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Abstract
Water is the main limiting factor for groundwater-dependent ecosystems (GDEs) in drylands. Predicted climate change 
(precipitation reductions and temperature increases) and anthropogenic activities such as groundwater drawdown jeopardise 
the functioning of these ecosystems, presenting new challenges for their management. We developed a trait-based analysis 
to examine the spatiotemporal variability in the ecophysiology of Ziziphus lotus, a long-lived phreatophyte that dominates 
one of the few terrestrial GDEs of semiarid regions in Europe. We assessed morpho-functional traits and stem water poten-
tial along a naturally occurring gradient of depth-to-groundwater (DTGW, 2–25 m) in a coastal aquifer, and throughout the 
species-growing season. Increasing DTGW and salinity negatively affected photosynthetic and transpiration rates, increasing 
plant water stress (lower predawn and midday water potential), and positively affected Huber value (sapwood cross-sectional 
area per leaf area), reducing leaf area and likely, plant hydraulic demand. However, the species showed greater salt-tolerance 
at shallow depths. Despite groundwater characteristics, higher atmospheric evaporative demand in the study area, which 
occurred in summer, fostered higher transpiration rates and water stress, and promoted carbon assimilation and water loss 
more intensively at shallow water tables. This multiple-trait analysis allowed us to identify plant ecophysiological thresholds 
related to the increase in salinity, but mostly in DTGW (13 m), and in the evaporative demand during the growing season. 
These findings highlight the existence of tipping points in the functioning of a long-lived phreatophyte in drylands and can 
contribute to the sustainable management of GDEs in southern Europe, paving the way for further studies on phreatophytic 
species.
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Introduction

Water is an essential global resource for humans and ecosys-
tems, particularly in arid regions where it is the most limiting 
factor (Newman et al. 2006). Arid and semiarid regions are 
characterised by low and shifting water availability across 
space and time (Eamus et al. 2013), thus vegetation has 
to live with water limitation or explore new water sources 
below ground (Arndt et al. 2001; Nardini et al. 2014). In this 
sense, groundwater reservoirs are crucial for the function-
ing of vegetation (O’Grady et al. 2006) in the ecosystems 
that have access to this hidden water source, the so-called 
groundwater-dependent ecosystems (GDEs) (Eamus et al. 
2006). GDEs of arid regions are highly vulnerable to altera-
tions in the hydrological regime, because their structure and 
functioning depend on it (Eamus et al. 2006). Groundwater 
condition, i.e. water quality and quantity, affects GDEs, and 
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groundwater exploitation or pollution jeopardises their struc-
ture and function as well as the species that constitute them 
(Zolfaghar et al. 2014; Eamus et al. 2015). How the function 
of GDEs in drylands is affected by groundwater variations is 
a primary concern for scientists, managers and policymakers 
who have to design sustainable plans to manage groundwater 
resources in the face of climate change (Kløve et al. 2014).

Fluctuations in groundwater depth can be detrimental to 
the functioning of GDEs and the deep-rooted phreatophytic 
vegetation that tap groundwater (Naumburg et al. 2005). 
Groundwater drawdown can salinize both soils and water 
in arid regions due to the exclusion of salts by plants during 
water uptake or to the exposure of deeper and saltier ground-
water (Jobbágy and Jackson 2007; Runyan and D’Odorico 
2010). Seawater intrusion, as an indirect effect of water table 
decline near the coast, is one of the main drivers of coastal 
aquifer salinization. Likewise, groundwater availability for 
plants can depend on salinity, which has shown substantial 
consequences in phreatophytic productivity, even inducing 
diebacks (Jolly et al. 1993; Doody and Overton 2009; Run-
yan and D’Odorico 2010). Even though salinity is a signifi-
cant abiotic stress that intensifies drought impacts and water 
unavailability, there is little research on plant response to 
both groundwater salinity and depth (Kath et al. 2015; Hus-
sain and Al-Dakheel 2018).

Groundwater-dependent ecosystems are amongst the 
terrestrial ecosystems most vulnerable to climate change 
effects, and their ability to persist will depend on the resil-
ience of phreatophytic vegetation to groundwater decline 
(Hultine et al. 2020). It is widely recognised that anthropo-
genic activities alter the groundwater regime, either directly 
through groundwater exploitation or indirectly through land-
use change (Eamus et al. 2015, 2016), which in turn can pro-
mote soil and groundwater salinization (Jobbágy and Jack-
son 2007; Nosetto et al. 2008). In addition, future climate 
change, expressed in the Mediterranean basin by a reduc-
tion in precipitation and an increase in temperature (Giorgi 
and Lionello 2008), will reduce groundwater recharge and 
raise evapotranspiration rates. Modelling carbon–water 
relationships will help us predict how hydrological changes 
can affect GDEs in terms of survival and productivity, thus 
addressing human impacts (Naumburg et al. 2005; Newman 
et al. 2006). To test vegetation response to altered water 
regimes, scientists usually resort to spatial gradients of arid-
ity, altitude, water availability, and soil nutrients, amongst 
others (Lavorel and Garnier 2002; Wright et al. 2004; Mitch-
ell and O’Grady 2015). Topography, for instance, can pro-
mote gradients in water availability, which cause critical var-
iations in plant structure and function (Williams et al. 1996). 
The study of a species response to reduced water availability 
along environmental gradients will provide insight for iden-
tifying ecophysiological thresholds in phreatophytic vegeta-
tion (Eamus et al. 2006). Such thresholds might be related to 

the limits for maintaining high ecophysiological functioning 
in a “safe operating space” rather than the physical discon-
nection between vegetation and groundwater. Despite the 
definition of these tipping points is still scarce, particularly 
in European GDEs (Froend and Drake 2006; González et al. 
2012; Garrido et al. 2016), its knowledge is essential for a 
sustainable management in drylands.

Plant functional traits that refer to morphological, physi-
ological, and phenological characteristics of the vegetation 
(Perez-Harguindeguy et al. 2013) provide insight about 
plant ecological strategies, contributing to understanding 
how vegetation responds to abiotic factors (Lavorel and 
Garnier 2002). This “bottom-up” approach that relates plant 
traits to environmental gradients is a way forward for facing 
important ecological questions (Cornelissen et al. 2003). In 
GDEs, plant functional traits are the vehicle to assess dif-
ferent aspects of ecosystem functioning as they respond to 
changes in the hydrologic regime (Eamus et al. 2006). In this 
sense, an understanding of the connection between morpho-
functional and hydraulic traits with groundwater characteris-
tics (i.e. groundwater depth, salinity, and temperature) will 
be crucial for predicting climate change effects upon GDEs.

Numerous morpho-functional traits such as Huber value 
(Hv), wood density, specific leaf area (SLA), and gas-
exchange rates show variation across depth-to-groundwa-
ter (DTGW) gradients in arid and semiarid environments 
(Stromberg et al. 1996; Gazal et al. 2006; Butler et al. 2007; 
Carter and White 2009; Zolfaghar et al. 2014; Osuna et al. 
2015; Sommer et al. 2016; Nolan et al. 2017a). Hydraulic 
traits such as water potential are strongly correlated with 
DTGW gradients, as shown in phreatophytic oaks, euca-
lyptus, and acacias from California and Western and Cen-
tral Australia (Carter and White 2009; Osuna et al. 2015; 
Nolan et al. 2017a). Here, we explore a GDE dominated 
by the winter-deciduous phreatophyte Ziziphus lotus (L.) 
Lam. (Rhamnaceae) in a small coastal plain in the southeast 
of Spain where spatiotemporal variations in groundwater 
salinity and temperature were also assessed. We evaluated 
the relationships amongst a broad suite of traits including 
stem water potential, gas-exchange rate, intrinsic water-
use efficiency (WUEi), Huber value (Hv), wood density, 
and specific leaf area (SLA), across a naturally occurring 
DTGW gradient related to distance from the coastline. We 
also assumed that seawater intrusion could more adversely 
affect plants near the coast. Thus, we hypothesised that spa-
tiotemporal fluctuations of both groundwater availability 
and quality would drive differences in the ecophysiologi-
cal functioning of Z. lotus. These differences could help us 
to identify ecophysiological thresholds, which will provide 
valuable insight to face upcoming management challenges 
in GDEs. To test these hypotheses, we address the follow-
ing specific questions: Are there spatiotemporal variations 
in plant functional traits? Do these variations respond to 
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groundwater conditions? Is there any discernible threshold 
in the ecophysiological functioning of Z. lotus? What factors 
drive the threshold?

Methodology

Site description

The study was conducted on a coastal plain at the western 
part of the Cabo de Gata-Níjar Natural Park, southeastern 
Spain (Fig. 1). The climate is characterised as Mediterra-
nean and semiarid, with hot and dry summers and mild, 
wet winters. Mean annual temperature is 18 ºC, and mean 
annual precipitation is 200 mm (Machado et al. 2011), which 
is unevenly distributed during spring and autumn in scarce, 
short, and infrequent rainfall events (Online Resource 1). 
The coastal plain is underlain by a shallow aquifer, com-
prised of Plio-Pleistocene conglomerates, with aeolian 
sands beneath it and Pliocene marine marls at the base. The 
geology originated from the sedimentary fill of the Bay of 
Almería with materials from the Sierra Alhamilla mountains 
(1000 m.a.s.l) and from coastal marine deposits from the 
Quaternary period (Vallejos et al. 2018). Eight boreholes 
located along the study area form a net for groundwater 
observation that discerns between 3 sites (east plain, west 
plain, and the seasonal stream that crosses it) and shows a 
natural occurring DTGW gradient based on coastline dis-
tance and topography.

The winter-deciduous phreatophyte Z. lotus is the domi-
nant species of this coastal plain ecosystem, which is com-
prised of Z. lotus and other shallow-rooted Mediterranean 

shrubs such as Lycium intricatum, Salsola oppositifolia, 
and Withania frutescens (Tirado 2009). Z. lotus distributes 
along the Mediterranean basin, being native from North 
Africa, the Middle East, and southern Europe, mainly 
Spain, where it constitutes one of the few terrestrial GDEs 
in European drylands (Guirado et al. 2018; Torres-García 
et al. 2021). It is a slow-growing, long-lived shrub that 
has not substantially changed in size or shape in the past 
70 years in the study area. The vegetation on this coastal 
plain shows a patchy, dispersed pattern typical of arid and 
semiarid Mediterranean regions, where Z. lotus is associ-
ated with biodiversity islands (Tirado 2009). Z. lotus is 
responsible for most of the photosynthetic activity during 
summer, whereas the rest of the vegetation constituting the 
island grows in winter, entailing a replacement in the driv-
ers of the primary productivity of the ecosystem (Guirado 
et al. 2018). Z. lotus partially depends on groundwater to 
survive (Torres-García et al. 2021) by developing a dual 
root system that can reach up to 60 m deep (Le Houérou 
2006) whilst also maintaining active roots near the sur-
face. Vegetation sampling was made on a total of 16 adult 
individuals of Z. lotus (1–3 m tall and 50–200  m2 area) 
selected next to each bore (two per bore at a maximum dis-
tance of 130 m) (Fig. 1) in three specific periods of 2019 
growing season: late-spring (May), mid-summer (July), 
and late-summer (September).

Hydrologic and climatic measurements

Each bore contained two sensors (Hobo U20 Water level 
logger and Hobo U24 conductivity logger, Onset Comp. 
Coorp., Bourne, MA, USA) to obtain DTGW, electrical 
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Fig. 1  Location of the study area in the coastal plain of Cabo de 
Gata-Níjar Natural Park, southeastern Spain. Distribution of the bore-
holes (1 to 8) and the related plants of Ziziphus lotus (circles, n = 16) 

are shown. Bars indicate distance to the coastline (m) and metres 
above sea level (m.a.s.l) at each site
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conductivity (i.e. salinity), and groundwater temperature 
(TGW) every 15 min since May 2019. For regression analysis, 
we obtained mean values from each of the sampling periods. 
In the same way, we collected daily climatic data from Alm-
ería airport meteorological station (Spanish meteorological 
agency) located 8 km from the study area. Monthly precipi-
tation (P) and mean monthly temperature (Tair) were used 
(measured with a Thies Precipitation Transmitter, Göttingen, 
Germany; and a Vaisala HUMICAP HMP155, Helsinki, Fin-
land, respectively).

Plant traits

We analysed three traits related to the plant water potential, 
four physiological traits from leaf gas-exchange rates, and 
three morphological traits We measured water potential dur-
ing the growing season at predawn (Ψpd) and midday (Ψmd) 
in four stems on each of the 16 individuals using a Scho-
lander pressure chamber (SKPM1405, Skye Instruments, 
Powys, UK). Measurements were taken before sunrise for 
Ψpd (from 06:00 to 07:00 h in May and July and from 06:30 
to 07:30 h in September) and during the peak insolation for 
Ψmd (between 13:00 and 14:00 h). Mean values for each 
plant and period were calculated, and the maximum daily 
range (ΔΨmax) was derived afterwards as the difference 
between Ψpd and Ψmd. We measured leaf gas exchange in 
8 sun-exposed leaves per plant around four different points 
of the outer part of the canopy (north, east, south, and 
west) between 10:00 and 13:00 h on the same days as water 
potential was measured. A portable infrared gas analyser 
(Li-6400XT; LI-COR Inc., Lincoln, NE, USA) was used 
with the following conditions in the chamber to standardise 
all measures: flow rate, 400 µmol  s−1;  CO2 concentration, 
400 µmol  mol−1; and light intensity, 1800 µmol  m−2 s −1. 
Ambient temperature was kept, which varied between 25 and 
30 ºC. We obtained photosynthetic rate (A), stomatal con-
ductance (gs), transpiration rate (E), vapour pressure deficit 
(VPD), and WUEi was calculated from the ratio between 
A and gs.

Finally, to gather morphological traits, we cut three 
branches of similar size per plant in July from which all 
leaves were removed. We measured sapwood cross-sec-
tional area with a digital calliper in the base of each branch. 
Sapwood was distinguished from heartwood by the colour 
difference. We also estimated wood density as the volume 
of a piece of branch (π ×  radius2 × length) divided by its 
dry weight (after 48 h at 60 ºC). We scanned all the leaves 
with a digital leaf area metre (WinDIAS, Cambridge, UK) 
to calculate total leaf area per branch and used ten of the 
leaves to estimate the SLA of the plants, which represents 
the relationship between the leaf area and its dry weight 
(after 48 h at 60 ºC). We calculated the Hv per plant from 

the ratio between the mean sapwood cross-sectional area to 
the mean total leaf area.

Data analysis

We applied a two-way ANOVA for each groundwater char-
acteristic and functional trait to assess intraspecific variabil-
ity, both temporal (between sampling periods) and spatial 
(between sampling sites). Since SLA, Hv, and wood density 
were only measured once, we performed a one-way ANOVA 
for these traits. All traits were log-transformed except for 
water potentials due to the negative nature of their values. 
We undertook Tukey’s HSD post hoc test after significant 
differences were found. To further examine the effects of the 
main stressors (salinity and DTGW) on plant response, dif-
ferences in gas exchange and water potential traits between 
pairs of bores were tested by a Student’s t test. We also per-
formed multiple bivariate linear regressions to test whether 
a single regression could describe individual functioning. 
Some regressions were made with mean values, as variabil-
ity over time was not observed, whereas others were made 
with monthly data to detect seasonal patterns. Finally, we 
analysed multiple-trait relationships across all variables with 
a principal component analysis (PCA). Traits were scaled 
prior to the analysis to obtain a unit variance. Spearman cor-
relation analysis was applied, and the contribution of each 
trait in the PCA was assessed to select those variables that 
provide the best representation and improve the analysis. 
Because of that, SLA, WUEi, and wood density were not 
included in the final analysis. We performed all analyses in 
R 3.5.2 (R Core Team 2018).

Results

Spatiotemporal variations in groundwater

We observed significant differences in DTGW, salinity, and 
 TGW between sites, across the growing season, and for their 
interaction (P < 0.001; df = 7, 4). These variables increased 
during the growing season, although with different patterns. 
First, DTGW that ranged from 2.1 m (bore 1) to 25.4 m 
(bore 8) (Fig. 2a) increased across the growing season, 
although not substantially (Online Resource 2). It was just 
at the inner-plain sites where an average increase of 18 cm 
was observed at the end of the season (bore 8). Near the 
coast, we observed more noticeable temporal fluctuations 
although these did not entail overall DTGW increments 
(Fig. 2c, d, e, and Online Resource 2). Second,  TGW gradu-
ally increased during summer (Online Resource 3), despite 
its narrow range in average monthly values (from 21.78 to 
23.98 °C, Online Resource 2). These rises mainly affected 
bores with the shallowest water tables such as bore 1, that 
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showed wider fluctuations, and bore 2, that had the steepest 
increase. Finally, groundwater salinity, which ranged from 
3360 µS/cm (bore 4) to 11000 µS/cm (bore 7), increased in 
bores 1, 3 and 7, but particularly in bore 7 where a rise in 
almost 1000 µS/cm was observed (Online Resource 2 and 
Online Resource 3). For these three groundwater properties, 
fluctuations were larger near the coast where water tables 
were shallower (bores 1–3) than in the other bores.

Spatiotemporal variations in plant traits and their 
relationship with groundwater

Plant traits also showed significant differences between 
sampling periods, sites, and the interaction between them 
(Table 1 and Online Resource 4). Overall, gas exchange 
(A and E) in Z. lotus leaves was higher in summer (July 
and September) and at those sites with the shallowest 
water tables. Regarding water loss, plants from bores 1–4 
(DTGW < 11.6 m) showed the highest gs, especially during 
July and September when it reached 0.42 ± 0.03 mol  H2O 
 m−2  s−1, whereas bores 5–8 (DTGW > 14.0 m), had the low-
est values. It is also noticeable that high rates of E for plants 
from bores 1, 2, and 3 occurred in July and September, but 
also from bore 8 (25.3 m). Nevertheless, A showed signifi-
cant differences in summer just at some locations (interac-
tion term, P < 0.001, df = 14), although general differences 
between months were not observed (individual term, P = 0.1, 
df = 2, Online Resource 4). Individuals next to bores 2 and 5 
(with a DTGW of 7.3 and 14.0 m, respectively) had higher 
photosynthetic rates in July, whereas plants near bores 6 and 

8 (with 19.3 and 25.3 m, respectively) showed lower values 
at the end of summer (Table 1). In general, individuals next 
to bores 1 and 2 had the highest rates of A, whereas bore 8 
showed the lowest ones. Contrary to A, WUEi was low at not 
only the shallowest water tables, but also at the deepest and 
saltiest ones. Regarding water potential, more negative val-
ues of both Ψpd and Ψmd were observed in July and Septem-
ber at sites with the highest DTGW (bores 5–8). Ψpd ranged 
between − 0.32 ± 0.02 MPa in May and − 1.55 ± 0.09 MPa 
in September (at bore 2 and bore 8, respectively), whereas 
Ψmd showed values between − 1.18 ± 0.04 MPa in May 
and − 3.13 ± 0.10 MPa in July (bore 4 and bore 8, respec-
tively). Hv also showed significant differences across sites 
(P = 0.027) (Online Resource 5). The Hv of the plants at 
bore 1 with shallow groundwater (3.58 ± 0.08) was signifi-
cantly lower than that of plants at bores 7 and 8 with deep 
groundwater (11.40 ± 0.22 and 9.34 ± 0.84, respectively). 
Neither SLA nor wood density showed significant spatial 
variability.

Most of the traits significantly responded to spatial (A, 
gs, and Hv), temporal (Ψmd), or spatiotemporal variations (E 
and Ψpd). First, bivariate linear regressions revealed a weak 
negative relationship with DTGW for most gas-exchange 
traits during the growing season (Fig. 3), except for WUEi. 
By contrast, no relationship was observed between these 
traits and groundwater salinity (Online Resource 6). How-
ever, comparing by pairs, we revealed significant differences 
between plants at sites with different conditions (e.g. similar 
DTGW and different salinity). When comparing plants at 
bore 4 (intermediate DTGW and low salinity) and bore 1 
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(low DTGW and high salinity), they only differed in E and 
Ψmd, showing higher water loss and also stress at bore 1 
(Online Resource 7). When comparing plants from bore 4 
and bore 5 (both intermediate DTGW but low and high salin-
ity, respectively), we observed higher E, gs, and A values 
when salinity is lower. Regarding water potential, Ψpd was 
the only variable that showed a significant linear relation-
ship to both DTGW and salinity, in which Ψpd, but neither 
Ψmd nor ΔΨmax, was significantly lower when DTGW and 
salinity were large (Fig. 4 and Online Resource 8). Nonethe-
less, salinity seemed to be related to more negative values 
of Ψpd (bore 3 and bore 5 vs. bore 4) but also Ψmd (bore 
5 vs. bore 4, Online Resource 7). Our results also showed 
that at large DTGW, plants exhibited higher Hv values than 
when DTGW was small (Fig. 5), even though wood density 
and SLA did not respond to groundwater spatial gradients 
(Online Resource 9). Therefore, DTGW was the main vari-
able related to spatial variation in most single traits.

The transpiration rate was positively correlated with VPD 
(Fig. 6a), which represents temporal variations in climatic 
conditions. In May, both E and VPD showed lower values, 
with little variability across bores, whereas in summer (July 
and September), the increase in VPD was parallel to the 
rise in E. The general increase in VPD during the season 
enhanced transpiration rates more over the shallowest water 
tables than at the deepest ones (Fig. 6b). However, VPD did 
not show any significant relationship with other traits related 
to gas exchange (Online Resource 10). The overall increment 
of VPD from spring to summer was related to more nega-
tive Ψpd and Ψmd values, as shown in the regression analysis 
(Fig. 7a, b).

Temporal analysis of the relationships between traits 
also revealed that A, E, and gs were positively related 
to each other, despite salinity, and particularly dur-
ing spring. Nonetheless, WUEi (= A / gs) was posi-
tively related to A and negatively related to gs in sum-
mer exclusively (Online Resource 11). Our results also 

Table 1  Summary of mean values of traits (± SE) from plants next to each bore in the three sampling periods: May, July, and September

Depth-to-groundwater (DTGW) of each site is showed as well as the significant differences (P < 0.05) between months in each site (different let-
ters)
Photosynthetic rate (A), stomatal conductance (gs), transpiration rate (E), intrinsic water-use efficiency (WUEi), predawn (Ψpd) and midday 
(Ψmd) water potential, and vapour pressure deficit (VPD)

Bore DTGW 
(m)

Month A (µmol  CO2 
 m−2  s−1)

gs (mol  H2O 
 m−2  s−1)

E (mmol  H2O 
 m−2  s−1)

WUEi (µmol 
 CO2 /mol  H2O)

Ψpd (MPa) Ψmd (MPa) VPD (kPa)

Bore 1 May 15.32 ± 1.69 a 0.33 ± 0.05 a 7.84 ± 0.81 a 50.53 ± 3.88 a − 0.42 ± 0.03 a − 1.74 ± 0.19 a 2.82 ± 0.04 a
2.2 m July 13.77 ± 1.87 a 0.35 ± 0.04 a 10.94 ± 1.08 b 37.92 ± 2.54 a − 0.63 ± 0.05 a − 2.33 ± 0.17 b 3.39 ± 0.06 b

Sep 15.51 ± 1.12 a 0.32 ± 0.02 a 12.16 ± 0.67 b 48.11 ± 1.95 a − 1.08 ± 0.05 b − 2.98 ± 0.08 c 3.91 ± 0.03 b
Bore 2 May 16.17 ± 1.77 a 0.23 ± 0.02 a 5.81 ± 0.48 a 73.84 ± 5.30 a − 0.32 ± 0.02 a − 1.23 ± 0.09 a 2.63 ± 0.04 a
7.3 m July 24.88 ± 2.36 b 0.40 ± 0.05 b 10.60 ± 1.05 b 73.52 ± 8.85 a − 0.64 ± 0.04 b − 2.49 ± 0.04 b 2.96 ± 0.06 a

Sep 15.83 ± 1.47 a 0.32 ± 0.04 ab 14.10 ± 1.42 b 53.39 ± 3.42 b − 0.96 ± 0.07 c -3.63 ± 0.10 c 4.78 ± 0.07 b
Bore 3 May 11.13 ± 1.58 a 0.22 ± 0.03 a 6.41 ± 0.61 a 48.55 ± 4.31 a − 0.63 ± 0.04 a − 1.97 ± 0.15 a 2.93 ± 0.05 a
8.6 m July 9.48 ± 0.95 a 0.41 ± 0.03 b 10.95 ± 0.74 b 23.96 ± 2.34 b − 0.86 ± 0.06 b − 2.26 ± 0.17 a 2.87 ± 0.08 a

Sep 11.08 ± 1.52 a 0.42 ± 0.03 b 11.89 ± 0.68 b 25.96 ± 2.94 b − 1.08 ± 0.08 c − 1.94 ± 0.17 a 3.09 ± 0.06 a
Bore 4 May 14.34 ± 1.40 a 0.25 ± 0.03 a 6.74 ± 0.61 a 61.69 ± 5.37 a − 0.41 ± 0.04 a − 1.18 ± 0.04 a 2.82 ± 0.07 a
11.6 m July 13.68 ± 1.57 a 0.38 ± 0.04 b 10.99 ± 0.85 b 35.62 ± 1.98 b − 0.55 ± 0.03 a − 1.95 ± 0.15 b 3.09 ± 0.09 a

Sep 10.57 ± 1.26 a 0.22 ± 0.03 a 5.73 ± 0.59 a 52.29 ± 4.37 ab − 0.96 ± 0.07 b − 2.52 ± 0.23 c 2.91 ± 0.13 a
Bore 5 May 6.84 ± 0.98 a 0.14 ± 0.01 a 3.67 ± 0.36 a 49.67 ± 4.01 a − 0.76 ± 0.05 a − 1.66 ± 0.07 a 2.71 ± 0.03 a
14.0 m July 13.26 ± 1.09 b 0.16 ± 0.01 a 7.45 ± 0.54 b 87.32 ± 8.69 b − 1.28 ± 0.09 b − 2.83 ± 0.08 b 4.68 ± 0.04 b

Sep 10.12 ± 1.75 ab 0.24 ± 0.02 b 7.14 ± 0.42 b 40.64 ± 4.87 a − 1.29 ± 0.04 b − 2.74 ± 0.14 b 3.08 ± 0.05 a
Bore 6 May 15.07 ± 1.56 a 0.25 ± 0.03 a 6.28 ± 0.73 a 67.19 ± 6.30 a − 0.46 ± 0.03 a − 1.44 ± 0.08 a 2.61 ± 0.04 a
19.3 m July 8.35 ± 1.50 b 0.22 ± 0.03 a 8.26 ± 0.92 a 37.20 ± 2.29 b − 1.31 ± 0.05 b − 2.98 ± 0.14 b 4.09 ± 0.06 b

Sep 9.67 ± 1.64 b 0.24 ± 0.02 a 8.11 ± 0.53 a 39.70 ± 5.70 b − 1.24 ± 0.05 b − 1.96 ± 0.16 c 3.50 ± 0.05 b
Bore 7 May 12.13 ± 1.42 a 0.16 ± 0.02 a 4.43 ± 0.41 a 75.87 ± 4.01 a − 0.60 ± 0.07 a − 1.64 ± 0.15 a 2.88 ± 0.04 a
25.0 m July 12.33 ± 1.20 a 0.17 ± 0.01 a 7.25 ± 0.53 b 72.17 ± 2.42 a − 1.23 ± 0.08 b − 2.79 ± 0.11 b 4.23 ± 0.07 b

Sep 13.27 ± 1.41 a 0.32 ± 0.03 b 6.91 ± 0.43 b 41.47 ± 2.24 b − 1.19 ± 0.07 b − 2.51 ± 0.08 b 2.23 ± 0.03 a
Bore 8 May 10.74 ± 1.26 a 0.22 ± 0.03 a 5.47 ± 0.53 a 51.91 ± 5.19 a − 0.43 ± 0.05 a − 1.36 ± 0.08 a 2.56 ± 0.05 a
25.3 m July 11.52 ± 1.52 a 0.26 ± 0.03 a 10.71 ± 0.68 b 44.52 ± 4.93 a − 1.01 ± 0.08 b − 3.13 ± 0.10 b 4.44 ± 0.14 b

Sep 7.16 ± 1.33 b 0.29 ± 0.02 b 10.38 ± 0.54 b 23.77 ± 4.09 b − 1.55 ± 0.09 c − 3.06 ± 0.08 b 3.63 ± 0.09 c
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showed a negative relationship of Ψpd with these gas-
exchange traits both in spring (A: R2 = 0.40, P = 0.008; 
gs: R2 = 0.37, P = 0.012; E: R2 = 0.30, P = 0.015) and sum-
mer (A: R2 = 0.25, P = 0.003; gs: R2 = 0.28, P = 0.002; E: 
R2 = 0.14, P = 0.037). As water availability decreased 
(lower Ψpd), A, gs, and E were reduced, but no response 
was observed with an increase of plant stress (lower Ψmd) 
at any time (Online Resource 11).

Multiple trait relationship for identifying 
ecophysiological thresholds

Principal component analysis (PCA) revealed multiple-trait 
relationships that were not identified with simple regression 
analysis. The two first components of the PCA explained 
63.5% of the variation across plants (Fig. 8a). The first 
component (PC1), accounting for 37.6% of the total varia-
tion, showed strong loadings for climatic variables (i.e. Tair, 
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precipitation) as well as stem water potential (i.e. Ψpd and 
Ψmd) and E. The second component (PC2) explained 25.9% 
of the variance and showed strong loadings for groundwater 
traits (particularly DTGW but also TGW), A and gs. Ground-
water salinity and Hv also contributed to PC2, although to 
a lesser extent. As a result, axis 1 showed a temporal gra-
dient from the warmest and driest months that overlap to 
each other (July and September) with higher E and VPD, 
to the mild and humid spring (May), when water availabil-
ity was higher (high Ψpd) and plant stress lower (high Ψmd) 
(Fig. 8b). By contrast, axis 2 showed a DTGW gradient 
(Fig. 8c, d) where plants closer to the water table exhibited 
higher A and gs but lower Hv. The PCA revealed two distinct 
clusters based on groundwater characteristics (DTGW and 

salinity) and their associated gas-exchange traits (A, gs): one 
for plants at sites with shallow DTGW (< 12 m, Fig. 8c), 
and the other for plants at sites with salty and deep DTGW 
(> 8800 µS/cm and 14 m, Fig. 8d).

Discussion

In this study, we examined the ecophysiological response of 
the long-lived phreatophyte Ziziphus lotus to a DTGW gradi-
ent, in a coastal GDE of the Mediterranean basin. We found 
that DTGW and salinity had a significant, additive effect 
on the ecophysiological function of this phreatophyte, as 
hypothesised. We further found that some traits were more 
strongly correlated to fluctuations in DTGW and salinity 
(e.g. A and gs), whereas others were more strongly related 
to seasonal fluctuations in atmospheric conditions (e.g. E, 
Ψpd, Ψmd). By applying a multiple-trait approach, we were 
able to identify plant ecophysiological thresholds related to 
the groundwater characteristics and seasonality throughout 
the growing season.

Spatiotemporal variations in Z. lotus’ traits and their 
relationship with groundwater

Our findings revealed spatiotemporal variations in Z. lotus 
traits, which were related to both groundwater and seasonal 
climatic conditions. The spatial variability in DTGW might 
explain the response patterns of gas exchange throughout 
the growing season. Increasing DTGW negatively affected 
carbon assimilation and water loss, as previously observed 
in GDEs of Australia and the United States (Butler et al. 
2007; Carter and White 2009; Osuna et al. 2015; Sommer 
et al. 2016). Thus, deep-rooted species, particularly from 
arid and semiarid regions, can face physiological constraints 
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fostered by deep water sources (Nardini et al. 2014). Here, 
A, gs, and E might decrease with the increase in DTGW as 
consequence of such constraints. In summer, the importance 
of groundwater availability increased, as shown by the rise 
in these gas-exchange rates as consequence of higher net 
radiation and temperature (O’Grady et al. 1999; Sommer 
et al. 2016), and this rise in gas-exchange rates was more 
pronounced in plants at shallower DTGW. On the contrary, 
plants at deep water tables did not experience such notice-
able increase in ecophysiological activity, which could be 
also determined by high groundwater salinity. Even though 
the effects of groundwater availability and salinity cannot 
be uncoupled straightforwardly because of the nature of 
the study area, paired comparison of the sites suggested the 
negative effect of salinity in carbon assimilation (Online 
Resource 7). Nevertheless, we observed that neither carbon 
assimilation nor water loss was completely compromised at 

any point of the growing season and at any DTGW, since 
the lowest mean rates of A and gs were observed in May, 
reaching 6.84 µmol  CO2  m−2  s−1 and 0.14 mol  H2O  m−2  s−1, 
respectively, at bore 5 (Table 1). This result can be explained 
by Z. lotus accessing and using groundwater continuously 
during its growing season to avoid stomatal closure, even in 
summer (Torres-García et al. 2021). In this sense, the low 
values of WUEi we observed in summer and the lack of 
relationship with DTGW agree with having access to a water 
source, likely groundwater, since large WUEi is widely asso-
ciated with groundwater usage where precipitation in scarce 
(Eamus et al. 2013; Cleverly et al. 2016; Rumman et al. 
2018). A similar behaviour is observed in phreatophytic 
vegetation with access to groundwater (Nolan et al. 2017b, 
2018; Rumman et al. 2018). In addition, Z. lotus transpira-
tion rate did not decline in summer; in fact, it increased with 
VPD, more significantly at shallow water tables, suggesting 
that summer conditions could induce higher rates when suf-
ficient groundwater is available (Nolan et al. 2018; Eamus 
and Prior, 2001), and that groundwater availability to the 
plant depends on climatic conditions. Despite the risk of 
hydraulic failure due to this anisohydric behaviour (Torres-
García et al. 2021) and the physiological limitations of tap-
ping water from deep sources, Z. lotus plants can maintain 
high gas exchange under current conditions.

The naturally occurring gradient also explained the spa-
tial variability in Ψpd and responses to differences in water 
availability. Ψpd largely reflects the water potential of the 
rooting area (Hinckley et al. 1978) and indicates ground-
water access by plants when values are barely negative 
(Carter and White 2009). Although Z. lotus plants showed 
values that did not fall below − 1.55 MPa, which is high 
given the solute potential, we found a negative trend of 
Ψpd not only with increasing DTGW but also with salinity. 
Groundwater salinity increased with DTGW away from the 
coast, which could be due to a marine incursion during the 
Holocene that penetrated the inner parts of the plain, con-
stituting a lagoon which dried up over time and increased 
the salinity of the area (Vallejos et al. 2018). Therefore, it 
is not a recent process of seawater intrusion that induced 
differences in Z. lotus population, but a past event that 
fostered different salinity conditions across the landscape. 
This result is contrary to our assumption that seawater 
intrusion could affect salinity near the coast. Instead, we 
found that the combination of deep groundwater and high 
salinity away from the coast might promote water stress 
in the root zone as well as a drought-like condition in the 
plant (Kath et al. 2015). Although Z. lotus showed little 
evidence of water deficit (slightly negative water potentials 
even in summer) and have continuous access to groundwa-
ter during its growing season (Torres-García et al. 2021), 
Ψpd and Ψmd correlated with DTGW and salinity. Particu-
larly, salinity might have induced lower water potential at 
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the root surface, reducing water uptake and photosynthetic 
rate in Z. lotus, as in other species from GDEs (Kath et al. 
2015). These constraints seem to affect plants with access 
to intermediate and deep groundwater. In fact, a previous 
isotopic analysis in the area showed that Z. lotus plants 
might be reducing water uptake and triggering some sto-
matal regulation because of higher groundwater depth and 
salinity (Torres-García et al. 2021). Other authors demon-
strated the accumulation of osmotically active compounds 
such as proline and water-soluble carbohydrates in Z. lotus 
leaves in response to salt and/or drought stress (Rais et al. 
2017). Therefore, groundwater salinity might induce dif-
ferent adaptation mechanisms in Z. lotus to cope with this 
stress. Our results also bear consistent evidence of the salt-
tolerance of Z. lotus, at least up to a groundwater electrical 

conductivity of 11000 µS/cm, and particularly at shallow 
groundwater tables.

Coupled with DTGW and salinity gradients, temporal 
groundwater depletion might induce water-deficit stress, 
particularly in the late-summer (Naumburg et al. 2005; 
Sommer et al. 2016). Our results revealed a significant 
decrease in both Ψpd and Ψmd from spring to summer, 
although DTGW did not substantially decline during the 
growing season. We consider that the temporal fluctuations 
observed in groundwater level are insufficient to induce 
such a response, as maximum differences reported during 
the growing season reached just 18 cm in bore 8. Even daily 
fluctuations observed at the shallowest and closer-to-the-
coast sites, which can reflect groundwater use due to transpi-
ration (Dahm et al. 2002; Thibault et al. 2017) or the effect 
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of tides on the coastal aquifer (Vallejos et al. 2015; Lev-
anon et al. 2017), had little effect on groundwater salinity. 
In addition, the slight differences observed in groundwater 
temperature are insufficient to substantive affect viscosity 
related to DTGW or xylem water assent and thus, to infer 
large physiology effect on vegetation (Jensen and Taylor, 
1961). Thus, the significant decrease in the water potential 
during the growing season was due to other factors such as 
atmospheric evaporative demand. The negative response of 
both Ψpd and Ψmd to increased VPD throughout the grow-
ing season shows the decisive effect of the high summer 
temperature on plant regulation, highlighting the importance 
of VPD in promoting transpiration when water availability 
is not limiting (Sulman et al. 2016; Amitrano et al. 2019). 
However, in these GDEs where daily and seasonal ground-
water fluctuations are minor, phreatophytes run the risk of 
maximising productivity over safety (Hultine et al. 2020), 
which can also be fostered by the anisohydric behaviour of 
the species (Torres-García et al. 2021). Being an anisohy-
dric phreatophyte in arid and semiarid regions seems to be 
a risky option, which can only be overcome in some species 
by plasticity in individuals for responding to upcoming envi-
ronmental conditions through shifts in hydraulic traits such 
us higher root area to leaf area ratios or higher resistance to 
xylem cavitation (Hultine et al. 2020).

Different responses observed in Z. lotus transpiration 
rates could also be generated by differences in xylem traits 
such as sapwood area (Attia et al. 2015), or in leaf area. 
Our results revealed that Hv (the ratio of sapwood area to 
leaf area) was higher at deeper groundwater sites, as already 
reported for other phreatophytes of mesic (Zolfaghar et al. 
2014) and xeric environments (Carter and White 2009). 
Larger Hv is observed in drought-tolerant plants (Canham 
et al. 2009) because of higher sapwood area to support leaf 
area and/or less leaf area supported by such sapwood (Carter 
and White 2009). Higher sapwood area observed in plants 
at deep sites (Online Resource 12) could enhance Z. lotus 
capacity for water supply (Butterfield et al. 2021), and com-
pensate the evaporative demand, particularly in summer. On 
the one hand, Z. lotus plants with less reliable groundwater 
supply (deep DTGW) seem to make smaller investments in 
leaf area than plants at shallow sites (Online Resource 12). 
This mechanism might allow Z. lotus to cope with reduced 
water availability by decreasing their hydraulic demand, and 
therefore, their transpiration rates at a canopy level (Gazal 
et al. 2006; Carter and White 2009; Zolfaghar et al. 2014). 
Indeed, reductions of aboveground biomass are acknowl-
edged to be a common adaptation when plants cannot over-
come the anatomical and functional adaptation cost of water 
scarcity (Naumburg et al. 2005).

In contrast to Hv, wood density was largely independent 
of groundwater because it depends on development of modi-
fied cell types (e.g. xylem vessels, fibres) (Lachenbruch and 

McCulloh 2014). Likewise, our results showed that SLA was 
independent of DTGW, as has been reflected in some studies 
along water availability gradients (Nolan et al. 2017a). In 
this case, as SLA refers to the ratio of leaf area to leaf dry 
mass, or the inverse of leaf thickness (Pérez-Harguindeguy 
et al. 2013), SLA would be conserved as an adaptation to 
light levels and aridity. By contrast, leaf area reductions 
are medium-to-long-term adaptations to limit water loss 
(Zolfaghar et al. 2014) that Z. lotus might have developed 
to address DTGW coupled to weak stomatal control (i.e. 
anisohydry). Despite being able to explain the variability of 
plant traits, the weak but significant relationships obtained 
revealed how difficult it is to define the functioning of a 
complex ecosystem like a GDE by a single regression for a 
given pair of traits.

Ecophysiological thresholds and future 
considerations

Assessing the expression of multiple traits provides tools 
to predict patterns of change in GDEs in response to vari-
ability in groundwater and across seasons (Hultine et al. 
2020). A multiple-trait analysis revealed that the variability 
observed in the functioning of Z. lotus could be explained 
by the combination of both temporal variations in climatic 
conditions during the growing season of the species and 
the spatial differences in groundwater characteristics of 
the study area. Temporal differences from spring to sum-
mer showed a decrease in water potential with increased 
transpiration rates, promoted by environmental conditions 
(lower humidity, higher temperatures, and evaporative 
demand). This response could have fostered evaporative 
cooling, regulating leaf temperature for maintaining the 
plant carbon balance (Drake et al. 2018) and suggesting the 
decline in water potential was insufficient to indicate water 
stress. Thus, Z. lotus plants could avoid extreme thermal 
stress that can damage the photosynthetic machinery whilst 
preventing a steep decline in photosynthetic rate. However, 
sufficient water availability is required to maintain evapora-
tive cooling, which is essential under ongoing increases of 
both mean air temperatures and the severity of heat waves 
(Urban et al. 2017).

By contrast to temporal fluctuations, the ecophysiological 
functioning of Z. lotus across space was explained by the 
combination of groundwater availability (mainly determined 
by DTGW) and salinity (expressed by electrical conductiv-
ity). Salinity is commonly present in arid ecosystems with 
phreatophytic vegetation because of reduced precipitation, 
which prevents leaching of salts, and evaporation, which 
leaves salts behind (Glenn et al. 2013). We found that the 
DTGW gradient coincided with a salinity gradient such 
that the deepest groundwater was also saltiest. Without the 
ability to discriminate between these characteristics at high 
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depths, we observed that higher groundwater salinity com-
bined with larger DTGW affected the ecophysiology of Z. 
lotus and promoted remarkable differences along the natu-
rally occurring gradient. Notwithstanding, at shallow sites, 
the effect of salinity is blurred by greater water availability, 
suggesting that DTGW is a more determinant factor for Z. 
lotus ecophysiological functioning. Thus, we identified a 
response threshold at 12–14 m, mainly promoted by differ-
ences in gas-exchange rates, which is consistent with previ-
ous studies about the species (Torres-García et al. 2021). 
Saltier and deeper groundwater have a substantial effect on 
plants, reducing water uptake, and diminishing gas exchange 
(Kath et al. 2015). Such threshold might point to the DTGW 
limits for maintaining high ecophysiological functioning and 
could be used as a baseline for managing this GDE.

Under predicted climate change for semiarid regions of 
the Mediterranean basin, anisohydric phreatophytes like 
Z. lotus would increase their transpiration rates as well as 
the risk of hydraulic failure despite their relative drought 
tolerance (McDowell et al. 2008). For the related GDE, 
this means that an increase in groundwater discharge and 
associated increases in DTGW could also promote saliniza-
tion (Jobbágy and Jackson 2007; Runyan and D’Odorico 
2010). The expected decrease in precipitation will not sup-
port recharge or salt leaching, and salinization can continue 
until it reaches the tolerance threshold of the species. Once 
salinity intolerance is reached, further groundwater uptake 
might be compromised, along with plant survival (Nosetto 
et al. 2008). Furthermore, processes of seawater intrusion 
can occur in coastal aquifers because of the reduction in 
groundwater, what would result in ecosystem-scale changes 
in hydraulic and functional traits (Runyan and D’Odorico 
2010; Hultine et al. 2020). The concern is also whether a 
depletion in groundwater level would exceed the root growth 
rate (Orellana et al. 2012), or even if temporal fluctuations 
would have a long-term impact on plant ecophysiology. In 
the case of the long-lived phreatophyte Z. lotus, our results 
suggest that its salt-tolerance confers to the plants the abil-
ity to escape from the effect of the stress when groundwater 
availability is greater. However, phreatophytes that obtain 
groundwater from deep water tables and that already experi-
ence some physiological constraints (e.g. over 14 m in the 
case of Z. lotus), could be intensively jeopardised by ground-
water variations in the future.

Conclusions

In this research, we assessed spatiotemporal variations both 
in groundwater properties of a GDE in a semiarid region and 
in the morpho-functional traits of the phreatophyte that dom-
inates this ecosystem: Ziziphus lotus. The naturally occur-
ring DTGW gradient and associated monitoring field station 

have provided an interesting scenario to assess ecophysi-
ological differences related to water availability for phrea-
tophytic vegetation. Here, we show that both groundwater 
depth and salinity are highly connected to the ecophysio-
logical functioning of phreatophytic vegetation in drylands. 
Nevertheless, no evidence of seawater intrusion seemed to 
affect Z. lotus plants so far, and groundwater salinity could 
be related to past events of seawater rise. Differences in 
climatic conditions throughout the growing season drove 
temporal variability in Z. lotus response, with summer con-
ditions promoting carbon assimilation and water loss in this 
winter-deciduous phreatophyte, more intensively at shallow 
water tables. The multiple-trait analysis led to identifying 
spatial and temporal ecophysiological thresholds that depend 
on groundwater availability and salinity, as well as atmos-
pheric evaporative demand. Under the expected reductions 
in groundwater reservoirs as consequence of both climate 
aridification and the increase in groundwater consumption 
and drawdown by human overexploitation, understanding 
the functioning of GDEs of arid and semiarid regions and 
defining ecophysiological thresholds of their phreatophytic 
vegetation will provide valuable insight to face upcoming 
management challenges.
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