Skip to main content

Advertisement

Log in

mTORC1/rpS6 and mTORC2/PKC regulate spermatogenesis through Arp3-mediated actin microfilament organization in Eriocheir sinensis

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Mammalian target of rapamycin (mTOR) is a crucial signaling protein regulating a range of cellular events. Numerous studies have reported that the mTOR pathway is related to spermatogenesis in mammals. However, its functions and underlying mechanisms in crustaceans remain largely unknown. mTOR exists as two multimeric functional complexes termed mTOR complex 1 (mTORC1) and mTORC2. Herein, we first cloned ribosomal protein S6 (rpS6, a downstream molecule of mTORC1) and protein kinase C (PKC, a downstream effector of mTORC2) from the testis of Eriocheir sinensis. The dynamic localization of rpS6 and PKC suggested that both proteins may be essential for spermatogenesis. rpS6/PKC knockdown and Torin1 treatment led to defects in spermatogenesis, including germ cell loss, retention of mature sperm and empty lumen formation. In addition, the integrity of the testis barrier (similar to the blood-testis barrier in mammals) was disrupted in the rpS6/PKC knockdown and Torin1 treatment groups, accompanied by changing in expression and distribution of junction proteins. Further study demonstrated that these findings may result from the disorganization of filamentous actin (F-actin) networks, which were mediated by the expression of actin-related protein 3 (Arp3) rather than epidermal growth factor receptor pathway substrate 8 (Eps8). In summary, our study illustrated that mTORC1/rpS6 and mTORC2/PKC regulated spermatogenesis via Arp3-mediated actin microfilament organization in E. sinensis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

We confirm that the data supporting the findings of this study are available within the article.

References

  • Abou-Haila A, Tulsiani DR (2000) Mammalian sperm acrosome: formation, contents, and function. Arch Biochem Biophys 379:173–182

    Article  CAS  PubMed  Google Scholar 

  • Bai S, Cheng L, Zhang Y, Zhu CS, Zhu ZP, Zhu RP, Cheng CY, Ye L, Zheng K (2018) A germline-specifc role for the mTORC2 component Rictor in maintaining spermatogonial diferentiation and intercellular adhesion in mouse testis. Mol Hum Reprod 24:244–259

    Article  CAS  PubMed  Google Scholar 

  • Boyer A, Girard M, Thimmanahalli DS, Levasseur A, Céleste C, Paquet M, Duggavathi R, Boerboom D (2016) mTOR regulates gap junction alpha-1 protein trafficking in sertoli cells and is required for the maintenance of spermatogenesis in mice. Biol Reprod 95:13

    Article  PubMed  PubMed Central  Google Scholar 

  • Cannarella R, Condorelli RA, Mongioì LM, La Vignera S, Calogero AE (2020) Molecular biology of spermatogenesis: novel targets of apparently idiopathic male infertility. Int J Mol Sci 21:1728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen H, Mruk DD, Lee WM, Cheng CY (2017) Regulation of spermatogenesis by a local functional axis in the testis: role of the basement membrane-derived noncollagenous 1 domain peptide. FASEB J 31:3587–3607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Zhou X (2020) Research progress of mTOR inhibitors. Eur J Med Chem 208:112820

    Article  CAS  PubMed  Google Scholar 

  • Cheng CY, Mruk DD (2002) Cell junction dynamics in the testis: Sertoli-germ cell interactions and male contraceptive development. Physiol Rev 82:825–874

    Article  CAS  PubMed  Google Scholar 

  • Cheng CY, Mruk DD (2010) A local autocrine axis in the testes that regulates spermatogenesis. Nat Rev Endocrinol 6:380–395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng CY, Mruk DD (2011) Regulation of spermiogenesis, spermiation and blood-testis barrier dynamics: novel insights from studies on Eps8 and Arp3. Biochem J 435:553–562

    Article  CAS  PubMed  Google Scholar 

  • Cheng CY, Mruk DD (2012) The blood-testis barrier and its implications for male contraception. Pharmacol Rev 64:16–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clermont Y, Oko R, Hermo L (1990) Immunocytochemical localization of proteins utilized in the formation of outer dense fibers and fibrous sheath in rat spermatids: an electron microscope study. Anat Rec 227:447–457

    Article  CAS  PubMed  Google Scholar 

  • Conn CS, Qian SB (2011) mTOR signaling in protein homeostasis: less is more? Cell Cycle 10:1940–1947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong HL, Chen ZJ, Wang CX, Xiong Z, Zhao WL, Jia CH, Lin J, Lin Y, Yuan WP, Zhao AZ, Bai XC (2015) Rictor regulates spermatogenesis by controlling Sertoli cell cytoskeletal organization and cell polarity in the mouse testis. Endocrinology 156:4244–4256

    Article  CAS  PubMed  Google Scholar 

  • Dougherty WJ, Sandifer PA (1984) Junctional relationships between germinal cells and sustentacular cells in the testes of a palaemonid shrimp. Tissue Cell 16:115–124

    Article  CAS  PubMed  Google Scholar 

  • Du NS, Xue LZ, Lai W (1988a) Histology of the reproductive system in Eriocheir sinensis (decapoda, crustacea). Acta Zool Sin 34:329–333

    Google Scholar 

  • Du NS, Xue LZ, Lai W (1988b) Studies on the sperm of Chinese mitten-handed crab, Eriocheir sinensis (Crustacea, Decepoda). II Spermatogenesis Oceanol Limnol Sin 19:71–75

    Google Scholar 

  • Feng C, Zhang J, Gasana V, Fu W, Liu Y, Zong Z, Yu B (2005) Differential expression of protein kinase C alpha and delta in testes of mouse at various stages of development. Cell Biochem Funct 23:415–420

    Article  CAS  PubMed  Google Scholar 

  • Gressner AM, Wool IG (1974) The phosphorylation of liver ribosomal proteins in vivo. Evidence that only a single small subunit protein (S6) is phosphorylated. J Biol Chem 249:6917–6925

    Article  CAS  PubMed  Google Scholar 

  • Guttman JA, Kimel GH, Vogl AW (2000) Dynein and plus-end microtubule-dependent motors are associated with specialized Sertoli cell junction plaques (ectoplasmic specializations). J Cell Sci 113:2167–2176

    Article  CAS  PubMed  Google Scholar 

  • Hertzog M, Milanesi F, Hazelwood L, Disanza A, Liu H, Perlade E, Malabarba MG, Pasqualato S, Maiolica A, Confalonieri S, Le Clainche C, Offenhauser N, Block J, Rottner K, Di Fiore PP, Carlier MF, Volkmann NV, Hanein D, Scita G (2010) Molecular basis for the dual function of Eps8 on actin dynamics: bundling and capping. Plos Biol 8:e1000387

    Article  PubMed  PubMed Central  Google Scholar 

  • Jacinto E, Loewith R, Schmidt A, Lin S, Rüegg MA, Hall A, Hall MN (2004) Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol 6:1122–1128

    Article  CAS  PubMed  Google Scholar 

  • Kim HM, Shin T (1999) Expression and localization of protein kinase C theta isoform in mouse testis. Life Sci 65:805–812

    Article  CAS  PubMed  Google Scholar 

  • Lee NP, Cheng CY (2004) Ectoplasmic specialization, a testis-specific cell-cell actin-based adherens junction type: is this a potential target for male contraceptive development? Hum Reprod Update 10:349–369

    Article  CAS  PubMed  Google Scholar 

  • Li H, Papadopoulos V, Vidic B, Dym M, Culty M (1997) Regulation of rat testis gonocyte proliferation by platelet-derived growth factor and estradiol: identification of signaling mechanisms involved. Endocrinology 138:1289–1298

    Article  CAS  PubMed  Google Scholar 

  • Li S, Yan M, Chen H, Jesus T, Lee WM, Xiao X, Cheng CY (2018) mTORC1/rpS6 regulates blood-testis barrier dynamics and spermatogenetic function in the testis in vivo. Am J Physiol Endocrinol Metab 314:174–190

    Article  CAS  Google Scholar 

  • Li ZF, Hao SL, Wang LM, Qi HY, Wang JM, Tan FQ, Yang WX (2022) mTORC1/C2 regulate spermatogenesis in Eriocheir sinensis via alterations in the actin filament network and cell junctions. Cell Tissue Res 390:293–313

    Article  CAS  PubMed  Google Scholar 

  • Lie PP, Chan AY, Mruk DD, Lee WM, Cheng CY (2010a) Restricted Arp3 expression in the testis prevents blood-testis barrier disruption during junction restructuring at spermatogenesis. Proc Natl Acad Sci USA 107:11411–11416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lie PP, Mruk DD, Lee WM, Cheng CY (2009) Epidermal growth factor receptor pathway substrate 8 (Eps8) is a novel regulator of cell adhesion and the blood-testis barrier integrity in the seminiferous epithelium. FASEB J 23:2555–2567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lie PP, Mruk DD, Lee WM, Cheng CY (2010b) Cytoskeletal dynamics and spermatogenesis. Philos Trans R Soc Lond B Biol Sci 365:1581–1592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Q, Kang SA, Thoreen CC, Hur W, Wang J, Chang JW, Markhard A, Zhang J, Sim T, Sabatini DM, Gray NS (2012) Development of ATP-competitive mTOR inhibitors. Methods Mol Biol 821:447–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu ZQ, Jiang XH, Qi HY, Xiong LW, Qiu GF (2016) A novel SoxB2 gene is required for maturation of sperm nucleus during spermiogenesis in the Chinese mitten crab. Eriocheir Sinensis Sci Rep-UK 6:32139

    Article  CAS  Google Scholar 

  • Magnuson B, Ekim B, Fingar DC (2012) Regulation and function of ribosomal protein S6 kinase (S6K) within mTOR signalling networks. Biochem J 441:1–21

    Article  CAS  PubMed  Google Scholar 

  • Mao B, Li L, Yan M, Wong C, Silvestrini B, Li C, Ge R, Lian Q, Cheng CY (2019) F5-peptide and mTORC1/rpS6 effectively enhance BTB transport function in the testis-lesson from the Adjudin model. Endocrinology 160:1832–1853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyuhas O (2015) Ribosomal protein S6 phosphorylation: four decades of research. Int Rev Cell Mol Biol 320:41–73

    Article  CAS  PubMed  Google Scholar 

  • Meyuhas O, Dreazen A (2009) Ribosomal protein S6 kinase from TOP mRNAs to cell size. Prog Mol Biol Transl 90:109–153

    Article  CAS  Google Scholar 

  • Mok KW, Chen H, Lee WM, Cheng CY (2015) rpS6 regulates blood-testis barrier dynamics through Arp3-mediated actin microfilament organization in rat Sertoli cells. An in vitro study. Endocrinology 156:1900–1913

    CAS  Google Scholar 

  • Mok KW, Mruk DD, Cheng CY (2013a) Regulation of blood-testis barrier (BTB) dynamics during spermatogenesis via the “Yin” and “Yang” effects of mammalian target of rapamycin complex 1 (mTORC1) and mTORC2. Int Rev Cel Mol Biol 301:291–358

    Article  CAS  Google Scholar 

  • Mok KW, Mruk DD, Cheng CY (2014) rpS6 regulates blood-testis barrier dynamics through Akt-mediated effects on MMP-9. J Cell Sci 127:4870–4882

    PubMed  PubMed Central  Google Scholar 

  • Mok KW, Mruk DD, Lee WM, Cheng CY (2013b) Rictor/mTORC2 regulates blood-testis barrier dynamics via its effects on gap junction communications and actin filament network. FASEB J 27:1137–1152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mok KW, Mruk DD, Silvestrini B, Cheng CY (2012) rpS6 Regulates blood-testis barrier dynamics by affecting F-actin organization and protein recruitment. Endocrinology 153:5036–5048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moreira BP, Oliveira PF, Alves MG (2019) Molecular mechanisms controlled by mTOR in male reproductive system. Int J Mol Sci 20:1633

    Article  PubMed  PubMed Central  Google Scholar 

  • Morita M, Gravel SP, Hulea L, Larsson O, Pollak M, St-Pierre J, Topisirovic I (2015) mTOR coordinates protein synthesis, mitochondrial activity and proliferation. Cell Cycle 14:473–480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rottner K, Hänisch J, Campellone KG (2010) WASH, WHAMM and JMY: regulation of Arp2/3 complex and beyond. Trends Cell Biol 20:650–661

    Article  CAS  PubMed  Google Scholar 

  • Sarbassov DD, Ali SM, Kim DH, Guertin DA, Latek RR, Erdjument-Bromage H, Tempst P, Sabatini DM (2004) Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol 14:1296–1302

    Article  CAS  PubMed  Google Scholar 

  • Shin T, Jin J, Kim J, Kim H, Lee C (1998) Immunohistochemical study of protein kinase C in the testes of cattle and pigs. J Vet Med Sci 60:631–633

    Article  CAS  PubMed  Google Scholar 

  • Tang EI, Mruk DD, Cheng CY (2013) MAP/microtubule affinity-regulating kinases, microtubule dynamics, and spermatogenesis. J Endocrinol 217:13–23

    Article  Google Scholar 

  • Thoreen CC, Kang SA, Chang JW, Liu Q, Zhang J, Gao Y, Reichling LJ, Sim T, Sabatini DM, Gray NS (2009) An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1. J Biol Chem 284:8023–8032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsuji-Tamura K, Ogawa M (2018) Dual inhibition of mTORC1 and mTORC2 perturbs cytoskeletal organization and impairs endothelial cell elongation. Biochem Bioph Res Co 497:326–331

    Article  CAS  Google Scholar 

  • Vogl AW, Vaid KS, Guttman JA (2008) The Sertoli cell cytoskeleton. Adv Exp Med Biol 636:186–211

    Article  CAS  PubMed  Google Scholar 

  • Wang YL, Sun WJ, He L, Li Q, Wang Q (2015) Morphological alterations of all stages of spermatogenesis and acrosome reaction in Chinese mitten crab Eriocheir sinensis. Cell Tissue Res 360:401–412

    Article  CAS  PubMed  Google Scholar 

  • Wei Y, Zhou Y, Long C, Wu H, Hong Y, Fu Y, Wang J, Wu Y, Shen L, Wei G (2021) Polystyrene microplastics disrupt the blood-testis barrier integrity through ROS-Mediated imbalance of mTORC1 and mTORC2. Environ Pollut 289:117904

    Article  CAS  PubMed  Google Scholar 

  • Weichhart T (2012) Mammalian target of rapamycin: a signaling kinase for every aspect of cellular life. Methods Mol Biol 821:1–14

    Article  CAS  PubMed  Google Scholar 

  • Wong CH, Cheng CY (2005) The blood-testis barrier: its biology, regulation, and physiological role in spermatogenesis. Curr Top Dev Biol 71:263–296

    Article  CAS  PubMed  Google Scholar 

  • Wu H, Wei YX, Zhou Y, Long CL, Hong YF, Fu Y, Zhao TX, Wang JK, Wu YH, Wu SD, Shen LJ, Wei GH (2021) Bisphenol S perturbs Sertoli cell junctions in male rats via alterations in cytoskeletal organization mediated by an imbalance between mTORC1 and mTORC2. Sci Total Environ 762:144059

    Article  CAS  PubMed  Google Scholar 

  • Wu S, Yan M, Ge R, Cheng CY (2020) Crosstalk between Sertoli and germ cells in male fertility. Trends Mol Med 26:215–231

    Article  CAS  PubMed  Google Scholar 

  • Xiao X, Mruk DD, Tang EI, Massarwa R, Mok KW, Li N, Wong CK, Lee WM, Snapper SB, Shilo BZ, Schejter ED, Cheng CY (2014) N-wasp is required for structural integrity of the blood-testis barrier. PLoS Genet 10:e1004447

    Article  PubMed  PubMed Central  Google Scholar 

  • Xiong Z, Wang C, Wang Z, Dai H, Song Q, Zou Z, Xiao B, Zhao AZ, Bai X, Chen Z (2018) Raptor directs Sertoli cell cytoskeletal organization and polarity in the mouse testis. Biol Reprod 99:1289–1302

    Article  PubMed  Google Scholar 

  • Xiong Z, Zang Y, Zhong S, Zou L, Wu Y, Liu S, Fang Z, Shen Z, Ding Q, Chen S (2017) The preclinical assessment of XL388, a mTOR kinase inhibitor, as a promising anti-renal cell carcinoma agent. Oncotarget 8:30151–30161

    Article  PubMed  PubMed Central  Google Scholar 

  • Yan M, Li L, Mao B, Li H, Li S, Mruk D, Silvestrini B, Lian Q, Ge R, Cheng CY (2019) mTORC1/rpS6 signaling complex modifies BTB transport function: an in vivo study using the adjudin model. Am J Physiol Endocrinol Metab 317:121–138

    Article  Google Scholar 

  • Yang WX, Du NS, Lai W (1999) Junctions between spermatogenic cells and Sertoli cells of Macrobrachium nipponense. Acta Zoologica Sinica 45:178–186

    Google Scholar 

  • Yang WX, Sperry AO (2003) C-terminal kinesin motor KIFC1 participates in acrosome biogenesis and vesicle transport. Biol Reprod 69:1719–1729

    Article  CAS  PubMed  Google Scholar 

  • Zheng XF, Florentino D, Chen J, Crabtree GR, Schreiber SL (1995) TOR kinase domains are required for two distinct functions, only one of which is inhibited by rapamycin. Cell 82:121–130

    Article  CAS  PubMed  Google Scholar 

  • Zhou H, Huang S (2010) The complexes of mammalian target of rapamycin. Curr Protein Pept Sci 11:409–424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu YR, Zhou XZ, Zhu LQ, Yao C, Fang JF, Zhou F, Deng XW, Zhang YQ (2016) The anti-cancer activity of the mTORC1/2 dual inhibitor XL388 in preclinical osteosarcoma models. Oncotarget 7:49527–49538

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors want to show their appreciation to all members of the Sperm Laboratory in Zhejiang University for their support, encouragement and assistant.

Funding

This project was supported by the National Natural Science Foundation of China (No.32072954 and 32270555).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wan-Xi Yang.

Ethics declarations

Ethics approval

The animal use in this study was approved by the Animal Experimental Ethical Inspection of the First Affiliated Hospital, College of Medicine, Zhejiang University (Reference Number: 2019–1061).

Informed consent

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 34245 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, ZF., Qi, HY., Wang, JM. et al. mTORC1/rpS6 and mTORC2/PKC regulate spermatogenesis through Arp3-mediated actin microfilament organization in Eriocheir sinensis. Cell Tissue Res 393, 559–575 (2023). https://doi.org/10.1007/s00441-023-03795-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-023-03795-1

Keywords

Navigation