Skip to main content

Advertisement

Log in

Treeline advances and associated shifts in the ground vegetation alter fine root dynamics and mycelia production in the South and Polar Urals

  • Global change ecology – original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Climate warming is shifting the elevational boundary between forests and tundra upwards, but the related belowground responses are poorly understood. In the pristine South and Polar Urals with shifts of the treeline ecotone documented by historical photographs, we investigated fine root dynamics and production of extramatrical mycorrhizal mycelia (EMM) along four elevational transects reaching from the closed forest to the treeless tundra. In addition, we analysed elevational differences in climate and vegetation structure, and excavated trees to estimate related changes in the partitioning between below- and aboveground biomass. Fine root biomass of trees (<2 mm) increased by 13–79% with elevation, paralleled by a 35–72% increase in ground vegetation fine roots from the closed forest to the tundra. During the first year of decomposition, mass loss of fine root litter from different vegetation types was greater at lower elevations in the forest–tundra ecotone. The ratio between fine roots of trees and stem biomass largely increased with elevation in both regions, but these increases were not accompanied by a distinct production of EMM. Production of EMM, however, increased with the presence of ectomycorrhizal trees at the transition from the tundra to the forest. Our results imply that the recorded upward expansion of forest into former tundra in the Ural Mountains by 4–8 m per decade is decreasing the partitioning of plant biomass to fine roots. They further suggest that climate-driven forest advances will alter EMM production rates with potential feedbacks on soil carbon and nutrient cycling in these ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anadon-Rosell A, Rixen C, Cherubini P, Wipf S, Hagedorn F, Dawes MA (2014) Growth and phenology of three dwarf shrub species in a six-year soil warming experiment at the alpine treeline. PLoS One 9:e100577

    Article  PubMed  PubMed Central  Google Scholar 

  • Andreyashkina NI, Peshkova NV (2005) Changes in plant cover structure and productivity along an altitudinal gradient (the Polar Urals). Russ J Ecol 36:354–357. doi:10.1007/s11184-005-0084-0

    Article  Google Scholar 

  • Assessment ACI (2005) Scientific Report. Cambridge University Press. www.acia.uaf.edu/pages/scientific.html. Accessed 22 July 2016

  • Bahram M, Põlme S, Kõljalg U, Zarre S, Tedersoo L (2012) Regional and local patterns of ectomycorrhizal fungal diversity and community structure along an altitudinal gradient in the Hyrcanian forests of northern Iran. New Phytol 193:465–473. doi:10.1111/j.1469-8137.2011.03927.x

    Article  PubMed  Google Scholar 

  • Bai E, Li S, Xu W, Li W, Dai W, Jiang P (2013) A meta-analysis of experimental warming effects on terrestrial nitrogen pools and dynamics. New Phytol 199:441–451

    Article  Google Scholar 

  • Bakker MR, Augusto L, Achat DL (2006) Fine root distribution of trees and understory in mature stands of maritime pine (Pinus pinaster) on dry and humid sites. Plant Soil 286:37–51. doi:10.1007/s11104-006-9024-4

    Article  CAS  Google Scholar 

  • Berg B (1984) Decomposition of root litter and some factors regulating the process: long-term root litter decomposition in a Scots pine forest. Soil Biol Biochem 16:609–617

    Article  CAS  Google Scholar 

  • Braeker OU (1981) Der Alterstrend bei Jahrringdichten und Jahrringbreiten von Nadelhölzern und sein Ausgleich. Mitteilungen Forstliche Bundes-Versuchsanstalt, Wien 142:75–102

    Google Scholar 

  • Carvalhais N, Forkel M, Khomik M, Bellarby J, Jung M, Migliavacca M, Mu M, Saatchi S, Santoro M, Thurner M, Weber U, Ahrens B, Beer C, Cescatti A, Randerson JT, Reichstein M (2014) Global covariation of carbon turnover times with climate in terrestrial ecosystems. Nature 514:213–217. doi:10.1038/nature13731

    CAS  PubMed  Google Scholar 

  • Chapin FS, Shaver GR, Giblin AE, Nadelhoffer KJ, Laundre JA (1995) Responses of arctic tundra to experimental and observed changes in climate. Ecology 76:694–711

    Article  Google Scholar 

  • Chen H, Rygiewicz P, Johnson M, Harmon M, Tian H, Tang J (2008) Chemistry and long-term decomposition of roots of Douglas-fir grown under elevated atmospheric carbon dioxide and warming conditions. J Environ Qual 37:1327–1336

    Article  CAS  PubMed  Google Scholar 

  • Clemmensen KE, Michelsen A, Jonasson S, Shaver GR (2006) Increased ectomycorrhizal fungal abundance after long-term fertilization and warming of two arctic tundra ecosystems. New Phytol 171:391–404. doi:10.1111/j.1469-8137.2006.01778.x

    Article  PubMed  Google Scholar 

  • Clemmensen K, Bahr A, Ovaskainen O, Dahlberg A, Ekblad A, Wallander H, Stenlid J, Finlay R, Wardle D, Lindahl B (2013) Roots and associated fungi drive long-term carbon sequestration in boreal forest. Science 339:1615–1618

    Article  CAS  PubMed  Google Scholar 

  • Crawley MJ (2012) The R book. Wiley, Chichester

    Book  Google Scholar 

  • Cutler DF, Rudall P, Gasson P, Gale R (1987) Root identification manual of trees and shrubs. A guide to the anatomy of roots of trees and shrubs hardy in Britain and Northern Europe. Chapman and Hall, London

  • Dawes MA, Philipson CD, Fonti P, Bebi P, Hättenschwiler S, Hagedorn F, Rixen C (2015) Soil warming and CO2 enrichment induce biomass shifts in alpine tree line vegetation. Glob Chang Biol 21:2005–2021

    Article  PubMed  Google Scholar 

  • Dawes MA, Schleppi P, Hättenschwiler S, Rixen C, Hagedorn F (2016) Soil warming opens the nitrogen cycle at the alpine treeline. Glob Chang Biol doi:10.1111/gcb.13365

  • Devi N, Hagedorn F, Moiseev P, Bugmann H, Shiyatov S, Mazepa V, Rigling A (2008) Expanding forests and changing growth forms of Siberian larch at the Polar Urals treeline during the 20th century. Glob Chang Biol 14:1581–1591. doi:10.1111/j.1365-2486.2008.01583.x

    Article  Google Scholar 

  • Ekblad A, Wallander H, Godbold DL, Cruz C, Johnson D, Baldrian P, Björk RG, Epron D, Kieliszewska-Rokicka B, Kjøller R, Kraigher H, Matzner E, Neumann J, Plassard C (2013) The production and turnover of extramatrical mycelium of ectomycorrhizal fungi in forest soils: role in carbon cycling. Plant Soil 366:1–27. doi:10.1007/s11104-013-1630-3

    Article  CAS  Google Scholar 

  • Esper J, Schweingruber FH (2004) Large-scale treeline changes recorded in Siberia. Geophys Res Lett 31:6. doi:10.1029/2003GL019178

    Article  Google Scholar 

  • Fu X, Wang J, Di Y, Wang H (2015) Differences in Fine-Root Biomass of Trees and Understory Vegetation among Stand Types in Subtropical Forests. PLoS One 10:e0128894

    Article  PubMed  PubMed Central  Google Scholar 

  • Gärtner H, Schweingruber FH (2013) Microscopic preparation techniques for plant stem analysis. Verlag Dr Kessel, Remagen, p 78

    Google Scholar 

  • Gonzalez P, Neilson RP, Lenihan JM, Drapek RJ (2010) Global patterns in the vulnerability of ecosystems to vegetation shifts due to climate change. Glob Ecol Biogeogr 19:755–768. doi:10.1111/j.1466-8238.2010.00558.x

    Article  Google Scholar 

  • Grace J, Berninger F, Nagy L (2002) Impacts of climate change on the tree line. Ann Bot 90:537–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grafius DR, Malanson GP (2015) Biomass distributions in dwarf tree, krummholz, and tundra vegetation in the alpine treeline ecotone. Phys Geogr 36:337–352

    Article  Google Scholar 

  • Grayston S, Vaughan D, Jones D (1997) Rhizosphere carbon flow in trees, in comparison with annual plants: the importance of root exudation and its impact on microbial activity and nutrient availability. Appl Soil Ecol 5:29–56

    Article  Google Scholar 

  • Hagedorn F, Shiyatov SG, Mazepa VS, Devi NM, Grigor’ev AA, Bartysh AA, Fomin VV, Kapralov DS, Terent’ev M, Bugman H, Rigling A, Moiseev PA (2014) Treeline advances along the Urals mountain range–driven by improved winter conditions? Glob Chang Biol 20:3530–3543. doi:10.1111/gcb.12613

    Article  PubMed  Google Scholar 

  • Handa IT, Hagedorn F, Hättenschwiler S (2008) No stimulation in root production in response to 4 years of in situ CO2 enrichment at the Swiss treeline. Funct Ecol 22:348–358

    Article  Google Scholar 

  • Handa IT, Aerts R, Berendse F, Berg MP, Bruder A, Butenschoen O, Chauvet E, Gessner MO, Jabiol J, Makkonen M, McKie BG, Malmqvist B, Peeters ETHM, Scheu S, Schmid B, van Ruijven J, Vos VCA, Hattenschwiler S (2014) Consequences of biodiversity loss for litter decomposition across biomes. Nature 509:218–221. doi:10.1038/nature13247

    Article  CAS  PubMed  Google Scholar 

  • Harsch MA, Hulme PE, McGlone MS, Duncan RP (2009) Are treelines advancing? A global meta-analysis of treeline response to climate warming. Ecol Lett 12:1040–1049

    Article  PubMed  Google Scholar 

  • Hartley IP, Garnett MH, Sommerkorn M, Hopkins DW, Fletcher BJ, Sloan VL, Phoenix GK, Wookey PA (2012) A potential loss of carbon associated with greater plant growth in the European Arctic. Nat Clim Chang 2:875–879

    Article  CAS  Google Scholar 

  • Helmisaari H-S, Derome J, Nöjd P, Kukkola M (2007) Fine root biomass in relation to site and stand characteristics in Norway spruce and Scots pine stands. Tree Physiol 27:1493–1504

    Article  CAS  PubMed  Google Scholar 

  • Hertel D, Schöling D (2011a) Below-ground response of Norway spruce to at Mt. Brocken (Germany)—A re-assessment of Central Europe’s northernmost treeline. Flora-Morphol Distrib Funct Ecol Plants 206:127–135

    Article  Google Scholar 

  • Hertel D, Schöling D (2011b) Norway spruce shows contrasting changes in below-versus above-ground carbon partitioning towards the alpine treeline: evidence from a central European case study. Arct Antarct Alp Res 43:46–55

    Article  Google Scholar 

  • Hiltbrunner D, Zimmermann S, Hagedorn F (2013) Afforestation with Norway spruce on a subalpine pasture alters carbon dynamics but only moderately affects soil carbon storage. Biogeochemistry 115:251–266

    Article  CAS  Google Scholar 

  • Hobbie SE (1992) Effects of plant species on nutrient cycling. Trends Ecol Evol 7:336–339

    Article  CAS  PubMed  Google Scholar 

  • Hobbie EA (2006) Carbon allocation to ectomycorrhizal fungi correlates with belowground allocation in culture studies. Ecology 87:563–569

    Article  PubMed  Google Scholar 

  • Högberg P, Nordgren A, Buchmann N, Taylor AF, Ekblad A, Högberg MN, Nyberg G, Ottosson-Löfvenius M, Read DJ (2001) Large-scale forest girdling shows that current photosynthesis drives soil respiration. Nature 411:789–792

    Article  PubMed  Google Scholar 

  • Holmes RL (1995) Dendrochronological program library (computer program). The University of Arizona, Laboratory of Tree Ring Research, Tucson, Arizona

    Google Scholar 

  • Holtmeier F-K (2009) Mountain timberlines: ecology, patchiness, and dynamics. Springer, Berlin

    Book  Google Scholar 

  • IPCC (2013) Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

  • Iversen CM, Sloan VL, Sullivan PF, Euskirchen ES, McGuire AD, Norby RJ, Walker AP, Warren JM, Wullschleger SD (2015) The unseen iceberg: plant roots in arctic tundra. New Phytol 205:34–58

    Article  PubMed  Google Scholar 

  • Kammer A, Hagedorn F, Shevchenko I, Leifeld J, Guggenberger G, Goryacheva T, Rigling A, Moiseev P (2009) Treeline shifts in the Ural mountains affect soil organic matter dynamics. Glob Chang Biol 15:1570–1583. doi:10.1111/j.1365-2486.2009.01856.x

    Article  Google Scholar 

  • Kernaghan G, Harper K (2001) Community structure of ectomycorrhizal fungi across an alpine/subalpine ecotone. Ecography 24:181–188

    Article  Google Scholar 

  • Kirdyanov AV, Hagedorn F, Knorre AA, Fedotova EV, Vaganov EA, Naurzbaev MM, Moiseev PA, Rigling A (2012) 20th century tree-line advance and vegetation changes along an altitudinal transect in the Putorana Mountains, northern Siberia. Boreas 41:56–67

    Article  Google Scholar 

  • Körner C (2003) Alpine plant life, 2nd edn. Springer, Berlin

    Book  Google Scholar 

  • Körner C (2012) Alpine treelines: functional ecology of the global high elevation tree limits. Springer, Basel

    Book  Google Scholar 

  • Körner C, Paulsen J (2004) A world-wide study of high altitude treeline temperatures. J Biogeogr 31:713–732

    Article  Google Scholar 

  • Kullman L (2002) Rapid recent range-margin rise of tree and shrub species in the Swedish Scandes. J Ecol 90:68–77

    Article  Google Scholar 

  • Leppälammi-Kujansuu J, Ostonen I, Strömgren M, Nilsson LO, Kleja DB, Sah SP, Helmisaari HS (2013) Effects of long-term temperature and nutrient manipulation on Norway spruce fine roots and mycelia production. Plant Soil 366:287–303. doi:10.1007/s11104-012-1431-0

    Article  Google Scholar 

  • Leuschner C, Moser G, Bertsch C, Röderstein M, Hertel D (2007) Large altitudinal increase in tree root/shoot ratio in tropical mountain forests of Ecuador. Basic Appl Ecol 8:219–230. doi:10.1016/j.baae.2006.02.004

    Article  Google Scholar 

  • Liang E, Wang Y, Piao S, Lu X, Camarero JJ, Zhu H, Zhu L, Ellison AM, Ciais P, Peñuelas J (2016) Species interactions slow warming-induced upward shifts of treelines on the Tibetan Plateau. Proc Natl Acad Sci 113:4380–4385. doi:10.1073/pnas.1520582113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Chen Y, Zhang J, Yang W, Peng Z, He X, Deng C, He R (2016) Changes in foliar litter decomposition of woody plants with elevation across an alpine forest–tundra ecotone in eastern Tibet Plateau. Plant Ecol 217:495–504. doi:10.1007/s11258-016-0594-9

    Article  Google Scholar 

  • Lloyd AH (2005) Ecological histories from Alaskan tree lines provide insight into future change. Ecology 86:1687–1695. doi:10.2307/3450611

    Article  Google Scholar 

  • Luo T, Brown S, Pan Y, Shi P, Ouyang H, Yu Z, Zhu H (2005) Root biomass along subtropical to alpine gradients: global implication from Tibetan transect studies. For Ecol Manag 206:349–363

    Article  Google Scholar 

  • Melillo JM, Butler S, Johnson J, Mohan J, Steudler P, Lux H, Burrows E, Bowles F, Smith R, Scott L (2011) Soil warming, carbon–nitrogen interactions, and forest carbon budgets. Proc Natl Acad Sci 108:9508–9512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moiseev PA, Shiyatov SG (2003) Vegetation dynamics at the treeline ecotone in the Ural highlands Russia. Alpine biodiversity in Europe. Springer, Berlin, pp 423–435

    Google Scholar 

  • Moser G, Leuschner C, Hertel D, Graefe S, Soethe N, Iost S (2011) Elevation effects on the carbon budget of tropical mountain forests (S Ecuador): the role of the belowground compartment. Glob Chang Biol 17:2211–2226

    Article  Google Scholar 

  • Myers-Smith IH, Bruce CF, Martin W, Martin H, Trevor L, Daan B, Ken DT, Marc M-F, Ute S-K, Esther L, Stéphane B, Pascale R, Luise H, Andrew T, Laura Siegwart C, Stef W, Jelte R, Shelly AR, Niels Martin S, Gabriela S-S, Sonja W, Christian R, Cécile BM, Susanna V, Scott G, Laia A-H, Sarah E, Virve R, Jeffrey W, Paul G, Howard EE, David SH (2011) Shrub expansion in tundra ecosystems: dynamics, impacts and research priorities. Environ Res Lett 6:045509

    Article  Google Scholar 

  • Nylund JE, Wallander H (1992) Ergosterol analysis as a means of quantifying mycorrhizal biomass. In: Norris JR, Read DJ, Varma AK (eds) Methods in microbiology. Academic Press, London, pp 77–88

    Google Scholar 

  • Olthof I, Pouliot D (2010) Treeline vegetation composition and change in Canada’s western Subarctic from AVHRR and canopy reflectance modeling. Remote Sens Environ 114:805–815. doi:10.1016/j.rse.2009.11.017

    Article  Google Scholar 

  • Parker TC, Subke J-A, Wookey PA (2015) Rapid carbon turnover beneath shrub and tree vegetation is associated with low soil carbon stocks at a subarctic treeline. Glob Chang Biol 21:2070–2081. doi:10.1111/gcb.12793

    Article  PubMed  PubMed Central  Google Scholar 

  • Persson H (1980) Spatial distribution of fine-root growth, mortality and decomposition in a young scots pine stand in Central Sweden. Oikos 34:77–87. doi:10.2307/3544552

    Article  Google Scholar 

  • R Core Team (2014) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/

  • Rinn F (1998) TSAP V 3.5: computer program for tree-ring analysis and presentation. Frank Rinn Distribution, Germany

  • Schweingruber F (1978) Mikroskopische Holzanatomie. Anatomie microscopique du bois. Microscopic wood anatomy. Structural variability of stems and twigs in recent and subfossil woods from Central Europe. Zug, Switzerland.: Swiss Fed. Inst. For. Res., Birmensdorf. Edition Zurcherdoi

  • Simard SW, Jones MD, Durall DM (2003) Carbon and nutrient fluxes within and between mycorrhizal plants. Mycorrhizal ecology. Springer, Berlin, pp 33–74

    Google Scholar 

  • Sloan VL, Fletcher BJ, Press MC, Williams M, Phoenix GK (2013) Leaf and fine root carbon stocks and turnover are coupled across Arctic ecosystems. Glob Chang Biol 19:3668–3676. doi:10.1111/gcb.12322

    Article  PubMed  Google Scholar 

  • Smith SE, Read DJ (1996) Mycorrhizal symbiosis. Cambridge Academic press, Cambridge

    Google Scholar 

  • Solly E, Schoning I, Boch S, Muller J, Socher S, Trumbore SE, Schrumpf M (2013) Mean age of carbon in fine roots from temperate forests and grasslands with different management. Biogeosciences 10:4833–4843

    Article  Google Scholar 

  • Solly EF, Schöning I, Boch S, Kandeler E, Marhan S, Michalzik B, Müller J, Zscheischler J, Trumbore SE, Schrumpf M (2014) Factors controlling decomposition rates of fine root litter in temperate forests and grasslands. Plant Soil 382:203–218

    Article  CAS  Google Scholar 

  • Solly E, Schöning I, Herold N, Trumbore S, Schrumpf M (2015) No depth-dependence of fine root litter decomposition in temperate beech forest soils. Plant Soil 393:273–282. doi:10.1007/s11104-015-2492-7

    Article  CAS  Google Scholar 

  • Stow DA, Hope A, McGuire D, Verbyla D, Gamon J, Huemmrich F, Houston S, Racine C, Sturm M, Tape K, Hinzman L, Yoshikawa K, Tweedie C, Noyle B, Silapaswan C, Douglas D, Griffith B, Jia G, Epstein H, Walker D, Daeschner S, Petersen A, Zhou L, Myneni R (2004) Remote sensing of vegetation and land-cover change in Arctic Tundra Ecosystems. Remote Sens Environ 89:281–308. doi:10.1016/j.rse.2003.10.018

    Article  Google Scholar 

  • Sturm M, Racine C, Tape K (2001) Climate change: increasing shrub abundance in the Arctic. Nature 411:546–547

    Article  CAS  PubMed  Google Scholar 

  • Tamminen P, Starr M (1994) Bulk density of forested mineral soils. Silva Fennica 28:53–60

    Article  Google Scholar 

  • Trubina MR (2006) Distribution of plants differing in attitude toward thermal conditions in communities of the timberline ecotone on Mount Iremel’, the Southern Urals. Russ J Ecol 37:306–315. doi:10.1134/S1067413606050031

    Article  Google Scholar 

  • Wallander H (2006) External mycorrhizal mycelia–the importance of quantification in natural ecosystems. New Phytol 171:240–242. doi:10.1111/j.1469-8137.2006.01803.x

    Article  PubMed  Google Scholar 

  • Wallander H, Nilsson LO, Hagerberg D, Bååth E (2001) Estimation of the biomass and seasonal growth of external mycelium of ectomycorrhizal fungi in the field. New Phytol 151(3):753–760

    Article  CAS  Google Scholar 

  • Wallander H, Ekblad A, Bergh J (2011) Growth and carbon sequestration by ectomycorrhizal fungi in intensively fertilized Norway spruce forests. For Ecol Manag 262:999–1007. doi:10.1016/j.foreco.2011.05.035

    Article  Google Scholar 

  • Zhu Y-G, Miller RM (2003) Carbon cycling by arbuscular mycorrhizal fungi in soil–plant systems. Trends Plant Sci 8:407–409

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was performed within the framework of the joint projects conceived by the Institute of Plant and Animal Ecology of the Ural Branch of the Russian Academy of Science (IPAE) and the Swiss Federal Institute for Forest, Snow, and Landscape Research (WSL). The project was supported by the following grants: ERA.Net RUS STProject-207, COST Action ES1203 SENFOR (SBFI Nr. C14.0037), RFBR-15-29-02449.

Author contribution statement

EFS and FH designed the analysis; EFS analysed the data; EFS and FH wrote the paper; PAM, FH, and SGS conceived the experimental design in the field; ID, PAM, NIA, NMD, VSM, SGS, MRT, MW, and FH conducted fieldwork and provided data; EFS and FHS analysed the fine root biomass; ID and HG analysed the extramatrical mycelia production; all co-authors substantially revised the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emily F. Solly.

Additional information

Communicated by Russell K. Monson.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 151 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solly, E.F., Djukic, I., Moiseev, P.A. et al. Treeline advances and associated shifts in the ground vegetation alter fine root dynamics and mycelia production in the South and Polar Urals. Oecologia 183, 571–586 (2017). https://doi.org/10.1007/s00442-016-3785-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-016-3785-0

Keywords

Navigation