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Abstract
Imaging spectroscopy has the potential to map closely related plant taxa at landscape scales. Although spectral investigations 
at the leaf and canopy levels have revealed relationships between phylogeny and reflectance, understanding how spectra 
differ across, and are inherited from, genotypes of a single species has received less attention. We used a common-garden 
population of four varieties of the keystone canopy tree, Metrosideros polymorpha, from Hawaii Island and four F1-hybrid 
genotypes derived from controlled crosses to determine if reflectance spectra discriminate sympatric, conspecific varieties 
of this species and their hybrids. With a single exception, pairwise comparisons of leaf reflectance patterns successfully 
distinguished varieties of M. polymorpha on Hawaii Island as well as populations of the same variety from different islands. 
Further, spectral variability within a single variety from Hawaii Island and the older island of Oahu was greater than that 
observed among the four varieties on Hawaii Island. F1 hybrids most frequently displayed leaf spectral patterns intermedi-
ate to those of their parent taxa. Spectral reflectance patterns distinguished each of two of the hybrid genotypes from one 
of their parent varieties, indicating that classifying hybrids may be possible, particularly if sample sizes are increased. This 
work quantifies a baseline in spectral variability for an endemic Hawaiian tree species and advances the use of imaging 
spectroscopy in biodiversity studies at the genetic level.
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Introduction

Genetic diversity of forests provides a foundation for resil-
ience to climate change, biological invasions, and other 
anthropogenic threats (Crutsinger et al. 2008; Schaberg et al. 

2008). High genetic diversity of overstory forest species has 
been linked to increased productivity and fitness (Aravano-
poulos and Zsuffa 1998; Arcade et al. 1996; Jelinski 1993; 
Knowles and Grant 1981; Mitton et al. 1981), a higher tol-
erance to pollutants (Bergmann and Hosius 1996; Müller-
Starck 1985; Oleksyn et al. 1994), and cascading trophic 
effects on arthropod (Johnson et al. 2006) and fungal (Tang 
et al. 2022) biodiversity. As genetic diversity is a basis for 
adaptation and enhanced resilience, it is vital to preserv-
ing forest ecosystems, yet anthropogenic disturbances have 
resulted in significant declines in forest genetic diversity, 
reducing the future resistance of affected species (Schaberg 
et al. 2008). While the 15th Sustainable Development Goal 
of the United Nation includes aims to stop biodiversity loss, 
including loss of genetic diversity (Le Blanc 2015), the 
resources with which to quantify and map genetic diversity 
are constrained because genetic analyses of forest species 
require extensive field and lab work (Walters and Scholes 
2017).

Remote sensing, in particular imaging spectroscopy, has 
emerged as a powerful tool for quantifying biodiversity at 
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large spatial scales to understand drivers of biodiversity and 
inform protection priorities (Asner et al. 2017; Féret and 
Asner 2011). Imaging spectroscopy generates high-spectral-
resolution data spanning the visible to shortwave-infrared 
(SWIR; 400–2500 nm) electromagnetic spectrum. Applied 
to vegetation, spectroscopy captures the molecular constitu-
ents of leaves, mediated by leaf structure. Leaf traits such as 
leaf mass per area (LMA), chlorophyll content, and second-
ary compounds, among others are an expression of adapta-
tion of a species to its environment (Ordoñez et al. 2009; 
Wright et al. 2004). While such quantitative traits often 
have a substantial allelic basis (Hallgren et al. 2003; Mar-
ron and Ceulemans 2006) that is predominantly polygenic 
(Bourgaud et al. 2001; Orians et al. 2000), heritability of 
leaf traits derived from spectroscopy has not been widely 
tested. Due to the capability of spectroscopy to capture these 
traits, spectral variation tracks genetic variation among and 
within forest stands (Blonder et al. 2020; Cavender-Bares 
et al. 2016; Deacon et al. 2017; Madritch et al. 2014; Martin 
et al. 2007). According to the spectral variability hypothesis, 
the variability of canopy reflectance spectra within an area 
is positively related to plant diversity (Palmer et al. 2000, 
2002). Consistent with this hypothesis, leaf-level spectros-
copy has revealed heritable spectral differences within and 
among species of Quercus (oak; Cavender-Bares et al. 2016) 
and Dryas (an Arctic shrub; Stasinski et al. 2021) as well 
as within populations of Populus tremuloides (aspen; Dea-
con et al. 2017) and Metrosideros polymorpha (ohia, Martin 
et al. 2007). Ploidy levels and genetic varieties of P. tremu-
loides have been successfully classified using canopy-level 
imaging spectroscopy (Blonder et al. 2020; Madritch et al. 
2014). Further, some studies have revealed patterns of leaf 
spectra consistent with phylogeographic variation within 
species (e.g., Quercus oleoides, Fagus sylvatica—European 
beach—and P, tremuloides; Cavender-Bares et al. 2016; 
Blonder et al. 2020; Czyż et al. 2020; Madritch et al. 2014) 
or among species (e.g., Neotropical trees; McManus et al. 
2016). To develop imaging spectroscopy as a tool for char-
acterizing genetic variation at the landscape level, we must 
first understand how spectra vary within continuous forest 
stands, including variation among conspecific varieties and 
their hybrids, especially at fine spatial and taxonomic scales. 
This gap in our understanding of how spectroscopy captures 
functional variation challenges conservation agendas that 
seek to include genetic diversity.

Metrosideros polymorpha Gaudich. (Myrtaceae) is an 
ideal model species for testing the capacity of spectros-
copy to characterize functional genetic variation of forest 
canopies at fine spatial and taxonomic scales. This domi-
nant tree species comprises a large number of vegetatively 
distinct varieties and races distributed nonrandomly within 
continuous forests that span environmental gradients and 
ecotones within the climatically variable Hawaiian Islands 

(Dawson and Stemmermann 1990; Stacy et al. 2020; Stacy 
and Sakishima 2019; Treseder and Vitousek 2001). The 
many forms of M. polymorpha, along with the four other 
species of Hawaiian Metrosideros, appear to derive from 
a single colonization of Hawaii by the genus ~ 2.6–3.9 mil-
lion years ago (Choi et al. 2021; Dupuis et al. 2019; Percy 
et al. 2008; Wright et al. 2000). Diversification within this 
group is largely the result of adaptive radiation associated 
with Hawaii’s diverse abiotic conditions (Ekar et al. 2019; 
Izuno et al. 2022; Morrison and Stacy 2014; Stacy et al. 
2014, 2020; Stacy and Sakishima 2019). On Hawaii Island, 
the youngest and largest island in the chain, Metrosideros 
occurs continuously (barring deforestation) from sea level to 
2470 m above sea level wherever mean precipitation exceeds 
50 cm annually (Stemmermann and Ihsle 1993). The Met-
rosideros community on Hawaii Island comprises just four 
varieties of M. polymorpha associated with different envi-
ronments: M. polymorpha var. incana (new lava flows at 
low-to-middle elevations and dry areas), M. polymorpha var. 
glaberrima (mature substrates at all but lowest and highest 
elevations), M. polymorpha var. polymorpha (all substrates 
at high elevations), and M. polymorpha var. newellii (ripar-
ian zones; Dawson and Stemmermann 1990). All taxon pairs 
can be crossed to make F1 hybrids (Corn 1979; Rhoades 
2012; Stacy et al. 2017), and hybridization between varieties 
occurs to varying degrees where ranges overlap (Corn and 
Hiesey 1973; Stacy et al. 2016). Thus, M. polymorpha on 
Hawaii Island presents the opportunity to examine the utility 
of spectroscopy to discern very closely related, co-occurring 
tree taxa and their hybrids and to examine the expression and 
differentiability of leaf traits in the hybrids.

Here, we use a common-garden population of the four 
varieties of M. polymorpha on Hawaii Island and their 
F1 hybrids derived from controlled crosses to address the 
following questions: Do leaf-level reflectance spectra dif-
ferentiate the four varieties of M. polymorpha on Hawaii 
Island? Are patterns of spectral inheritance in F1 hybrids 
distinct and intermediate to those of their parental varie-
ties, as expected for highly polygenic traits? Finally, for a 
single variety occurring on multiple islands, we ask: do the 
reflectance spectra differ between common-garden trees 
from Hawaii Island and Oahu? We include a discussion of 
the spectral data in light of evidence of differential adapta-
tion of the four varieties to contrasting environments and to 
islands of different ages.

Methods

Common garden population

The 54 reproductively mature trees used in this study were 
raised from seed at Panaewa Farm, College of Agriculture, 
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Forestry, and Natural Resources Management, University 
of Hawaii Hilo, located 75 m above sea level on east Hawaii 
Island. Seeds were derived from controlled crosses in natu-
ral populations on Hawaii Island and Oahu (Rhoades 2012; 
Stacy et al. 2017, unpub. data), supplemented by open-
pollinated seeds, and all trees were maintained at the farm 
for use in studies of life history traits and hybrid fertility 
(Stacy et al., unpub. data). The 8-to-14-year-old trees repre-
sented the four varieties of M. polymorpha on Hawaii Island 
(hereafter designated glaberrima, incana, newellii, and poly-
morpha; Fig. SI 1), four inter-varietal F1 hybrid genotypes 
from Hawaii Island, and a single variety (incana) from Oahu 
(Table 1). With two exceptions, all genotypes comprised 
trees derived from > 1 site, or trees for which parents were 
derived from > 1 site in the case of F1 hybrids; the excep-
tions were individuals of incana from Hawaii Island and 
Oahu that were derived from controlled field crosses at a 
single site on each island. All trees were maintained within 
a 72’ × 35’ coldframe until 2020 when some Hawaii Island-
derived trees were outplanted in a common garden adjacent 
to the coldframe. We assessed the effect of this outplant-
ing on leaf spectra by comparing greenhouse and common-
garden trees of incana-polymorpha F1 hybrids following the 
methods below and found no significant differences. Thus, 
we determined that outplanting had negligible effects on the 
spectra, and all samples were combined for analysis of spec-
tra among genotypes.

Leaf measurements

We measured leaf reflectance spectra on six trees from each 
of the nine genotypes (treating incana from Hawaii Island 
and Oahu as separate genotypes). A minimum of 11 leaves 
were collected from each plant, placed in zip lock bags, 
and stored on ice for transport to the laboratory for analysis 
within four hours. We selected leaves from sunlit portions 

of the plant with minimal discoloration (e.g. chlorosis) and 
sooty mold. Five representative leaves per tree were selected 
and wiped clean with water and patted dry prior to spectral 
measurements. Spectral measurements were collected using 
a leaf clip and field spectrometer at 1-nm intervals from 
350 to 2500 nm (Analytical Spectra Devices Inc., Boulder, 
CO, USA). Spectra were calibrated using a white reference 
and corrected using parabolic correction to optimize spec-
trometer measurements (Hueni and Bialek 2017). Parabolic 
correction was performed to correct for differences in tem-
perature sensitivity of sensors within the field spectrometer. 
A jump in the spectra often occurs around 1000 nm due to 
the silicon-based sensors for the visible to near infrared and 
can be corrected post hoc according to Hueni and Bialek 
(2017). Finally, the brightness normalization was applied to 
all spectral measurements, as it minimizes noise (Kruse et al. 
1993; Myneni et al. 1989). Reflectance values below 400 nm 
were removed, as wavelengths between 350 and 400 nm 
have a low signal-to-noise ratio. Leaf spectra were averaged 
by plant. Following spectral measurements of all leaves, leaf 
area was calculated using ImageJ from a leaf scan collected 
with an EPSON scanner at 600 dots per square inch. Once 
dried for 72 h at 65 degrees Celsius, leaves were weighed, 
and leaf mass per area (LMA) was quantified for each plant.

Analysis

To assess whether leaf spectra can differentiate the varieties 
of M. polymorpha and their hybrids, we used principal com-
ponent analysis (PCA) and analysis of variance (ANOVA). 
Using the pca function from the scikit learn python pack-
age (version 0.24.1; Virtanen et al. 2020), which uses a 
covariance matrix for the eigen decomposition, we reduced 
the 2100 dimensions of the reflectance data to the first 10 
principal components (PC). PCA was applied spearately 
to different genotype groupings detailed below. For each 

Table 1  M. polymorpha varieties and F1 hybrids used in this study

Varieties are not highlighted, while hybrids are highlighted. Island of origin is noted, though all individuals were grown in a greenhouse/com-
mon garden on Hawaii Island. Groupings used to assess separability with principal component analysis and analysis of variance are noted in 
columns three through eight with “X” denoting membership in each grouping. Six plants per variety/F1 hybrid were included in each grouping

Island Variety/F1 hybrid Hawaii island 
varieties

GI Hybrid IP Hybrid NP Hybrid GP Hybrid Inter-island

Hawaii Glaberrima X X X
Incana X X X X
Newellii X X
Polymorpha X X X X
Glaberrima-incana X
Incana-polymorpha X
Newellii-polymorpha X
Glaberrima-polymorpha X

Oahu Incana X
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of the first 10 PCs, we evaluated its ability to separate the 
genotypes using an ANOVA according to the methods in 
Cavender-Bares et al. (2016), followed by Tukey’s pairwise 
HSD tests. These methods were performed in python using 
the statsmodels package (version 0.12.2; Seabold and Perk-
told 2010) to compare genotypes separately for each of the 
following six groups: (1) Hawaii Island incana, glaberrima, 
newellii, and polymorpha; (2) glaberrima-incana, glaber-
rima, and Hawaii Island incana; (3) incana-polymorpha, 
Hawaii Island incana, and polymorpha; (4) newellii-poly-
morpha, newellii, and polymorpha; (5) glaberrima-polymor-
pha, glaberrima, and polymorpha; and (6) incana from Oahu 
and Hawaii Island (Table 1).

Although the PCA allowed us to determine if the spectra 
were differentiable, we used the spectral similarity index 
(SSI; Eq. 1; Somers et al. 2009, 2012, 2015) to quantify 
spectral overlap between varieties. The SSI calculates 
the spectral distance between populations i and j for each 
wavelength:

where R is the brightness-normalized reflectance for each 
group over n spectral bands. Rather than performing pair-
wise comparisons, population j was represented by pooled 
reflectance data from all varieties (including Oahu and 
Hawaii Island incana). In doing so, we estimated the degree 
to which each variety diverged spectrally from all varieties. 
SSI has been used to estimate species turnover (Somers et al. 
2015) and as a means of determining which wavelengths 
distinguish classes (Asner et al. 2018). Here, we plotted SSI 
across the entire spectrum to quantify the degree of sepa-
ration, with higher SSI values indicating a higher degree 
of spectral overlap, between spectra of the M. polymorpha 
varieties. Further, we calculated the mean SSI by taking an 
average of 1/SSI across all bands (Eq. 2).

To understand within-variety variation, we calculated the 
mean spectra and coefficient of variation (CV) for each vari-
ety across the spectra. The CV is a standardized measure of 
variation that allows for visual comparison among samples 
across the full spectrum. Here, we use the CV to visually 
assess regions of the spectrum that show the greatest varia-
tion within each genotype of M. polymorpha. Although this 
investigation is useful for visualizing diversity in terms of 
reflectance between varieties, band-by-band assessments of 
CV are limited because spectra are derived from broader 
features related to chemical interactions with light.
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Lastly, we examined variation among genotypes in leaf 
traits derived from the reflectance data. Leaf chemical traits 
were estimated from reflectance spectra using chemometric 
equations specific to M. polymorpha developed by Asner 
et al. (2018). These spectral−chemical relationships were 
determined using the partial least squares regression (PLSR) 
– prediction residual error sum of squares (PRESS) method 
that has been used to develop universal chemometric equa-
tions for broadleaf species (Asner et al. 2009, 2015; Asner 
and Martin 2008). As these methods approximate leaf traits, 
we use them as a means of comparing leaf traits between 
groups rather than interpreting their absolute value. We esti-
mated eight chemical traits (Table SI 1) using the equations 
specific to M. polymorpha, including the photosynthetic pig-
ments chlorophylls a and b, the structural molecules lignin 
and cellulose, and the secondary traits phenols and tannins. 
Chlorophylls a and b were summed and represented as chlo-
rophyll a + b. Further, nonstructural carbohydrates (NSC) 
like sugars and starch were estimated along with total nitro-
gen (N) and total carbon (C). Leaf mass per unit area (LMA) 
was calculated using leaf area and dry weights quantified 
from the collected leaves, described above. When discussing 
leaf trait data, we refer to the chemical leaf traits estimated 
from the reflectance data as well as the LMA calculated 
from leaves. Significance of differences in leaf traits between 
genotypes in the groupings described above was quantified 
using ANOVA and Tukey HSD tests. All analyses were done 
using python version 3.6.9.

In summary, we first used principal component analysis 
(PCA) to reduce this highly dimensional dataset into fewer 
components that captured a larger proportion of the vari-
ance. We then determined whether any of the components 
could separate the varieties as well as F1 hybrids from their 
parent varieties using ANOVA and Tukey HSD. To under-
stand differences in reflectance between and within the 
varieties, we used the spectral similarity index (SSI) and 
compared their coefficient of variation (CV) and leaf traits.

Results

Spectral divergence among varieties

PCAs of leaf spectra (Table 2) separated all varieties in 
pairwise comparison except glaberrima and incana. Two 
PCs (PC1 and PC5) derived from the reflectance spectra 
significantly differentiated the varieties (p = 0.003 for each; 
Table 2). In the pairwise comparison, incana and newel-
lii were separable in both PC1 and PC5. PC1 additionally 
separated glaberrima and polymorpha as well as newellii and 
polymorpha. Glaberrima and newellii as well as incana and 
polymorpha were differentiable in PC5. The only taxon pair 
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that was not separable in the first 10 PCs of the reflectance 
data was glaberrima and incana.

When visually comparing spectra of the four Hawaii Island 
varieties, the mean brightness-normalized spectra vary most 
in the visible (400–700 nm) and shortwave-infrared (SWIR; 
1500–2500 nm) wavelength regions (Fig. 1a). According to 
the spectral separability index (SSI), separation between the 
varieties occurred across the spectra (Fig. 1b), with poly-
morpha having the greatest mean SSI (29; Table 3). Both 
polymorpha and Hawaii Island incana were most distinct in 
the visible and parts of the infrared while glaberrima had the 
greatest separability in the SWIR and infrared (Fig. 1b). Gla-
berrima and incana were similar in their degree of spectral 
overlap with SSI values of 9 and 11, respectively (Table 3). 
Newellii, which had the highest separability after ~ 1800 nm, 
had the lowest mean SSI (7; Fig. 1b; Table 3).

Among Hawaii Island varieties, incana had the least 
within-variety variation among the spectra, while newel-
lii and polymorpha displayed the most variation according 
to the CV (Fig. 1c).Within-variety variation was greatest in 
the visible and SWIR regions of the spectrum (Fig. 1c). The 
CV of newellii peaked in the visible region, where newellii 
had not only the greatest within-variety variation but also the 
highest reflectance values. This result is also expressed in the 
estimated chemical data (Fig. 2), where newellii had a greater 
variability relative to the other varieties and lower values of 
chlorophyll a + b than polymorpha. While polymorpha like-
wise had a high CV in the visible, this variety had the low-
est reflectance in this region compared to the other varieties, 

and this corresponded to high chlorophyll a + b. In the SWIR 
region, which is influenced by many leaf traits, within-variety 
variation was greatest for polymorpha and newellii, followed 
by glaberrima. Newellii had higher total N than all other varie-
ties but lower LMA, total phenols, and lignin than some other 
varieties. Polymorpha had lower cellulose than newellii and 
higher LMA than glaberrima and newellii. Both polymorpha 
and glaberrima had a wide variation in NSC, and polymorpha 
had high variation in LMA. Incana had low variation in all 
the leaf traits except for tannins. Leaf traits were less useful 
than PCA for discriminating the varieties (Fig. 2). Cellulose, 
chlorophyll a + b, lignin, phenols, total N, and LMA separated 
newellii from all other varieties (Fig. 2). Beyond this, only 
polymorpha and glaberrima differed significantly in leaf traits 
(chlorophyll a + b and LMA; Fig. 2).

Spectral patterns in hybrids

The four F1 hybrid genotypes demonstrated different pat-
terns of leaf reflectance relative to their parental taxa. Spec-
tral PC1 scores separated glaberrima and incana as well as 
glaberrima and glaberrima-incana hybrids (Table 4). Mean 
spectra of glaberrima-incana F1s fell between the mean 
spectra of their parent varieties but were closer to glaberrima 
in the visible and closer to incana between approximately 
2000 and 2500 nm (Fig. 3a). Overall, the shape of the CV 
across the spectrum within glaberrima-incana F1s mirrored 
that of incana (Fig. SI 4a). None of the leaf traits differed 
between the glaberrima-incana F1s and either of their parent 

Table 2  Results showing the 
statistical separability of M. 
polymorpha varieties using 
spectra

Pairwise Tukey results of significant PC axes according to the ANOVA are displayed. ANOVA p-value is 
presented in column one. The genotypes being compared in the pairwise Tukey are listed in columns two 
and three. Following this, their mean difference, adjusted p-value (P-adj), and their lower and upper bounds 
are presented. The second to last column (Reject  H0) indicates whether the null hypothesis that the two 
genotypes do not differ along the listed PC is rejected. Variety pairs differentiable according to Tukey’s 
tests are highlighted. See Fig. SI 3 for data plotted in PC space and PC loadings across VSWIR spectra
Genotype pairs that differed significantly are bolded

ANOVA p-value Genotype 1 Genotype 2 Mean difference P-adj Lower Upper Reject  H0

Principal Component 1
p-value = 0.003 Glaberrima Incana  – 3.5 0.109  – 7.6 0.6 FALSE

Glaberrima Newellii 0.7 0.9  – 3.4 4.8 FALSE
Glaberrima Polymorpha  – 4.7 0.020  – 8.8 – 0.6 TRUE
Incana Newellii 4.2 0.044 0.1 8.3 TRUE
Incana Polymorpha  – 1.2 0.825  – 5.3 2.9 FALSE
Newellii Polymorpha  – 5.4 0.007  – 9.5 – 1.3 TRUE

Principal Component 5
p-value = 0.003 Glaberrima Incana  – 0.1 0.9  – 0.6 0.4 FALSE

Glaberrima Newellii 0.6 0.018 0.1 1.1 TRUE
Glaberrima Polymorpha 0.4 0.112  – 0.1 0.9 FALSE
Incana Newellii 0.7 0.006 0.2 1.1 TRUE
Incana Polymorpha 0.5 0.043 0.0 1.0 TRUE
Newellii Polymorpha  – 0.2 0.789  – 0.7 0.3 FALSE
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varieties (Fig. 4a). Variation in F1 leaf traits was often inter-
mediate to or less than that of the parent varieties, except for 
total C and LMA (Fig. 4a).

The incana-polymorpha F1 trees showed intermediate 
values for many of the leaf traits and within-genotype spec-
tral variation, though their mean spectra most often mirrored 
those of polymorpha (Fig. 3b). Consistent with this trend, 
PC3 scores (but not PC1 or PC2 scores) separated incana-
polymorpha F1s from incana but not polymorpha (Fig. 3b; 
Table 4). Similar to the glaberrima-incana F1s, spectral vari-
ation (CV) of incana-polymorpha most resembled that of 
incana in shape, but was often intermediate or closer to the 
other parent (here, polymorpha) in magnitude (Fig. SI 4b). 
Both incana-polymorpha F1s and polymorpha had higher 
chlorophyll a + b than incana (Fig. 4a). Many of the other 
leaf traits of the F1s displayed values intermediate to those 
of the parent values, though the variation of the hybrid data 
was often greater than that of either parent.

The mean spectral values of newellii-polymorpha F1s 
were intermediate in the visible, closely followed poly-
morpha in the infrared and beyond ~ 1700 nm, and were 
lower than either parent between 1500 and 1700  nm 
(Fig. 3c). Newellii and polymorpha was the only pair of 
genotypes in the newellii-polymorpha group that was sepa-
rable by any PC scores (Table 4). Leaf trait data indicated 
that many of the F1 traits were intermediate to those of the 
parent varieties, but within-F1 variation was lower than 
variation within either parent for lignin, NSC, and total C 
(Fig. 4b). In contrast, tannin levels varied more among F1 
trees than among trees of either parent. Four of the leaf 
traits separated newellii and polymorpha, while total N, 
lignin, and LMA separated newellii and newellii-polymor-
pha (Fig. 4b). Polymorpha and newellii-polymorpha F1s 
did not differ in any of the leaf traits.

Mean spectra of glaberrima-polymorpha F1s largely fell 
between those of the parent varieties, but more closely 
followed glaberrima in the visible and polymorpha in the 
SWIR (Fig. 3d). Only the parent varieties were differenti-
able using reflectance spectra (Table 4). Glaberrima-pol-
ymorpha F1s had lower total C relative to polymorpha, 
although within-group variation of total C was greater in 
the hybrid than either parent (Fig. 4b). LMA was the only 
leaf trait for which glaberrima-polymorpha F1s were inter-
mediate to the parents in both median value and within-
group variation. The glaberrima-polymorpha outlier val-
ues for tannins, lignin, and cellulose were taken from the 
same plant (Fig. 4b).

Fig. 1  a Mean brightness-normalized reflectance (represented as a 
percentage) and b coefficient of variation (CV) of reflectance values 
for the four M. polymorpha Hawaii Island varieties and Oahu incana. 
See Fig. SI 2 for reflectance prior to brightness-normalization. c 
Spectral separability of all Hawaii Island and Oahu genotypes. Spec-
tral separability was calculated for each wavelength (Eq.  1). Higher 
values indicate less spectral overlap. See Table 3 for average SSI val-
ues

Table 3  Within-variety spectral 
similarity of samples on Hawaii 
Island and Oahu

Results of mean spectral simi-
larity index (SSI) calculated 
according to Eq.  2. For each 
spectral channel, the summed 
standard deviation was divided 
by the difference between 
means. These results were 
summed across the VSWIR 
spectra and divided by the 
total number of channels. SSI 
denotes spectral similarity of 
the mean spectra and spectral 
variance between the indi-
cated variety and all varieties 
on Hawaii Island (and Oahu). 
Lower values indicate less spec-
tral overlap

Island Variety SSI

Hawaii Glaberrima 9
Incana 11
Newellii 7
Polymorpha 29

Oahu Incana 4
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Comparing populations across islands

Trees of incana from Oahu and Hawaii Island were com-
pared with assess inter-island divergence of leaf spectra 
(Fig. 1). Across the full spectrum, except in the infrared 
(~ 750–1700 nm), mean spectral reflectance of incana was 
greater for trees from Oahu than those from Hawaii Island 
(Fig. 1a). The CV was similarly greater for Oahu trees across 
the spectra, and the shapes of the CV were similar only in the 
visible (Fig. 1c). PC1 scores significantly differentiated leaf 
spectra of incana from the different islands (p value < 0.05), 
and Oahu incana, with an SSI of 4, had the lowest SSI of all 
the varieties by nearly a factor of four (Fig. 1b; Table 3). Six 
of the leaf chemical traits differed between islands (Fig. 2). 
Oahu incana had higher cellulose and total N concentrations, 
but lower lignin, phenols, LMA, and tannins. Qualitative com-
parisons suggested that within-group trait variation was greater 
for Oahu incana in cellulose, lignin, NSC, and tannins.

Discussion

We measured the leaf spectra of several genotypes of a 
landscape-dominant tree species and demonstrated sepa-
ration of ecologically diverged varieties across the geo-
graphic scale of east Hawaii Island. Leaf reflectance data 
successfully distinguished all but one pair of varieties of 
M. polymorpha on Hawaii Island as well as populations 
of the same variety from different islands. Spectral reflec-
tance measures from four classes of F1 hybrids led to less 
successful discrimination of intraspecific hybrids from 
their parental varieties, as expected. However, the results 
suggest that reflectance spectra should be useful for the 
detection of M. polymorpha hybrid zones using airborne 
imaging spectroscopy and that with increased sample size, 
discrimination of individual F1 hybrids from parental taxa 
may be possible.

Fig. 2  Boxplots of leaf traits 
for the Hawaii Island varieties 
glaberrima (G), polymorpha 
(P), newellii (N), and incana (I) 
as well as Oahu incana (OI). 
Hawaii Island varieties with 
traits that differed at a signifi-
cance of p < 0.05 as determined 
by ANOVA and Tukey HSD 
are noted with an asterisk. 
Incana from Hawaii Island 
and Oahu were also compared 
using ANOVA, and significant 
differences are likewise noted 
with an asterisk. Boxplots 
denote quartile ranges, with 
the lower and upper bounds of 
the box indicating the 25th and 
75th percentile. Middle lines in 
the box represent the median 
of the data, and the whiskers 
end at the group minimum and 
maximum. Outliers are shown 
as points
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Table 4  Results showing the statistical separation of M. polymorpha F1 hybrids and their parent varieties

Each grouping had only one significant principal component (PC) according to ANOVA. The results of the Tukey’s pairwise test for these PCs 
are shown. For each genotype pairing (columns two and three), their mean difference, adjusted p-value (P-adj), and lower and upper bounds are 
presented. The final column indicates whether the null hypothesis that the genotype pairings do not differ is rejected. See Fig. SI 5 for samples 
plotted in PC space
Genotype pairs that differed significantly are bolded

ANOVA p-value Genotype 1 Genotype 2 Mean difference P-adj Lower Upper Reject  H0

Glaberrima-incana
Principal Component 1
p-value = 0.001 Glaberrima Glaberrima-incana  – 2.9 0.047  – 5.9 0.0 TRUE

Glaberrima Incana  – 5.2 0.001  – 8.1  – 2.3 TRUE
Incana Glaberrima-incana  – 2.2 0.150  – 5.1 0.7 FALSE

Incana-polymorpha
Principal Component 3
p-value = 0.03 Incana Incana-polymorpha 1.4 0.0363 0.1 2.7 TRUE

Incana Polymorpha 1.2 0.0791  – 0.1 2.5 FALSE
Polymorpha Incana-polymorpha  – 0.2 0.9  – 1.5 1.1 FALSE

Newellii-polymorpha
Principal Component 1
p-value = 0.03 Newellii Newellii-polymorpha  – 3.1 0.2101  – 7.7 1.4 FALSE

Newellii Polymorpha  – 5.4 0.0202  – 10.0 – 0.8 TRUE
Polymorpha Newellii-polymorpha  – 2.3 0.4263  – 6.9 2.3 FALSE

Glaberrima-polymorpha
Principal Component 1
p-value = 0.01 Glaberrima Glaberrima-polymorpha 3.1 0.102  – 0.5 6.8 FALSE

Glaberrima Polymorpha 4.9 0.01 1.2 8.5 TRUE
Polymorpha Glaberrima-polymorpha 1.7 0.452  – 1.9 5.4 FALSE

Fig. 3  Mean brightness-normalized reflectance (represented as a per-
centage) of a the F1 hybrids glaberrima-incana (GI) and its parents, 
glaberrima (G) and incana (I); b the hybrid incana-polymorpha (IP) 
and its parents, incana (I) and polymorpha (P); the hybrid newellii-

polymorpha (NP) and its parents, newellii (N) and polymorpha (P); 
d the hybrid glaberrima-polymorpha (GP) and its parents, glaberrima 
(G) and polymorpha (P). See supplementary information Figure SI 4 
for CV of F1 hybrids
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Spectral divergence among varieties

Biodiversity estimates based on imaging spectroscopy, in 
accordance with the spectral variability hypothesis, have 
been made across many landscapes (Féret and Asner 2011; 
Schäfer et al. 2016), but few studies have investigated 
how spectral variability captures intraspecific variation at 
finer scales (Cavender-Bares et al. 2016; Czyż et al. 2023; 
McManus et al. 2016). The current study demonstrates 
the potential of reflectance spectra to capture the genetic 
variation within a single hyperdominant tree species. Cav-
ender-Bares et al. (2016) similarly demonstrated separa-
bility of common-garden Quercus oleoides from popula-
tions across Central America where gene flow was limited 
due to the geographic separation of populations. Here we 
demonstrate spectral differentiation at scales much smaller 
than several hundred kilometers as monodominant stands 
of different M. polymorpha variants can exist directly 
adjacent to one another – a promising first step toward 
landscape-scale mapping of this species. Further, the leaf 
reflectance and derived trait data may reflect the differen-
tial adaptation of the four varieties of M. polymorpha to 
contrasting environmental niches in accordance with the 
spectral variability hypothesis (Palmer et al. 2000, 2002), 
as is discussed below.

The spectral signatures of the four varieties of M. poly-
morpha on Hawaii Island were separable in pairwise com-
parisons, except for those of the two successional varieties, 
incana and glaberrima. Despite their distinct leaf pheno-
types, pubescent incana and glabrous glaberrima are the 
most weakly genetically differentiated pair of varieties on 
Hawaii Island (DeBoer and Stacy 2013; Stacy et al. 2014) 
and Oahu (Stacy et al. 2020). Weak differentiation is consist-
ent with their likely multi-million-year history of alternat-
ing periods of isolation by selection on new (incana) and 
old (glaberrima) lava flows and periods of hybridization on 
intermediate-aged flows (Corn and Hiesey 1973; Drake and 
Mueller-Dombois 1993; Kitayama et al. 1997; Stacy et al. 
2017; Stacy and Sakishima 2019). Glaberrima and incana 
were not differentiable when all four varieties were included 
in the analysis; however, they were separable in the analy-
sis comprising just these varieties and their hybrids. This 
result suggests that classifying glaberrima and incana using 
airborne imaging spectroscopy will be possible, but it may 
require the training of a secondary classification model on 
these varieties alone. In addition to their lack of separabil-
ity via reflectance data, these varieties had a similar degree 
of spectral overlap (SSI) with the other varieties. Notably, 
incana had the lowest CV of reflectance of any variety. This 
low variation may be due to lower genetic variation among 

Fig. 4  Boxplots of nine leaf traits for all F1 hybrids measured and 
their parents. The left figure a represents glaberrima (G), the F1 
hybrid glaberrima-incana (GI), incana (I), the hybrid incana-poly-
morpha (IP), and polymorpha (P). The right figure b displays new-
ellii (N), the hybrid newellii-polymorpha (NP), polymorpha (P), the 
hybrid glaberrima-polymorpha (GP), and glaberrima (G). Genotypes 

with traits that differed at a significance of p < 0.05 as determined 
by ANOVA and Tukey HSD are noted with an asterisk. Only groups 
of the F1 hybrid and their parents (Table  1) were compared using 
ANOVA and Tukey HSD. None of the traits differed significantly 
among GI, I, and G according to ANOVA
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sampled incana due to purifying selection (Cvijović et al. 
2018) in the harsh abiotic environments of new lava flows 
or due to the narrow sampling of incana for this study (i.e., 
from a single population) relative to the other varieties.

The spectral signatures and leaf traits recorded for 
polymorpha were consistent with values expected for 
high-elevation plants. Polymorpha dominates forests 
above ~ 1400 m and exhibits many traits associated with 
high-elevation plants, such as slow growth, compact form, 
and highly pubescent leaves (Dawson and Stemmermann 
1990; Homeier et al. 2010; King et al. 2013; Yang et al. 
2008). The high LMA observed in polymorpha compared to 
the other varieties is consistent with expectations, as thicker 
leaves are often associated with high-elevation plants (Read 
et al. 2014). Lignin is associated with tensile strength (Tru-
piano et al. 2012; Zhang et al. 2014), and high lignin in 
polymorpha may be an adaptation to the mechanical stress 
of wind at high elevations (Zaborowska et al. 2023). High 
LMA and chlorophyll a + b in polymorpha are consistent 
with the relatively higher total chlorophyll and lower leaf 
surface area observed in common-garden trees of M. poly-
morpha derived from high-elevation, open-pollinated seeds 
(Martin et al. 2007). High chlorophyll a + b in polymorpha 
may be related to leaf pubescence, as pubescent polymorpha 
leaves self-shade to reduce damage to photosystems (Martin 
et al. 2007). Low peak reflectance in the visible spectrum 
is supported by the high chlorophyll content and suggests 
that polymorpha captures more light than the other varieties 
(Martin et al. 2007).

The CV of the reflectance spectra was high for polymor-
pha, which was unexpected given the lower genetic variation 
of polymorpha relative to other varieties of M. polymorpha 
on Hawaii Island (Stacy et al. 2014). Moreover, despite its 
high genetic differentiation relative to incana and glaber-
rima (DeBoer and Stacy 2013), polymorpha had the greatest 
spectral overlap with these taxa. Although lower trait vari-
ability at high elevations has been observed using imaging 
spectroscopy data in Peru (Asner et al. 2016) and Hawaii 
(Seeley et al. 2023), polymorpha had high variability in its 
reflectance spectra. This appears to be due primarily to high 
variation in NSC and LMA, which may be a result of grow-
ing plants adapted to high elevations in low elevations or to 
sampling from young potted plants as opposed to full-grown 
trees. Comparisons of high- versus low-elevation M. poly-
morpha in situ revealed lower CV of canopy reflectance and 
trait variability at high elevations (Martin and Asner 2009; 
Seeley et al. 2023), supporting the conclusion that the green-
house growing conditions affected polymorpha.

Reflectance spectra for newellii were generally consist-
ent with isolation of small populations in separate ripar-
ian environments. Newellii is restricted to small, linear 
populations along riparian corridors on east Hawaii Island 
(Dawson and Stemmermann 1990; Ekar et al. 2019). The 

relatively strong genetic isolation of newellii from the other 
varieties (mean pairwise  FST between newellii populations 
and populations of all other varieties = 0.13; max = 0.25; 
pairwise  FST between glaberrima and polymorpha = [0.040, 
0.137], incana and glaberrima = [0.029, 0.117], and incana 
and polymorpha = [0.051, 0.079] on young and old sub-
strates, respectively; (Stacy et al. 2014) likely explains the 
low degree of spectral overlap observed in the SSI. Newellii 
populations are significantly diverged from each other due to 
genetic drift (Stacy et al. 2014), and individuals included in 
this study originated from different populations. Structural 
flexibility reduces drag in water and is a common adapta-
tion in plants contending with flowing water (Dittrich et al. 
2012). As lignin adds rigidity to foliage (dos Santos Abreu 
et al. 1999), the low lignin observed in leaves of newellii 
is consistent with adaptation of this variety to high river 
discharge events (Ekar et al. 2019) as well as the lignifica-
tion suppression observed in the roots of flood-stressed soy-
beans (Komatsu et al. 2010). The relatively high total N in 
newellii leaves may indicate that newellii has higher protein 
concentration than the other varieties. While some riparian 
plants use specialized proteins to withstand flooding events 
(Xue et al. 2020), this has yet to be investigated in newellii. 
Further, reflectance of visible light was greatest for newellii, 
which may be a means of photoprotection. Newelli leaves, 
like those of glaberrima which had the second highest reflec-
tance in the visible, are typically glabrous and therefore do 
not self-shade via pubescence.

Spectral patterns in hybrids

Patterns of spectra and leaf traits varied across the four F1 
genotypes. The glaberrima-incana, incana-polymorpha, and 
newellii-polymorpha F1s largely showed levels intermediate 
to those of the parent varieties, whereas the glaberrima-pol-
ymorpha F1s did not. Leaf traits of glaberrima-polymorpha 
often ranged higher or lower than those for either parent, 
although few of the differences were significant. Interest-
ingly, these same patterns match those observed in the 
phenotypes of 2-year-old seedlings of these same four F1 
genotypes, which were intermediate for all F1s except gla-
berrima-polymorpha (Stacy et al. 2016, unpub. data).

Phylogenetic signal in reflectance spectra has been dem-
onstrated in multiple genera (Blonder et al. 2020; Cavender-
Bares et al. 2016; Czyż et al. 2020; Madritch et al. 2014; 
McManus et al. 2016; Meireles et al. 2020). Here, we show 
inheritance patterns of reflectance spectra in intraspecific 
F1 hybrids of M. polymorpha. Through this study, we hope 
to understand the applicability of imaging spectroscopy in 
classifying hybrids in landscape-wide mapping efforts. Of 
the four F1 genotypes included in this study, only glaber-
rima-incana and incana-polymorpha were separable from 
one of the parent varieties using leaf spectra. In the case of 



25Oecologia (2023) 202:15–28 

1 3

glaberrima-incana, spectra could distinguish the hybrid from 
glaberrima, whereas individual leaf traits could not. For this 
hybrid and its parents, leaf traits were not distinct enough 
to discriminate the genotypes. For the other F1 genotypes, 
at least one of the leaf traits differed significantly between 
the hybrid and one parent variety. These results indicate that 
classifying hybrids using airborne imaging spectroscopy 
may be possible with an increased sample size but will likely 
require both PCA and leaf trait estimations from spectral 
data to capitalize on all the information present in the data.

Comparing populations across islands

We assessed whether spectra of M. polymorpha var. incana 
from islands of differing ages are differentiable and consist-
ent with their contrasting environments. As found in other 
studies of conspecific populations sampled across a broad 
spatial scale (Cavender-Bares et al. 2016; Madritch et al. 
2014), we found that the populations of incana from Hawaii 
Island and Oahu had distinct spectral signatures. Further, the 
SSI indicated that Oahu incana were more distinct spectrally 
than any of the Hawaii varieties. These results are consistent 
with a higher genetic similarity of populations within islands 
than among islands (Choi et al. 2021; Percy et al. 2008; 
Stacy and Sakishima 2019). Although the spectra of Oahu 
and Hawaii Island incana are separable, they share a char-
acteristic shape in the CV between 500 and 750 nm. This 
shape was also present in all incana hybrids and includes a 
rounded peak around the red wavelengths as well as a sharp 
peak at the red edge. As the red edge defines the inflection 
point between red and infrared and has been linked to chlo-
rophyll content, mesophyll structure, and leaf water content 
(Collins 1978; Horler et al. 1983), it is likely that variability 
patterns for one or all of these traits are present in incana and 
inherited by incana hybrids. Within-variety variation of leaf 
spectra was greater for Oahu incana, which may be due to 
the weaker purifying selection there relative to that on new 
lava flows on volcanically active Hawaii Island, the relatively 
narrow sampling of Hawaii Island incana in this study, or 
simply the older age of Oahu. Oahu, being approximately 3 
million years older than Hawaii Island, has more available 
nitrogen in its soils (Vitousek et al. 1997), which results in 
greater trait variability (Asner et al. 2016; Ordoñez et al. 
2009) and therefore spectral variability (Seeley et al. 2023).

Conclusion

Using the highly variable, landscape-dominant tree species, 
M. polymorpha, grown in a common garden on Hawaii 
Island, we used leaf reflectance spectra and derived leaf 
traits to distinguish four ecologically diverged varieties and 
their hybrids with varying degrees of success. Further, we 

discussed the possible associations between the reflectance 
spectra and leaf trait data with local adaptation of the four 
varieties to their respective environments. The intersection 
of genetic analyses and geographical information systems 
(GIS) has been important in informing biogeographical 
research and conservation decisions that seek to protect 
genetic diversity (Koskela et al. 2013; Zonneveld et al. 
2012); however, spatial genetic data of forests are limited. 
This study demonstrates that reflectance spectra can discrim-
inate genotypes of M. polymorpha, suggesting that while the 
varieties and hybrids can be spatially mapped using airborne 
imaging spectroscopy, further investigations are necessary 
to determine if the resolution from canopy-level data will be 
stronger or weaker relative to leaf-level data (Jacquemoud 
et al. 2009; Jacquemoud and Baret 1990). As we plan for the 
use of imaging spectroscopy in biodiversity studies, the M. 
polymorpha model system will help us incorporate genetic 
variation rather than land-cover or morpho-taxonomic varia-
tion and pattern into conservation science and management.
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