Skip to main content
Log in

Prey diversity effects on ecosystem functioning depend on consumer identity and prey composition

  • Community ecology – original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Consumer diversity effects on ecosystem functioning are highly context dependent and are determined by consumer specialization and other consumer and prey specific traits such as growth and grazing rates. Despite complex reciprocal interactions between consumers and their prey, few experimental studies have focused on prey diversity effects on consumer dynamics and trophic transfer. In microbial microcosms, we investigated effects of algal prey diversity (one, two and four species) on the production, evenness and grazing rates of 4 ciliate consumers, differing in grazing preferences and rates. Prey diversity increased prey biovolume in the absence of consumers and had opposing effects on different consumers, depending on their specialization and their preferred prey. Consumers profited from prey mixtures compared to monocultures of non-preferred prey, but responded negatively if preferred prey species were offered together with other species. Prey diversity increased consumer evenness by preventing dominance of specific consumers, demonstrating that the loss of prey species may have cascading effects resulting in reduced consumer diversity. Our study emphasizes that not only the degree of specialization but also the selectivity for certain prey species within the dietary niche may alter the consequences of changing prey diversity in a food web context.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bruno JF, Boyer KE, Duffy JE, Lee SC (2008) Relative and interactive effects of plant and grazer richness in a benthic marine community. Ecology 89:2518–2528. doi:10.1890/07-1345.1

    Article  PubMed  Google Scholar 

  • Cardinale BJ et al (2006) Effects of biodiversity on the functioning of trophic groups and ecosystems. Nature 443:989–992. doi:10.1038/nature05202

    Article  CAS  PubMed  Google Scholar 

  • Cardinale BJ et al (2011) The functional role of producer diversity in ecosystems. Am J Bot 98:572–592. doi:10.3732/ajb.1000364

    Article  PubMed  Google Scholar 

  • Cardinale BJ et al (2012) Biodiversity loss and its impact on humanity. Nature 486:59–67. doi:10.1038/nature11148

    Article  CAS  PubMed  Google Scholar 

  • DeMott WR, Gulati RD, Siewertsen K (1998) Effects of phosphorus-deficient diets on the carbon and phosphorus balance of Daphnia magna. Limnol Oceanogr 43:1147–1161. doi:10.4319/lo.1998.43.6.1147

    Article  CAS  Google Scholar 

  • Duffy JE, Richardson JP, Canuel EA (2003) Grazer diversity effects on ecosystem functioning in seagrass beds. Ecol Lett 6:637–645. doi:10.1046/j.1461-0248.2003.00474.x

    Article  Google Scholar 

  • Duffy JE, Cardinale BJ, France KE, McIntyre PB, Thébault E, Loreau M (2007) The functional role of biodiversity in ecosystems: incorporating trophic complexity. Ecol Lett 10:522–538

    Article  PubMed  Google Scholar 

  • Dzialowski AR, Smith VH (2008) Nutrient dependent effects of consumer identity and diversity on freshwater ecosystem function. Freshw Biol 53:148–158

    Google Scholar 

  • Edwards KF, Aquilino KM, Best RJ, Sellheim KL, Stachowicz JJ (2010) Prey diversity is associated with weaker consumer effects in a meta-analysis of benthic marine experiments. Ecol Lett 13:194–201. doi:10.1111/j.1461-0248.2009.01417.x

    Article  PubMed  Google Scholar 

  • Engelhardt KAM, Ritchie ME (2001) Effects of macrophyte species richness on wetland ecosystem functioning and services. Nature 411:687–689

    Article  CAS  PubMed  Google Scholar 

  • Filip J, Müller LL, Hillebrand H, Moorthi SD (2012) Nutritional mode and specialization alter protist consumer diversity effects on prey assemblages. Aquat Microb Ecol 66:257–269. doi:10.3354/ame01573

    Article  Google Scholar 

  • Filip J, Bauer B, Hillebrand H, Beniermann A, Gaedke U, Moorthi SD (2014) Multitrophic diversity effects depend on consumer specialization and species-specific growth and grazing rates. Oikos 123:912–922. doi:10.1111/oik.01219

    Article  Google Scholar 

  • Finke DL, Snyder WE (2008) Niche partitioning increases resource exploitation by diverse communities. Science 321:1488–1490. doi:10.1126/science.1160854

    Article  CAS  PubMed  Google Scholar 

  • Gamfeldt L, Hillebrand H, Jonsson PR (2005) Species richness changes across two trophic levels simultaneously affect prey and consumer biomass. Ecol Lett 8:696–703

    Article  Google Scholar 

  • Griffin JN, Byrnes JEK, Cardinale BJ (2013) Effects of predator richness on prey suppression: a meta-analysis. Ecology 94:2180–2187. doi:10.1890/13-0179.1

    Article  PubMed  Google Scholar 

  • Hamback PA, Jon A, Ericson L (2000) Associational resistance: insect damage to purple loosestrife reduced in thickets of sweet gale. Ecology 81:1784–1794. doi:10.2307/177270

    Article  Google Scholar 

  • Hillebrand H, Cardinale BJ (2004) Consumer effects decline with prey diversity. Ecol Lett 7:192–201. doi:10.1111/j.1461-0248.2004.00570.x

    Article  Google Scholar 

  • Hillebrand H, Matthiessen B (2009) Biodiversity in a complex world: consolidation and progress in functional biodiversity research. Ecol Lett 12:1405–1419. doi:10.1111/j.1461-0248.2009.01388.x

    Article  PubMed  Google Scholar 

  • Hillebrand H, Dürselen C-D, Kirschtel D, Pollingher U, Zohary T (1999) Biovolume calculation for pelagic and benthic microalgae. J Phycol 35:403–424

    Article  Google Scholar 

  • Hillebrand H, Bennett DM, Cadotte MW (2008) Consequences of dominance: a review of evenness effects on local and regional ecosystem processes. Ecology 89:1510–1520. doi:10.1890/07-1053.1

    Article  PubMed  Google Scholar 

  • Hooper DU et al (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75:3–35. doi:10.1890/04-0922

    Article  Google Scholar 

  • Katano I, Doi H, Eriksson BK, Hillebrand H (2015) A cross-system meta-analysis reveals coupled predation effects on prey biomass and diversity. Oikos 124:1427–1435. doi:10.1111/oik.02430

    Article  Google Scholar 

  • Kratina P, Vos M, Anholt BR (2007) Species diversity modulates predation. Ecology 88:1917–1923

    Article  PubMed  Google Scholar 

  • Loreau M, Hector A (2001) Partitioning selection and complementarity in biodiversity experiments. Nature 412:72–76

    Article  CAS  PubMed  Google Scholar 

  • McFadden GI, Melkonian M (1986) Use of Hepes buffer for microalgal culture media and fixation for electron microscopy. Phycologia 25:551–557. doi:10.2216/i0031-8884-25-4-551.1

    Article  CAS  Google Scholar 

  • Moorthi S, Hillebrand H, Wahl M, Berninger U-G (2008) Consumer diversity enhances secondary production by complementarity effects in experimental ciliate assemblages. Estuaries Coasts 31:152–162. doi:10.1007/s12237-007-9015-6

    Article  Google Scholar 

  • Naeem S, Hahn DR, Schuurman G (2000) Producer-decomposer co-dependency influences biodiversity effects. Nature 403:762–764

    Article  CAS  PubMed  Google Scholar 

  • Narwani A, Mazumder A (2010) Community composition and consumer identity determine the effect of resource species diversity on rates of consumption. Ecology 91:3441–3447. doi:10.1890/10-0850.1

    Article  PubMed  Google Scholar 

  • Petchey OL et al (2004) Species loss and the structure and functioning of multitrophic aquatic systems. Oikos 104:467–478

    Article  Google Scholar 

  • R Core Team (2012) R: a language and environment for statistical computing. R foundation for statistical computing, Vienna. http://www.R-project.org/

  • Saleem M, Fetzer I, Harms H, Chatzinotas A (2013) Diversity of protists and bacteria determines predation performance and stability. ISME J 7:1912–1921. doi:10.1038/ismej.2013.95

    Article  PubMed  PubMed Central  Google Scholar 

  • Srivastava DS et al (2009) Diversity has stronger top-down than bottom-up effects on decomposition. Ecology 90:1073–1083

    Article  PubMed  Google Scholar 

  • Stachowicz JJ, Bruno JF, Duffy EJ (2007) Understanding the effects of marine biodiversity on communities and ecosystems. Annu Rev Ecol Evol Syst 38:739–766

    Article  Google Scholar 

  • Steiner CF (2001) The effects of prey heterogeneity and consumer identity on the limitation of trophic-level biomass. Ecology 82:2495–2506

    Article  Google Scholar 

  • Steiner CF, Darcy-Hall TL, Dorn NJ, Garcia EA, Mittelbach GG, Wojdak JM (2005) The influence of consumer diversity and indirect facilitation on trophic level biomass and stability. Oikos 110:556–566

    Article  Google Scholar 

  • Stoecker DK, Gifford DJ (1994) Preservation of marine planktonic ciliates: losses and cell shrinkage during fixation. Mar Ecol Prog Ser 110:293–299

    Article  Google Scholar 

  • Straub CS, Snyder WE (2006) Species identity dominates the relationship between predator biodiversity and herbivore suppression. Ecology 87:277–282

    Article  PubMed  Google Scholar 

  • Thébault E, Loreau M (2003) Food-web constraints on biodiversity–ecosystem functioning relationships. Proc Natl Acad Sci USA 100:14949–14954

    Article  PubMed  PubMed Central  Google Scholar 

  • Wahl M, Hay M (1995) Associational resistance and shared doom: effects of epibiosis on herbivory. Oecologia 102:329–340. doi:10.1007/BF00329800

    Article  PubMed  Google Scholar 

  • Wohlgemuth D, Solan M, Godbold JA (2016) Specific arrangements of species dominance can be more influential than evenness in maintaining ecosystem process and function. Sci Rep 6:39325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Worsfold NT, Warren PH, Petchey OL (2009) Context-dependent effects of predator removal from experimental microcosm communities. Oikos 118:1319–1326

    Article  Google Scholar 

  • Zedler JB, Callaway JC, Sullivan G (2001) Declining biodiversity: why species matter and how their functions might be restored in Californian tidal marshes. Bioscience 51:1005–1017

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the German Research Foundation (DFG, MO 1931/1-1, MO 1931/3-1).

Author information

Authors and Affiliations

Authors

Contributions

Author contribution statement

HH and SDM conceived and designed the experiment. DW and JF conducted the experiment. HH, DW and SDM analyzed the data. DW and SDM wrote the manuscript, other authors provided content-related and editorial advice.

Corresponding author

Correspondence to Stefanie D. Moorthi.

Additional information

Communicated by Joel Trexler.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 61 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wohlgemuth, D., Filip, J., Hillebrand, H. et al. Prey diversity effects on ecosystem functioning depend on consumer identity and prey composition. Oecologia 184, 653–661 (2017). https://doi.org/10.1007/s00442-017-3892-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-017-3892-6

Keywords

Navigation