Skip to main content
Log in

Neurotoxic stimulation alters prosaposin levels in the salivary systems of rats

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Prosaposin (PSAP), a potent neurotrophic factor, is found in neuronal and non-neuronal tissues and various biological fluids. Neuropathological conditions often alter PSAP production in neural tissues. However, little is known about its alterations in non-neural tissues, particularly in the salivary glands, which are natural reservoirs of various neurotrophic factors. In this study, we explored whether neurotoxic stimulation by kainic acid (KA), a glutamate analog, altered PSAP levels in the salivary system of rats. The results revealed that KA injection did not alter total saliva production. However, KA-induced neurotoxic stimulation significantly increased the PSAP level in the secreted saliva but decreased it in the serum. In addition, KA-induced elevated immunoreactivities of PSAP and its receptors have been observed in the granular convoluted tubule (GCT) cells of the submandibular gland (SMG), a major salivary secretory organ. Indeed, a large number of PSAP-expressing immunogold particles were observed in the secretory granules of the SMG. Furthermore, KA-induced overexpression of PSAP was co-localized with secretogranin in secretory acini (mostly in GCT cells) and the ductal system of the SMG, suggesting the release of excess PSAP from the salivary glands into the oral cavity. In conclusion, the salivary system produces more PSAP during neurotoxic conditions, which may play a protective role in maintaining the secretory function of the salivary glands and may work in distant organs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the study are available from the corresponding author upon reasonable request.

References

  • Almeida RD, Manadas BJ, Melo CV, Gomes JR, Mendes CS, Grãos MM, Carvalho RF, Carvalho AP, Duarte CB (2005) Neuroprotection by BDNF against glutamate-induced apoptotic cell death is mediated by ERK and PI3-kinase pathways. Cell Death Differ 12:1329–1343

    Article  CAS  PubMed  Google Scholar 

  • Aloe L, Alleva E, Böhm A, Levi-Montalcini R (1986) Aggressive behavior induces release of nerve growth factor from mouse salivary gland into the bloodstream. Proc Natl Acad Sci U S A 83:6184–6187

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Beutler E, Grabowski GA (2001) Gaucher disease. In: Scriver CR, Beaudet AL, Valle D, Sly WS (eds) The metabolic and molecular bases of inherited disease. McGrawHill, New York, pp 3635–3668

    Google Scholar 

  • Bradová V, Smíd F, Ulrich-Bott B, Roggendorf W, Paton BC, Harzer K (1993) Prosaposin deficiency: further characterization of the sphingolipid activator protein-deficient sibs. Multiple glycolipid elevations (including lactosylceramidosis), partial enzyme deficiencies and ultrastructure of the skin in this generalized sphingolipid storage disease. Hum Genet 92:143–152

    Article  PubMed  Google Scholar 

  • Carro E, Bartolomé F, Bermejo-Pareja F, Villarejo-Galende A, Molina JA, Ortiz P, Calero M, Rabano A, Cantero JL, Orive G (2017) Early diagnosis of mild cognitive impairment and Alzheimer's disease based on salivary lactoferrin. Alzheimers Dement (Amst) 8:131–138

    Article  PubMed  Google Scholar 

  • Castagnola M, Scarano E, Passali GC, Messana I, Cabras T, Iavarone F, Di Cintio G, Fiorita A, De Corso E, Paludetti G (2017) Salivary biomarkers and proteomics: future diagnostic and clinical utilities. Biomarkers e proteomica salivari: prospettive future cliniche e diagnostiche. Acta Otorhinolaryngol Ital 37:94–101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J, Saito S, Kobayashi N, Sato K, Terashita T, Shimokawa T, Mominoki K, Miyawaki K, Sano A, Matsuda S (2008) Expression patterns in alternative splicing forms of prosaposin mRNA in the rat facial nerve nucleus after facial nerve transection. Neurosci Res 60:82–94

    Article  CAS  PubMed  Google Scholar 

  • Cui Y, Zhang H, Zhu J, Liao Z, Wang S, Liu W (2022) Investigation of whole and glandular saliva as a biomarker for Alzheimer's disease diagnosis. Brain Sci 12:595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Moraes JK, Wagner VP, Fonseca FP, Vargas PA, de Farias CB, Roesler R, Martins MD (2018) Uncovering the role of brain-derived neurotrophic factor/tyrosine kinase receptor B signaling in head and neck malignancies. J Oral Pathol Med 47:221–227

    Article  PubMed  Google Scholar 

  • Farah R, Haraty H, Salame Z, Fares Y, Ojcius DM, Said Sadier N (2018) Salivary biomarkers for the diagnosis and monitoring of neurological diseases. Biom J 41:63–87

    Google Scholar 

  • Fauchais AL, Boumediene A, Lalloue F, Gondran G, Loustaud-Ratti V, Vidal E, Jauberteau MO (2009) Brain-derived neurotrophic factor and nerve growth factor correlate with T-cell activation in primary Sjogren's syndrome. Scand J Rheumatol 38:50–57

    Article  CAS  PubMed  Google Scholar 

  • Giacobbo BL, Doorduin J, Klein HC, Dierckx RAJO, Bromberg E, de Vries EFJ (2019) Brain-derived neurotrophic factor in brain disorders: focus on neuroinflammation. Mol Neurobiol 56:3295–3312

    Article  Google Scholar 

  • Gutierrez A, Corey-Bloom J, Thomas EA, Desplats P (2020) Evaluation of biochemical and epigenetic measures of peripheral brain-derived neurotrophic factor (BDNF) as a biomarker in Huntington's disease patients. Front Mol Neurosci 12:335

    Article  PubMed  PubMed Central  Google Scholar 

  • Hineno T, Sano A, Kondoh K, Ueno S, Kakimoto Y, Yoshida K (1991) Secretion of sphingolipid hydrolase activator precursor, prosaposin. Biochem Biophys Res Commun 176:668–674

    Article  CAS  PubMed  Google Scholar 

  • Hiraiwa M, Soeda S, Kishimoto Y, O'Brien JS (1992) Binding and transport of gangliosides by prosaposin. Proc Natl Acad Sci U S A 89:11254–11258

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Hiraiwa M, O'Brien JS, Kishimoto Y, Galdzicka M, Fluharty AL, Ginns EI, Martin BM (1993) Isolation, characterization, and proteolysis of human prosaposin, the precursor of saposins (sphingolipid activator proteins). Arch Biochem Biophys 304:110–116

    Article  CAS  PubMed  Google Scholar 

  • Humberto JSM, Pavanin JV, Rocha MJAD, Motta ACF (2018) Cytokines, cortisol, and nitric oxide as salivary biomarkers in oral lichen planus: a systematic review. Braz Oral Res 32:e82

    Article  PubMed  Google Scholar 

  • Islam F, Khan MSI, Nabeka H, Saito S, Li X, Shimokawa T, Yamamiya K, Kobayashi N, Matsuda S (2018) Prosaposin and its receptors are differentially expressed in the salivary glands of male and female rats. Cell Tissue Res 373:439–457

    Article  CAS  PubMed  Google Scholar 

  • Islam F, Khan MSI, Nabeka H, Shimokawa T, Yamamiya K, Matsuda S (2020) Age- and sex-associated changes in prosaposin and its receptors in the lacrimal glands of rats. Histol Histopathol 35:69–81

    CAS  PubMed  Google Scholar 

  • Jakaria M, Park SY, Haque ME, Karthivashan G, Kim IS, Ganesan P, Choi DK (2018) Neurotoxic agent-induced injury in neurodegenerative disease model: focus on involvement of glutamate receptors. Front Mol Neurosci 11:307

    Article  PubMed  PubMed Central  Google Scholar 

  • Kanai K, Nunoya T, Shibuya K, Nakamura T, Tajima M (1998) Variations in effectiveness of antigen retrieval pretreatments for diagnostic immunohistochemistry. Res Vet Sci 64:57–61

    Article  CAS  PubMed  Google Scholar 

  • Kishimoto Y, Hiraiwa M, O’Brien JS (1992) Saposins: Structure, function, distribution, and molecular genetics. J Lipid Res 33:1255–1267

    Article  CAS  PubMed  Google Scholar 

  • Kondoh K, Hineno T, Sano A, Kakimoto Y (1991) Isolation and characterization of prosaposin from human milk. Biochem Biophys Res Commun 181:286–292

    Article  CAS  PubMed  Google Scholar 

  • Kunihiro J, Nabeka H, Wakisaka H, Unuma K, Khan MSI, Shimokawa T, Islam F, Doihara T, Yamamiya K, Saito S, Hamada F, Matsuda S (2020) Prosaposin and its receptors GRP37 and GPR37L1 show increased immunoreactivity in the facial nucleus following facial nerve transection. PLoS One 15:e0241315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Nabeka H, Saito S, Shimokawa T, Khan MSI, Yamamiya K, Shan F, Gao H, Li C, Matsuda S (2017) Expression of prosaposin and its receptors in the rat cerebellum after kainic acid injection. IBRO Rep 2:31–40

    Article  PubMed  PubMed Central  Google Scholar 

  • Li Y, Li F, Qin D, Chen H, Wang J, Wang J, Song S, Wang C, Wang Y, Liu S, Gao D, Wang ZH (2022) The role of brain derived neurotrophic factor in central nervous system. Front Aging Neurosci 14:986443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Q, Tang Q, Jing X, Zhang J, Xia Y, Yan J, Xu Y, Li J, Li Y, He J, Mo L (2022) Mesencephalic astrocyte-derived neurotrophic factor protects against paracetamol -induced liver injury by inhibiting PERK-ATF4-CHOP signaling pathway. Biochem Biophys Res Commun 602:163–169

    Article  CAS  PubMed  Google Scholar 

  • Loo JA, Yan W, Ramachandran P, Wong DT (2010) Comparative human salivary and plasma proteomes. J Dent Res 89:1016–1023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitre M, Mariga A, Chao MV (2017) Neurotrophin signalling: novel insights into mechanisms and pathophysiology. Clin Sci (Lond) 131:13–23

    Article  CAS  PubMed  Google Scholar 

  • Motta M, Tatti M, Furlan F, Celato A, Di Fruscio G, Polo G, Manara R, Nigro V, Tartaglia M, Burlina A, Salvioli R (2016) Clinical, biochemical and molecular characterization of prosaposin deficiency. Clin Genet 90:220–229

    Article  CAS  PubMed  Google Scholar 

  • Nabeka H, Uematsu K, Takechi H, Shimokawa T, Yamamiya K, Li C, Doihara T, Saito S, Kobayashi N, Matsuda S (2014) Prosaposin overexpression following kainic acid-induced neurotoxicity. PLoS One 9:e110534

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  • Nabeka H, Shimokawa T, Doihara T, Saito S, Wakisaka H, Hamada F, Kobayashi N, Matsuda S (2015) A prosaposin-derived peptide alleviates kainic acid-induced brain injury. PLoS One 10:e0126856

    Article  PubMed  PubMed Central  Google Scholar 

  • Nabeka H, Saito S, Li X, Shimokawa T, Khan MSI, Yamamiya K, Kawabe S, Doihara T, Hamada F, Kobayashi N, Matsuda S (2017) Interneurons secrete prosaposin, a neurotrophic factor, to attenuate kainic acid-induced neurotoxicity. IBRO Rep 3:17–32

    Article  PubMed  PubMed Central  Google Scholar 

  • Nohara M, Tohei A, Sato T, Amao H (2016) Evaluation of response to restraint stress by salivary corticosterone levels in adult male mice. J Vet Med Sci 78:775–780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nunes LA, Mussavira S, Bindhu OS (2015) Clinical and diagnostic utility of saliva as a non-invasive diagnostic fluid: a systematic review. Biochem Med (Zagreb) 25:177–192

    Article  PubMed  Google Scholar 

  • O'Brien JS, Kishimoto Y (1991) Saposin proteins: structure, function, and role in human lysosomal storage disorders. FASEB J 5:301–308

    Article  CAS  PubMed  Google Scholar 

  • O'Brien JS, Carson GS, Seo HC, Hiraiwa M, Kishimoto Y (1994) Identification of prosaposin as a neurotrophic factor. Proc Natl Acad Sci U S A 91:9593–9596

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Patton S, Carson GS, Hiraiwa M, O'Brien JS, Sano A (1997) Prosaposin, a neurotrophic factor: presence and properties in milk. J Dairy Sci 80:264–272

    Article  CAS  PubMed  Google Scholar 

  • Pawlik P, Błochowiak K (2021) The role of salivary biomarkers in the early diagnosis of Alzheimer's disease and Parkinson's disease. Diagnostics (Basel) 11:371

    Article  CAS  PubMed  Google Scholar 

  • Quinville BM, Deschenes NM, Ryckman AE, Walia JS (2021) A comprehensive review: sphingolipid metabolism and implications of disruption in sphingolipid homeostasis. Int J Mol Sci 22:5793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakamoto K, Saito T, Orman R, Koizumi K, Lazar J, Salciccioli L, Stewart M (2008) Autonomic consequences of kainic acid-induced limbic cortical seizures in rats: peripheral autonomic nerve activity, acute cardiovascular changes, and death. Epilepsia 49:982–996

    Article  PubMed  Google Scholar 

  • Saruta J, Kondo Y, Sato C, Shiiki N, Tsukinoki K, Sato S (2010) Salivary glands as the source of plasma brain-derived neurotrophic factor in stressed rats engaged in biting behavior. Stress 13:238–247

    Article  CAS  PubMed  Google Scholar 

  • Saruta J, Fujino K, To M, Tsukinoki K (2012) Expression and localization of brain-derived neurotrophic factor (BDNF) mRNA and protein in human submandibular gland. Acta Histochem Cytochem 45:211–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saruta J, To M, Hayashi T, Kawashima R, Shimizu T, Kamata Y, Kato M, Takeuchi M, Tsukinoki K (2014) Relationship between brain-derived neurotrophic factor and stress in saliva and salivary glands. J Oral Maxillofac Surg Med Pathol 26:379–389

    Article  Google Scholar 

  • Saruta J, To M, Sugimoto M, Yamamoto Y, Shimizu T, Nakagawa Y, Inoue H, Saito I, Tsukinoki K (2017) Salivary gland derived BDNF overexpression in mice exerts an anxiolytic effect. Int J Mol Sci 18:1902

    Article  PubMed  PubMed Central  Google Scholar 

  • Saruta J, To M, Sakaguchi W, Kondo Y, Tsukinoki K (2020) Brain-derived neurotrophic factor is related to stress and chewing in saliva and salivary glands. Jpn Dent Sci Rev 56:43–49

    Article  PubMed  Google Scholar 

  • Schepici G, Silvestro S, Trubiani O, Bramanti P, Mazzon E (2020) Salivary biomarkers: future approaches for early diagnosis of neurodegenerative diseases. Brain Sci 10:245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimokawa T, Nabeka H, Yamamiya K, Wakisaka H, Takeuchi T, Kobayashi N, Matsuda S (2013) Distribution of prosaposin in rat lymphatic tissues. Cell Tissue Res 352:685–693

    Article  CAS  PubMed  Google Scholar 

  • Shimokawa T, Nabeka H, Khan SI, Yamamiya K, Doihara T, Kobayashi N, Wakisaka H, Matsuda S (2021) Prosaposin in the rat oviductal epithelial cells. Cell Tissue Res 383:1191–1202

    Article  CAS  PubMed  Google Scholar 

  • Tiwari M (2011) Science behind human saliva. J Nat Sci Biol Med 2:53–58

    Article  PubMed  PubMed Central  Google Scholar 

  • Tsukinoki K, Saruta J (2012) Role of stress-related brain-derived neurotrophic factor (BDNF) in the rat submandibular gland. Acta Histochem Cytochem 45:261–267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Unuma K, Chen J, Saito S, Kobayashi N, Sato K, Saito K, Wakisaka H, Mominoki K, Sano A, Matsuda S (2005) Changes in expression of prosaposin in the rat facial nerve nucleus after facial nerve transection. Neurosci Res 52:220–227

    Article  CAS  PubMed  Google Scholar 

  • Van Den Berghe L, Sainton K, Gogat K, Marchant D, Dufour E, Bonnel S, Gadin S, Menasche M, Abitbol M (2004) Prosaposin gene expression in normal and dystrophic RCS rat retina. Invest Ophthalmol Vis Sci 45:1297–1305

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank D. Shimizu for his technical support with electron microscopic imaging.

Funding

This work was supported in part by grants from the Japan Society for the Promotion of Science to S.K. (No. 21K09324).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sakirul Khan.

Ethics declarations

All authors have no competing financial or non-financial interests to declare. The research involving animals and ethical permission was obtained from Ehime University School of Medicine, Japan (05A261).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1:

Figures S1-S2 (PDF 949 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, F., Khan, S., Nabeka, H. et al. Neurotoxic stimulation alters prosaposin levels in the salivary systems of rats. Cell Tissue Res 395, 159–169 (2024). https://doi.org/10.1007/s00441-023-03847-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-023-03847-6

Keywords

Navigation