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Abstract
Status epilepticus (SE), the most severe form of epilepsy, leads to brain damage. Uncertainty persists about the mechanisms 
that lead to the pathophysiology of epilepsy and the death of neurons. Overloading of intracellular iron ions has recently been 
identified as the cause of a newly recognized form of controlled cell death called ferroptosis. Inhibiting ferroptosis has shown 
promise as a treatment for epilepsy, according to recent studies. So, the current study aimed to assess the possible antiepileptic 
impact of CoQ10 either alone or with the standard antiepileptic drug sodium valproate (SVP) and to evaluate the targeted 
effect of COQ10 on hippocampal oxidative stress and ferroptosis in a SE rat model. Using a lithium-pilocarpine rat model 
of epilepsy, we evaluated the effect of SVP, CoQ10, or both on seizure severity, histological, and immunohistochemical of 
the hippocampus. Furthermore, due to the essential role of oxidative stress and lipid peroxidation in inducing ferroptosis, 
we evaluated malonaldehyde (MDA), reduced glutathione (GSH), glutathione peroxidase 4 (GPX4), and ferritin in tissue 
homogenate. Our work illustrated that ferroptosis occurs in murine models of lithium-pilocarpine-induced seizures (epilep-
tic group). Nissl staining revealed significant neurodegeneration. A significant increase in the number of astrocytes stained 
with an astrocyte-specific marker was observed in the hippocampus. Effective seizure relief can be achieved in the seizure 
model by administering CoQ10 alone compared to SVP. This was accomplished by lowering ferritin levels and increasing 
GPX4, reducing MDA, and increasing GSH in the hippocampus tissue homogenate. In addition, the benefits of SVP therapy 
for regulating iron stores, GPX4, and oxidative stress markers were amplified by incorporating CoQ10 as compared to SVP 
alone. It was concluded that CoQ10 alone has a more beneficial effect than SVP alone in restoring histological structures 
and has a targeted effect on hippocampal oxidative stress and ferroptosis. In addition, COQ10 could be useful as an adjuvant 
to SVP in protecting against oxidative damage and ferroptosis-related damage that result from epileptic seizures.
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Introduction

Recurrent generalized convulsions lasting more than 30 min 
constitute status epilepticus (SE), a common neurologi-
cal disorder that, if left untreated, can cause irreversible 
neuronal damage in the brain. Nearly 30% of instances of 
progressive epilepsy are refractory, meaning they do not 
respond to pharmacological treatment (Dyomina et al. 2020; 
Josephson and Jetté 2017).

Iron is essential for healthy brain growth and function, 
and iron deficiency or iron overload can negatively affect 
the nervous system (Thirupathi and Chang 2019). There is 
a delicate balance of iron in the brain. Oligodendrocytes and 
astrocytes play an important role in maintaining that bal-
ance. Iron is also necessary for normal neurogenesis, mye-
lination, and catecholamine neurotransmitter metabolism 
(Cheli et al. 2020). Neuroinflammation, neurodegeneration, 
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and neurobehavioral impairments have all been linked to 
elevated iron levels in the brain, according to recent stud-
ies (Apostolakis and Kypraiou 2017; Cheli et al. 2020). In 
addition, recent research suggests that active epilepsy is an 
independent risk factor for the development and progression 
of COVID-19 (Kuroda 2021). These findings underline the 
importance of further safeguarding epileptic youth against 
contracting the COVID-19 virus.

Ferroptosis is a type of cell death that has only recently been 
recognized, and it is characterized by iron-dependent lipid per-
oxidation (Dixon et al. 2012; Li et al. 2018; Stockwell et al. 
2017). It is characterized by the accumulation of intracellular 
iron ions, leading to the accumulation of lethal lipid-based 
reactive oxygen species (ROS) (Cai and Yang 2021). In ferrop-
tosis, cellular signaling networks and genes control the buildup 
of iron-dependent free radicals and lipid oxidation products. 
Abnormal iron ion metabolism, depletion of reduced glu-
tathione (GSH), glutathione peroxidase 4 (GPX4), and aber-
rant lipid peroxidation (malondialdehyde, MDA) are the three 
key components in ferroptosis. However, the precise regulatory 
network is unclear (Stockwell and Jiang 2020). Alzheimer’s 
disease, Parkinson’s disease, stroke, and traumatic brain injury 
are only some neurological disorders and illnesses linked to 
ferroptosis (Cho et al. 2020; Van Do et al. 2016). Although 
ferroptosis is known to have a part in the onset of seizures, its 
precise role in the genesis of seizures, particularly those trig-
gered by pentylenetetrazol (PTZ) or pilocarpine (Pilo), is not 
well understood.

Moreover, oxidative stress is strongly linked to the induc-
tion of epileptic activity and the death of nerve cells and is 
caused by prolonged convulsions that encourage the excessive 
formation of ROS (Eastman et al. 2020; Freitas 2009), which 
end in lipid peroxidation and ferroptosis (Dixon et al. 2012; 
Wang et al. 2020a, b). In addition, many polyunsaturated fatty 
acids (PUFAs) in the membranes of neurons in the brain are 
vulnerable to lipid peroxidation. The brain is also rich in iron, 
which plays a role in producing hydroxyl radicals. In sum-
mary, when excessive iron ions are present in the cytoplasm, 
lipid peroxidation increases, producing harmful lipid free rad-
icals and triggering ferroptosis. When more PUFAs are in the 
cells, lipid peroxidation increases, worsening ferroptosis (Cai 
and Yang 2021). These epileptic pathophysiological processes 
in the brain are related to ferroptosis because oxidative stress 
and lipid peroxidation are crucial in initiating ferroptosis (Lin 
et al. 2020). So, delaying the onset or severity of epilepsy may 
be aided by keeping ROS levels under tolerable control, which 
minimizes the incidence of ferroptosis.

Antiepileptic medications (AEDs) are currently the 
gold standard in epilepsy therapy. Unfortunately, about 
a third of all epilepsy patients did not respond to the 
most frequently prescribed AEDs, and these were the 
drug-refractory epilepsy patients (Moshé et al. 2015). 

One of the most often used antiepileptic medicines is 
sodium valproate (SVP) (Perucca 2002). There have been 
reports of both prooxidative and antioxidative effects of 
SVP on oxidative stress (Belcastro et al. 2013; Ezz et al. 
2011). There is evidence that SVP therapy affects iron 
metabolism in epilepsy, leading to the production of non-
transferrin-bound iron and an increase in OS (Ounjaijean 
et al. 2011). Therefore, new antiseizure therapies may 
also be developed by creating pharmaceuticals blocking 
the ferroptosis signaling axis.

Coenzyme Q10 (CoQ10) is a naturally occurring iso-
prenyl benzoquinone molecule that functions similarly 
to a vitamin and is created endogenously in the human 
body; that is synthesized in the inner mitochondrial 
membrane with a lipophilic character that makes it easy 
to diffuse through membranes (Garrido-Maraver et al. 
2014a, b; Hernández-Camacho et al. 2018; Sifuentes-
Franco et al. 2022). Meats, fish, salmon, sardines, pork, 
chicken, nuts, soybeans, vegetable oils, and many other 
foods contain CoQ10, albeit at much lower concentra-
tions, with the remaining CoQ10 coming from biosyn-
thesis within the body. Dairy products, fruits, and cereals 
also contain CoQ10, albeit at much lower concentrations 
(Pravst et al. 2010). CoQ10 has seen widespread use as a 
medicinal agent, with applications spanning from treat-
ing neurodegenerative disorders to those of heart failure, 
fibromyalgia, and even insulin resistance (Garrido-Mara-
ver et al. 2014a, b; Pastor-Maldonado et al. 2020; Tawfik 
2011). In addition, CoQ10 has gained popularity as a 
supplement for its potential to affect cellular bioenerget-
ics and protect against free radical damage in recent years 
(Bhardwaj and Kumar 2016; Tawfik 2011).

Therefore, the current study aimed to assess the possible 
antiepileptic impact of CoQ10 either alone or with the stand-
ard antiepileptic drug sodium valproate (SVP) and to evalu-
ate the targeted effect of COQ10 on hippocampal oxidative 
stress and ferroptosis in a SE rat model.

Materials and methods

Animals

From the Animal House of the Medical Research Center, 
Faculty of Medicine at Ain shams University, we received 
6- to 8-week-old male adult Wistar rats weighing 200–250 g. 
The animals were housed in an institutional setting with a 
standard temperature regulation (22 3 °C) and a light/dark 
cycle of 12 h daily. Except during experiments, they had 
unrestricted access to food and drink. Within each group, 
there were ten animals.
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Ethical statement

All animal maintenance and procedures were established 
in agreement with institutional guidelines for animal care 
and use published by the National Institutes of health. In 
addition, the institutional Animals Care and Use Committee 
(ACUC) and Research Ethics Committee (FMASUS REC) 
approved the experimental protocol with Federal wide assur-
ance No. 000175. 85 (Reference No. FMASU R222/2022).

Chemicals and drugs

Lithium chloride (LiCl; Product Number: L4408), sco-
polamine methyl bromide (Product Number: S8502), 
pilocarpine hydrochloride (3S,4R)-3-ethyl-4-((1-methyl-
1H-imidazol-5-yl) methyl) dihydrofuran-2(3H)-one (Prod-
uct Number: PHR1493), and CoQ10 (C59H90O4; CAS 
Number: 303-98-0) diazepam (10 mg/kg) were purchased 
from Sigma-Aldrich, St. Louis, MO, USA. Sodium val-
proate (SVP) was obtained from a local pharmacy under 
the brand name Depakine. The ingredients (SVP, Pilo, and 
CoQ10) were dissolved in dimethyl sulfoxide (DMSO). 
The animals were weighed and received the calculated 
dose of the drug according to their weight. Enzyme-linked 
immunosorbent assay (ELISA) kits for reduced glutathione 
(GSH) (Catalog Number: MBS724319), lipid peroxidation 
(malondialdehyde, MDA) (Cat.: MBS9718963), glutathione 
peroxidase 4 (phospholipid hydroperoxides) (GPX4) (Cat.: 
MBS934198), and ferritin (FE) (Cat.: MBS2709273) were 
purchased from MyBioSource, Inc. San Diego, USA. Poly-
clonal antiferritin rabbit antibody (Cat.: MBS8247387, 
MyBioSource, Inc. San Diego, USA) and polyclonal pri-
mary anti GFAP goat antibody (Catalog # 13-0300, Thermo 

Scientific Co, Waltham, MA, USA) were used. Biotinylated 
secondary antibody (horse antimouse IgG antibodies (BA-
2000-1.5), 1:500 diluted in PBS containing 0.05% Triton 
X‐100 and 2.5% horse serum) was obtained from Vector 
Laboratories, Burlingame, CA.

Induction of SE by lithium‑pilocarpine

To produce seizures, we utilized pilocarpine, diluted in 
DMSO (0.5 mg/ml), and injected intraperitoneally (i.p.) at 
100 mg/kg dose. In brief, Pilo was administered i.p. to the 
Wistar rats every 20 min till the beginning of the limbic 
seizure. In most cases, seizures can be induced repeatedly 
with just three injections (Mao et al. 2019). Lithium chloride 
(LiCl; 127 mg/kg, i.p.) was administered 18 h before pilocar-
pine injection. Thirty minutes before the injection of Li-Pilo, 
scopolamine methyl bromide (1 mg/kg i.p) was administered 
to reduce any peripheral effects caused by pilocarpine (Davis 
2013; Juvale and Has 2020). Diazepam (10 mg/kg, i.p) was 
given 75 min after the onset of score four seizures to stop 
SE and reduce mortality associated with prolonged seizure 
activity (Fan et al. 2020).

Experimental design

Fifty Wistar Albino rats were randomly allocated to 5 
groups, ten animals each, as follows (Fig. 1):

Control I (vehicle group): Rats received DMSO by gav-
age daily for 2 weeks and were injected with lithium, 
scopolamine methyl bromide, and diazepam, like the 
Pilo-treated group, except for three injections of DMSO 
instead of Pilo.

Fig. 1  Experimental design
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Group II (epileptic group): Before receiving an injec-
tion of Pilo, rats were given DMSO via gavage once a 
day for 2 weeks.
Group III (SVP-treated group): SVP (300  mg/kg 
body weight) was given by gavage daily for 2 weeks 
before Pilo injection from the start of the study (Rashid 
et al. 2021).
Group IV (Coq10-treated group): From the begin-
ning of the study, rats were given CoQ10 (20 mg/kg) 
via gavage once a day for 2 weeks before they got a Pilo 
injection (Tawfik 2011).
Group V (SVP + Coq10-treated group): At the outset 
of the trial, rats were given SVP + Coq10 via gavage 
once daily for 2 weeks before they were injected with 
Pilo.

Assessment of epileptogenesis

Animals were observed for 1 h after Pilo administration 
for the onset and severity of seizures. Rat seizure intensity 
was evaluated by observing the animals’ actions. Initial 
akinesia, whole-body tremor, and/or incomplete limbic 
gustatory automatisms, salivation, and head-scratching 
were all logged as indicators of impending convulsive 
activity. Seizure onset latency and maximum seizure 
duration (in minutes) were calculated. The severity of 
seizures was rated using the Racine scale (Racine 1972): 
1 = seizure consisted of immobility and occasional facial 
clonus; 2 = head nodding; 3 = bilateral forelimb clonus; 
4 = rearing; 5 = rearing and falling. According to the cri-
teria established by prior research, SE was considered to 
have occurred when there were three or more unprovoked 
seizures (Modebadze et al. 2016).

All rats were injected i.p with 1.2 gm/kg urethane 24 h 
after the experiment was finished to induce anesthesia. 
Urethane is advantageous because it provides a continu-
ous, long-lasting anesthetic without interfering with neuro-
transmission in the brain’s subcortical regions or periphery. 
Moreover, urethane-anesthetized animals have physiologi-
cal and pharmacological behaviors comparable to non-anes-
thetized animals (Maggi and Meli 1986). First, the rats were 
perfused transcardially with ice-cold physiological saline. 
Then, ice-cold physiological saline was infused transcar-
dially into the rats. The brain was successfully removed 
through a posterior neck incision. The brain was exposed 
after the skull was carefully removed. Both the left and 
right cerebral hemispheres were removed from the brain. 
The hippocampi from the left-brain halves were removed 
immediately and frozen at − 80 °C for later biochemical 
analysis. The right hemispheres were preserved in 10% 
neutral buffered formalin for histological and immunohis-
tochemical analysis.

Biochemical study

For biochemical determinations, the hippocampus tissue 
samples were minced and homogenized separately in ice-
cold PBS (0.02 mol/l, pH 7.0–7.2) at a concentration of 15% 
(w/v). After two freeze–thaw cycles were performed to break 
the cell membranes, the homogenate was centrifuged at 
130,000 × g for 10 min at 2–8 °C. Remove the supernate and 
assay immediately or aliquot and store samples at − 20 °C 
or − 80 °C (Rabuffetti et al. 2000).

Detection of oxidative stress parameters

These parameters include malondialdehyde (MDA) as an 
index for lipid peroxidation and antioxidant enzymes as 
reduced glutathione (GSH). Tissue homogenate MDA levels 
were calculated using the Ohkawa et al. method of reacting 
the sample with thiobarbituric acid (Ohkawa et al. 1979). 
The spectrophotometric detection for MDA at optical den-
sity (O.D.) 532 and 600 nm. The MDA result was given in 
terms of nmol/mg of protein. Elliott’s method for measuring 
GSH concentration was used (Ellman 1959). The microplate 
reader’s spectrophotometer is set to read at 450 nm to deter-
mine the color’s intensity. GSH levels were measured, and 
the result was reported in ng/mg of protein.

Detection of ferritin (FE) accumulation in hippocampus tissue

The test principle applied in this kit is sandwich enzyme 
immunoassay according to the manufacturer’s protocols. 
This kit includes a pre-coated microtiter plate immu-
nostained with an antibody against FE. After that, a biotin-
conjugated antibody specific to FE is added to the wells 
of the relevant microtiter plate. As a next step, avidin-
conjugated to conjugated horseradish peroxidase (HRP) 
is applied to each microplate well and incubated. Only the 
wells that originally contained FE, biotin-conjugated anti-
body, and enzyme-conjugated avidin will show a color shift. 
The color change is determined spectrophotometrically at a 
wavelength of 450 nm ± 10 nm after a sulphuric acid solu-
tion has stopped the enzyme-substrate reaction. Next, the 
FE concentration in the samples is calculated by comparing 
their optical densities to the mean curve. The FE result was 
reported in ng/mg of protein.

Detection of glutathione peroxidase 4 (phospholipid 
hydroperoxides) (GPX4)

The sandwich enzyme immunoassay method is used for 
quantification in accordance with the manufacturer’s 
instructions. A microplate has been pre-coated with an 
antibody against GPX4. Each well contains an immobi-
lized antibody specific for GPX4, which binds to GPX4 
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in pipetted samples. As soon as the wells are free of unat-
tached compounds, a biotin-conjugated antibody directed 
against GPX4 is added. After the wells have been cleaned, 
avidin-conjugated HRP is added. After the wells have been 
washed to eliminate any unbound avidin-enzyme reagent, a 
substrate solution is added, and color develops in response 
to the initial GPX4 binding concentration. A stop in the 
development of the color is made, and the degree of that 
color is recorded. Color saturation is determined by spec-
trophotometric analysis in a microplate reader by illuminat-
ing the sample at 450 nm. The GPX4 result was given in 
terms of pg/mg protein.

Protein assay

Bradford assay was used to determine the protein concentra-
tion in the supernatant, and bovine serum albumin (BSA, 
Sigma Chemical, USA) was used as the reference standard 
(Bradford 1976).

Histological evaluation of hematoxylin and eosin 
(H&E) and Nissl staining

After being fixed in 10% neutral buffered formalin, coronal 
sections of the right hemisphere were washed, dehydrated, 
cleaned in xylol, and embedded in paraffin. For histological 
analysis of the rat hippocampus, paraffin-embedded tissue 
slides were stained with H&E for and Nissl stain to observe 
neuronal loss according to Bancroft and Layton (Suvarna 
et al. 2019).

Immunohistochemical study

Different immunocytochemical markers were stained on 
horizontal sections of both control and treatment animals. 
Two levels of analysis were performed for each animal. For 
30 min, sections were incubated in a solution of 0.3 percent 
hydrogen peroxide in phosphate-buffered saline (PBS) at pH 
7.4 to deactivate endogenous peroxidase after being rinsed in 
0.05 M PBS at pH 7.4. After two 10-min washes in PBS, the 
sections were rinsed for 60 min in PBS plus 0.4% BSA. A 
polyclonal antiferritin rabbit antibody was used to incubate 
a single hippocampal section from each group. Ferritin does 
not label neurons, whereas microglia and oligodendrocytes 
are (de Rodríguez‐Callejas et al. 2019). Another section of 
the hippocampus of all groups was incubated with primary 
polyclonal antiGFAP goat antibody. Astrocytes’ location and 
response to brain degeneration or damage are most com-
monly studied with GFAP (Martin and O’Callaghan 1995). 
The avidin–biotin immunoperoxidase method with modifica-
tions was used. Working dilution was 1:1000 in PBS for 1 h 
for 30 min at room temperature. Sections were washed in 
PBS, incubated with the secondary antibody for an hour at 

room temperature, and then washed again. Streptavidin per-
oxidase was applied at room temperature for 10 min before 
being rinsed with PBS. The reactions were visualized with 
3′, 3 regular diaminobenzidine tetrahydrochloride (DAB). 
The sections were counterstained with Mayer’s hematoxylin, 
dehydrated, and mounted.

Their brown cell membranes and cytoplasm identified 
immunoreactive oligodendrocytes and microglia for ferritin 
and astrocytes with GFAP. Negative control sections were 
successfully produced by following the same protocol but 
substituting PBS for the primary antibody.

Morphometric study

The morphometrics of all groups’ specimens was analyzed. 
Captured at × 40 magnification were analyzed using the 
Leica Q win V. 3 program installed on a computer in the 
Histology and Cell Biology Department, Faculty of Medi-
cine, Ain Shams University. An attached Leica DM2500 
microscope (Wetzlar, Germany) was used in conjunction 
with the computer. Histologists performing the morpho-
metric analyses were blinded to the pathologic diagno-
ses obtained by examining the specimens from different 
groups. Five slides were taken from each specimen and 
used for measurements. For each slide, we measured the 
following in five non-overlapping fields of CA1, CA3, and 
DG in the hippocampus:

1. Vaibhav et al. methods were used to estimate neuron 
loss. First, dead cells were assumed to have pyknotic 
nuclei. Next, the percentages of viable and non-viable 
cells in each sample were determined. Finally, neuronal 
loss was defined as the ratio of dead cells to total viable 
cells (H&E-stained sections) (Vaibhav et al. 2013).

2. The positively stained cells with a well-defined nucleo-
lus and typical Nissl bodies were counted (Nissl-stained 
sections) (Wang et al. 2020a, b).

3. The number of ferritin-positive cells (de Rodríguez‐
Callejas et al. 2019).

4. The number of GFAP-positive cells (GFAP immu-
nostained sections) (Zhang et al. 2015).

Statistical analysis

The Statistical Package for the Social Sciences (SPSS) for 
WINDOWS, version 26; IBM Corp., Armonk/New York, 
USA) was used to analyze the data. The data were displayed 
as the mean ± standard error of the mean (SEM) from all 
the groups. The Kolmogorov–Smirnov and Shapiro–Wilk 
tests were used to examine the normality of distribution. 
Analysis of variance (ANOVA) was used to see the differ-
ences between the groups, and then we used the LSD multi-
ple comparisons test to dig further into the data. A p-value 
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of less than 0.05 is considered statistically significant. The 
Pearson correlation test studied the association of GPX4 
and biochemical variables. To create the graphs, we utilized 
GraphPad Prism Statistical Package for Windows, Version 
9.3.1 (2021), San Diego, CA, USA.

Results

Detection and evaluation of signs of seizure activity 
and seizure severity

The effect of pilocarpine to induce preconvulsive behavior 
was seen in 13.99 ± 0.36 min. In the wake of these alterations, 
rats began experiencing attacks of continuous-stage seizures, 
which are associated with limbic motor seizures. The epilep-
tic group showed the average Racine score was 4.60 ± 0.22, 
and the average delay to onset was 34.00 ± 0.36 min. The 
longest motor seizure typically lasted 44.29 ± 0.35 min. 
The latency to preconvulsant behavior was significantly 
(P < 0.0001) increased in SVP and CoQ10-pretreated rats 
(40.84 ± 0.21, 42.44 ± 0.20, respectively), and the latency 
to clonic and tonic seizures was significantly (P < 0.0001) 
increased in both groups compared to the epileptic group. 
Compared to the epileptic group, the rats’ significant 
(P < 0.0001) average Racine score decreased from 2.70 ± 0.21 
to 1.90 ± 0.23, and the duration of their seizures decreased 
from 30.84 ± 0.21 to 29.74 ± 0.36 min. However, CoQ10 
alone (1.90 ± 0.23) or in combination with SVP (1.80 ± 0.20) 
resulted in a significantly (P = 0.033, P = 0.0122, respec-
tively) lower Racine score in CoQ10 alone compared to rats 
receiving SVP alone. The anticonvulsant effects of SVP were 
enhanced by 2 weeks of CoQ10 pretreatment. In rats, there 
was a statistically significant (P < 0.0001) delay in the onset 
of preconvulsant activity (Fig. 2a–d).

Biochemical results

Lipid peroxidation and antioxidant enzyme activity

Figure 3a demonstrates that compared to the control group 
(1.74 ± 0.13), the SVP group, the CoQ10 group, and the 
SVP + CoQ10 group, the MDA levels in the epileptic model 
rat group were significantly higher (4.72 ± 0.28, P < 0.0001). 
MDA levels in rats treated with CoQ10 (1.82 ± 0.19 vs. 
2.73 ± 0.80 in rats treated with SVP) were significantly 
(P = 0.04) lower. The group receiving SVP + CoQ10 
(1.82 ± 0.15) showed a significantly decreased MDA than 
in the epileptic group (P = 0.03) and SVP-only group 
(P < 0.0001). In addition, CoQ10 and SVP + CoQ10 groups 
showed a non-significant difference (P > 0.99, P > 0.99, 
respectively) versus the control group.

Moreover, in Fig.  3b, the epileptic model rat group 
exhibited a significant (P < 0.0001) reduction in the GSH 
(11.86 ± 0.46) as compared to control, SVP, CoQ10, and 
SVP + CoQ10-treated groups. CoQ10 (17.55 ± 0.37) 
exhibited a significant (P = 0.017) increase in GSH in 
contrast with rats receiving SVP (15.36 ± 0.49). The group 
receiving the combination of both drugs (SVP + CoQ10; 
17.52 ± 0.54) showed a significantly (P < 0.0001, 
P = 0.0196, respectively) increased GSH in contrast with 
an epileptic group and SVP-treated rats. Moreover, CoQ10 
and SVP + CoQ10 groups exhibited non-significant differ-
ences (P > 0.99, P > 0.99, respectively) versus the control 
group (17.74 ± 0.43).

Detection of ferritin (FE) accumulation in hippocampus 
tissue

As shown in Fig. 3c, lithium-pilocarpine caused a significant 
(P < 0.0001) increase in the FE (18.53 ± 0.46) as compared 
to control, SVP, CoQ10, and SVP + CoQ10-treated groups. 
CoQ10 (7.79 ± 0.15) resulted in a significant (P = 0.006) 
decrease in FE in contrast with rats receiving SVP 
(9.31 ± 0.35). The group receiving the combination of both 
drugs (SVP + CoQ10; 7.96 ± 0.12) exhibited a significantly 
(P = 0.02, P < 0.0001, respectively) decreased FE than in the 
epileptic group and SVP-treated rats. Moreover, CoQ10 and 
SVP + CoQ10-treated groups showed non-significant differ-
ences (P > 0.99, P > 0.99, respectively) as compared to the 
control group (7.85 ± 0.21).

Detection of glutathione peroxidase 4 (phospholipid 
hydroperoxides) (GPX4)

As shown in Fig. 3d, lithium-pilocarpine caused a signifi-
cant (P < 0.0001) reduction in the GPX4 (2.68 ± 0.13) as 
compared to control, SVP, CoQ10, and SVP + CoQ10-
treated groups. CoQ10 (8.48 ± 0.46) resulted in a significant 
(P < 0.0001) increase in GPX4 in contrast with rats receiving 
SVP (4.96 ± 0.16). The group receiving the combination of 
both drugs (SVP + CoQ10; 7.97 ± 0.24) showed a signifi-
cantly (P = 0.02, P < 0.0001, respectively) increased GPX4 in 
contrast with an epileptic group and SVP-treated rats. CoQ10 
and SVP + CoQ10-treated groups showed non-significant dif-
ferences (P > 0.99, P = 0.45, respectively) versus the control 
group (8.73 ± 0.25). In addition, multiple significant associa-
tions were found when we compared the measured GPX4 and 
biochemical parameters across all the groups using Pearson’s 
correlation coefficient. There was a significant negative cor-
relation in GPX4 with MDA (r =  − 0.752, P < 0.0001) and 
FE (r =  − 0.820, P < 0.0001). While there was a significant 
positive correlation between GPX4 and GSH (r = 0.714, 
P < 0.0001) (Fig. 4a–c).
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Fig. 2  Effect of COQ10 either alone or in combination with sodium valproate on pilocarpine-induced seizures. a Preconvulsive behavior onset 
(min), b latency to first seizure (min), c longest seizure (min), and d Racine score. Significance at *p < 0.05, ****p < 0.0001
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Fig. 3  Effect of COQ10 either alone or in combination with sodium 
valproate on a malondialdehyde (MDA) as an index for lipid peroxi-
dation, b antioxidant enzymes as reduced glutathione (GSH), c glu-

tathione peroxidase 4 (GPX4), and d ferritin (FE) in hippocampus tis-
sue. Significance at *p < 0.05, **p < 0.01, ****p < 0.0001
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Histological results

H&E

The H&E-stained sections of the hippocampus revealed 
two distinct regions: the dentate gyrus and the hippocampus 
proper. Cornu ammonis (CA) is made up of the hippocampal 
proper’s polymorphic layer, pyramidal layer, and molecular 
layer. As a dark V-shaped structure, the dentate gyrus (DG) 
can be seen in the images. The DG is a structure that com-
prises molecular, granule cell, and polymorphic layers.

Results of CA1 Analysis of the control vehicle group’s CA1 
region showed that its pyramidal layer is made up of five 
or six tightly packed layers of tiny pyramidal neurons with 
vesicular nuclei. The molecular and polymorphic layers 
showed neuroglial cells with small dark basophilic rounded 
nuclei and perinuclear halos among neuropil and small 
blood vessels (Fig. 5a). Results suggested a thinner pyrami-
dal layer in the CA1 region of the epileptic group. Some 
regions showed complete loss of pyramidal cells, while 
others showed degeneration marked by shrunken, deeply 
stained elongated nuclei or pyknotic nuclei with pericellular 
vacuolation. Degenerated neurons in the molecular and poly-
morphic layers were surrounded by perineurial glial cells. 
Blood capillaries were visibly congested in the molecular 
and polymorphic layers, which were otherwise characterized 
by wide neuropils (Fig. 5b). The CA1 region of the hip-
pocampus showed modest improvement in the SVP-treated 
group compared to the epileptic group. Most pyramidal cells 
were normal, and only a small percentage of them showed 
deeply stained pyknotic nuclei with pericellular vacuola-
tion. Pyramidal cells were found to be losing out in some 
regions. Few dilated capillaries were found among the vast 
neuropils of the molecular and polymorphic layers (Fig. 5c). 
Comparatively, the CoQ10-treated group was similar to the 
control group, although a subset of pyramidal cells had a 
reduced number of intensely pigmented, elongated nuclei 
and pericellular vacuolation. However, only a few swollen 
blood vessels were visible amid the neuropils. Neuroglial 
cells appeared to be decreasing in the molecular and poly-
morphic layers (Fig. 5d). However, the pyramidal cells in 
the SVP + CoQ10-treated group appeared almost similar 
to those in the control group, with only a few degenerated 
cells. On top of that, the molecular and polymorphic layers 
showed typical neuroglia (Fig. 5e).

Results of CA3 Numerous large pyramidal neurons with 
vesicular nuclei were seen in the CA3 pyramidal layer 
of the control vehicle group. Neuroglial cells and small 
blood vessels were scattered among an eosinophilic back-
ground of the neuropil (Fig. 6a). The pyramidal layer in 

Fig. 4  Correlation analysis of glutathione peroxidase 4 (GPX4) and 
biochemical parameters in hippocampus tissue (Pearson’s correlation, 
n = 50). Data expressed as a malondialdehyde (MDA) as an index 
for lipid peroxidation, b antioxidant enzymes as reduced glutathione 
(GSH), and c ferritin (FE)
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Fig. 5  A sagittal section in rat hippocampus showing CA1 in different 
experimental groups (H&E ×20, scale bar 50 μm). Control group (a) 
shows that its pyramidal (Pr) layer is made up of five or six tightly 
packed layers of tiny pyramidal neurons (red↑) with vesicular nuclei. 
Both the molecular (M) layer and polymorphic (P) layer show neuro-
glial cells (thick arrow) with dark basophilic stained small, rounded 
nuclei, and perinuclear halos among neuropil (*) and small blood 
vessels. Epileptic group (b) shows degenerated pyramidal cells with 
deeply stained elongated nuclei with pericellular haloes (↑). Note the 
absence of pyramidal cells in a few areas (dot arrow). Both M and P 
layers contain congested blood capillaries among wide neuropils (*). 

An apparent increase of neuroglial cells (thick arrow). SVP-treated 
group (c) shows mild improvement, and some pyramidal cells appear 
degenerated (↑) among normal pyramidal cells (red↑). An apparent 
mild decrease of glial cells (thick arrow). M and P layers contain few 
congested blood capillaries among wide neuropils (*). CoQ10-treated 
group (d) and SVP + CoQ10-treated group (e) showing the layers 
were comparable to the control group. Most of the large pyramidal 
cells have vesicular nuclei (red↑). In addition, few degenerated cells 
with pericellular vacuolation (↑) are noticed. Glial cell interneurons 
are seen nearly as a control group in all layers of the hippocampus 
(thick arrow)
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the epileptic group appeared to be severely disorganized, 
with several areas of cell death. Most of the pyramidal 
cells were shrunken, darkly pigmented, and surrounded by 
pericellular haloes. The molecular and polymorphic layers 
showed congested blood capillaries among wide neuro-
pils. An apparent increase in the number of neuroglial cells 
among all layers was seen (Fig. 6b). The SVP-treated group 
exhibited mild improvement in all layers of the CA3 region 
as compared to the epileptic group. Some shrunken, deeply 
stained pyramidal cells with pericellular vacuolation were 
seen among normal pyramidal cells with vesicular nuclei. 
The molecular and polymorphic layers showed few con-
gested blood capillaries among wide neuropils (Fig. 6c). 
Few pyramidal cells with deeply elongated nuclei and 
pericellular vacuolation were seen in the pyramidal layer 
in the CoQ10-treated group, but otherwise, there were no 
significant differences with the control group. However, 
few congested blood capillaries appeared among neuro-
pils. Notice an apparent decrease of the glial cells could 
be observed scattered in the molecular and polymorphic 
layers (Fig. 6d). The SVP + CoQ10-treated group showed 
the same results as the control group. Most pyramidal cells 
appeared scattered with vesicular nuclei relatively similar 
to the control. Also, the molecular and polymorphic layers 
looked normal (Fig. 6e).

Results of DG The granular layer of the control group was 
a compact sheet of granular cells with spherical nuclei. 
While neuroglial cells make up the molecular layer, the 
polymorphic layer has a few pyramidal cells with vesicu-
lar nuclei (Fig. 7a). Compared to the control group, the 
epileptic group’s DG showed degenerative alterations. 
Most of the granular cells appeared degenerated with 
pericellular vacuolation. Pyramidal cells of the polymor-
phic layer showed darkly stained pyknotic nuclei. Also, an 
apparent increase in neuroglial cells was seen (Fig. 7b). 
The SVP-treated group exhibited mild improvement in 
DG cell layers compared to the epileptic group. Few 
normal granular cells appeared among degenerated cells 
with pericellular vacuolation (Fig. 7c). A small number 
of granular cells with pericellular haloes were observed 
in the CoQ10-treated group; otherwise, there were no 
significant differences compared to the control (Fig. 7d). 
SVP and CoQ10-treated group appeared similar to the 
control group (Fig. 7e).

Immunohistochemical (IHC) results

Immunohistochemical reactions for ferritin in sections 
of CA1 (Fig. 8a–e) and CA3 (Fig. 9a–e) areas and DG 
(Fig. 10a–e) were seen in different experimental groups. 
Hippocampal sections of the control group showed diffuse 
immunostaining for a small number of brownish neuropils 

in CA1, CA3, and DG areas. The epileptic group showed 
an apparent increase in ferritin-immunostained cells in the 
three areas. The SVP group revealed less increase in fer-
ritin immunostained cells. Ferritin immunostained sections 
of coQ10-treated and SVP + coQ10-treated groups showed 
results nearly as that of the control group. Immunohisto-
chemical reactions for GFAP in sections of CA1 (Fig. 11a–e) 
and CA3 (Fig. 12a–e) areas and DG (Fig. 13a–e) were seen 
in different experimental groups. The control group revealed 
a few GFAP-positive immunoreactive astrocytes dispersed in 
CA1, CA3, and DG. The epileptic group showed an appar-
ent increase in GFAP immunoreactive astrocytes. The SVP 
group revealed moderately strong positive cytoplasmic reac-
tions in most astrocytes compared to the epileptic group. 
Interestingly, GFAP-stained sections for the CoQ10-treated 
group and SVP + CoQ10-treated group showed results simi-
lar to the control.

Morphometric results

As shown in Fig. 14a–c, lithium-pilocarpine caused a sig-
nificant (P < 0.0001) increase in the percentage of neuronal 
cell loss in CA1 (73.18 ± 2.70), CA3 (76.17 ± 1.42), and DG 
(84.33 ± 1.28) as compared to control, SVP, CoQ10, and 
SVP + CoQ10-treated groups. CoQ10 resulted in a signifi-
cant (P = 0.0001) decrease in the percentage of neuronal cell 
lose in CA1 (30.22 ± 0.62), CA3 (24.62 ± 0.72), and DG 
(27.02 ± 0.75) in contrast with rats receiving SVP in CA1 
(38.83 ± 1.23), CA3 (59.62 ± 0.57), and DG (44.14 ± 0.59).

The group receiving the combination of both drugs 
(SVP + CoQ10) showed a significant (P < 0.0001) decrease 
in the percentage of neuronal cell loss in CA1 (29.14 ± 0.55), 
CA3 (22.10 ± 0.78), and DG (25.70 ± 0.39) than in an epilep-
tic group and SVP-treated rats. In addition, SVP + CoQ10-
treated groups showed a non-significant difference (P > 0.98, 
P > 0.39, P > 0.95, respectively) versus the CoQ10 group in 
CA1, CA3, and DG.

As shown in Fig. 14d–f, lithium-pilocarpine caused 
a significant (P < 0.0001) decrease in the percentage of 
positive Nissl-stained cells in CA1 (20.30 ± 0.53), CA3 
(17.50 ± 1.29), and DG (18.90 ± 0.80) as compared to 
control, SVP, CoQ10, and SVP + CoQ10-treated groups. 
CoQ10 resulted in a significant (P = 0.0001) increase 
in the percentage of positive Nissl-stained cells in CA1 
(59.90 ± 5.99), CA3 (43.70 ± 1.73), and DG (98.10 ± 2.83) 
in contrast with rats receiving SVP in CA1 (44.00 ± 1.21), 
CA3 (32.80 ± 1.16), and DG (80.50 ± 1.92). The group 
receiving the combination of both drugs (SVP + CoQ10) 
showed a significant (P < 0.0001) increase in the percent-
age of positive Nissl-stained cells in CA1 (62.60 ± 1.17), 
CA3 (43.10 ± 1.38), and DG (98.40 ± 0.56) than in 
an epileptic group and SVP-treated rats. In addition, 
SVP + CoQ10-treated groups showed non-significant 
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Fig. 6  A sagittal section in rat hippocampus showing CA3 in differ-
ent experimental groups (H&E ×20, scale bar 50 μm). The control 
group (a) shows numerous large pyramidal (red↑) neurons with vesic-
ular nuclei seen in the pyramidal layer. Neuroglial cells (thick arrow) 
and small blood vessels are scattered among an eosinophilic back-
ground of the neuropil (*). The pyramidal layer of the epileptic group 
(b) appears severely disorganized, with degenerated pyramidal cells 
with deeply stained elongated nuclei and pericellular haloes (↑). Note 
the absence of pyramidal cells in a few areas (dot arrow). Molecular 
(M) and polymorphic (P) layers contain congested blood capillaries 
among wide neuropils (*). An apparent increase of neuroglial cells 

(thick arrow). The SVP-treated group (c) exhibited mild improve-
ment compared to the epileptic group. Some pyramidal cells appeared 
degenerated (↑), with pericellular vacuolation among normal pyrami-
dal cells (red↑). Both molecular and polymorphic layers show small 
blood capillaries among neuropils (*). Few pyramidal cells with 
deeply stained nuclei and pericellular vacuolation (↑) appear among 
regularly arranged pyramidal cells (red↑) in CoQ10-treated group (d). 
Neuroglia (thick arrow) and small blood vessels are scattered among 
the wide neuropil (*). SVP + CoQ10-treated group (e) appears nearly 
similar to the control group
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differences (P > 0.73, P > 0.99, P > 0.99, respectively) 
versus the CoQ10 group in CA1, CA3, and DG.

As shown in Fig. 15a–c, lithium-pilocarpine caused 
a significant (P < 0.0001) increase in the mean num-
ber of GFAP-positive cells in CA1 (59.00 ± 2.61), CA3 
(59.00 ± 1.35), and DG (89.60 ± 1.05) as compared to 
control, SVP, CoQ10, and SVP + CoQ10-treated groups. 
CoQ10 resulted in a significant (P = 0.0001) decrease in the 
percentage of GFAP-positive cells in CA1 (14.90 ± 0.45), 
CA3 (11.70 ± 0.42), and DG (34.40 ± 0.83) in contrast 
with rats receiving SVP in CA1 (21.50 ± 0.81), CA3 
(46.10 ± 0.70), and DG (63.70 ± 1.09). The group receiv-
ing the combination of both drugs (SVP + CoQ10) 
showed a significant (P < 0.0001) decrease in the percent-
age of GFAP-positive cells in CA1 (13.80 ± 0.32), CA3 
(10.50 ± 0.30), and DG (33.60 ± 0.83) than in the epileptic 
group and SVP-treated rats. In addition, SVP + CoQ10-
treated groups showed a non-significant difference 
(P > 0.99, P > 0.94, P > 0.99, respectively) versus the 
CoQ10 group in CA1, CA3, and DG.

As shown in Fig. 15d–f, lithium-pilocarpine caused 
a significant (P < 0.0001) increase in the mean num-
ber of FE-positive cells in CA1 (63.50 ± 1.24), CA3 
(42.50 ± 1.05), and DG (72.50 ± 1.05) as compared to 
control, SVP, CoQ10, and SVP + CoQ10-treated groups. 
CoQ10 resulted in a significant (P < 0.0001) decrease in 
the percentage of FE-positive cells in CA1 (44.90 ± 1.34), 
CA3 (25.80 ± 0.72), and DG (54.80 ± 0.77) in con-
trast with rats receiving SVP in CA1 (53.00 ± 0.9545), 
CA3 (34.00 ± 1.53), and DG (63.00 ± 0.95). The group 
receiving the combination of both drugs (SVP + CoQ10) 
showed a significant (P < 0.0001, P < 0.0001, respectively) 
decrease in the percentage of FE positive cells in CA1 
(43.60 ± 0.83), CA3 (24.80 ± 0.62), and DG (54.80 ± 0.62) 
than in an epileptic group and SVP-treated rats. In addi-
tion, SVP + CoQ10-treated groups showed a non-signifi-
cant difference (P > 0.99) versus the CoQ10 group in CA1, 
CA3, and DG.

Discussion

We found that pretreatment with COQ10 dramatically 
reduced seizure activity and severity during the acute phase 
of lithium-pilocarpine-induced seizure model, as measured 
by Racine’s scale. In addition, it shielded the nerve cells. 
Additionally, pretreatment with CoQ10 alone or in combi-
nation with SVP indicates the potential therapeutic uses for 
curing seizure-associated illnesses like epilepsy by targeting 
the ferroptosis process.

Pilo-induced seizures are ideal models for studying SE 
(Wu and Wang 2018). Numerous scientists and pharmaceu-
tical companies have utilized the model to understand the 

causes of epilepsy better and develop more potent treatments 
for the disorder. Three 100 mg/kg injections were sufficient 
to produce continuous seizure activity, as found in the prior 
study (Mao et al. 2019). Evidence for ferroptosis in epileptic 
seizures was identified by Mao et al., who observed mito-
chondrial shrinkage and an increase in PTGS2 mRNA in 
mice that had been treated with Pilo (Mao et al. 2019). Indi-
rect activation of T-lymphocytes and mononuclear cells by 
Li increases serum IL-1 levels, which in turn alters the per-
meability of the blood–brain barrier (BBB) and increases the 
uptake of Pilo. In addition, pretreatment with LiCl has been 
shown to boost acetylcholine release, which in turn causes 
more acetylcholine to cross the synaptic cleft and reach the 
postsynaptic membrane, where it activates muscarinic recep-
tors and shortens the latency to initiation of SE. LiCl Pilo is 
a promising model for researching SE because it produces 
more consistent and protracted seizures with reliable results 
and a low death rate (Juvale and Has 2020).

Ferroptosis, a novel form of regulated cell death, was previ-
ously found in an organotypic hippocampal slice culture model 
of rats with glutamate-induced neurotoxicity, neurodegenera-
tive diseases, and ischemia/reperfusion injury (Li et al. 2017; 
Skouta et al. 2014; Tuo et al. 2017). Ferroptosis initiation and 
execution lie in five critical events: iron accumulation, GPX4, 
GSH depletion, and lipid peroxides accumulation (Chen et al. 
2020). An overview of ROS and iron’s roles as initiators and 
mediators of ferroptosis was presentedby Dixon and Stock-
well. They discovered that iron-dependent ROS buildup occurs 
when the cystine-glutamate antiporter is inhibited, and glu-
tathione levels are low. When ROS reacts with polyunsaturated 
fatty acids in membrane lipids, lipid peroxidation can occur 
(Dixon and Stockwell 2014). Ferroptosis was hypothesized to 
play a role in brain disorders, particularly pilocarpine-induced 
seizures, because of the brain’s high concentration of phospho-
lipids and susceptibility to lipid peroxidation.

As an interesting side effect, AEDs and other drugs also 
influence molecules involved in the ferroptosis process. For 
example, lipid peroxidation levels were dramatically increased 
in epileptic youngsters using therapeutic doses of levetiracetam 
(Haznedar et al. 2019). In addition, the adverse effects of SVP 
treatment in patients (CENGIZ et al. 2000) and animal models 
(Tong et al. 2005) are associated with OS and reductions in 
antioxidant enzymes, including GPx, SOD, and catalase.

CoQ10 is an effective natural antioxidant with a fundamen-
tal role in cellular bioenergetics and numerous known health 
benefits. By regulating ROS generation and controlling cel-
lular redox status, it protects cells from damage caused by free 
radicals. CoQ10 is capable of suppressing inflammatory gene 
expression and so has antiinflammatory properties. Addition-
ally, it may aid in immunity by controlling lysosomal and per-
oxisomal activity throughout the immune response (Zhao et al. 
2022). Recent clinical trials and experimental research have 
documented that CoQ10 consumption provides remarkable 
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Fig. 7  A sagittal section in rat hippocampus showing DG in different 
experimental groups (H&E ×20, scale bar 50 μm). Control group (a) 
showing the granular (G) layer is formed of a dense aggregate of gran-
ular cells that appeared rounded with vesicular nuclei (↑) with little 
interstitial tissue in-between. The polymorphic (P) layer contains scat-
tered large pyramidal cells (bifid arrow) with vesicular nuclei, while 
neuroglial cells (thick arrow) appear scattered in both the molecular 
layer (M) and polymorphic layer (P). An epileptic group (b) shows 
many degenerated granule cells (arrowhead) are seen with a massive 
area of vacuolation (V). In addition to dark-stained apoptotic large 

pyramidal cells (bifid arrow) in the polymorphic layer (P), there is an 
apparent increase in the neuroglial cells (thick arrow). SVP-treated 
group (c) shows mild improvement. Few normal granular cells (↑) 
appeared among degenerated cells (arrowhead) with pericellular vacu-
olation (V). Both M and P layers show normal glial cells (thick arrow) 
darkly stained pyramidal cells (bifid arrow) with pericellular halos are 
found in the polymorphic layer (P). CoQ10-treated group shows few 
degenerated granular cells with pericellular vacuolation (V) (d). SVP 
+ CoQ10-treated group shows similar results to the control group (e)
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protection against acute organ injuries (including but not 
limited to brain, heart, lung, liver, and kidney damage) (Ali 
et al. 2021; Chen et al. 2021; Li et al. 2020; Zhao et al. 2022). 

CoQ10 is a powerful antioxidant that provides neuroprotec-
tion in some forms of neurodegenerative illness (Mancuso 
et al. 2010). CoQ10 can penetrate the BBB and accumulate 

Fig. 8  Immunohistochemical reaction for ferritin in sections of CA1 
area of the hippocampus in different groups: control group (a), epi-
leptic group (b), SVP-treated group (c), CoQ10-treated group (d), 

and SVP + CoQ10-treated group (e). Black arrows (↑) indicate posi-
tive immunohistochemical ferritin expression cells (×40, scale bar 50 
μm)
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neuroprotective amounts in the brain. CoQ10 may provide 
more protection to neurons than common antioxidants like 
vitamin E (Abdin and Hamouda 2008; Aboul-Fotouh 2013). 

This suggests that CoQ10’s ability to scavenge free radicals 
may contribute slightly to its positive effect. CoQ10 pro-
vides neuroprotection in animal models of neurodegenerative 

Fig. 9  Immunohistochemical reaction for ferritin in sections of CA3 
area of the hippocampus in different groups: control group (a), epi-
leptic group (b), SVP-treated group (c), CoQ10-treated group (d), 

and SVP + CoQ10-treated group (e). Black arrows (↑) indicate posi-
tive immunohistochemical ferritin expression cells (×40, scale bar 50 
μm)
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disorders, including Alzheimer’s and Parkinson’s, whose 
pathophysiology is linked to mitochondrial dysfunction (Abdin 
and Hamouda 2008; Aboul-Fotouh 2013; Yang et al. 2009). In 

epilepsy, lipid peroxidation is accompanied by a reduction in 
CoQ10 that aggravates the condition, and exogenous CoQ10 
administration could reverse this scenario (Tawfik 2011).

Fig. 10  Immunohistochemical reaction for ferritin in sections of den-
tate gyrus (DG) in different groups: control group (a), epileptic group 
(b), SVP-treated group (c), CoQ10-treated group (d), and SVP + 

CoQ10-treated group (e). Black arrows (↑) indicate positive immuno-
histochemical ferritin expression cells (×40, scale bar 50 μm)
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Fig. 11  Immunohistochemical reaction for GFAP in sections of CA1 
(a–e) area of the hippocampus in different groups. Control group 
(a), epileptic group (b), SVP-treated group (c), CoQ10-treated group 

(d), and SVP + CoQ10-treated group (e). Black arrows (↑) indicate 
positive cytoplasmic reactions in the body and processes of astrocytes 
(×40, scale bar 50 μm)
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Fig. 12  Immunohistochemical reaction for GFAP in sections of CA3 
area of the hippocampus in different groups. Control group (a), epi-
leptic group (b), SVP-treated group (c), CoQ10-treated group (d), 

and SVP + CoQ10-treated group (e). Black arrows (↑) indicate posi-
tive cytoplasmic reactions in the body and processes of astrocytes 
(×40, scale bar 50 μm)
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Fig. 13  Immunohistochemical reaction for GFAP in sections of 
dentate gyrus (DG) in different groups. Control group (a), epileptic 
group (b), SVP-treated group (c), CoQ10-treated group (d), and SVP 

+ CoQ10-treated group (e). Black arrows (↑) indicate positive cyto-
plasmic reactions in the body and processes of astrocytes (×40, scale 
bar 50 μm)
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Fig. 14  Effect of COQ10 alone 
or combined with sodium 
valproate on the morphometric 
hippocampus results of the 
hippocampus in different groups 
in CA1, CA3, and DG regions. 
The percentage of neuronal cell 
loss (a–c) and the percent-
age of positive Nissl-stained 
cells (d–f). ****Significant at 
p < 0.0001
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Fig.  15  Effect of COQ10 alone 
or combined with sodium 
valproate on the morphometric 
hippocampus results of the 
hippocampus in different groups 
in CA1, CA3, and DG regions. 
The mean number of GFAP-
positive cells (a–c) and the 
mean number of ferritin-posi-
tive cells  (d–f). **Significance 
at p < 0.01 and ****significance 
at p < 0.0001
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Interestingly, no study detected the targeted effect of 
COQ10 on hippocampal ferroptosis in a SE rat model. 
However, there was a different study on the neuroprotective 
effect of COQ10 in epileptic models in rodents (Ahras-sifi 
and Laraba-djebari 2020; Bhardwaj and Kumar 2016; Mao 
et al. 2019).

CoQ10 pretreatment significantly reduced seizure activ-
ity and severity as measured by Racine’s scale in the cur-
rent lithium-pilocarpine paradigm. Tawfik found that the 
effects of pilocarpine-induced seizures could be mitigated 
by taking coenzyme Q10 (CoQ10). It boosted the effective-
ness of phenytoin as an antiepileptic medication. CoQ10 
was also a useful adjunct to phenytoin treatment for patients 
with pilocarpine-induced seizures (Tawfik 2011). Research-
ers Baluchnejadmojarad et al. concluded that pretreatment 
with CoQ10 could reduce the severity of spontaneous recur-
rent seizures and prevent the death of hippocampal neurons 
and the growth of abnormal mossy fibers in the DG’s inner 
molecular layer following kainate administration in a rat 
model (Baluchnejadmojarad and Roghani 2013).

Consistent with prior research utilizing the pilocarpine 
model, our results showed an increase in MDA and a deple-
tion of the antioxidant enzyme pool, as revealed by decreases 
in GSH in hippocampus homogenates (Ali et al. 2018; Cao 
et al. 2021; Tawfik 2011). The free radical damage caused 
by OS and the excitotoxicity caused by an overabundance 
of neurotransmitters may explain all of this (Santos et al. 
2009). Epileptic rat brain homogenates treated with CoQ10 
during the acute phase of pilocarpine-induced convulsions 
revealed decreased lipid peroxidation, corroborating the 
findings of prior studies on the influence of antioxidants on 
pilocarpine-induced oxidative stress and neuronal damage 
(Diniz et al. 2015; Pearson and Patel 2016; Shakeel et al. 
2017). They also improved antioxidant indexes, which indi-
cated a decreased risk of OS. Pilo-induced seizures were 
also prevented, and their intensity was reduced when the 
animals were pretreated with CoQ10. This was likely due to 
a reduction in the OS in the rat hippocampus that resulted 
from the seizures. An increase in antioxidant enzyme activi-
ties, while decreasing free radical generation, significantly 
reduces vulnerability to pilocarpine-induced seizures, as 
emphasized by Santos et al. (2009). CoQ10 enhanced the 
antioxidant and antiepileptic benefits of SVP treatment, 
indicating that CoQ10 may be used as an adjuvant to stand-
ard AEDs. Treatment with SVP has been linked in some 
research to changes in iron metabolism in epilepsy, with 
results including increased OS and the development of non-
transferrin-bound iron. The serum iron, ferritin, and transfer-
rin saturation levels were all within normal ranges in epilep-
tic patients (Ounjaijean et al. 2011).

Ferritin is most cells’ primary intracellular iron-storage 
protein (Cheli et al. 2020). The current investigation uti-
lized FE as a marker of altered iron metabolism. Observable 

alterations to this protein indicate potentially abnormal iron 
metabolism. This study demonstrated that epileptic rats have 
a significantly higher FE level than control rats. Coenzyme 
Q10 also reduced FE protein levels. Additionally, the ben-
efits of SVP therapy for regulating iron stores were ampli-
fied by incorporating CoQ10. In tubular sclerosis tissues, 
an important contributor to treatment resistance in epilepsy, 
increased ferritin expression and intracellular iron accumula-
tion have been observed (Zhou et al. 2022).

Since GPX4 is a selenium-dependent enzyme for interneu-
ron growth and seizure prevention, these findings provide 
evidence for the crucial role of GPX4 in epilepsy (Ingold 
et al. 2018). These findings show that GPX4 protein expres-
sion is downregulated in a SE rat model. CoQ10 also raised 
the GPX4 protein concentration. Also, GPX4 was downregu-
lated in kainic acid-treated rats, and ferrostatin-1 (Fer-1) was 
able to correct this (Ye et al. 2019). In addition, PTZ and 
Pilo-treated mice had lower levels of GPX4 protein, which 
Fer-1 reversed (Mao et al. 2019). The negative correlation 
between the levels of GPx4 and lipid peroxidation marker 
and FE level suggests that the decrease in GPX4 activity may 
account for the intensity of lipid peroxidation and FE level. In 
contrast, a significant positive correlation was found between 
GPx4 activity and GSH intensity. This could be explained by 
Cappelletti et al. (2020) and Forcina and Dixon (2019). The 
protein GPX4 prevents lipid peroxidation in cell membranes. 
But GPX4 can turn lipid hydroperoxides into lipid alcohols 
with the help of GSH (Capelletti et al. 2020).

Histological and immunohistochemical evaluations were 
carried out to confirm the biochemical findings. Degenerated 
and disordered pyramidal cells were seen in regions CA1 
and CA3 of the hippocampus proper in the epileptic group, 
as revealed by this study’s light microscopic analysis. Most 
pyramidal cells showed degenerative changes, and vacuoles 
surrounded their elongated, deeply stained nuclei. A change 
in the arrangement of pyramidal cells could constitute an 
adaptive response to pressure. This could be the pyrami-
dal cells’ first attempt at recovering their former abilities. 
Consistent with these results, additional researchers dem-
onstrated a highly disordered hippocampal pyramidal cell 
layer (Tsegay et al. 2021). Degenerative alterations of nerve 
cells with vacuolated pericellular space were also observed 
in DG from the epileptic group. Vacuolated pericellular hal-
lows developed primarily because nerve cells shrank and 
withdrew their cytoplasmic processes because of the disso-
lution of their cytoskeletal elements. It was established that 
oxidative stress, which causes free radicals to assault neural 
cells, can lead to nerve cell degeneration (Wu and Wang 
2018). They further speculated that endothelial damage, 
vasodilatation, and increased vascular permeability might 
all play a role in creating the interstitial edema that leads to 
wide interstitial spaces between pyramidal cell neurons (Wu 
and Wang 2018).
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Dispersion of neurons in CA1, CA3, and DG of the hip-
pocampus was also seen with Nissl staining after pilocarpine 
administration. The previous explanation was the absence of 
Reelin, a protein crucial for neuronal migration and lamination 
(Cooper 2008). There can be no protein depletion without Nissl 
bodies doing their crucial role. A decrease in Nissl-stained 
cells shows the suppression of neuronal protein production. 
Evidence like this points to pilocarpine’s deleterious effects 
on neuronal function (Parent et al. 1999). On the other hand, 
the hippocampi of pilocarpine-exposed rats showed compacted 
Nissl granules in the cytoplasm of pyramidal cells and occa-
sional darkly stained basophil neurons (Liu et al. 2003).

CoQ10 pretreatment has been shown to enhance the num-
ber of cells that stain positively for Nissl stain, which is an 
interesting finding. CoQ10’s considerable neuroprotection 
characteristics have been demonstrated, suggesting that it 
may shield neurons from damage in the event of neurodegen-
erative disease (Tawfik 2011). CoQ10 pretreatment in a spi-
nal cord contusion model enhanced neurological functioning 
and normal motor neuron survival (Hwang et al. 2015).

Microglia are cells that clean tissue by phagocytosis after 
generating proinflammatory cytokines to combat invading 
agents and harmful substances in the brain. Ferritin is a protein 
that is produced by microglia. There is mounting evidence that 
ferritin is a key player in inflammation (de Rodríguez‐Callejas 
et al. 2019). Our research shows that microglial cells in the 
hippocampus of epileptic rats exhibit elevated ferritin immu-
noreactivity compared to control expression. The most com-
mon form of cell that expresses ferritin resembles microglia 
in appearance, with a tiny, irregular cell body and branching 
processes. Another kind of cell that tested positive for ferritin 
had a tiny, spherical soma and no processes. Oligodendrocytes 
were likely the less numerous cells in this group than micro-
glia cells (de Rodríguez‐Callejas et al. 2019). Treatment with 
CoQ10 alone or in combination with SVP reduced ferritin 
expression in epileptic rats. Gorter et al. also reported a similar 
finding (Gorter et al. 2005). They discovered that iron could 
bring on seizures. Whether this effect is due to iron-induced 
lesions or iron-induced destabilization of neighboring neural 
networks is unknown. CoQ10 is a lipophilic radical scavenger 
in the membrane and a lipophilic electron transporter in the 
mitochondrial respiratory chain (Santoro 2020). The antioxi-
dant benefits of non-mitochondrial CoQ10, of which ferropto-
sis suppressor protein 1 is an important component, were dis-
covered by Bersuker et al. to be exerted by the recruitment of 
this protein into the plasma membrane(Bersuker et al. 2019). 
CoQ10 and GSH were found to have an antiferroptosis impact 
in another investigation (Shimada et al. 2016).

Many CNS cells, including astrocytes, contain GFAP, an 
intermediate filament protein. GFAP plays a significant role in 
regulating astrocyte motility and form by providing structural 
stability to astrocytic processes. Finally, GFAP is a mature CNS 
astrocyte-specific marker (Moeton et al. 2016). Astrogliosis was 

discovered to result from CNS injury caused by trauma, disease, 
genetic diseases, or chemical factors. Astrogliosis is character-
ized by increased GFAP production, which can be observed 
through immunostaining with an antibody against GFAP (Yuan 
et al. 2021). The present study measured pilocarpine-induced 
astrocyte activation by dramatically increasing GFAP expres-
sion. There is a possibility that this is a protective response to 
pilocarpine-induced neuronal injury. In other types of neurotox-
icity, these alterations have been demonstrated before (Mirrione 
et al. 2010; Vargas-Sánchez et al. 2018). Faint GFAP immu-
noreaction was observed in CoQ10 with or without SVP, sug-
gesting that therapy with CoQ10 alone or in combination with 
SVP positively influences the affected astrocytes in the CA1 
and CA3 areas and in the DG of the hippocampus. According to 
Borowicz-Reutt et al., this discovery can be explained by fewer 
astrocytes because the neuronal structure is slowly regaining 
its normal state. Activation of astrocytes involves neurotoxic 
activities generated by oxidative insults and is a key component 
of the brain’s antioxidant defense mechanism (Borowicz-Reutt 
and Czuczwar 2020).

Conclusion

Our results imply that CoQ10 has been promised as a safe 
and effective complement to SVP therapy in epilepsy since 
it decreases seizure severity and protects against seizure-
induced oxidative damage and ferroptosis-related damage 
in pilocarpine-treated rats. In addition, our results pro-
vided compelling evidence that CoQ10 could be a useful 
adjuvant for protecting against oxidative damage and fer-
roptosis-related damage that result from epileptic seizures.
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