Skip to main content
Log in

Neighborhoods have little effect on fungal attack or insect predation of developing seeds in a grassland biodiversity experiment

  • Community ecology - Original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Numerous observational studies have documented conspecific negative density-dependence that is consistent with the Janzen–Connell Hypothesis (JCH) of diversity maintenance. However, there have been few experimental tests of a central prediction of the JCH: that removing host-specific enemies should lead to greater increases in per capita recruitment in areas of higher host density or lower relative phylogenetic diversity. Using spatially randomized plots of high and low host biomass in a temperate grassland biodiversity experiment, we treated developing seedheads of six prairie perennials to factorial applications of fungicide and insecticide. We measured predispersal seed production, seed viability, and seedling biomass. Results were highly species-specific and idiosyncratic. Effects of insect seed predators and fungal pathogens on predispersal responses varied with neither conspecific biomass nor phylogenetic diversity, suggesting that—at least at the predispersal stage and for the insect and fungal seed predators we were able to exclude—the JCH is not sufficient to contribute to negative conspecific density-dependence for these dominant prairie species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adler PB, Hille Ris Lambers J, Levine JM (2007) A niche for neutrality. Ecol Lett 10:95–104

    Article  PubMed  Google Scholar 

  • AOSA (1999) Rules for testing seeds. Association of Official Seed Analysts, Stillwater

    Google Scholar 

  • Bagchi R et al (2010) Testing the Janzen–Connell mechanism: pathogens cause overcompensating density dependence in a tropical tree. Ecol Lett 13:1262–1269

    Article  PubMed  Google Scholar 

  • Bates D, Maechler M, Bolker BM (2011) lme4: Linear mixed-effects models using S4 classes. R package version 0.999375, 40th edn. Available at: http://CRAN.R-project.org/package=lme4

  • Beckman NG, Muller-Landau HC (2011) Linking fruit traits to variation in predispersal vertebrate seed predation, insect seed predation, and pathogen attack. Ecology 92:2131–2140

    Article  PubMed  Google Scholar 

  • Bell T, Freckleton RP, Lewis OT (2006) Plant pathogens drive density-dependent seedling mortality in a tropical tree. Ecol Lett 9:569–574

    Article  PubMed  Google Scholar 

  • Bever JD et al (2010) Rooting theories of plant community ecology in microbial interactions. Trends Ecol Evol 25:468–478

    Article  PubMed Central  PubMed  Google Scholar 

  • Bolker BM et al (2009) Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol Evol 23:127–135

    Article  Google Scholar 

  • Bonal R, Munoz A, Diaz M (2007) Satiation of predispersal seed predators: the importance of considering both plant and seed levels. Evol Ecol 21:367–380

    Article  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach, 2nd edn. Springer, Berlin

  • Cadotte MW, Cavender-Bares J, Tilman D, Oakley TH (2009) Using phylogenetic, functional trait diversity to understand patterns of plant community productivity. PLoS ONE 4:e5695

    Article  PubMed Central  PubMed  Google Scholar 

  • Cadotte MW, Davies TJ, Regetz J, Kembel SW, Cleland E, Oakley TH (2010) Phylogenetic diversity metrics for ecological communities: integrating species richness, abundance and evolutionary history. Ecol Lett 13:96–105

    Article  PubMed  Google Scholar 

  • Castelli JP, Casper BB (2003) Intraspecific AM fungal variation contributes to plant-fungal feedback in a serpentine grassland. Ecology 84:323–336

    Article  Google Scholar 

  • Cavender-Bares J, Kozak KH, Fine PV, Kembel SW (2009) The merging of community ecology and phylogenetic biology. Ecol Lett 12:693–715

    Article  PubMed  Google Scholar 

  • Chesson P (2000) Mechanisms of maintenance of species diversity. Annu Rev Ecol Syst 31:343–366

    Article  Google Scholar 

  • Clark CJ, Poulsen JR, Levey DJ, Osenberg CW (2007) Are plant populations seed limited? A critique and meta-analysis of seed addition experiments. Am Nat 170:128–142

    Article  CAS  PubMed  Google Scholar 

  • Clay K, Schardl C (2002) Evolutionary origins and ecological consequences of endophyte symbiosis with grasses. Am Nat 160:S99–S127

    Article  PubMed  Google Scholar 

  • Comita LS, Muller-Landau HC, Aguilar S, Hubbell SP (2010) Asymmetric density dependence shapes species abundances in a tropical tree community. Science 329:330–332

    Article  CAS  PubMed  Google Scholar 

  • Connell JH (1971) On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forests. In: Den Boer PJ, Gradwell GR (eds) Dynamics of populations. Center for Agricultural Publishing and Documentation, Wageningen, pp 298–312

    Google Scholar 

  • Cornell HV (1999) Unsaturation and regional influences on species richness in ecological communities: a review of the evidence. Ecoscience 6:303–315

    Google Scholar 

  • Crawley MJ (1992) Seed predators and plant population dynamics. In: Fenner M (ed) Seeds, the ecology of regeneration in plant communities. CAB International, Wallingford, pp 157–191

    Google Scholar 

  • Crawley MJ (ed) (1997) Plant ecology. Blackwell Scientific, Cambridge

    Google Scholar 

  • Crawley MJ, Pacala SW (1991) Herbivores, plant parasites, and plant diversity. In: Toft CA, Aeschlimann A, Bolis L (eds) Parasite–host association: coexistence or conflict?. Oxford University Press, Oxford, pp 157–173

    Google Scholar 

  • Dickson TL, Mitchell CE (2010) Herbivore and fungal pathogen exclusion affects the seed production of four common grassland species. PLoS ONE 5:e12022

    Article  PubMed Central  PubMed  Google Scholar 

  • Dobson A, Crawley MJ (1994) Pathogens and the structure of plant communities. Trends Ecol Evol 9:393–398

    Article  CAS  PubMed  Google Scholar 

  • Fargione J, Tilman D (2002) Competition and coexistence in terrestrial plants. In: Sommer U, Worm B (eds) Competition and coexistence, vol 161. Springer, Berlin, pp 165–206

    Chapter  Google Scholar 

  • Fargione J, Tilman D (2005) Niche differences in phenology and rooting depth promote coexistence with a dominant C4 bunchgrass. Oecologia 143:598–606

    Article  PubMed  Google Scholar 

  • Foster BL, Tilman D (2003) Seed limitation and the regulation of community structure in oak savanna grassland. J Ecol 91:999–1007

    Article  Google Scholar 

  • Freckleton RP, Lewis OT (2006) Pathogens, density dependence and the coexistence of tropical trees. Proc R Soc Lond B 273:2909–2916

    Article  Google Scholar 

  • Gelman A, Hill J (2007) Data analysis using regression and multilevel/hierarchical models. Cambridge University Press, New York

    Google Scholar 

  • Gilbert G, Webb CO (2007) Phylogenetic signal in plant pathogen host-range. Proc Natl Acad Sci USA 104:4979–4983

    Article  CAS  PubMed  Google Scholar 

  • Gleason HA, Cronquist A (1963) Manual of the vascular plants of northeastern United States and adjacent Canada. Van Nostrand, New York

  • Hammond DS, Brown VK (1998) Disturbance, phenology and life-history characteristics: factors influencing distance/density-dependent attack on tropical seeds and seedlings. In: Newbery DM, Prins HHT, Brown ND (eds) Dynamics of tropical communities. Blackwell, Oxford, pp 51–78

    Google Scholar 

  • Harms KE, Wright SJ, Calderon O, Hernandez A, Herre EA (2000) Pervasive density-dependent recruitment enhances seedling diversity in a tropical forest. Nature 404:493–495

    Article  CAS  PubMed  Google Scholar 

  • Hartnett D, Hetrick B, Wilson G, Gibson D (1993) Mycorrhizal influence on intra- and interspecific neighbour interactions among co-occurring prairie grasses. J Ecol 81:787–795

    Article  Google Scholar 

  • Hatcher P (1995) Three-way interactions between plant pathogenic fungi, herbivorous insects and their host plants. Biol Rev 70:639–694

    Article  Google Scholar 

  • Hersh MH, Vilgalys R, Clark JS (2012) Evaluating the impacts of multiple generalist fungal pathogens on temperate tree seedling survival. Ecology 93:511–520

    Article  PubMed  Google Scholar 

  • Janzen DH (1970) Herbivores and the number of tree species in tropical forests. Am Nat 104:501–527

    Article  Google Scholar 

  • Johnson RM, Wen ZM, Schuler MA, Berenbaum MR (2006) Mediation of pyrethroid insecticide toxicity to honey bees (Hymenoptera: Apidae) by cytochrome P450 monooxygenases. J Econ Entomol 99:1046–1050

    Article  CAS  PubMed  Google Scholar 

  • Jones FA, Comita L (2010) Density-dependent pre-dispersal seed predation and fruit set in a tropical tree. Oikos 119:1841–1847

    Article  Google Scholar 

  • Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, Ackerly DD et al (2010) Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26:1463–1464

    Google Scholar 

  • Klironomos J (2002) Feedback with soil biota contributes to plant rarity and invasiveness in communities. Nature 417:67–70

    Article  CAS  PubMed  Google Scholar 

  • Knight TM, Steets JA, Vamosi JC, Mazer SJ, Burd M, Campbell DR et al (2005) Pollen limitation of plant reproduction: pattern and Process. Annu Rev Ecol Evol Syst 36:467–497

    Google Scholar 

  • Kolb A, Ehrlen J, Eriksson O (2007) Ecological and evolutionary consequences of spatial and temporal variation in pre-dispersal seed predation. Perspect Plant Ecol Evol Syst 9:79–100

    Article  Google Scholar 

  • Konno M, Iwamoto S, Seiwa K (2011) Specialization of a fungal pathogen on host tree species in a cross-inoculation experiment. J Ecol 99:1394–1401

    Article  Google Scholar 

  • Levin DA (1968) The structure of a polyspecies hybrid swarm in Liatris. Evolution 22:353–372

    Google Scholar 

  • Levin DA, Kerster H (1969) Density-dependent gene dispersal in Liatris. Am Nat 103:61–74

    Article  Google Scholar 

  • Liu X, Liang M, Etienne RS, Wang Y, Staehelin C, Yu S (2012) Experimental evidence for a phylogenetic Janzen–Connell effect in a subtropical forest. Ecol Lett 15:111–118

    Article  PubMed  Google Scholar 

  • Maindonald J, Braun WJ (2010) Data analysis and graphics using R: an example-based approach. Cambridge University Press, New York

    Book  Google Scholar 

  • Mangan SA et al (2010) Negative plant-soil feedback predicts tree-species relative abundance in a tropical forest. Nature 466:752–755

    Article  CAS  PubMed  Google Scholar 

  • Maron JL, Crone E (2006) Herbivory: effects on plant abundance, distribution and population growth. Proc R Soc B Biol Sci 273:2575–2584

    Article  Google Scholar 

  • McKone M, Lund C, O’Brien J (1998) Reproductive biology of two dominant prairie grasses (Andropogon gerardii and Sorghastrum nutans, Poasceae): male-biased sex allocation in wind-pollinated plants? Am J Bot 85:776–783

    Article  CAS  PubMed  Google Scholar 

  • Mitchell CE (2003) Trophic control of grassland production and biomass by pathogens. Ecol Lett 6:147–155

    Article  Google Scholar 

  • Mitchell CE, Tilman D, Groth JV (2002) Effects of grassland plant species diversity, abundance, and composition on foliar fungal disease. Ecology 83:1713–1726

    Article  Google Scholar 

  • Mordecai EA (2011) Pathogen impacts on plant communities: unifying theory, concepts, and empirical work. Ecol Monogr 81:429–441

    Article  Google Scholar 

  • Morris W, Hufbauer RA, Agrawal AA, Bever JD, Borowicz VA, Gilbert GS et al (2007) Direct and interactive effects of enemies and mutualists on plant performance: a meta-analysis. Ecology 88:1021–1029

    Google Scholar 

  • Norghauer JM, Malcolm JR, Zimmerman BL, Felfili JM (2006) An experimental test of density- and distant-dependent recruitment of mahogany (Swietenia macrophylla) in southeastern Amazonia. Oecologia 148:437–446

    Article  PubMed  Google Scholar 

  • Novotny V et al (2006) Why are there so many species of herbivorous insects in tropical rainforests. Science 313:1115–1118

    Article  CAS  PubMed  Google Scholar 

  • Paul N, Ayres P, Wyness L (1989) On the use of fungicides for experimentation in natural vegetation. Funct Ecol 3:759–769

    Article  Google Scholar 

  • Petermann JS, Fergus AJF, Turnbull LA, Schmid B (2008) Janzen–Connell effects are widespread and strong enough to maintain diversity in grasslands. Ecology 89:2399–2406

    Article  PubMed  Google Scholar 

  • R Development Core Team (2011) R: a language and environment for statistical computing, 2.13.1 edn. R Foundation for Statistical Computing, Vienna

  • Reynolds HL, Packer A, Bever JD, Clay K (2003) Grassroots ecology: plant–microbe–soil interactions as drivers of plant community structure and dynamics. Ecology 84:2281–2291

    Article  Google Scholar 

  • Siemann E, Carson W, Rogers W, Weisser W (2004) Reducing herbivory using insecticides. In: Weisser W, Siemann E (eds) Insects and ecosystem function. Ecological Studies Series. Springer, Berlin

  • Terborgh J (2012) Enemies maintain hyperdiverse tropical forests. Am Nat 179:303–314

    Article  PubMed  Google Scholar 

  • Tilman D (1997) Community invasibility, recruitment limitation, and grassland biodiversity. Ecology 78:81–92

    Article  Google Scholar 

  • Tilman D, Pacala S (1993) The maintenance of species richness in plant communities. In: Ricklefs RE, Schluter D (eds) Species diversity in ecological communities. University of Chicago Press, Chicago, pp 13–25

    Google Scholar 

  • Tilman D, Reich PB, Knops J, Wedin D, Mielke T, Lehman C (2001) Diversity and productivity in a long-term grassland experiment. Science 294:843–845

    Article  CAS  PubMed  Google Scholar 

  • Turnbull LA, Crawley MJ, Rees M (2000) Are plant populations seed limited? A review of seed sowing experiments. Oikos 88:225–238

    Article  Google Scholar 

  • Uriarte M, Condit R, Canham CD, Hubbell SP (2004) A spatially explicit model of sapling growth in a tropical forest: does the identity of neighbors matter. J Ecol 92:348–360

    Article  Google Scholar 

  • Wagenius S, Lonsdorf E, Neuhauser C (2007) Patch aging and the S-allee effect: breeding system effects on the demographic response of plants to habitat fragmentation. Am Nat 169:383–397

    Article  PubMed  Google Scholar 

  • Webb CO, Ackerly DD, McPeek MA, Donoghue MJ (2002) Phylogenies and community ecology. Annu Rev Ecol Syst 33:475–505

    Article  Google Scholar 

  • Webb CO, Gilbert GS, Donoghue MJ (2006) Phylodiversity-dependent seedling mortality, size structure, and disease in a Bornean rain forest. Ecology 87:S123–S131

    Article  PubMed  Google Scholar 

  • Wright SJ (2002) Plant diversity in tropical forests: a review of mechanisms of species coexistence. Oecologia 130:1–14

    Google Scholar 

  • Zobel M, Kalamees R (2005) Diversity and dispersal—can the link be approached experimentally? Folia Geobotanica 40:3–11

    Article  Google Scholar 

Download references

Acknowledgments

We thank L. Knutson, D. DeVetter, S. Jerke, and a crew of field-hardened Cedar Creek interns for their invaluable assistance in collecting these data; D. Vellekson for his help with legume seed germination; S. Hobbie for insightful comments that substantially improved the quality of this paper. NGB was supported by the University of Nebraska-Lincoln Program of Excellence in Population Biology. The experiments comply with the current laws of the country (USA) in which the experiments were performed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ray Dybzinski.

Additional information

Communicated by Scott Collins.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 84 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beckman, N.G., Dybzinski, R. & Tilman, G.D. Neighborhoods have little effect on fungal attack or insect predation of developing seeds in a grassland biodiversity experiment. Oecologia 174, 521–532 (2014). https://doi.org/10.1007/s00442-013-2788-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-013-2788-3

Keywords

Navigation