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Abstract
Marine habitat formers such as seaweeds and corals are lynchpins of coastal ecosystems, but their functional diversity and 
how it varies with scale and context remains poorly studied. Here, we investigate the functional diversity of seaweed assem-
blages across the rocky intertidal stress gradient at large (zones) and small (quadrat) scales. We quantified complementary 
metrics of emergent group richness, functional richness (functional space occupied) and functional dispersion (trait comple-
mentarity of dominant species). With increasing shore height, under species loss and turnover, responses of functional diver-
sity were scale- and metric-dependent. At the large scale, functional richness contracted while—notwithstanding a decline 
in redundancy—emergent group richness and functional dispersion were both invariant. At the small scale, all measures 
declined, with the strongest responses evident for functional and emergent group richness. Comparisons of observed versus 
expected values based on null models revealed that functional richness and dispersion were greater than expected in the low 
shore but converged with expected values higher on the shore. These results show that functional diversity of assemblages 
of marine habitat formers can be especially responsive to environmental stress gradients at small scales and for richness 
measures. Furthermore, niche-based processes at the small—neighbourhood—scale can favour co-occurrence of function-
ally distinctive species under low, but not high, stress, magnifying differences in functional diversity across environmental 
gradients. As assemblages of marine habitat formers face accelerating environmental change, further studies examining 
multiple aspects of functional diversity are needed to elucidate patterns, processes, and ecosystem consequences of com-
munity (dis-)assembly across diverse groups.
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Introduction

Biodiversity is increasingly recognised as multidimen-
sional, including taxonomic, phylogenetic, and functional 
components (Cadotte et al. 2009; Devictor et al. 2010; Ste-
vens and Gavilanez 2015). Functional traits such as body 
size, mouthpart- or leaf- morphology determine an organ-
ism’s capacity to process resources and how it experiences 

and interacts with its environment. The diversity of such 
traits—functional diversity—captures variation in the eco-
logical roles of species (Tilman 2001; Violle et al. 2007; 
Díaz et al. 2020). Although ecologists have traditionally 
focused on taxonomy-based metrics of biodiversity, incor-
porating functional diversity allows a more complete view 
of how communities respond to environmental gradients 
and human pressures (Mouillot et al. 2013; Teixidó et al. 
2018; Sol et al. 2020; Muguerza et al. 2020), elucidates the 
relationships between biodiversity and ecosystem function-
ing (e.g. Griffin et al. 2009; Lefcheck and Duffy 2015), and 
reveals the operation of niche-based processes during com-
munity assembly (Mcgill et al. 2006). Functional diversity 
approaches have been widely tested and applied in terres-
trial ecosystems structured by primary producers and habitat 
formers such as trees, grasses, and climbing plants (Roderick 
et al. 2000; Mokany and Ash 2008; Seger et al. 2017). There 
is now growing interest in applying functional diversity 
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approaches to assemblages of habitat formers in marine and 
coastal ecosystems as they rapidly reorganise under global 
change (Blowes et al. 2019; Antão et al. 2020).

Habitat-forming organisms such as corals, seagrasses, and 
seaweeds form diverse assemblages and support associated 
biodiversity and ecosystem functioning in many coastal 
environments worldwide (Stachowicz et al. 2007; Thom-
sen et al. 2010; Teagle et al. 2017; Vergés et al. 2019). In 
temperate nearshore systems, macroalgae (seaweeds) often 
dominate standing biomass and contribute to services from 
carbon sequestration to coastal defence and fisheries support 
(Smale et al. 2013). Global changes including ocean warm-
ing and acidification, invasive non-native species and coastal 
urbanisation are driving marked shifts in seaweed assem-
blages (Wernberg et al. 2011; Harley et al. 2012). Functional 
approaches to seaweed assemblages predominantly involve 
grouping species based on position in the canopy (e.g. Tait 
et al. 2014) or general morphology (e.g. Steneck and Dethier 
1994). Yet the functionality of species and assemblages is 
determined by multiple, often continuous, traits, challenging 
coarse a priori grouping (Chapin et al. 1996; Fong and Fong 
2014; Mauffrey et al. 2020a). Here, we use the rocky inter-
tidal as a test case for applying a suite of continuous traits 
to seaweeds to understand patterns of functional diversity 
across environmental gradients.

Multiple, complementary, metrics are required to describe 
how functional diversity changes along gradients of distur-
bance or stress (Villéger et al. 2008; Mouillot et al. 2013). 
Functional diversity can be quantitatively defined as the 
distribution of species in a functional space where the axes 
represent combinations of traits (Rosenfeld 2002; Mason 
et al. 2005; Villéger et al. 2008). Metrics used to describe 
functional diversity include functional richness—the total 
extent of species in trait space—and functional dispersion—
the distinctness of dominant species (Laliberté and Legendre 
2010). Functional richness and dispersion indicate the poten-
tial for species complementarity, respectively emphasising 
differences between extreme and abundant species (Mason 
et al. 2005; Kuebbing et al. 2018). Although declines in spe-
cies richness along environmental gradients are expected 
to erode redundancy and particularly affect functional rich-
ness, these changes can be buffered in systems with high 
redundancy (Micheli and Halpern 2005; but see Mouillot 
et al. 2014). Contrarily, strong environmental constraints on 
the viable traits (environmental filtering) can drive greater-
than-expected declines in functional richness (Mouillot et al. 
2013; Valdivia et al. 2017; Teixidó et al. 2018) and may 
reduce the dispersion of dominant species (Schellenberger 
Costa et al. 2017). Investigating changes in multiple facets 
of functional diversity across environmental gradients can, 
therefore, add to the traditional taxonomic focus and provide 
a complementary lens to understand community structure 

and potential consequences for ecosystem functioning (Díaz 
and Cabido 2001; Zhang et al. 2012).

The rocky intertidal has long served as a proving ground 
for ecological ideas due to its accessible marine communi-
ties and provides a model system to examine functional diver-
sity of seaweeds along an environmental stress gradient. The 
intertidal rocky shore is characterised by a vertical pattern of 
community turnover (or ‘zonation’) and decreasing species 
richness. These community changes are driven by an inter-
play between biotic interactions and species’ tolerances to 
tidal emersion period and associated stressors of desiccation, 
temperature extremes and nutrient scarcity (e.g. Schonbeck 
and Norton 1979; Underwood and Jernakoff 1984; Scrosati 
and Heaven 2007). The intertidal stress gradient can be miti-
gated by rock pools which create habitat heterogeneity on beds 
of emergent rock and commonly host different suites of less 
desiccation-tolerant species (Araújo et al. 2006; Firth et al. 
2014). The rocky shore and attendant community gradients 
remain a classic research and teaching system in ecology and 
are prominent in contemporary ecological textbooks (Begon 
et al. 1996; Singer 2016). Zonation patterns in seaweed com-
munities have been studied in rocky shores in several parts of 
the world: from the North Atlantic (Lubchenco 1980; Dring 
and Brown 1982) to high latitudes of Alaska and the Magel-
lanic region (Ingólfsson 2005). However, beyond studies of the 
traits of dominant species (Gómez and Huovinen 2011; Cap-
pelatti et al. 2019), the corresponding responses of functional 
diversity in these assemblages remain poorly appreciated.

Here, we revisit the classical pattern of intertidal seaweed 
zonation from a functional perspective. With information on 
community composition and species’ traits across four rocky 
shores in Wales (UK), we investigated the functional structure 
of seaweed assemblages along the emersion gradient (shore 
height). First, we hypothesised that the increasing stress 
towards the upper intertidal would act as an environmental 
filter, constraining viable trait values and resulting in a dispro-
portionate loss of functional diversity relative to species loss. 
Second, we hypothesised that a turnover in species composi-
tion would lead to a functional turnover in communities, as 
trait values reflect different adaptations to the upper shore envi-
ronment. To address these hypotheses, we examined changes 
in diversity across the shore height gradient at the scale of 
entire zones (total species lists) and local communities (repli-
cate quadrats). We further investigated the role of rock pools 
in modifying diversity gradients via habitat heterogeneity and 
explored functional redundancy across zones by assigning spe-
cies to clusters in trait space (i.e. emergent groups).
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Materials and methods

Study sites and survey

We studied macroalgal communities along the intertidal gra-
dient across four rocky shores in the Gower peninsula, south 
Wales (UK). The carboniferous limestone shores span ca. 
25 km, and have a tidal variation of approximately 10.4 m: 
Oxwich (sheltered; 51.55 N, 4.15 W), Bracelet Bay (semi-
exposed; 51.57 N, 3.98 W), Overton (exposed; 51.53 N, 
4.21 W) and Rhossili (exposed; 51.56 N, 4.32 W).

Surveys were conducted during the summer of 2018, 
by identifying and quantifying all living macroalgal spe-
cies within 1 × 1 m quadrats, placed 10 m apart along four 
transects. Each transect crossed the whole intertidal from 
the kelp zone in the lower shore to the end of seaweed dis-
tribution in the upper shore. We sampled the low shore at 
low tides only during spring tides (0–0.5 m above chart 
datum). Cover was estimated within quadrats with the help 
of strings which divided the quadrat into 25 sub-units (each 
unit = 4% cover). Individuals were thoroughly manipulated 
to ensure inclusion of small, understory seaweeds, therefore, 
the multi-layered communities could surpass 100% cover.

To address the intertidal emersion gradient, we used 
commonly defined zones of the low, middle, and upper 
shore (Fig. 1). In agreement with previous studies (Ste-
phenson and Stephenson 1949; Ballantine 1961; John-
son et al. 1998; Chappuis et al. 2014), these zones were 
defined by their relative position in the intertidal combined 
with the identity of dominant Phaeophytes (fucoids and 
kelp). Specifically, zones were delimited where the fol-
lowing species alone or together comprised in excess of 
80% of the total macroalgal cover: low shore—Laminaria 
digitata and Fucus serratus; mid-shore—Ascophyllum 
nodosum and F. vesiculosus; upper shore—Pelvetia can-
aliculata and F. spiralis. To obtain a clearer distinction 
between zones, we excluded quadrats falling in the transi-
tion between zones as defined above; accordingly, zones 
were separated by at least 20 m. Although zone serves as 
an indicator of shore height, and thus emersion period, 
the exact position of these zones along shore height gradi-
ents depends on additional factors such as wave exposure 
and disturbance history (Ballantine 1961). These three 
main zones are thus conceptualised as ‘community types’ 
positioned sequentially with respect to shore height rather 
than communities occurring at precise shore heights. In 
our study, the characteristic fucoids or kelps in each zone 

Fig. 1  Conceptual illustration 
of study scales and description 
of diversity metrics. Flags next 
to each metric indicate at which 
scale they were measured: in 
green, small scale (quadrat) and 
in orange, large scale (zone). 
Triangles indicate cases where 
we also compared observed to 
null values

α-diversity

Quadrat scale

Zone scale

Species richness
   Number of species

Functional dispersion
  Mean distance of species 
  to the centroid of trait space

Emergent group richness
   Number of groups

Functional richness
  Proportion of the maximum 
  convex hull of whole assembly

β-diversity

Species nestedness
   Communities with fewer species 
   are subsets of communities 
   with more species

Functional nestedness
   Functional space of some 
   communities are subsets of other 
   communities 

Species turnover
   Replacement of species between
   communities

Functional turnover
   Replacement of parts of functional
   space between communitiesscale null model
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comprise a minority of the assemblage (low shore: 5%; 
mid-shore: 6%; upper shore: 11%) and our findings are 
robust to exclusion of these species (Appendix 1, ESM). 
Details on the sampling effort across zones are in Appen-
dix 2, ESM.

Habitats

We distinguish between two simple habitat types on the 
rocky shore: emergent rock and rock pool. During the sur-
vey, we recorded the percentage cover of these two habitat 
types. Preliminary analyses revealed that the distribution of 
rock pool cover was highly uneven, with half of the quadrats 
having zero cover. Furthermore, the relationship between 
rock pool cover on seaweed species richness was complex 
and mostly realised within the first 5% of cover. Accordingly, 
for simplicity, we treat rock pools as a binary presence (≥ 5% 
cover) or absence (< 5%) variable. Quadrats that landed at 
least partially on gullies or deep rock pools (> 50 cm depth) 
were not considered, since the projected area would be much 
larger than the other quadrats.

After sampling all shores, we randomly selected a sub-
set of quadrats to obtain an equal representation of combi-
nations of shore zone (low, middle, and upper shore) and 
habitat (presence/absence of rock pools). The final analysed 
community data comprised 84 quadrats, 14 for each zone 
and habitat category combination. Of the selected quadrats, 
15 were from Bracelet Bay, and 22, 23, and 24 from the 
remaining sites.

Trait data

Traits were obtained from a database in development since 
2016 (see Mauffrey et al. 2020b). For the creation of this 
trait database, we conducted frequent summer sampling trips 
predominantly in south Wales; all but two of the species in 
this study were sampled for trait screening from the same 
sites as the survey data used here. We collected a minimum 
of 3 individuals per species (mean and mode = 6, max = 45). 
This wide range in replicates is due to the varying abun-
dance of species, and to our efforts to sample abundant 
species at different sites to capture their intraspecific vari-
ation (Cappelatti et al. 2019). To obtain comparable traits, 
we restricted our study to erect macroalgae only (i.e. not 
encrusting forms).

The traits we chose are “functional markers” (sensu Gar-
nier et al. 2004) and thus are proxies for physiological or 
physical functions. We summarise the traits in Table 1 and 
describe methods for their collection as well as ecological 
relevance in Appendix 3 (ESM). Prior to analyses, all traits 
were log-transformed and scaled to zero mean and unit vari-
ance, to approach normal distributions and have the same 

range of variation. Traits were always measured at the spe-
cies level; however, some species require laboratory identifi-
cation, so they were only identified at the genus level. In the 
case of Ulva, this genus was further divided into two groups 
related to obvious phenotypic differences. For the artificial 
taxa “green sheet”, we used trait averages from U. linza and 
U. lactuca; for “green tubular” we used trait averages from 
U. intestinalis and U. compressa.

Trait space of species

Species’ functional trait differences were characterised based 
on a Gower distance matrix, at the whole study scale. Traits 
were weighted to ensure that all three aspects of functional-
ity considered here (photosynthesis, physical structure, com-
plexity) were equally represented (Table 1). To visualise spe-
cies’ functional diversity as captured in the Gower distance 
matrix, we used principal coordinate analysis (PCoA) and 
displayed the first two axes, which explained 61% of inertia 
(Fig. 2; see Appendix 3, ESM, for further details of the qual-
ity of functional space representation).

To examine species’ contributions to functional diversity 
and redundancy across zones, we also addressed species’ 
occupancy of parts of the trait space via emergent groups. 
Because emergent groups are based on measured traits, they 
should be a more accurate representation of species’ dif-
ferences than the traditional functional groups (Mauffrey 
et al. 2020a). In our study communities, emergent groups 
allowed us to observe redundancy (species within groups 
share similar trait values) and how parts of the trait space (as 
occupied by different groups) change across zones. Species 
were grouped based on the Gower distance matrix, using the 
k-medoids clustering method (Reynolds et al. 2006) applied 
with pam in package cluster (Maechler et al. 2019). We 
tested increasing numbers of groups and selected the highest 
number of groups (i.e. 6) where all pairwise contrasts using 
PERMANOVA were significant at α = 0.05 (Hervé 2020; 
Mauffrey et al. 2020a).

Diversity metrics

We calculated species and functional diversity metrics at 
both the large (zone) and small (quadrat) scales (Fig. 1). The 
larger-scale includes all quadrats within a zone across the 
four study sites and provides the most complete estimate of 
the species occupying the specific zone in the area/region. 
This scale of diversity includes large-scale heterogeneity 
across sites and represents species that may contribute to 
ecosystem functionality over larger spatial and temporal 
scales (Isbell et al. 2017). The smaller scale of the 1 × 1 m 
quadrat (the local or “neighbourhood” scale) represents the 
scale at which direct biotic interactions occur between sea-
weeds (e.g. Edwards and Connell 2012). Seaweeds respond 
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to the stresses associated with shore height at both scales, 
but community composition also varies at the quadrat scale 
due to differences in local factors such as the presence of 
rock pools.

We calculated four complementary α-diversity metrics: 
species richness, emergent group richness, functional rich-
ness, and functional dispersion (Fig. 1). Species and emer-
gent group richness are simply the total number of species 
or emergent groups present at a focal scale. While species 
richness is a standard metric of biodiversity in rocky shore 
assemblages (e.g. Scrosati et al. 2011) and treats all species 
equally, emergent group richness is based on species’ rela-
tive positions in trait space and only declines when entire 
regions of trait space (emergent groups) have been vacated. 
Functional richness is the size of the functional space filled 
by the community, based on the convex hull delimited by 
the most extreme points in functional space (Cornwell et al. 
2006; Villéger et al. 2008). We scaled functional richness to 
a hypothetical community with all species in the study pool, 
to benchmark values relative to the potential maximum. 
Functional dispersion is the mean abundance-weighted 
distance in multidimensional space of individual species to 
their overall centroid, thus measuring species’ distribution in 
trait space (Laliberté and Legendre 2010). To calculate func-
tional richness and dispersion, we selected PCoA axes from 
the Gower distance matrix among communities (details on 
the PCoA are in Appendix 3, ESM). As the above-described 

metrics quantify diversity for individual communities, they 
are measures of α-diversity. All α-diversity indices were cal-
culated using function dbFD on package FD (Laliberté and 
Legendre 2010).

Patterns of β-diversity reveal underlying changes in com-
munity structure along environmental gradients (Legendre 
2014). While taxonomic β-diversity captures the changes in 
the identities of the species, functional β-diversity captures 
changes in the locations of species in trait space. To examine 
β-diversity across zones, we used the Sorensen index, which 
measures the ratio of shared species (or overlapping volume 
of convex hull) among assemblages to the mean number of 
species (or mean convex hull volume) occurring in a single 
assemblage (Gotelli and Chao 2013). The returned index 
is a measure of the multiple site dissimilarity among com-
munities (Baselga 2010). At both species and functional 
levels, β-diversity was partitioned between nestedness and 
turnover components (Fig. 1). These indices were calculated 
with functions beta.multi (species incidences) and func-
tional.beta.multi (based on the PCoA) in package Betapart 
(Baselga and Orme 2012).

Statistical analyses

To investigate if the observed functional diversity metrics 
of local—small scale—communities were lower or higher 
than expected based on the number of species within a 

Fig. 2  Principal Coordinates of 
study species based on 9 traits. 
Each point represents a species 
(n = 50) and is coloured by 
the emergent group. Emergent 
groups (EGs) were created from 
a trait-based Gower distance 
and, therefore, may not be fully 
represented in this two-dimen-
sional plot. Density plots show 
the distribution of emergent 
groups along each PCo axis. 
Arrows summarise correlations 
between traits and axes
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community, we used a null model approach. Null commu-
nities (999 in each case) were constructed by shuffling spe-
cies’ position on the trait matrix, thus holding constant the 
overall functional structure of seaweeds and species rich-
ness within each observed community (quadrat), while ran-
domizing the identities of species in each null community 
(Swenson 2014). We then calculated the standardized effect 
sizes (SES) of functional richness and functional disper-
sion, which compares observed to null values (Cadotte and 
Tucker 2017). For each focal aspect of functional diversity 
(richness, divergence) and each community (n = 84) a single 
SES value was generated. We used one-sample t tests (or 
Wilcoxon rank tests, when data distribution was not normal) 
to compare observed SES values against null SES values.

We used linear models to investigate the additive and 
interacting effect of shore height (zone) and habitat het-
erogeneity (presence/absence of rock pool) on species and 
functional α-diversity metrics, and on SES values. We also 
examined the observed α-diversity metrics across sites and 
found no significant differences in their means; the site was 
then dropped from the analysis as our focus was on general 
effects of zone (Appendix 4, ESM).

Results

Species distribution in the trait space

Fifty taxa (referred to as species hereafter) were found in 
the survey: 43 identified at the species level, and seven at 
the genus level (including the two artificial groups of Ulva). 
The majority (n = 33) were red algae (phylum Rhodophyta), 
followed by brown algae (n = 10, class Phaeophyceae) and 
green algae (n = 7, phylum Chlorophyta).

The first PCo axis was most strongly related to traits 
linked to photosynthesis: species with higher PCo 1 val-
ues tended to display reduced specific thallus area (STA), 
reduced surface area to volume ratio (SA:V) and have 
thicker thalli (Fig. 2; Table 1). The second axis mainly 
related to traits representing space use and structure: spe-
cies with higher PCo 2 values tended to have lower thal-
lus dry matter content (TDMC) and branching order, and 
higher surface area to perimeter ratio (SA:P). Generally, PCo 
1 translates into a trade-off between resource acquisition and 
conservation (i.e. an “economic” trade-off) and PCo 2 into a 
complexity / structural gradient. All trait-axis and trait-trait 
correlations are shown in Appendix 3, ESM. Overall, species 
were distributed unevenly across the functional space and, 
therefore, emergent groups had varying numbers of species 
(from 3 to 22, Figs. 2 and 4). The large richness observed 
within groups 1 and 4 shows they hold a high degree of 
redundancy.

Large scale (zone level) diversity patterns

With increasing shore height, the number of species in each 
zone declined (Fig. 3a). Changes in the taxonomic compo-
sition between zones (β-diversity) were divided relatively 
evenly between nestedness and turnover, regardless of rock 
pool presence or absence (Fig. 3b). How this taxonomic 
loss and turnover translated into changes at the functional 
level depended on the metric. Functional richness peaked 
in the mid-shore, despite a continuous decline in species 
richness (Fig. 3c). Meanwhile, functional dispersion did 
not vary strongly across-shore levels, notwithstanding a 
slight increase towards higher zones (Fig. 3c). In addition 
to changes in the size of the functional space, there were 
also subtle changes in the relative location of the space, i.e. 
functional β-diversity (Fig. 3d–e). Unlike at the taxonomic 
level, these changes were dominated by nestedness rather 
than turnover (Fig. 3d–f). Indeed, the only observable func-
tional turnover is with the expansion driven by Ascophyl-
lum nodosum in the mid shore (Fig. 3e), while the rest of 
the changes are clearly via loss of parts of the trait space, 
especially in the absence of rock pools (Fig. 3f). Despite 
losses in functional richness, the presence of all emergent 
groups across zones illustrates the persistence of the overall 
‘framework’ of functional space (Fig. 4a). A further look 
into emergent group richness between zones indicates that 
species loss was stronger within some groups than others 
(Fig. 4b), thus unevenly eroding functional redundancy. 
Overall, across zones, taxonomic diversity and composition 
changed more strongly than their functional counterparts.

Small scale (quadrat level) diversity patterns

Contrary to the zone scale, all α-diversity metrics decreased 
towards the higher shore at the small-scale (Table  2; 
Fig. 5a–d). Overall, the negative effect of height on diver-
sity was stronger for species and functional richness than for 
emergent group richness and functional dispersion. Changes 
in local communities across zones were not constant: while 
species richness continuously decreased (Fig. 5a), the func-
tional metrics only changed from middle to upper shore 
(Fig. 5b–d). Emergent group richness was strongly related 
to species richness  (R2 = 0.83; see Appendix 5, ESM, for 
relationships between functional diversity metrics and spe-
cies richness). Moreover, the presence of rock pools had an 
additive effect on all diversity metrics (Table 2). Generally, 
at the small scale, we observed further declines in functional 
diversity metrics with height, which were not evident at the 
large scale. 

The standardised effect size (SES; comparing observed to 
null communities) showed different patterns for functional 
richness and dispersion (Table 2; Fig. 5e–f). Greater-than-
expected values were observed for functional richness at 
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Fig. 3  Seaweed functional ⍺- and β-diversity across intertidal zones 
(large scale), separated between the taxonomic and functional level. 
Panels a–b show species richness across zones and taxonomic 
β-diversity (divided into nestedness and turnover; for all communi-
ties and those with and without rock pools—RP). Panel c shows indi-
ces of functional richness (scaled to the potential maximum; details 
in Methods) and functional dispersion at each zone (all quadrats 
together). Panel d contains a representation of the two-dimensional 
trait space of the species pool (n = 50; PCoA biplot), indicating the 
zones with a coloured polygon. Species abbreviations are shown for 
those at the edges of the trait space at each height (complete names 
are given in Fig.  4). Panel e shows the same functional space, but 

separately for each zone and habitat type. Circle sizes on d represent 
five frequency categories (< 10, < 20, < 30, < 40 and < 50), with cir-
cle colours referring to the algae group (brown algae: filled orange, 
green algae: hollow green, and red algae: hollow red); circle sizes on 
e are proportional to species local frequency. Nestedness is observed 
when a polygon is inside a larger one (represented in grey on panel 
e), while turnover is an expansion of a polygon (indicated in dashed 
line). Although we did not address β-diversity between habitats, we 
indicate the addition to the functional space with the presence of rock 
pools at the upper shore (pixelated pink). Barplots in panel f show the 
partition of functional β-diversity components, overall and for the two 
habitat categories
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the low shore with rock pools (Fig. 5e) and for functional 
dispersion in both low shore communities and middle 
shore with rock pools (Fig. 5f). The presence of rock pools 
had an additive effect on the SES of functional dispersion 
(F = 7.174, p < 0.01) but not on the SES of functional rich-
ness (F = 0.175, p = 0.7; Table 2). After obtaining these 
results, we ran the null models again, constraining the 
randomisations within zones, so that we could isolate the 
local effects from the whole-intertidal gradient effects. The 
over-dispersion was still observed, with patterns largely 
unchanged (Fig. S6, Appendix 6), indicating the role of 
small-scale (local) species interactions in driving functional 
over-dispersion. Overall, in low shore communities, species 
exhibited a greater total spread in trait space (functional rich-
ness) and abundant species were more distant to the centroid 
(functional dispersion) than expected, and this was further 
boosted in environments with rock pools. Contrary to our 
hypothesis there was no evidence that functional diversity 
was being limited due to environmental filtering at the upper 
shore (no under-dispersion).

Discussion

Our results show how the species and functional diversity 
of seaweed assemblages—as an example of marine habi-
tat formers—change over the intertidal gradient. With the 
loss and turnover of species across the gradient, functional 
diversity declines in a metric- and scale-dependent fash-
ion. This study demonstrates the use of modern functional 

diversity approaches in seaweed assemblages and illustrates 
how functional diversity can deepen our understanding of 
changes in marine habitat former communities under envi-
ronmental stress.

Consistent with expectations, functional diversity 
decreased with increasing shore height, although metric- 
and scale-dependently. Functional diversity often varies as 
a function of the facets and spatial scale considered, which 
may yield varying responses to environmental gradients 
(Smith et al. 2013). At the large scale, functional richness 
was the only metric to respond, illustrating its greater sen-
sitivity to species-level changes and reflecting a decline in 
species with extreme functional traits in the upper shore. 
Further, the persistence of all emergent functional groups in 
the face of species loss can be attributed to the presence of 
redundant species within each group; although it is notable 
that certain emergent groups and upper shore assemblages 
have low redundancy and are thus vulnerable to future spe-
cies loss. The finding that upper shore communities are 
nested within lower shore communities, rather than occu-
pying a different part of trait space, illustrates a maintenance 
of the “core” functional structure, despite declines in func-
tional richness. Together, the functional metrics reveal that, 
at large scales, the upper shore assemblages contain less 
functionally contrasting species, but retain a similar func-
tional framework.

At the small scale, all metrics responded to the height 
gradient, although more strongly from middle to upper 
shore. For functional and emergent group richness, this pat-
tern—changes only from middle to upper shore—can be 
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explained by their non-linear responses to species richness 
(Appendix 5). From middle to upper shore, where species 
richness reaches low levels at the small scale, declines in 
richness are occurring closer to the first—steep—section of 
the curve (few species). In contrast, from the lower to middle 
shore, declines in species richness take place further along 
the curves, so they cause smaller changes in functional and 
emergent group richness. However, the explanation for the 
similar response of functional dispersion is not as simple 
because, in theory, this metric is invariant to species richness 
(Laliberté and Legendre 2010). Besides a species richness 
mediated scale-dependency, the scale is also expected to 
determine the relative importance of environmental filter-
ing and biotic interactions (Smith et al. 2013). Thus, spe-
cies interactions may also help explain scale-dependent 
functional diversity changes across the intertidal gradient.

Indeed, functional over-dispersion points towards a key 
role of species interactions in the assembly of functionally 
diverse seaweeds. In particular, two biotic mechanisms may 

be largely responsible. First, interspecific competition, which 
has been widely documented in seaweeds (Hawkins and 
Hartnoll 1985; Edwards and Connell 2012), may result in 
the exclusion of functionally similar species from local com-
munities (Macarthur and Levins 1967; Adler et al. 2013), 
promoting dissimilarity in traits of co-occurring species. 
The stronger over-dispersion in the more favourable lower 
shore further supports a key role of competition (Bertness 
and Callaway 1994) and is consistent with a study using 
categorical traits across seaweeds and invertebrates on Chil-
ean rocky shores (Valdivia et al. 2017). Second, positive 
interactions such as facilitation and associational defences 
could also support species with contrasting traits (Teagle 
et al. 2017). The co-occurrence of functionally distinct spe-
cies may be further promoted by small-scale environmental 
heterogeneity, as indicated by the enhancement of functional 
diversity metrics in the presence of rock pools. Overall, it 
seems that local-scale processes—likely involving spe-
cies interactions—drove over-dispersion and effectively 

Table 2  Summary of main effects from (generalised) linear models ((G)LMs) with diversity measures (α-diversity)  as responses,  and shore 
zone, presence of rock pool (RP), and their interaction as predictors

For species and emergent group richness we used generalised linear models (family: quasipoisson); for functional richness and dispersion we 
used general linear models. Significant values are in bold
RPa RP absent, RPp  RP present, SES standardised effect size

GLMs Deviance Res. deviance F value p value

Species richness
 Zone 96.333 105.873 40.618  < 0.001
 RP 13.117 92.756 11.061  < 0.001
 Zone * RP 0.006 92.749 0.002 0.99

Emergent group richness
 Zone 14.373 33.648 18.411  < 0.001
 RP 1.922 31.725 4.924  < 0.05
 Zone * RP 0.124 31.601 0.159 0.85

LMs Sum of squares Mean SSq F value p value

Functional richness
 Zone 70,355 35,177 39.325  < 0.001
 RP 11,249 11,249 12.575  < 0.001
 Zone * RP 2327 1164 1.301 0.270

Functional dispersion
 Zone 94.670 47.340 13.955  < 0.001
 RP 38.390 38.390 11.317 0.001
 Zone * RP 2.470 1.240 0.365 0.69

SES Functional richness
 Zone 1.590 0.795 1.211 0.300
 RP 0.110 0.115 0.175 0.680
 Zone * RP 0.270 0.133 0.202 0.820

SES functional dispersion
 Zone 4.778 2.389 6.733 0.002
 RP 2.546 2.546 7.174 0.009
 Zone * RP 1.330 0.665 1.875 0.160
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boosted functional diversity in the low shore and may help 
explain scale-dependent functional diversity responses to 
shore height. Our finding that over-dispersion patterns were 
maintained even when null models were restricted to spe-
cies occurring within each respective zone further strength-
ens this conclusion. Nevertheless, although observational 
studies such as ours describe naturally-occurring patterns of 

functional diversity and can show where functional diversity 
deviates from that expected under random assembly, only 
experiments can attempt to pin-down the relative and indi-
vidual roles of the environment and species interactions in 
driving these patterns (Adler et al. 2013; Kraft et al. 2015).

Functional diversity approaches directly address the 
trait differences between species and, therefore, provide 
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more insight than species-based measures into the poten-
tial consequences for ecosystem functioning (e.g. Le 
Bagousse-Pinguet et al. 2019). In our study, at the small 
scale, declines in functional richness and dispersion with 
increasing shore height reflect a reduction in both the total 
range of available traits and the distinctness of abundant 
species, potentially diminishing niche complementarity 
between co-occurring species (Cardinale et  al. 2007; 
Stachowicz et al. 2008; Gamfeldt et al. 2015) and conse-
quently ecosystem functioning (Griffin et al. 2009; Cadotte 
et al. 2011; Cadotte 2017). At the large scale, the smaller 
and nested functional space of upper shore communities, 
together with their lower redundancy, collectively indi-
cate that these communities exhibit a reduced capacity to 
exploit environmental niches (Cardinale et al. 2000) and 
an impaired ability to withstand environmental changes 
(Loreau et al. 2003). Nevertheless, the persistence at this 
large scale of both functional dispersion and emergent 
group richness, as well as the maintenance of subset of 
core trait space, suggests resistance of some aspects of 
ecosystem functioning to the environmental gradient.

In conclusion, our results show that distinct aspects of 
seaweed functional diversity decline alongside species rich-
ness across the intertidal gradient. Yet patterns of change 
in functional diversity are scale-dependent: declines are 
stronger at the smaller scale, where both lower species rich-
ness and species interactions appear to be shaping functional 
diversity. These results bring a new perspective to the well-
studied pattern of seaweed intertidal zonation while pointing 
towards the role of local, biotic factors in shaping seaweed 
community assembly and resulting functional diversity. 
Our study also demonstrates the importance of consider-
ing different spatial scales in studies of changes in biodi-
versity across communities (Chase et al. 2018). Functional 
diversity studies in marine species have traditionally been 
limited by a lack of appropriate trait data. However, these 
are now emerging for corals (Madin et al. 2016), seagrasses 
(de los Santos et al. 2016) and seaweeds (Mauffrey et al. 
2020b). Applying these newly available functional traits to 
assemblages of marine habitat formers across temporal—or 
as we did, spatial—gradients allows the characterisation of 
context-dependent functional structure (e.g., redundancy) as 
well as insights into potential sensitivity to environmental 
change and attendant species loss. Future studies could use 
similar approaches along gradients such as coastal devel-
opment, ocean acidification (volcanic vents), and climate 
change-driven species loss or turnover (see Teixidó et al. 
2018; Hall-Spencer et al. 2008; Wernberg et al. 2011; Pes-
sarrodona et al. 2019).
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