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Calcium imaging of adult olfactory epithelium reveals amines 
as important odor class in fish
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Abstract
The odor space of aquatic organisms is by necessity quite different from that of air-breathing animals. The recognized odor 
classes in teleost fish include amino acids, bile acids, reproductive hormones, nucleotides, and a limited number of poly-
amines. Conversely, a significant portion of the fish olfactory receptor repertoire is composed of trace amine-associated 
receptors, generally assumed to be responsible for detecting amines. Zebrafish possess over one hundred of these receptors, 
but the responses of olfactory sensory neurons to amines have not been known so far. Here we examined odor responses of 
zebrafish olfactory epithelial explants at the cellular level, employing calcium imaging. We report that amines elicit strong 
responses in olfactory sensory neurons, with a time course characteristically different from that of ATP-responsive (basal) 
cells. A quantitative analysis of the laminar height distribution shows amine-responsive cells undistinguishable from ciliated 
neurons positive for olfactory marker protein. This distribution is significantly different from those measured for microvil-
lous neurons positive for transient receptor potential channel 2 and basal cells positive for proliferating cell nuclear antigen. 
Our results suggest amines as an important odor class for teleost fish.
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Introduction

The vertebrate sense of smell has emerged in aquatic organ-
isms but is much better studied in terrestrial, in particular 
mammalian species (Mombaerts 2004, 2006). The basic 
principles of olfactory information processing appear to 
be the same in terrestrial and aquatic vertebrates, such as 
monogenic expression of olfactory receptors, nearly random 
expression of olfactory receptors in the sensory surface, 

convergence of the axons of same receptor-expressing 
sensory neurons into one to two glomeruli in the olfactory 
bulb, and some degree of chemotopy in the olfactory bulb 
(Mombaerts 2004, 2006; Korsching 2020). However, aquatic 
organisms rely on their odorants being water-soluble, while 
terrestrial organisms require volatile odorants, which by 
necessity should have less strong interactions with the sol-
vent. Thus one expects odorants of aquatic vertebrates to 
be quite different from those important for terrestrial verte-
brates. In fact, large molecules such as steroids and prosta-
glandins are odorless for humans, but constitute important 
odors for fish, serving as reproductive pheromones (Stacey 
et al. 2003). The (few) olfactory receptors found for this 
class of molecules belong to the odorant receptor family 
(ORs; Yabuki et al. 2016).

Moreover, charged molecules such as amino acids and 
nucleotides, which are mostly odorless for humans, constitute 
an important class of odorants for fish, serving as indicator of 
nutrient sources (Hara 1975; Friedrich and Korsching 1997, 
1998). Amino acid detection is likely mediated by a large 
group of class C GPCRs, the V2Rs, also named OlfC in tel-
eost fish (DeMaria et al. 2013). Concerning nucleotide detec-
tion, current knowledge points to a single olfactory receptor, 
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adorb (Kowatschew et al. 2022), which is highly specific for 
adenosine, generated within the olfactory mucosa through 
the hydrolysis of ATP (Wakisaka et al. (2017). Recently, in 
addition to sparse olfactory sensory neuron (OSN) responses 
to ATP, non-olfactory responses to ATP have been shown 
in supporting and basal cells of zebrafish (Demirler et al. 
2020), similar to earlier observations made in larval Xenopus 
(Czesnik et al. 2006).

Amines constitute a bimodal odor class which can func-
tion in both aquatic and terrestrial environments. In mammals 
they are detected by a small family of trace amine-associated 
receptors (TAARs; Liberles and Buck 2006). The ortholo-
gous family is much expanded in teleost fish and heterolo-
gous expression experiments have identified many amines 
as ligands (Hussain et al. 2013; Li et al. 2015; Sharma et al. 
2016). This would suggest amines as a major odor class in fish. 
However, electroolfactogram studies, which measure local 
field potentials, have shown responses only to few amines, 
such as spermidine and cadaverine (Rolen et al. 2003; Michel 
et al. 2003), and behavioral responses have been shown for 
even less amines (Hussain et al. 2013).

Here we used calcium imaging with cellular resolu-
tion to identify amine responses in slice preparations 
of zebrafish olfactory epithelium. The response charac-
teristics are significantly different from those obtained 
for ATP which is known to activate mostly nonneu-
ronal cells (Demirler et al. 2020). The spatial pattern of 

amine-responding cells is undistinguishable from that of 
ciliated neurons and different from that of microvillous 
neurons and basal cells. Our results suggest amines as an 
important odor class for teleost fish.

Results

Imaging odor responses in slice preparations 
of zebrafish olfactory epithelium

To image odor-induced neuronal activity, olfactory epithe-
lia of adult zebrafish were dissected, sliced horizontally, 
and incubated with the calcium-sensitive dye Fluo4-AM 
(Fig. 1), cf. (Weth et al. 1996, Fig. 1 for three-dimensional 
morphology). Stimuli were given as 10 s pulse. Cells react-
ing to stimuli (amine mixture and ATP) were identified in 
pixel correlation maps, and relative fluorescence changes 
(∆F/F0) were determined for the corresponding regions 
of interest (ROIs) over time (Fig. 2). Generally, signals 
could be replicated at least twice, albeit with small differ-
ences in the time course of the response (Fig. S1). Arti-
ficial cerebrospinal fluid (ACSF) was used as negative 
control (Fig. 2f, f') and high K+ was employed to ascertain 
the neuronal nature of the responsive cell (Fig. 2i'). Non-
neuronal basal cells show no responses to high K+ (Fig. 2i).

Fig. 1   Slice preparation of adult 
zebrafish olfactory epithelium 
for calcium imaging. The 
position of the nose is shown 
by the white dotted oval (a). 
Schematic representation of 
the olfactory epithelium (b), 
lumen is up, individual lamel-
lae and the median raphe 
are visible. The horizontal 
orientation and approximate 
height of the vibratome section 
plane is shown. En face view 
of the vibratome section (c), 
cross-sectioned lamellae and 
the median raphe are visible. 
In the schematic representa-
tion (c), the green rectangle 
corresponds approximately to 
the region shown in (c', c''). A 
representative vibratome sec-
tion used for calcium imaging 
(bright field (c') and fluorescent 
signals (c'') after loading with 
Fluo4-AM, respectively)



97Cell and Tissue Research (2024) 396:95–102	

Amines constitute a major odor class for zebrafish

In preliminary experiments we saw very little responses to 
amino acids (composition of mix see Manzini and Schild 
2004), which are known odorants for fishes (Hara 1975; 
Friedrich and Korsching 1997). In contrast, frequent and 
strong responses were observed for the amine mixture and 
for ATP (Figs. 2 and 3). The neuronal subpopulations medi-
ating amino acid, amine, and nucleotide responses are all 
supposed to be different (microvillous, ciliated, and pear 
neurons, respectively, cf. Koide et al. 2009; Pacifico et al. 
2012; Dieris et al. 2017; Wakisaka et al. 2017) and may 
exhibit differential dye uptake and/or processing (cf. Frie-
drich and Korsching 1997; Manzini and Schild 2003).

The amine mixture used as stimulus consisted of primary, 
secondary, and tertiary amines, and included aliphatic as 
well as aromatic amines. This formulation was designed to 
ensure a comprehensive representation of amine-responsive 
cells. For each amine 100 µM concentration was employed, 
which is close to saturation for the presumed receptors 
(TAARs, Hussain et  al. 2013; Li et  al. 2015) and thus 
should ensure a robust and comprehensive response. Amine 
responses were generally frequent; sometimes only few, but 
often over 100 cells were activated by amines in a single 
optical layer. Responses to amines without exception showed 

a later onset compared to ATP responses measured in the 
same experiment, and were generally slightly smaller in 
intensity (Figs. 2 and 3). Neither amine- nor ATP-respond-
ing cells showed any signals with the mock stimulus, ACSF. 
Amine-responsive cells generally did not react to ATP and 
vice versa; rare exceptions can not be differentiated unam-
biguously from signals in two superimposed cells. Next, we 
quantified the response kinetics of amine-responsive cells 
and compared them to the ATP-responding cells.

Kinetics of amine responses are characteristically 
different from ATP responses

For quantification we measured three parameters: an onset 
time, defined as time from onset of response to 50% peak 
height, the width of the peaks at 50% peak value, and the 
maximal peak height. The onset time includes any signal 
transduction processes before the readout parameter (fluo-
rescence of the calcium-sensitive dye). Both time to half-
maximal peak and halfwidth of the peak are significantly 
larger for amine-responding cells than for the ATP-respon-
sive cells (Fig. 4a, b, p < 10–30 and p < 10–15, respectively), 
suggesting different modes of signal transduction in these 
two cell populations. ATP receptors include ion chan-
nels (P2X receptors), and those can respond faster than G 

Fig. 2   Odor-induced activity for two stimuli classes, amines, 
and nucleotides. Fluo4-loaded olfactory epithelium slice  (a), 
f luorescence is averaged over complete experiment, dashed 
box is shown magnified in (e). Correlation maps for similarity 
in fluorescence changes upon stimulation  (b–d). The degree 
of correlation of fluorescence changes after stimulation in 
neighboring pixels is shown in grey scale  (b–d). The slice is 
stimulated with 100  μM amine mixture in ACSF  (b), 10  μM 

ATP in ACSF  (c), and high K+(d). E Overlay of correlation 
maps for amine mixture (green) and ATP (magenta) responses. 
ROIs for quantitative evaluation are shown with solid (amine 
mixture) or dashed (ATP) enclosure  (e). Note that amines and 
ATP activate different subsets of cells in the olfactory epithe-
lium. Traces for cells identified as ATP-responsive (f, g, h, i,  
magenta) and as amine-responsive (f', g', h', i', green). Note that  
only amine-responsive cells respond to high K+
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protein-coupled receptors (TAARs) that require additional 
steps of signal transduction. The peak intensity of amine-
responsive cells is somewhat smaller than for ATP-respon-
sive cells (Fig. 4c, p < 10–15). For comparison we have also 
quantified responses to high K+ (Fig. 4). The onset time 
lies below the value for amine stimuli, which is expected: 

high K+-induced depolarization can directly open voltage-
sensitive calcium channels, whereas amine responses require 
additional steps of signal transduction before channels can 
open. The high K+ responses are not fully reversible in the 
investigated time window, which results in larger halfwidths 
compared to those for responses to ATP and amines.

Fig. 3   Calcium response kinet-
ics for amines differ from those 
for ATP. Panels (a, c, e) heat 
maps represent color-coded 
changes in fluorescence over 
time in response to an odor 
pulse (black bar) for indi-
vidual cells, number of cells as 
indicated. The respective color 
scales are shown to the right of 
the heat maps. Green colors, 
amine stimulus; magenta colors, 
ATP stimulus, concentrations  
as indicated. Panels (b, d, f) 
single cell (black curves) and 
averaged calcium response  
profiles (mean+/− SD,  
thick colored line and lightly 
colored area, respectively). 62 
amine-responsive ROIs (a, b), 
53 ATP-responsive ROIs (c, d), 
and 62 ACSF responses for the 
amine-responsive ROIs (e, f, 
negative control), all results are 
from the same slice
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Laminar distribution of amine‑responding 
cells is highly similar to that of ciliated OSNs 
and significantly different from microvillous OSN 
and basal cells

Next we investigated the cell type of amine-responsive cells. 
They may be expected to comprise ciliated OSNs expressing 
taar genes from the large zebrafish TAAR family (112 genes; 
Hussain et al. 2009). In zebrafish, ciliated neuron somata 
occupy an intermediate layer between basal nonneuronal 
cells and apical microvillous receptor neurons (Ahuja et al. 
2014). We quantified laminar height for amine-responsive and 
ATP-responsive cells and compared these distributions with 
those of marker genes. We used an antibody for proliferating 
cell nuclear antigen, PCNA, to label basal cells (Fig. 5a), a 
transgenic line expressing red fluorescent protein, RFP, under 
control of the OMP promoter (olfactory marker protein) to 
label ciliated neurons (Fig. 5a'), and a transgenic line express-
ing venus under control of the TRPC2 promoter (transient 
receptor potential channel C2) to label microvillous neu-
rons (Fig. 5a'') (Ino and Chiba 2000; Sato et al. 2005).

The laminar height distribution of amine-responding cells 
is extremely similar to that of ciliated neurons marked by 
OMP expression and significantly different from all other 
distributions (Fig. 5b, c), suggesting that amine responses 
occur in ciliated neurons. Notably, the distribution of PCNA-
expressing cells closely resembles that of ATP-responding 
cells (Fig. 5b, c), suggesting that ATP responses originate 
mostly from basal nonneuronal cells, consistent with earlier 
findings (Demirler et al. 2020). As expected, no calcium 
responses align with the distribution of microvillous neu-
rons, as visualized by TRPC2 expression (Fig. 5b, c).

Discussion

Zebrafish is a common vertebrate model system to study 
olfaction (Miyasaka et al. 2013; Korsching 2020). While the 
olfactory receptor repertoire has been analyzed in some detail 
(Korsching 2020), fewer physiological studies have analyzed 
odor-induced activity in olfactory brain regions (Kermen 
et al. 2013). To the best of our knowledge, no studies have 
examined odor-induced activity in the sensory surface itself, 
apart from earlier electroolfactogram studies (Rolen et al.  
2003; Michel et al. 2003) or histological detection of neu-
ronal activity markers pERK and cfos in some specialized 
cases (Hussain et al. 2013; Yabuki et al. 2016; Dieris et al.  
2017; Wakisaka et al. 2017). Here we have established an 
ex vivo calcium imaging technique tailored for zebrafish 
olfactory epithelium. Using this technique, we reveal amines 
as major odor class in aquatic vertebrates. The response char-
acteristics of amine-responsive cells are clearly distinct from 
those of the nonneuronal ATP-responding cells—the latter 
are consistent with earlier reports (Demirler et al. 2020). The 
laminar position of amine-responsive cells in the olfactory 
epithelium suggests them to be ciliated OSNs, in accordance 
with expectations derived from a specialized case (cadaverine- 
responsive OSNs; Dieris et al. 2017).

A major axonal destination for amine-responsive OSNs 
in the olfactory bulb appears to be the dorsolateral cluster, 
encompassing approximately 50 distinguishable glomeruli 
(Baier and Korsching 1994; Braubach et al. 2012; Dieris 
et al. 2017). Within this cluster, TAAR13c-expressing neu-
rons specifically innervate one glomerulus (Dieris et al. 
2017). The taar gene family, the second-largest olfactory 
receptor family in zebrafish (Hussain et al. 2009), includes 
several members demonstrated to respond to diverse 
amines in heterologous expression experiments (Li et al. 
2015; Sharma et al. 2016), akin to their mammalian coun-
terparts (Dewan et al. 2013). These results, together with 
the functional characterisation reported here, are consist-
ent with the hypothesis that the dorsolateral cluster may 
generally be innervated by TAAR-expressing neurons. The 
number of glomeruli is in reasonable agreement with the 

Fig. 4   Statistical analysis shows amine responses significantly dif-
ferent from ATP responses. Calcium responses were measured for 
cells responding to the amine-mix (103 cells) and to ATP (269 cells). 
No overlap in cell populations was seen. Additionally, responses 
to high K+ (225 cells) were measured at the end of an experiment. 
Three kinetic parameters were quantified: Onset time, measured from 
onset of response to 50% of maximal peak height (a,  time to 50%), 
peak width at half-maximal height (b, half width), and maximal peak 
height (c, peak height), expressed as ∆F/F0. Distributions are shown 
as box plots, notches represent 95% confidence interval, outliers are 
shown as circles. Significance was estimated with two-tailed t-test, 
**p < 10–10, ***p < 10–15; ****p < 10–30. Note that all three response 
characteristics are highly significantly different for amine vs. ATP 
responses
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number of taar genes (50 vs. 112, Hussain et al. 2009; 
Braubach et al. 2012), considering that closely related 
olfactory receptor genes may be co-expressed (Sato et al. 
2007), and that the dorsolateral cluster is very dense, (cf. 
Baier and Korsching 1994), which might lead to underes-
timation of the glomerular number. Similarly, in mammals 
glomeruli innervated by TAAR-expressing neurons form an 
anatomically segregated subdomain of the olfactory bulb 
(Pacifico et al. 2012). At the behavioral level, some amines 
have been shown to elicit aversive reaction, and may serve 
to signal predators (mammals, Dewan et al. 2013) or gen-
eralized danger (zebrafish, Hussain et al. 2013).

Processing olfactory information comprises many steps, 
from detection of amines by their cognate receptors to finally 
eliciting behavior. Many of these steps had been described 
already. Our results for the activation of OSNs in the sensory 
surface form the last missing link establishing amines as a 
relevant odor class for teleost fish.

Materials and methods

Animal and tissue handling

Animal housing and maintenance was licensed by the office 
for environment and consumer protection of the city of 

Cologne, Germany. Zebrafish used in this study were raised 
in the local fish facility at 28 °C with a 14/10 photoperiod.

Adult zebrafish (6–18  months) were euthanized with 
MS-222, and decapitated. Olfactory epithelia were dissected 
in ACSF and embedded in 2.5% low-melting agarose. After 
hardening the olfactory epithelium was cut horizontally by 
vibratome (Leica VT1200S) to obtain two planar surfaces suit-
able for imaging. The agarose slices were incubated with the 
calcium-sensitive dye Fluo4-AM (50 μg/ml in ACSF) in the 
dark for 30 min at RT as described (Hassenklöver et al. 2009). 
The quality of the preparation was assessed by vigorous cilia 
movement in the non-sensory regions of the epithelium.

Odor stimuli, calcium imaging, and data analysis

To obtain representative responses to amine stimuli, a mix of thir-
teen different primary, secondary, and tertiary amines (2-pheny-
lethylamine, tyramine, butylamine, cyclohexylamine, hexylamine, 
3-methylbutylamine, N,N-dimethylethylamine, 2-methylbutyl-
amine, 1-formylpiperidine, 2-methylpiperidine, N-ethylcyclohex-
ylamine, 1-ethylpiperidine, piperidine) was employed as described 
(Gliem et al. 2013). Individual concentrations were 100 µM. ATP 
was used at 10–100 µM. No stimulus control consisted of a mock 
stimulus with ACSF. The high K+ stimulus (131 mM, obtained 
by exchanging sodium and potassium concentrations in the ACSF 
solution) was given at the end of the experiments.

Fig. 5   Spatial distribution of amine-responding cells equals that  
of OMP-positive cells. Representative half-lamella segments of olfac-
tory epithelium  (a, a', a''), basal is down, apical (toward lumen) is 
up. PCNA, IHC staining  (a); OMP  (a') and TRPC2  (a''), transgene 
labeling. PCNA and TRPC2 signal are depicted in false color. Scale 
bars 10 μm. Laminar height within the lamella  (b) is determined as 
the distance from the basal lamina to cell soma center (hi) divided by 
the total laminar height h0 at that position and is depicted as empiri-
cal cumulative distribution function for five cell populations: ATP, 
ATP-responsive cells in calcium imaging; PCNA, PCNA-immuno-
reactive cells; Amine, amine-responsive cells in calcium imaging;  

OMP, OMP-transgene; TRPC2, TRPC2 transgene. Note that occa-
sionally PCNA+ cells with neuronal morphology are observed 
(a,  asterisk), these are most likely immature neurons that still retain 
some PCNA protein. The inset in (b)  shows the schematical cell 
shapes for progenitor cells (PCNA+), ciliated (OMP+), and micro-
villous (TRPC2+) neurons. Mean laminar height (c) for the five cell 
populations depicted in  (b), color code as for  (b). Error bars depict 
SEM. Amine responses are distinctly and significantly different from 
both PCNA and TRPC2-expressing cells, but appear identical to 
OMP-expressing cells. **p < 10–7; ***p < 10–15
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Calcium imaging was performed essentially as described 
(Hassenklöver et al. 2009). In short, agarose-embedded tis-
sue slices were placed in an imaging chamber under constant 
ACSF flow. Stimuli (10–100 µM) were added into the flow, 
resulting in correspondingly diluted final concentrations. 
Images (512 × 512 pixel) were taken with a confocal micro-
scope (Zeiss LSM 780, Argon Laser, excitation at 488 nm/
emission at > 495 nm) at 1 Hz. Stimulus was given 10 s after 
onset of recording for another 10 s, total recording time per 
stimulus was 60 s. Interstimulus interval was at least 3 min. 
The optical slice thickness was set to be smaller than one 
cell layer to (nearly) exclude superposition of signals from 
different cells.

Image analysis was performed using custom scripts 
written in MATLAB (MathWorks, USA) as described pre-
viously (Junek et al. 2009; Dieris 2018). In short, a pixel 
correlation map was created to facilitate the selection of 
regions of interest (ROIs). Correlated changes in intensity 
after stimulation serve to delineate responsive cells. Fluo-
rescence changes for individual ROIs were then plotted as 
ΔF/F0 with F0 being the average fluorescence from the 
first 10 images. Averaged data from multiple ROIs were 
plotted as mean ΔF/F0 ± SD.

Measurement and analysis of spatial coordinates

The laminar height of cell somata within the lamella is sig-
nificantly different for different cell populations and can thus 
serve to characterize the responsive cell population. Laminar 
height was determined as described previously (Kowatschew 
et al. 2022) for cells with odor responses and for PCNA-, 
OMP- and TRPC2-expressing cells (the latter two in trans-
genic reporter lines OMP:lynRFP and TRPC2:gap-Venus 
(Sato et al. 2005)). In short, the distance from the basal 
lamina to cell soma center (hi) and the total laminar height 
h0 at that position were determined, and the ratio hi/h0 was 
plotted as empirical cumulative distribution function (ECDF, 
Feller 1967; Wilk and Gnanadesikan 1968).

Immunohistochemical staining

Tissues were fixed in 4% PFA for 1 h at room temperature 
before dissection of the olfactory epithelia, which were then 
embedded in TissueTek (Sakura). Ten-micrometer cryo-
sections were prepared, dried, re-hydrated, and blocked in 
3% BSA-PBST for 1 h. The anti-PCNA primary antibody 
(mouse anti-PCNA, Merck) was diluted 1:250 in blocking 
solution and incubated overnight. After 3 washes, secondary 
antibody was applied at 1:250 dilution for 3 h at room tem-
perature. Sections were mounted with VECTASHIELD® 
mounting medium (Vector Laboratories). Images were 
obtained with a Keyence BZ-9000 wide field fluorescence 
microscope (Keyence, Japan).

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s00441-​024-​03859-w.
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