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Abstract
Species distribution models are the most widely used tool to predict species distributions for species conservation and assess-
ment of climate change impact. However, they usually do not consider intraspecific ecological variation exhibited by many 
species. Overlooking the potential differentiation among groups of populations may lead to misplacing any conservation 
actions. This issue may be particularly relevant in species in which few populations with potential local adaptation occur, 
as in species with disjunct populations. Here, we used ecological niche modeling to analyze how the projections of current 
and future climatically suitable areas of 12 plant species can be affected using the whole taxa occurrences compared to 
occurrences from geographically disjunct populations. Niche analyses suggest that usually the disjunct group of populations 
selects the climatic conditions as similar as possible to the other according to climate availability. Integrating intraspecific 
variability only slightly increases models’ ability to predict species occurrences. However, it results in different predictions 
of the magnitude of range change. In some species, integrating or not integrating intraspecific variability may lead to oppo-
site trend in projected range change. Our results suggest that integrating intraspecific variability does not strongly improve 
overall models’ accuracy, but it can result in considerably different conclusions about future range change. Consequently, 
accounting for intraspecific differentiation may enable the detection of potential local adaptations to new climate and so to 
design targeted conservation strategies.
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Introduction

Species distribution models (SDMs) are the most widely 
used tool to predict species distributions for various aims, 
including species conservation and assessment of climate 
change impact (Guisan and Zimmerman 2000). Most stud-
ies conducted using SDMs assume that all populations of 
the species would respond to the environment in the same 
way (Mota-Vargasa and Rojas-Soto 2016; Qiao et al. 2017). 
Actually, many species exhibit intraspecific ecological vari-
ation and to not consider this ecological differentiation may 

bias predictions obtained with models (D’Amen et al. 2013; 
Valladares et al. 2014). Consequently, SDMs at the species 
level may overlook any difference in relationship between 
groups of populations and climate and they may result in 
lower model sensitivity (i.e., lower ability to predict pres-
ences), affecting projections of future habitat suitability 
(Osborne and Suárez-Seoane 2002; Lecocq et al. 2019). 
Therefore, SDMs at the species level may lead to misplaced 
conservation plans (Hällfors et al. 2016). This issue may 
be particularly relevant in species in which few populations 
with potential local adaptation occur (Lecocq et al. 2019; 
Pearman et al. 2010). To increase the SDMs’ performance 
(Gonzalez et al. 2011) and to provide a more robust basis for 
conservation plans, it is recommended to divide species into 
subunits with biological significance (Smith et al. 2019).

Defining subunits within a species is a major difficulty 
in integrating intraspecific niche divergences in SDMs. Ide-
ally, subunits should be defined on the basis of the relation-
ships between regional climate and populations of species 
(Pearman et al. 2010, Oney et al. 2013, Romero et al. 2014, 
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Valladares et al. 2014). However, this information is almost 
never available for most species. Consequently, different 
approaches have been performed to define a priori species 
subunits, such as: (i) occurrences were spatially portioned 
into geographic quadrants (Osborne and Suárez-Seoane 
2002); (ii) subunits were based on distinct genetic lineages 
or recognized subspecies (Hernandez et al. 2006; Gonza-
lez et al. 2011; Oney et al. 2013); or, (iii) they were based 
on biological differentiation (Lecocq et al. 2019; Marcer 
et al. 2016). However, few studies have considered disjunct 
populations as an effective way to integrate intraspecific dif-
ferentiation into SDMs (but see Hällfors et al. 2016; Chen 
et al. 2020), although disjunct populations may be frequently 
locally adapted because of the divergent selection (Fang 
et al. 2013; Mimura and Aitken 2010; Veatch-Blohm et al. 
2017).

Geographical disjunction occurs when individuals from 
a group of populations cannot interact or can interact very 
rarely with individuals from other groups because of the dis-
tance or physical barriers that prevent interaction (Wells and 
Richmond 1995). Geographical disjunction by distance may 
be due to historical (such as past climate change or human 
intervention) or ecological (such as substrate specificity and 
long-distance dispersal) factors. Past climate fluctuations 
may have fragmented previously continuous distributional 
range causing the extinction of intervening populations and 
enabling survival only in refugia and/or isolated areas with 
relictual suitable habitat (Comes and Kadereit 1998; Kropf 
et al. 2003; Schönswetter et al. 2003). In addition, stochastic 
long-distance dispersal may have enabled some individu-
als to reach suitable habitat far from the main distributional 
range of the species (Kropf et al. 2006; Sanz et al. 2014). 
Regardless of the causes of disjunction, the low number of 
immigrants and a possible unequal distribution of the spe-
cies genetic diversity (Despres et al. 2002) between the dis-
junct groups result in genetic and demographic disjunctions. 
Moreover, the geographically distant populations may occur 
in different biotic contexts (Lozano-Jaramillo et al. 2014; 
Quiroga et al. 2021), being part of regionally distinct species 
pools (Gallien et al. 2010; Pellissier et al. 2010) or being 
exposed to different human pressure (Gehrig-Fasel et al. 
2007). These factors might potentially lead to distinct com-
petition regimes, which result in occupying different subset 
of the inhabitable conditions of the species. The interaction 
between the different genotypes with the local environments 
may result in the emergence of ecotypes through adaptations 
to local conditions (Billings 1973; Leinonen et al. 2009; 
Keir et al. 2011). These ecotypes are maintained because 
of the absence or the low level of gene flow (Kawecki and 
Ebert 2004; Tigano and Friesen 2016). Locally adapted 
genotypes are expected to have a higher relative fitness in 
their local habitat than genotypes from other habitats. Some 
locally adapted populations may become maladapted to new 

climates because of global warming, while others may be 
well adapted assuring species survival (Aitken and Whitlock 
2013).

In this study, we analyzed how the projections of current 
and future climatically suitable areas can be affected using 
SDMs based on the whole species occurrences compared to 
occurrences’ groups based on separate distribution ranges. 
We used twelve species with geographically disjunct popu-
lations distributed in the Southern European mountains, 
between the Pyrenees and the South-west Alps. In particu-
lar, we were asking the following questions: (1) Do disjunct 
populations experience different climatic conditions? (2) Do 
SDMs projections based on geographically disjunct popula-
tions differ from projections based on the whole species?

Materials and methods

Studied species, occurrence data and climatic layers

We selected 12 plant species characterized by a group of 
populations that is clearly geographically disjunct from 
the main range of the species. The distance between main 
group and disjunct populations ranges from 30 to 500 km 
(Table 1). Six species have a group of populations in the 
Alps and the other one in the Pyrenees (having the longest 
distance between the two groups), one species has a group of 
populations in the Alps and the other one in Corse. In these 
seven species, the large geographical distance between popu-
lations suggests a very reduced gene flow between groups. 
Differently, three species have groups of disjunct popula-
tions within Alps and two species between Alps and Apen-
nines. In these cases, the distance between groups is shorter 
and a certain degree of gene flow might still occur. The two 
disjunct groups of populations were named “core popula-
tions” (the larger group) and “disjunct populations” (the 
smaller group) on the basis of the number of occurrences, 
without any inference about the genetic or biogeographic 
relationships between them. To the best of our knowledge, 
information about possible local adaptations is currently 
available for none of these studied species.

Occurrence data were obtained from both global and 
regional databases: Système d’Information et de Locali-
sation des Espèces Natives et Envahissantes (SILENE—
www.​silene.​eu); Sistema de información sobre las plantas 
de España (Anthos—www.​anthos.​es); Conservatoire Bota-
nique de Corse (CBNC—http://​cbnc.​oec.​fr); Osservatorio 
Ligure Biodiversità (Li.Bi.Oss.—ARPAL, Regione Ligu-
ria, Italy); and Wikiplantbase #Toscana (http://​bot.​biolo​
gia.​unipi.​it/​wpb/​tosca​na/​index.​html). For each species, 
occurrences were spatially filtered retaining randomly only 
one occurrence per grid cell of about 1 × 1 km. A final data 
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set of 4373 occurrences, ranging from 65 to 629 occur-
rences per species (Table 1), was used in the analyses.

From the WorldClim data set v.1.4 website (http://​www.​
world​clim.​org), we downloaded 19 bioclimatic variables 
representative of historic (1960–1990) climatic conditions 
at 1 × 1 km spatial resolution (Hijmans et al. 2005). Fur-
thermore, we downloaded bioclimatic variables for two 
Representative Concentration Pathways (RCPs), represent-
ing moderate and extreme possible future emission trajec-
tories and coded according to a possible range of radiative 
forcing values in the year 2100 relative to preindustrial 
values (+2.6 and +8.5 W/m2, respectively; IPCC 2014). 
We used RCPs projections from four general circulation 
models (GCMs), which represent physical processes in the 
atmosphere, ocean, cryosphere, and land surface: IPSL-
CM5A-LR, provided by Institut Pierre-Simon Laplace; 
MPI-ESM-LR, provided by Max Planck Institute for 
Meteorology; HadGEM2-ES, provided by Met Office Uni-
fied Model; and CCMS4, provided by Community Earth 
System Model. Following the approach of Hamann et al. 
(2015) and Maiorano et al. (2012), we used the first two 
axes of a principal component analysis (PCA) as envi-
ronmental variables for species distribution modeling, 
harmonized on both current and future climates to reduce 
the transferability issue (Petitpierre et al. 2017). First, we 
pooled together all the bioclimatic variables for both cur-
rent and each future scenario (i.e., all the combination of 
RCPs and GCMs); then, we selected the first two axes of 
the PCA and re-separated the scenarios. The PCA (see 
results in Online Resource Table S1) was carried out in R 
(R Core Team 2019) using the packages ‘ade4’ (Dray and 
Dufour 2007).

Niche analysis in environmental space

To test any differentiation in ecological niche in the 
environmental space between core and disjunct popula-
tions, we performed niche analysis in a multivariate space 
defined by the climatic conditions in which they occur, fol-
lowing the approach of Broennimann et al. (2012). First, 
for each couple of populations, we calculated the niche 
overlap using Schoener’s D index (Schoener 1970), which 
ranges from 0 (no overlap) to 1 (full overlap). This met-
ric is based on the density of species occurrences along 
the environmental axes of a multivariate analysis (Broen-
nimann et al. 2012) and it is considered one of the best 
niche overlap metrics (Rödder and Engler 2011). Finally, 
we used the similarity test to assess whether the observed 
overlap between the niches of the two groups is signifi-
cantly higher or lower than expected at random from the 
backgrounds where the species occur (Warren et al. 2008; 
Broennimann et al. 2012). In short, the observed niche 
overlap between the two groups was compared with the 
overlap measured between the niche of one group and the 
niche obtained by randomly sampling occurrence points in 
the background area of the other group. This randomiza-
tion was repeated 100 times. Significant results indicate 
that the ecological niches of species are either more or less 
similar than expected by chance. The similarity test indi-
cates whether the observed niche differentiation is because 
of an actual selection of different habitats or simply an 
artifact due to habitat availability in the background areas 
(Warren et al. 2008). To test whether our results are robust 
to different choices of background, we defined three back-
ground areas using a 5, 10 and 15 km buffer zone around 

Table 1   Distributional features of the 12 studied species

Core populations (the larger group) and disjunct populations (the smaller group) are defined on the basis of the number of occurrences

Species Core populations Disjunct populations Distance between core and 
disjunct populations (km)

Number of 
occurrences

Distribution Number of 
occurrences

Distribution

Adonis pyrenaica DC. 41 Pyreneans 24 Southwestern Alps 475
Allium narcissiflorum Vill. 542 Southwestern Alps 27 Western Alps 70
Crocus ligusticus Mariotti 170 Southwestern Alps 22 Northern Apennines 65
Cytisus ardoinii E. Fourn. 98 Southwestern Alps 18 Southwestern Alps 30
Erysimum collisparsum Jord. 249 Southwestern Alps 26 Pyreneans 250
Eryngium spinalba Vill. 369 Southwestern Alps 43 Southwestern Alps 85
Gentiana alpina Vill. 387 Pyreneans 139 Alps 400
Potentilla nivalis Lapeyr. 476 Pyreneans 124 Southwestern Alps 360
Primula hirsuta All. 377 Pyreneans 252 Alps 500
Thymelaea dioica (Gouan) All. 343 Pyreneans 124 Southwestern Alps 400
Valeriana rotundifolia Vill. 286 Southwestern Alps 112 Corse 200
Valeriana saxatilis L. 104 Eastern Alps 20 Apennines 225

http://www.worldclim.org
http://www.worldclim.org
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the occurrences of both core and disjunct populations. 
Both D overlap and similarity test were calculated in R 
(R Core Team 2019) using the “ecospat” package (Broen-
nimann et al. 2016).

Species distribution modeling

Species distribution modeling was carried out in R (R Core 
Team 2019) using the Maxent algorithm (Phillips et al. 
2004, 2006) as implemented in the ‘Biomod2’ package 
(Thuiller et al. 2016). We selected 10,000 random points 
as pseudo-absence data and a split-sample cross-validation 
was repeated 10 times, using a random subset (30%) of the 
initial data set. Model performance was evaluated using 
both the area under the relative operating characteristic 
curve (AUC—Hanley and McNeil 1982) and the true skill 
statistic (TSS—Allouche et al. 2006).

The suitability maps from model projections were con-
verted into binary distribution maps using three different 
thresholds implemented in the ‘PresenceAbsence’ package 
(Freeman and Moisen 2008): sensitivity equals specific-
ity (Sens = Spec), maximizing the sum of sensitivity and 
specificity (MaxSens + Spec), and minimizing the distance 
between the relative operating curve plot and the upper left 
corner of the unit square (MinROCdist). These thresholds 
outperform other commonly used thresholds (Cao et al. 
2013; Liu et al. 2005).

We constructed SDMs of both the overall species 
(hereafter “species model”) and each group of popula-
tions (hereafter “core model” and “disjunct model”) over 
the entire distributional range of the species. In addition, 
following the approach of Pearman et al. (2010), we con-
sidered the area that was predicted to have suitable cli-
matic conditions in one or both groups of populations as 
an “aggregate” model for the distribution of the species. 
To obtain a relative score of “goodness” of the aggregate 
model, we calculated the mean AUC and TSS values for 
core and disjunct models, according to Gonzalez et al. 
(2011). In addition, for each studied species, we calculated 
the sensitivity of all types of models as the proportion 
of occupied sites that are correctly predicted as suitable 
by the model under current climatic conditions (Pearman 
et al. 2010). For SDMs under future climates, we per-
formed an ensemble combining all projections and spe-
cies were considered occurring in a cell if at least 50% 

of models projected its occurrence there (i.e., a majority 
consensus rule).

Range analysis under future climate

To assess the impact of climate change on the potential 
distribution of each species, we calculated the percentage 
of overall range change (RC). This index was calculated 
separately for each type of model using the following for-
mula: RC = 100 × (RG − RL)/CPR, according to Casazza 
et al. (2014). RG (range gain) is the number of grid cells 
not suitable under current condition but suitable under 
future climate; RL (range loss) is the number of grid cells 
suitable under current climate but unsuitable under future 
climate; CPR (current potential range) is the number of 
grid cells suitable under current climate.

Results

Niche analysis

The niche overlap between the two groups of populations 
was low (Fig. 1). It ranged from 0 to 0.39 (Table 2, Online 
Resource Table S2) and was close to 0 in 5 out of 12 spe-
cies (Table 2, Online Resource Table S2). The similarity 
test indicated that in 7 out of 12 species, the ecological 
niche of at least 1 group of populations was significantly 
more similar to the niche of the other one than expected 
by considering the differences in the surrounding environ-
mental conditions (Table 2, Online Resource Table S2). 
Taken together, our results show that in these seven spe-
cies, the overlap between the two groups is low, but the 
two groups of populations occupy environments that are 
significantly more similar to each other than expected by 
chance.

Model performance

With few exceptions, AUC and TSS indicated good to excel-
lent performance under current climates for species, core 
and disjunct models (Table 3). In most cases, evaluation 
of core and disjunct models was slightly higher than their 
respective species models. Consequently, the performance 
of aggregate models (obtained averaging the AUC and TSS 
values of core and disjunct models) was equal to or higher 
than species models (Table 3). The sensitivity scores were 
high in all types of models, but in almost all species, the 
aggregate models outperformed the species models, better 
predicting the known species’ occurrences (Table 3).

Fig. 1   Niches of the core (blue) and disjunct (orange) populations 
of the 12 studied species. The solid and dashed lines represent 100 
and 50% of the entire available environmental space (considering a 
background area of 10  km around occurrences), respectively. Color 
shadings illustrate the density of the occurrences of core and disjunct 
populations in each climatic cell

◂
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Range analysis under future climate

In most species, an overall range contraction (i.e., negative 
range change) was forecasted under both the moderate and 
the extreme scenarios, but some differences among model 
types were detected (Fig. 2). In general, all models projected 
the same trend in range change and species models projected 
a higher range contraction than aggregate models. However, 
despite both species and aggregate models had the same 
trend, in three cases, the disjunct model projected a range 
gain, while the core model projected a range loss (i.e., Vale-
riana rotundifolia in both scenarios, Valeriana saxatilis in 
moderate scenario and Eryngium spinalba in extreme sce-
nario). Moreover, in four cases, species and aggregate model 
predicted opposite trends: in two cases (Eryngium spinalba 
and Gentiana alpina both under moderate scenario) con-
trasting range change trends occur also between the core and 
the disjunct models, while in the other two cases (Adonis 
pyrenaica under moderate scenario and Gentiana alpina 
under extreme scenario), the core and the disjunct models 
predicted a concordant range change trend. In Eryngium spi-
nalba, Valeriana saxatilis and Valeriana rotundifolia the 
niche overlap was very low (0.00–0.06), and the disjunct 
populations occur under Mediterranean climatic conditions 
with low values of temperature seasonality and precipita-
tion concentrated during wet period, while core populations 
occur under temperate (mountain) climate with high values 
of temperature seasonality (Fig. 3a–c). In Adonis pyrenaica 
and Gentiana alpina niche, overlap was higher (0.14 and 
0.27, respectively), and the disjunct populations grow under 
a subset of marginal conditions of core populations having 
different optimal conditions (Fig. 3d, e).

Discussion

In this study, we assessed the importance of considering 
geographically separated populations to predict potential 
effects of future climate change using SDMs. In fact, these 
disjunct populations may respond differently to climate 
change because they may host local adaptation or because 
they may occur in more suitable climatic conditions in the 
future. Our results underline the importance of incorporating 
intraspecific variability in SDMs, given that it can provide 
different conclusions about future range changes.

Climatic niche differentiation within disjunct 
populations

Our results suggest that ecological differentiation among 
disjunct and core populations occurs, although disjunct 
populations grow under the available climatic conditions 
more similar to those of core populations (Table 2, Online 
Resource Table S2). The niche similarity is in line with pre-
vious studies suggesting that disjunct populations maintain 
the same climatic niche (e.g., arctic-alpine species—Wasof 
et al. 2015, Corso-Sardinian species—Piñeiro et al. 2007, 
species ranging from Pyrenees to Alps—Kropf et al. 2008), 
particularly when disjunctions result from paleoclimatic 
changes (Winkworth et al. 2015). In line with this obser-
vation, the disjunct populations of Gentiana alpina—the 
only studied species for which phylogeographic studies 
are available—were attributed to vicariance events (Kropf 
et  al. 2006). The ecological differentiation among dis-
junct and core populations is irrespective of the distance 
between the central and disjunct populations. In fact, the 

Table 2   Results of niche 
overlap and niche similarity 
test between core and disjunct 
populations

Background is defined by applying 10 km buffer zones around the occurrence points. Significant results are 
indicated by ‘less’ for significant divergence or ‘more’ for significant similarity between test and compari-
son taxa, ‘ns’ indicates not significant results

Species Niche overlap Similarity test

Core vs disjunct Disjunct vs core

10 km background 10 km background

Adonis pyrenaica 0.14 Ns More
Allium narcissiflorum 0.16 More Ns
Crocus ligusticus 0.30 More Ns
Cytisus ardoinii 0.16 Ns More
Erysimum collisparsum 0.08 Ns Ns
Eryngium spinalba 0.06 Ns Ns
Gentiana alpina 0.27 Ns More
Potentilla nivalis 0.19 Ns Ns
Primula hirsuta 0.39 More More
Thymelaea dioica 0.06 More More
Valeriana rotundifolia 0.00 Ns Ns
Valeriana saxatilis 0.00 Ns Ns
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Table 3   Model performance 
evaluation

The values of the area under the relative operating characteristic curve (AUC) and true skill statistic (TSS) 
are the means of the evaluation scores of the 100 runs performed for each type of model. The sensitivity of 
all types of models is estimated as the proportion of occupied sites that are correctly predicted as suitable 
by the model under current climatic conditions

Species Model AUC (sd) TSS (sd) Sensitivity (%)

Adonis pyrenaica Core 0.97 (0.02) 0.86 (0.07) 92.68
Disjunct 0.99 (0.01) 0.96 (0.03) 95.83
Species 0.97 (0.01) 0.85 (0.05) 90.77
Aggregate 0.98 (0.02) 0.91 (0.05) 93.85

Allium narcissiflorum Core 0.94 (0.01) 0.77 (0.02) 89.30
Disjunct 0.92 (0.03) 0.76 (0.07) 81.48
Species 0.93 (0.01) 0.74 (0.02) 88.75
Aggregate 0.93 (0.02) 0.77 (0.05) 91.56

Crocus ligusticus Core 0.98 (0.00) 0.89 (0.02) 95.29
Disjunct 0.99 (0.00) 0.96 (0.02) 100.00
Species 0.98 (0.01) 0.89 (0.04) 95.83
Aggregate 0.99 (0.00) 0.93 (0.02) 95.83

Cytisus ardoinii Core 0.99 (0.02) 0.99 (0.00) 96.94
Disjunct 0.98 (0.00) 0.91 (0.02) 100.00
Species 0.99 (0.00) 0.96 (0.01) 94.83
Aggregate 0.99 (0.00) 0.95 (0.01) 97.41

Erysimum collisparsum Core 0.93 (0.01) 0.73 (0.03) 87.95
Disjunct 0.94 (0.02) 0.85 (0.04) 92.31
Species 0.92 (0.01) 0.72 (0.03) 89.82
Aggregate 0.94 (0.02) 0.79 (0.04) 91.27

Eryngium spinalba Core 0.93 (0.01) 0.76 (0.04) 88.35
Disjunct 1.00 (0.00) 0.97 (0.03) 97.67
Species 0.92 (0.01) 0.74 (0.02) 88.83
Aggregate 0.97 (0.01) 0.87 (0.03) 90.53

Gentiana alpina Core 0.98 (0.00) 0.86 (0.02) 93.02
Disjunct 0.98 (0.01) 0.88 (0.02) 92.81
Species 0.96 (0.01) 0.83 (0.02) 90.68
Aggregate 0.98 (0.01) 0.87 (0.02) 93.73

Potentilla nivalis Core 0.97 (0.00) 0.87 (0.01) 94.75
Disjunct 0.98 (0.00) 0.89 (0.02) 95.16
Species 0.97 (0.00) 0.84 (0.01) 92.83
Aggregate 0.98 (0.00) 0.88 (0.02) 95.33

Primula hirsuta Core 0.97 (0.01) 0.84 (0.02) 92.31
Disjunct 0.97 (0.02) 0.91 (0.03) 95.24
Species 0.96 (0.01) 0.83 (0.02) 91.73
Aggregate 0.97 (0.02) 0.88 (0.03) 93.8

Thymelaea dioica Core 0.93 (0.01) 0.73 (0.02) 84.55
Disjunct 0.91 (0.02) 0.73 (0.07) 86.29
Species 0.90 (0.01) 0.66 (0.02) 86.51
Aggregate 0.92 (0.02) 0.73 (0.05) 90.15

Valeriana rotundifolia Core 0.86 (0.02) 0.58 (0.04) 83.92
Disjunct 0.92 (0.13) 0.83 (0.25) 99.11
Species 0.89 (0.01) 0.63 (0.04) 84.42
Aggregate 0.89 (0.08) 0.71 (0.15) 88.19

Valeriana saxatilis Core 0.89 (0.01) 0.70 (0.03) 86.54
Disjunct 0.93 (0.04) 0.79 (0.09) 90.00
Species 0.85 (0.02) 0.61 (0.03) 83.06
Aggregate 0.91 (0.03) 0.75 (0.06) 89.52
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low degree of niche overlap between core and disjunct pop-
ulations (Table 2, Online Resource Table S2) may occur 
because of differences in environmental availability across 

their geographic ranges (Murphy and Lovett Doust 2007; 
Dagnino et al. 2016), historical climate changes, or other 
non-climatic factors (e.g., dispersal limitation and biotic 

Fig. 2   Percentage of range change projected under moderate and extreme future scenarios
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interactions) that limit the distributional range of species 
resulting in a climatic disequilibrium between populations 
(Shipley et al. 2013).

In our study, species occurrences are predicted better 
by the aggregate than by the species model, as suggested 
by the slightly highest values of sensitivity and accuracy 
detected in the aggregate model (Table 3). A higher accu-
racy in aggregate than in species models was observed in 
several other studies considering intraspecific variability 
as formally recognized subspecies (e.g., Gonzalez et al. 
2011; Oney et al. 2013), genetic lineages (e.g., Marcer et al. 
2016; Ikeda et al. 2017) or a combination of them (e.g., 
Pearman et al. 2010), underlying the importance of consid-
ering intraspecific variation to increase accuracy of predic-
tive models (Smith et al. 2019). In fact, species model may 
underestimate the overall niche of a species having disjunct 
distribution, resulting in an under-prediction bias for the less 
widespread group of populations (Pearman et al. 2010; Oney 
et al. 2013). This may occur when one group of popula-
tions occupies a narrower range of climatic conditions than 
the other group, as observed in most of the studied species 
(Fig. 1). Conversely, the aggregate model is the sum of the 
independent core and disjunct models and, consequently, it 
maximizes the sensitivity value also for the group with the 
narrowest niche, thus reducing the under-prediction bias. 
Considerable intraspecific variability occurs in plant species 
growing along environmental gradients in Mediterranean 
mountains (Pironon et al. 2017; Casazza et al. 2021; Macrì 
et al. 2021). For this reason, although we detected niche con-
servatism in disjunct populations, these populations growing 
under marginal conditions may generate valuable adaptive 
genetic combinations because of differential selection pres-
sures (Hereford 2009) and, therefore, they might respond 
in a different way to climate change (Morente-López et al. 
2021; Papuga et al. 2018).

Intraspecific differentiation and future range 
changes

In general, the high AUC and TSS values suggest that model 
predictions are highly accurate. In six species (i.e., Adonis 
pyrenaica, Allium narcissiflorum, Crocus ligusticus, Cytisus 
ardoinii, Erysimum collisparsum and Valeriana saxatilis) 
the number of occurrences in the disjunct populations is 
closed to the number of occurrences expected to affect the 
reliability of species distribution models (i.e., 25 occur-
rences; van Proosdij et al. 2016). However, the high-per-
formance values in disjunct models of these species suggest 
that the occurrences are not biased and that they adequately 
represent the environmental gradient used by disjunct popu-
lations. Our results suggest that the distributional range of 
most of studied species will be strongly negatively affected 
by the climate change (Fig. 2). Nevertheless, the aggregate 

models generally predicted a slightly less severe range 
change than the species models (Fig. 2). This result is in line 
with previous studies including intraspecific (i.e., popula-
tions or subspecies) or intra-clade (i.e., sister species) niche 
variability (Pearman et al. 2010, Benito Garzón et al. 2011, 
Oney et al. 2013, Valladares et al. 2014) in the models. This 
pattern may be due to the different ecological niche used by 
the core and disjunct populations under current climate, as 
previously discussed. In particular, in the aggregate models, 
the ecological conditions used by the disjunct populations, 
that use a narrower and different climatic space than core 
populations, contribute more to the overall niche of the spe-
cies than in species models. Combining the separate mod-
els of core and disjunct populations, the aggregate model 
may project a broader suitable area into the future climate 
than the species model (Oney et al. 2013), resulting in a less 
negative future range change.

However, despite the low niche overlap between core and 
disjunct populations, we found the same trend (i.e., con-
traction, expansion, or stability) both in core and disjunct 
models and, consequently, in species and aggregate mod-
els in most of the cases (Fig. 2), as observed in previous 
studies (Pearman et al. 2010; Hällfors et al. 2016; Maguire 
et al. 2018). In four cases (i.e., Eryngium spinalba in the 
pessimistic scenario, Valeriana saxatilis in the moderate 
scenario and Valeriana rotundifolia in both scenarios), we 
detected a different trend in core and disjunct models, even 
if this difference does not result in a different trend between 
aggregate and species models. The disjunct populations 
of these species occur under more Mediterranean climatic 
conditions than core populations (Fig. 3a–c), so they might 
increase their suitable areas because of climate change. In 
fact, in the future, species growing under Mediterranean 
climate, characterized by hot and arid summer and mild to 
cool winter, will probably lie within the climatic conditions 
already experienced at least in some periods of the year and, 
consequently, these species may be less sensitive to climate 
change (Thuiller et al. 2006; Tielbörger et al. 2014; Dagnino 
et al 2020). However, this gain in range of disjunct popula-
tions will not be large enough to compensate the range loss 
of core populations growing under temperate conditions, 
resulting in an overall range loss both in aggregate and spe-
cies models. Moreover, under the moderate scenario in Eryn-
gium spinalba and Gentiana alpina contrasting directions of 
range change occurring between the core and disjunct mod-
els result in a different trend between species and aggregate 
models (Fig. 2). In Eryngium spinalba, under the extreme 
scenario, range gain is very low in disjunct populations (see 
above). Differently under the moderate scenario, the weak 
range loss of temperate core populations is counterbalanced 
by the high range gain of disjunct populations growing under 
Mediterranean conditions, resulting in an overall gain in the 
aggregate models. On the contrary, in the species model, the 
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niche was mainly affected by the temperate conditions under 
which most populations grow, resulting in an overall range 
loss. In Gentiana alpina, the disjunct populations thrive 
under a subset of conditions which constitute the marginal 

conditions for the core populations (Fig. 3d). The future 
climate change will affect in slightly different way the two 
groups of populations, resulting in a weak gain in the most 
thermophilous disjunct populations and in a weak loss of 
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distributional range in the core populations (Fig. 3d). These 
results suggest that in some species, disjunct populations 
are likely to occur in new conditions that fall within their 
climatic tolerance. All the above can assure the survival of 
some lineages that may provide the raw genetic material 
enabling the species to adapt and/or shift in response to the 
climatic change (Budd and Pandolfi 2010). In two other 
cases (i.e., Adonis pyrenaica under moderate scenario and 
Gentiana alpina under extreme scenario), although both the 
core and the disjunct models projected range contraction, 
the species and the aggregate models projected a contrasting 
range change (i.e., range contraction in aggregate model and 
range expansion in species model) (Fig. 2). This may occur 
when disjunct and core populations share the same subop-
timal conditions (Fig. 3d, e). These suboptimal conditions 
may be recognized as optimal in the species model but not 
in the populations models, resulting in an opposite trend of 
range change (Pearman et al. 2010; Valladares et al. 2014). 
Differently, because the aggregate model is the sum of the 
potential ranges provided by disjunct and core populations’ 
models, the range changes detected by the aggregate model 
are in accordance with those predicted by the last two.

Conclusion

In conclusion, our results suggest that integrating intraspe-
cific variability does not strongly improve overall accu-
racy of SDMs based on all species occurrences, but it can 
result in considerably different conclusions about future 
range change (Lecocq et al. 2019). However, the response 
of disjunct groups of populations to climate change largely 
depends on the difference between the current climate where 
they grow and the future climate more than on the difference 
between niches. Consequently, to account for intraspecific 
differentiation may enable to point out potential resilience 

units that may act as potential buffer against adverse effects 
of climate change and accordingly to design targeted con-
servation strategies (Chen et al. 2020).
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