tively slow to take off compared to the rapid increase in 
ecological works following Elton’s (1958) seminal work and 
the SCOPE (Scientific Committee on Problems of the Envi-
ronment) series that followed several decades later (Barrett 
2015). However, we now recognize that prior adaptation and 
rapid evolution during or post invasion can allow for estab-
lishment and promote the spread of invasive species. Evolu-
tionary history reflects challenges a population has experi-
enced in the past, and overcoming particular challenges may 
make it more likely for a species to be transported to, estab-
lish in, and successfully invade new areas. Post-introduction, 
rapid evolutionary responses to novel aspects of the invaded 
environment may be necessary for the invasive species to 
establish and spread. Because a population’s evolutionary 
history (both historical and contemporary) determines its 
traits, incorporating evolution into invasion biology may 
help explain why certain biogeographic regions produce 
so many invasive species (Fridley 2013). Using quantita-
tive genetics approaches that link traits to fitness may help 
inform which traits promote success in particular environ-
ments. Such studies could help explain the context depend-
ency so frequently observed in ecological studies linking 
traits to invasions.

Interestingly, only a few of Baker’s traits have been well-
investigated from an evolutionary perspective (Table 1). One 
study explicitly focusing on Baker’s ‘ideal weed’ traits found 
evidence for genetic variation in traits related to competitive 
ability and seed production, indicating that such traits have 
the potential to evolve pre- or post-introduction, but growth 
rate exhibited little genetic variation (Chaney and Baucom 
2012). Furthermore, these traits were often genetically cor-
related, although not always in the same direction across the 
two populations studied, suggesting that genetic constraints 
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may sometimes limit and other times accelerate the evolu-
tion of ‘ideal weed’ traits.

Prior adaptation

The idea that evolutionary history determines invasion suc-
cess has a long, but relatively sparse, history going back 
to at least Darwin’s seminal works. Much of this work has 
investigated Darwin’s Naturalization Hypothesis which pro-
poses that species lacking close relatives in the community 
are more likely to invade (Darwin 1859). This hypothesis 
assumes that because close relatives are likely to be func-
tionally similar, competition (and potentially herbivory, see 
Hill and Kotanen 2009) may strongly limit closely related 
invaders compared to more distantly related invaders (e.g., 
Park et  al. 2020). The counter argument is that closely 
related species may have similar environmental tolerances 
and species interactions leading to increased likelihood 
of invasion by close relatives in the introduced range (the 
Pre-Adaptation Hypothesis). Support for these competing 
hypotheses is decidedly mixed, but Ma et al. (2016) suggest 
that this may result from different processes acting across 
scales and invasion stages (see also Diez et al. 2008; van 
Kluenen et al. 2018a, b; Park et al. 2020). For example, 
Darwin’s Naturalization Hypothesis specifically invoked 
competition, which occurs at very local scales. In contrast, 
the Pre-Adaptation Hypothesis more likely applies to the 
climatic factors more prevalent at regional scales. Across 
invasion stages, Darwin’s Naturalization Hypothesis most 
likely applies to the species interactions that come into play 
at later invasion stages post-establishment (Fig. 1, stage e), 
while the Pre-Adaptation Hypothesis is more likely to per-
tain to the filtering processes that occur earlier in invasion 
(Fig. 1, stage a) (Ma et al. 2016). Darwin’s Naturalization 
Hypothesis and the Pre-Adaptation Hypothesis are both less 
focused on a general role for specific traits and more on the 
match between traits and the invaded environment.

More recently, Fridley and Sax (2014) proposed the 
Evolutionary Imbalance Hypothesis, predicting that spe-
cies from richer biotas with more stable environments 
and larger habitat sizes are more likely to be ecologically 
optimized with better solutions to ecological challenges. 
Essentially, these biogeographic regions have had a larger 
number of ‘evolutionary experiments.’ Because ecological 
conditions repeat across the world, better solutions in the 
native range are likely to lead to better solutions elsewhere 
too. In support of this hypothesis, phylogenetic diversity (a 
metric that should be indicative of competition and stability) 
in the native range predicts invasiveness (Fridley and Sax 
2014). While this hypothesis does not focus on particular 
traits underlying this success, it does point to a strong role 
for traits promoting competitive ability, like allelopathy and 
other mechanisms highlighted by Baker, and suggests that H
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the traits that have evolved in the native range determine 
success in the invaded range.

Evolutionary responses to human-modified environments 
also have the potential to promote invasion. The Anthropo-
genically Induced Adaptation to Invade hypothesis posits 
that prior adaptation to human-disturbed environments in 
the native range facilitates invasion into similarly disturbed 
environments across the globe because human-disturbed 
environments share many similarities regardless of location 
(Hufbauer et al. 2012). Adaptation to disturbed environments 
will also lead to increased abundance in areas frequented 
by humans, potentially contributing to increased dispersal. 
In this way, adaptation to disturbed environments increases 
the likelihood of transport and the probability of establish-
ment once transported (Fig. 1, stages a and b). While this 
hypothesis does not strongly focus on specific traits, instead 
generally focusing on adaptation to a particular environ-
ment, many traits highlighted by Baker are also thought 
to be adaptive in disturbed environments, including rapid 
growth rates, a propensity for selfing or vegetative reproduc-
tion, and high and continuous seed production. While chal-
lenging to definitively test, three types of evidence support 
the hypothesis. First, European taxa associated with human 
altered environments are much more likely to invade other 
continents than taxa found only in natural habitats, although 
it is less clear whether this advantage results from adaptation 
to those disturbed environments, from species sorting (i.e., 
only those species with traits facilitating success in disturbed 
environments were able to colonize human-altered environ-
ments in Europe), or from increased likelihood of transport 
given their abundance in human-visited habitats (Kalusova 
et al. 2017). Second, in animal systems, association with 
human-altered habitats appears to allow for expansion of the 
climatic niche in the invaded range, suggesting that adapta-
tion to human-disturbance may facilitate invasion and range 
expansion (Strubbe et al 2015). Finally, laboratory studies 
suggest that pre-adaptation to novel environments rivals the 
effects of propagule pressure on introduction success (Vah-
sen et al. 2018).

While the Anthropogenically Induced Adaptation to 
Invade hypothesis focuses more on adaptation to culti-
vated habitats, invasive species are also adapting to urban 
environments. This urban adaptation could lead to further 
trait-matching and colonization of geographically distant 
but environmentally similar habitats, particularly given the 
high abundance of invasives in cities and the high likelihood 
of human transport (Borden and Flory 2021). Interestingly, 
some traits favored by urban environmental conditions may 
further facilitate invasiveness in other areas (Borden and 
Flory 2021); for example, the reduced pollinator abundance 
in urban ecosystem is predicted to select for increased self-
ing and clonality (Johnson et al. 2015), two traits character-
izing Baker’s ‘ideal weed’. However, urban conditions also 

have the potential to select for traits that inhibit invasion. 
For example, increased fragmentation in city landscapes 
can select for reduced dispersal that is likely to reduce the 
spread of invasive species at larger spatial scales (Cheptou 
et al. 2008).

Rapid adaptation in the introduced range

Over the past three decades, increasing evidence suggests 
that many invaders rapidly adapt to the novel environments 
they encounter post-introduction (reviewed inBossdorf et al. 
2005; Colautti et al. 2009; Colautti and Lau 2015). Rapid 
adaptation post-introduction could be necessary for success-
ful establishment and persistence (i.e., evolutionary rescue, 
Gomuliewicz and Holt 1995) or might catalyze increased 
spread or impacts on native ecosystems (Eppinga et al. 
2011). Indeed, many of the traits posited to characterize 
invasive species, by Baker and others more recently, show 
evolutionary change post-invasion (Whitney and Gabler 
2008; Table 1).

Several examples of rapid adaptation come from stud-
ies of invasive species (reviewed in Bossdorf et al. 2005; 
Whitney and Gabler 2008). In part, this may be due to their 
suitability as evolutionary models (Sax et al. 2007); by defi-
nition invaders are colonizing new environments and likely 
encountering different selection agents than they expe-
rienced in the past. However, it could also reflect unique 
characteristics of invasive species that make them particu-
larly adept at rapid evolution. First, successful invaders 
are likely to escape constraints, at least in the short-term. 
When invasive species colonize new areas devoid of their 
enemies, they escape many of the strong selective agents 
that could constrain their evolutionary responses to other 
selective agents (Strauss 2014). Such constraints can limit 
adaptation (Wise and Rausher 2013) and appear to do so 
for invasions (Colautti and Lau 2015). For example, resist-
ance to generalist herbivores may be negatively genetically 
correlated with resistance to specialist herbivores (e.g., if a 
defense compound effective against generalists is an attract-
ant to specialists). In the native range, this strong trade-off 
may constrain evolutionary responses if the plant population 
is faced with both generalist and specialist herbivores. In 
the invaded range, because specialist herbivores are likely 
absent, the direction of selection is no longer perpendicular 
to the direction of the genetic correlation, so stronger and 
more rapid evolutionary responses are possible (Fig. 3). Sec-
ond, admixture or the mixing of genetically differentiated 
populations following repeated invasion can enhance genetic 
variation, increase heterozygosity, and can sometimes yield 
extreme phenotypes that may be more successful at invading 
novel habitats than parental populations (reviewed in Rius 
and Darling 2014; Colautti and Lau 2015). Finally, some 
invaders are notoriously plastic, and plasticity plays two 
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important roles in rapid adaptation: it can promote evolu-
tionary rescue by ‘buying time’ and promoting population 
persistence until evolutionary changes occur (reviewed in 
Diamond and Martin 2021), and it can potentially allow for 
genetic accommodation because plastic genotypes are likely 
to have the machinery underlying key adaptive traits that 
can then become canalized (reviewed in Levis and Pfennig 
2016). For example, plastic increases in clonality in wetter 
environments allowed for increased likelihood of persistence 
in introduced sunflowers colonizing riparian habitats. Selec-
tion favoring increased clonality in these habitats then led to 
the evolution of increased invasiveness (Bock et al. 2018). 
Together, these factors (escaping constraints, admixture, 
plasticity) make rapid evolution of invasive populations a 

common phenomenon and suggest that invaders may be par-
ticularly good at adapting to new conditions. In fact, despite 
their shorter evolutionary history, invaders can be similarly 
or more locally adapted to local environmental conditions 
than natives (Oduor et al. 2016), which is counter to Baker's 
prediction that natives would be more likely to show fine-
scale ecotypic differentiation while invasives may be more 
likely to rely on plasticity (Baker 1965).

Interestingly and unsurprisingly, given that particular 
traits are likely to be advantageous during some but not all 
invasion stages (Fig. 1), the traits favored by natural selec-
tion also are likely to differ across invasion stages. For exam-
ple, the North American forest understory invader Alliaria 
petiolota is likely successful because of its chemical warfare 
on the mycorrhizae that benefit competing natives. Over the 
course of the invasion, as native diversity declines and the 
competitive environment for Alliaria shifts from interspe-
cific to intraspecific competition, the benefits of this chemi-
cal production are reduced and Alliaria evolves to produce 
less of the chemical, reducing its impacts on native commu-
nities (Lankau et al. 2009). In this case, a novel weapon was 
useful during early colonization, but was selected against 
during later invasion stages.

How will the ‘ideal weed’ concept continue 
to evolve?

Over the past half century since Baker characterized the 
‘ideal weed’, invasion biologists have generated and refined 
hypotheses about the role of traits in determining invasion 
success. Key advances have resulted from the recognition 
that the traits promoting success may differ across invasion 
stages and ecological contexts and that traits are not static 
and can evolve during the invasion process. Going forward, 
we highlight four research areas that we think will yield 
significant advances. Questions arising from this discussion 
are presented in Table 2.

Invasion in a changing climate

It is often assumed that invasive species, given their 
proven ability to successfully colonize and persist in novel 

Fig. 3  In this hypothetical example, resistance to specialist herbivores 
and resistance to generalist herbivores are negatively correlated (here 
resistance is defined as susceptibility to herbivores and in empiri-
cal studies is commonly measured as the inverse of herbivore dam-
age, concentrations of chemical defenses, or level of morphological 
defenses). In the native range, there is strong selection for increased 
resistance to both types of herbivores (“native” arrow shows the 
direction of selection). This selection is perpendicular to the direc-
tion of genetic correlation. As a result, there is reduced genetic vari-
ation for selection to act upon and the evolutionary response will be 
slowed. In the introduced range, the invader has escaped specialist 
enemies leading to selection favoring reduced resistance to specialists 
and increased resistance to generalists. Here, the direction of selec-
tion parallels the direction of the genetic correlation (“introduced” 
arrow), and the evolutionary response will be greater and more rapid. 
Each point on the graph depicts the resistance values of an individual 
or genotype to specialist and generalist herbivores

Table 2  Ecological and 
evolutionary theory can 
continue to advance our 
understanding of what makes an 
‘ideal weed’

Our review has identified several emerging questions

1) How do the traits favored at various invasion stages correlate with the traits associated with climate 
change responses?

2) Are invasive species demonstrating greater range shifts with climate change than non-invasive species?
3) Does intraspecific trait variation promote colonization of different habitat types?
4) How do trait-environment interactions influence invader performance and demographic processes?
5) How do traits interact to influence invader fitness?
6) Does coevolution lead to invader assimilation and reduced invasive impacts over time?
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environments, will be less affected by climate change than 
non-invasive species. ‘Ideal weed’ characteristics like broad 
environmental tolerance, flexible phenology and germina-
tion cues, and high propagule pressure may enable invasive 
species to weather changes in abiotic factors (Hulme 2011) 
or take advantage of extreme climatic events (Turbelin and 
Catford 2021). For example, early phenology coupled with 
rapid growth may increase the average size of reproductive 
individuals and the proportion of individuals that survive to 
reproduce, yielding higher seed production and population 
growth rates (Keller and Shea 2021). A meta-analyses of 
simulated climate change experiments suggests that invasive 
plant species respond positively to elevated temperature, pre-
cipitation, N deposition, and  CO2 (Jia et al. 2016). However, 
another meta-analysis suggests that native and non-native 
terrestrial invaders (plants and animals) responded similarly 
to many of these same global changes (Sorte et al. 2013). 
In some regions, climate change may increase stress, and 
this may put resource-acquisitive invasive species at a dis-
advantage. For example, studies in California grassland and 
shrubland systems found that drought decreases individual 
and community level performance of annual invaders (Val-
liere et al. 2019).

Species responses to climate change are not just deter-
mined by their immediate short-term response to climate 
variables. Species may also succeed under future climates by 
migrating to more suitable habitats or by adapting. The traits 
favored at various stages of the invasion process (Fig. 1) 
directly affect these two longer-term responses. First, suc-
cessful invaders are often good dispersers. This heightened 
capacity for dispersal should increase their ability to migrate 
and keep pace with climate change. Second, a number of 
characteristics of invaders may speed up the pace of adapta-
tion, both to the novel environments faced during invasion 
but also to the novel environments faced post-establishment 
in response to climate change (see “Evolutionary consid-
erations” section). While many studies have considered the 
direct, immediate effects of simulated climate change on 
invasive vs. native species performance, the propensity for 
traits to promote migration and adaptation in invasive spe-
cies and what this means for longer term responses to cli-
mate change is less well-studied.

Considering intraspecific trait variation

Despite widespread recognition that traits are not static and 
can evolve, researchers often focus on species mean trait val-
ues while ignoring the substantial variation both within and 
between populations of a given species (Westerband et al. 
2021). This intraspecific trait variation can sometimes rival 
the effects of interspecific variation on ecological processes 
(des Roches et al. 2018) and is likely important to invasion 
success. First, intraspecific trait variation may contribute 

to the strong associations between propagule number and 
invasion success and may also help explain why multiple 
introductions often increase invasion success. Both higher 
propagule densities and multiple introductions (particularly 
from disparate populations) are likely to increase the num-
ber of genotypes introduced and, therefore, the likelihood 
of including a genotype well-matched to the introduced 
environment. For example, increased genetic diversity of 
Arabidopsis thaliana accessions increased colonization suc-
cess both through sampling effects (increased probability of 
including a particularly successful genotype) and comple-
mentarity effects (more efficient resource use) (Crawford 
and Whitney 2010). Second, intraspecific trait variation 
combined with multiple introductions could lead to rapid 
increases in range size in the invaded region. Observed 
clines in introduced populations can result from the repeated 
introduction of different populations rather than post-intro-
duction evolution (Colautti and Lau 2015). As a result, range 
expansions post-invasion may benefit from additional intro-
ductions rather than the slower process of evolution, lead-
ing to local adaptation. One might also expect intraspecific 
trait variation and the introduction of multiple populations to 
play a similar role in the colonization of disparate environ-
mental conditions. For example, invaders originating from 
high nutrient sites in the native range may be the colonizers 
of high nutrient environments in the invaded range, while 
invaders originating from low nutrient stressful conditions 
may promote the colonization of low nutrient habitats.

Interactions among traits and ecological filters

Where trait differences between invasive and non-invasive 
species exist, it is critical to demonstrate that these differ-
ences lead to enhanced fitness for the invader (Leffler et al. 
2014). Studies that examine how traits influence vital rates 
(survival, growth, reproduction) can be challenging to imple-
ment for a large number of species, but may be particularly 
insightful (e.g., Angert et al. 2009; Hallett et al. 2019). For 
example, sexual reproduction enhanced population growth 
rates of some invasive plant species relative to their non-
invasive relatives, although this did not apply to all invaders 
examined (Burns et al. 2013). The effect of trait-environment 
interactions on invader performance and demographic pro-
cesses is even less explored (e.g., Hulvey and Aigner 2014). 
Traits may align with some ecological filters but not others; 
for example, resource acquisitive traits such as high SLA 
and rapid growth may be advantageous in grazed systems 
but disadvantageous if mean annual precipitation declines 
(Funk 2021). Understanding trait-environment interactions 
has important implications for invasive species management 
and may complement existing tools like habitat suitability 
models, which currently do not include traits or account for 
trait evolution (Funk et al. 2020).
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Co‑evolution in the invaded range

Ultimately the match between the invader’s traits and the 
environment is what determines whether a species estab-
lishes and spreads (i.e., traits are context-dependent drivers 
of invasions). However, just as the abiotic environment is 
shifting because of climate change, the biotic component 
of the environment also is not static; native competitors are 
evolving and communities are changing (often in response to 
the invader itself). Thus, the traits most effective at promot-
ing invasion at one point in time may not prove to be as effi-
cacious at later times. This change in trait effectiveness may 
result from the evolution of the invader, the native, or both. 
In one of the examples described above, Alliaria petiolata’s 
novel weapon became less effective over time, both because 
the trait is not favored as the invader’s density increases and 
competition shifts from interspecific to intraspecific (Lankau 
et al. 2009) but also because many natives evolved increased 
tolerance to the allelopathic compounds (Lankau 2012). 
Whether these (co)-evolutionary dynamics commonly lead 
to assimilation of invaders into native communities remains 
to be seen. In the A. petiolata system described above, the 
evolutionary changes in both the invader and the natives 
appear to result in lower invader densities in long-invaded 
sites, but in other systems, laboratory mesocosm studies 
suggest that evolution can sometimes ameliorate but other 
times exacerbate the community-level impacts of biological 
invasions (Faillace and Morin 2017).

Conclusion

Over the past two centuries biologists have pondered the 
origins and successes of invasive species. Baker pointed 
explicitly to a suite of traits that may promote invasion. 
Notably, but perhaps not surprisingly, an extensive body of 
work now suggests that each of Baker’s traits is highly con-
text dependent, depending both on the environmental condi-
tions in the introduced range and the other traits possessed 
by the invader. More recent studies have refined Baker’s 
traits from quite general but difficult to measure concepts 
(e.g., competition through “special means”) to more specific 
physiological or morphological traits (e.g., SLA, nutrient-
use efficiency). Such refinements illustrate that there may be 
many pathways to invasion success and that even broad traits 
expected to promote invasion in many environments (e.g., 
fast growth rate) may result from different physiological 
mechanisms (e.g., resource acquisition vs. resource-use effi-
ciency). We also recognize that these traits are not static and 
invasion dynamics can change over time, both through the 
evolution of the invader and native competitors. By embrac-
ing Baker’s evolutionary ecology ethos and integrating what 
we know about invasive traits and their evolution, we will 

be better positioned to predict invasion both now and under 
future climate change.
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