Skip to main content

Advertisement

Log in

Diversity–biomass relationship across forest layers: implications for niche complementarity and selection effects

  • Ecosystem ecology – original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Forest stratification plays a crucial role in light interception and plant photosynthetic activities. However, despite the increased number of studies on biodiversity–ecosystem function, we still lack information on how stratification in tropical forests modulates biodiversity effects. Moreover, there is less investigation and argument on the role of species and functional traits in forest layers. Here, we analysed from a perspective of forest layer (sub-canopy, canopy and emergent species layers), the relationship between diversity and aboveground biomass (AGB), focusing on functional diversity and dominance, and underlying mechanisms such as niche complementarity and selection. The sub-canopy layer had the highest species richness and diversity, while the emergent layer had the highest AGB. Species richness–AGB relationship was positive for each forest layer, but stronger for sub-canopy layer than for canopy and emergent layers. Total AGB was strongly correlated with functional diversity, leaf and wood traits of species in the sub-canopy and canopy layers. This suggests that sub-canopy and canopy species are major drivers of stand diversity–AGB relationship, and that resource filtering by canopy or emergent trees may not reduce the strength of diversity–AGB relationship in the sub-canopy layer. We argue that complementary resource use by sub-canopy species that supports niche complementarity, is a key mechanism driving AGB in natural forests. Selection effects are most evident in emergent species and niche complementarity effects for sub-canopy and canopy species, supporting arguments that AGB is affected by sub-canopy species’ efficient use of limited resources despite competition from emergent species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bates D, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67(1):1–48. https://doi.org/10.18637/jss.v067.i01

    Article  Google Scholar 

  • Batista NDA, Bianchini E, Carvalho EDS, Pimenta JA (2014) Architecture of tree species of different strata developing in environments with the same light intensity in a semi-deciduous forest in southern Brazil. Acta Bot Brasilica 28:34–45. https://doi.org/10.1590/S0102-33062014000100004

    Article  Google Scholar 

  • Carroll IT, Cardinale BJ, Nisbet RM (2011) Niche and fitness differences relate the maintenance of diversity to ecosystem function. Ecology 92:1157–1165. https://doi.org/10.1890/10-0302.1

    Article  PubMed  Google Scholar 

  • Chen HYH, Klinka K (2003) Aboveground productivity of western hemlock and western redcedar mixed-species stands in southern coastal British Columbia. For Ecol Manag 184:55–64. https://doi.org/10.1016/S0378-1127(03)00148-8

    Article  Google Scholar 

  • Fargione J, Tilman D, Dybzinski R, Lambers JHR, Clark C, Harpole WS, Knops JMH, Reich PB, Loreau M (2007) From selection to complementarity: shifts in the causes of biodiversity-productivity relationships in a long-term biodiversity experiment. Proc Royal Soc B 274:871–876

    Article  Google Scholar 

  • Forrester DI, Bauhus J (2016) A review of processes behind diversity—productivity relationships in forests. Curr For Rep 2:45–61. https://doi.org/10.1007/s40725-016-0031-2

    Article  Google Scholar 

  • Geldenhuys CJ (2002) Tropical secondary forest management in Africa: reality and perspectives. Food and Agriculture Organization, Rome

    Google Scholar 

  • Grace JB, Bollen KA (2005) Interpreting the results from multiple regression and structural equation models. Bull Ecol Soc Am 86:283–295. https://doi.org/10.1890/0012-9623(2007)

    Article  Google Scholar 

  • Gravel D, Canham CD, Beaudet M, Messier C (2010) Shade tolerance, canopy gaps and mechanisms of coexistence of forest trees. Oikos 119:475–484. https://doi.org/10.1111/j.1600-0706.2009.17441.x

    Article  Google Scholar 

  • Guilherme FAG, Morellato LPC, Assis MA (2004) Horizontal and vertical tree community structure in a lowland atlantic rain forest, southeastern Brazil. Rev Bras Botânica 27:725–737. https://doi.org/10.1590/S0100-84042004000400012

    Article  Google Scholar 

  • Ishii H, Asano S (2010) The role of crown architecture, leaf phenology and photosynthetic activity in promoting complementary use of light among coexisting species in temperate forests. Ecol Res 25:715–722. https://doi.org/10.1007/s11284-009-0668-4

    Article  Google Scholar 

  • Ishii H, Azuma W, Nabeshima E (2013) The need for a canopy perspective to understand the importance of phenotypic plasticity for promoting species coexistence and light-use complementarity in forest ecosystems. Ecol Res 28:191–198. https://doi.org/10.1007/s11284-012-1025-6

    Article  Google Scholar 

  • Jacob M, Leuschner C, Thomas FM (2010) Productivity of temperate broad-leaved forest stands differing in tree species diversity. Ann For Sci 67:503. https://doi.org/10.1051/forest/2010005

    Article  Google Scholar 

  • Kattge J, Diaz S, Lavorel S, Prentice IC, Leadley P, Bönisch G, Garnier E, Westoby M, Reich PB, Wright IJ, Cornelissen JHC, Violle C, Harrisson SP, Van Bodegom PM, Reichstein M, Enquist BJ, Soudzilovskaia NA, Ackerly DD, Anand M, Atkin O, Bahn M, Baker TR, Baldocchi D, Bekker R, Blanco CC, Blonder B, Bond WJ, Bradstock R, Bunker DE, Casanoves F, Cavender-Bares J, Chambers JQ, Chapin FS III, Chave J, Coomes D, Cornwell WK, Craine JM, Dobrin BH, Duarte L, Durka W, Elser J, Esser G, Estiarte M, Fagan WF, Fanf J, Fernandez-Mendez F, Fidelis A, Finegan B, Flores O, Ford H, Frank D, Freschet GT, Fyllas NM, Gallagher RV, Green WA, Gutierrez AG, Hickler T, Higgins SI, Hodgson JG, Jalili A, Jansen S, Joly CA, Kerkhoff AJ, Kirkup D, Kitajima K, Kleyer M, Klotz S, Knops JMH, Kramer K, Kühn I, Kurokawa H, Laughlin D, Lee TD, Leishman M, Lens F, Lenz T, Lewis SL, Lloyd J, Llusià J, Louault F, Ma S, Mahecha MD, Manning P, Massad T, Medlyn BE, Messier J, Moles AT, Müller SC, Nadrowski K, Naeem S, Niinemets Ü, Nöllert S, Nüske A, Ogaya R, Oleksyn J, Onipchenko VG, Onoda Y, Ordoñez J, Overbeck G, Ozinga WA, Patiño S, Paula S, Pausas JG, Peñuelas J, Phillips OL, Pillar V, Poorter H, Poorter L, Poschlod P, Prinzing A, Proulx R, Rammig A, Reinsch S, Reu B, Sack L, Salgado-Negret B, Sardans J, Shiodera S, Shipley B, Siefert A, Sosinski E, Soussana J-F, Swaine E, Swenson N, Thompson K, Thornton P, Waldram M, Weiher E, White M, White S, Wright SJ, Yguel B, Zaehle S, Zanne AE, Wirth C (2011) TRY - a global database of plant traits. Glob Chang Biol 17:2905–2935. https://doi.org/10.1111/j.1365-2486.2011.02451.x

    Article  PubMed Central  Google Scholar 

  • Kelty MJ (2006) The role of species mixtures in plantation forestry. For Ecol Manag 233:195–204

    Article  Google Scholar 

  • King DA, Wright SJ, Connell JH (2006) The contribution of interspecific variation in maximum tree height to tropical and temperate diversity. J Trop Ecol 22:11–24. https://doi.org/10.1017/S0266467405002774

    Article  Google Scholar 

  • Kuznetsova A, Brockhoff PB, Christensen R (2016) lmerTest: tests in linear mixed effects models. R package version 2.0-32

  • Laliberté E, Legendre P, Shipley B (2015) Measuring functional diversity (FD) from multiple traits, and other tools for functional ecology. R package version 1.0–12

  • Lasky JR, Uriarte M, Boukili VK, Erickson DL, John Kress W, Chazdon RL (2014) The relationship between tree biodiversity and biomass dynamics changes with tropical forest succession. Ecol Lett 17:1158–1167. https://doi.org/10.1111/ele.12322

    Article  PubMed  Google Scholar 

  • Laughlin DC (2011) Nitrification is linked to dominant leaf traits rather than functional diversity. J Ecol 99:1091–1099. https://doi.org/10.1111/j.1365-2745.2011.01856.x

    Article  Google Scholar 

  • Liang J, Crowther TW, Picard N, Wiser S, Zhou M, Alberti G, Schulze E, Mcguire AD, Bozzato F, Pretzsch H, De-Miguel S, Paquette A, Hérault B, Scherer-lorenzen M, Barrett CB, Glick HB, Hengeveld GM, Nabuurs G, Pfautsch S, Viana H, Vibrans AC, Ammer C, Schall P, Verbyla D, Tchebakova N, Fischer M, Watson JV, Chen HYH, Lei X, Schelhaas M, Lu H, Gianelle D, Parfenova EI, Salas C, Lee E, Lee B, Kim HS, Bruelheide H, Coomes DA, Piotto D, Sunderland T, Schmid B, Gourlet-fleury S, Sonké B, Tavani R, Zhu J, Brandl S, Baraloto C, Frizzera L, Balazi R, Oleksyn J, Zawiła-Niedźwiecki T, Bouriaud O, Bussotti F, Finér L, Jaroszewicz B, Jucker T, Valladares F, Jagodzinski AM, Peri PL, Gonmadje C, Marthy W, O’Brien T, Martin EH, Marshall AR, Rovero F, Bitariho R, Niklaus PA, Alvarez-loayza P, Chamuya N, Valencia R, Mortier F, Wortel V, Engone-obiang NL, Ferreira LV, Odeke D, Vasquez R, Lewis SL, Reich PB (2016) Positive biodiversity-productivity relationship predominant in global forests. Science 354:aaf8957. https://doi.org/10.1126/science.aaf8957

    Article  PubMed  CAS  Google Scholar 

  • Lin D, Anderson-teixeira KJ, Lai J, Mi X, Ren H, Ma K (2016) Traits of dominant tree species predict local scale variation in forest aboveground and topsoil carbon stocks. Plant Soil 409:435–446. https://doi.org/10.1007/s11104-016-2976-0

    Article  CAS  Google Scholar 

  • Lopez OR, Farris-lopez K, Montgomery RA, Givnish TJ (2008) Leaf phenology in relation to canopy closure in southern Appalachian trees. Am J Bot 95:1395–1407

    Article  PubMed  Google Scholar 

  • Loreau M, Hector A (2001) Partitioning selection and complementarity in biodiversity experiments. Nature 412:72–76. https://doi.org/10.1038/35083573

    Article  PubMed  CAS  Google Scholar 

  • Mason NWH, de Bello F, Dolezal J, Leps J (2011) Niche overlap reveals the effects of competition, disturbance and contrasting assembly processes in experimental grassland communities. J Ecol 99:788–796. https://doi.org/10.1111/j.1365-2745.2011.01801.x

    Article  Google Scholar 

  • Mensah S, Veldtman R, Assogbadjo AE, Glèlè Kakaï R, Seifert T (2016a) Tree species diversity promotes aboveground carbon storage through functional diversity and functional dominance. Ecol Evol 6:7546–7557. https://doi.org/10.1002/ece3.2525

    Article  PubMed  PubMed Central  Google Scholar 

  • Mensah S, Glèlè Kakaï R, Seifert T (2016b) Patterns of biomass allocation between foliage and woody structure: the effects of tree size and specific functional traits. Ann For Res 59:49–60

    Article  Google Scholar 

  • Mensah S, Veldtman R, du Toit B, Glèlè Kakaï R, Seifert T (2016c) Aboveground biomass and carbon in a South African Mistbelt forest and the relationships with tree species diversity and forest structures. Forests 79:1–17. https://doi.org/10.3390/f7040079

    Article  Google Scholar 

  • Mensah S, Pienaar OL, Kunneke A, du Toit B, Seydack A, Uhl E, Pretzsch H, Seifert T (2018) Height-diameter allometry in South Africa’s indigenous high forests: assessing generic models performance and function forms. For Ecol Manage 410:1–11. https://doi.org/10.1016/j.foreco.2017.12.030

    Article  Google Scholar 

  • Mittelbach GG, Steiner CF, Scheiner SM, Gross KL, Reynolds HL, Waide RB, Willig MR, Dodson SI, Gough L (2001) What is the observed relationship between species richness and productivity? Ecology 82:2381–2396. https://doi.org/10.1890/03-8021

    Article  Google Scholar 

  • Morin X, Fahse L, Scherer-Lorenzen M, Bugmann H (2011) Tree species richness promotes productivity in temperate forests through strong complementarity between species. Ecol Lett 14:1211–1219. https://doi.org/10.1111/j.1461-0248.2011.01691.x

    Article  PubMed  Google Scholar 

  • Nakagawa S, Schielzeth H (2013) A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol Evol 4:133–142

    Article  Google Scholar 

  • Onoda Y, Westoby M, Adler PB, Choong AMF, Clissold FJ, Cornelissen JHC, Díaz S, Dominy NJ, Elgart A, Enrico L, Fine PVA, Howard JJ, Jalili A, Kitajima K, Kurokawa H, McArthur C, Lucas PW, Markesteijn L, Pérez-Harguindeguy N, Poorter L, Richards L, Santiago LS, Sosinski EE, Van Bael SA, Warton DI, Wright IJ, Wright SJ, Yamashita N (2011) Global patterns of leaf mechanical properties. Ecol Lett 14:301–312. https://doi.org/10.1111/j.1461-0248.2010.01582.x

    Article  PubMed  Google Scholar 

  • Paquette A, Messier C (2011) The effect of biodiversity on tree productivity: from temperate to boreal forests. Glob Ecol Biogeogr 20:170–180. https://doi.org/10.1111/j.1466-8238.2010.00592.x

    Article  Google Scholar 

  • Poorter L, Bongers F (2006) Leaf traits are good predictors of plant performance across 53 rain forest species. Ecology 87:1733–1743. https://doi.org/10.1890/0012-9658(2006)

    Article  PubMed  Google Scholar 

  • Prado-junior JA, Schiavini I, Vale VS, Arantes CS, Van Der Sande MT, Lohbeck M, Poorter L (2016) Conservative species drive biomass productivity in tropical dry forests. J Ecol 104:817–827. https://doi.org/10.1111/1365-2745.12543

    Article  Google Scholar 

  • Pretzsch H (2014) Canopy space filling and tree crown morphology in mixed-species stands compared with monocultures. For Ecol Manage 327:251–264. https://doi.org/10.1016/j.foreco.2014.04.027

    Article  Google Scholar 

  • Reich PB, Knops J, Tilman D, Craine J, Ellsworth D, Tjoelker M, Lee T, Wedin D, Naeem S, Bahauddin D, Hendrey G, Jose S, Wrage K, Goth J, Bengston W (2001) Plant diversity enhances ecosystem responses to elevated CO2 and nitrogen deposition. Nature 410:809–810

    Article  PubMed  CAS  Google Scholar 

  • Rosseel Y (2012) lavaan: an R package for structural equation modeling. J Stat Softw 48:1–36

    Article  Google Scholar 

  • Ruiz-Benito P, Gómez-Aparicio L, Paquette A, Messier C, Kattge J, Zavala M (2014) Diversity increases carbon storage and tree productivity in Spanish forests. Glob Ecol Biogeogr 23:311–322. https://doi.org/10.1111/geb.12126

    Article  Google Scholar 

  • Seidel D, Leuschner C, Scherber C, Beyer F, Wommelsdorf T, Cashman MJ, Fehrmann L (2013) The relationship between tree species richness, canopy space exploration and productivity in a temperate broad-leaf mixed forest. For Ecol Manag 310:366–374. https://doi.org/10.1016/j.foreco.2013.08.058

    Article  Google Scholar 

  • Seifert T, Seifert S, Seydack A, Durrheim G, von Gadow K (2014) Competition effects in an afrotemperate forest. For Ecosyst 1:13. https://doi.org/10.1186/s40663-014-0013-4

    Article  Google Scholar 

  • Tilman D, Lehman CL, Thomson KT (1997) Plant diversity and ecosystem productivity: theoretical considerations. Proc Natl Acad Sci USA 94:1857–1861. https://doi.org/10.1073/pnas.94.5.1857

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vance-Chalcraft HD, Willig MR, Cox SB, Lugo AE, Scatena FN (2010) Relationship between aboveground biomass and multiple measures of biodiversity in subtropical forest of Puerto Rico. Biotropica 42:290–299. https://doi.org/10.1111/j.1744-7429.2009.00600.x

    Article  Google Scholar 

  • Vilà M, Vayreda J, Comas L, Ibánez JJ, Mata T, Obón B (2007) Species richness and wood production: a positive association in Mediterranean forests. Ecol Lett 10:241–250. https://doi.org/10.1111/j.1461-0248.2007.01016.x

    Article  PubMed  Google Scholar 

  • Villéger S, Mason NWH, Mouillot D (2008) New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89:2290–2301. https://doi.org/10.1890/07-1206.1

    Article  PubMed  Google Scholar 

  • Waide RB, Willig MR, Steiner CF, Mittelbach G, Gough L, Dodson SI, Juday GP, Parmenter R (1999) The relationship between productivity and species richness. Annu Rev Ecol Syst 30:257–300. https://doi.org/10.1146/annurev.ecolsys.30.1.257

    Article  Google Scholar 

  • Wang W, Lei X, Ma Z, Kneeshaw DD, Peng C (2011) Positive relationship between aboveground carbon stocks and structural diversity in spruce-dominated forest stands in New Brunswick, Canada. For Sci 57:506–515. https://doi.org/10.1111/oik.01525

    Article  Google Scholar 

  • Whittaker R, Heegaard E (2003) What is the observed relationship between species richness and productivity? Ecology 84:3384–3390. https://doi.org/10.1007/s00442-003-1343-z

    Article  Google Scholar 

  • Wu X, Wang X, Tang Z, Shen Z, Zheng C, Xia X, Fang J (2015) The relationship between species richness and biomass changes from boreal to subtropical forests in China. Ecography (Cop) 38:602–613. https://doi.org/10.1111/ecog.00940

    Article  CAS  Google Scholar 

  • Yachi S, Loreau M (2007) Does complementary resource use enhance ecosystem functioning? A model of light competition in plant communities. Ecol Lett 10:54–62. https://doi.org/10.1111/j.1461-0248.2006.00994.x

    Article  PubMed  Google Scholar 

  • Zanne AE, Lopez-Gonzalez G, Coomes DA, Ilic J, Jansen S, Lewis SL, Miller RB, Swenson NG, Wiemann MC, Chave J (2009) Data from: towards a worldwide wood economics spectrum. Dryad Digit Repos. https://doi.org/10.5061/dryad.234

    Article  Google Scholar 

  • Zhang Y, Chen HYH, Taylor AR (2017) Positive species diversity and above-ground biomass relationships are ubiquitous across forest strata despite interference from overstorey trees. Funct Ecol 31:419–426. https://doi.org/10.1111/1365-2435.12699

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the African Forest Forum through a research grant provided to the first author. We also acknowledge the “Consolidoc” financial support from the Research Division of Stellenbosch University. The authors are grateful to the two anonymous reviewers and the editor for their comments on the earlier versions of this article.

Author information

Authors and Affiliations

Authors

Contributions

SM and TS originally formulated the idea. SM, TS and BdT conceived the sampling design. SM collected and analysed the data. SM wrote the manuscript with editorial support from BdT and TS.

Corresponding author

Correspondence to Sylvanus Mensah.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human and animal rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by Amy Freestone.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mensah, S., du Toit, B. & Seifert, T. Diversity–biomass relationship across forest layers: implications for niche complementarity and selection effects. Oecologia 187, 783–795 (2018). https://doi.org/10.1007/s00442-018-4144-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-018-4144-0

Keywords

Navigation