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Abstract
Lung diseases occupy a leading position in human morbidity and are the third leading cause of death. Often the chronic forms 
of these diseases do not respond to therapy, so that lung transplantation is the only treatment option. The development of 
cellular and biotechnologies offers a new solution—the use of lung organoids for transplantation in such patients. Here, we 
review types of lung organoids, methods of their production and characterization, and experimental works on transplantation 
in vivo. These results show the promise of work in this direction. Despite the current problems associated with a low degree 
of cell engraftment, immune response, and insufficient differentiation, we are confident that organoid transplantation will 
find it is clinical application.
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Introduction

Chronic respiratory diseases (CRDs) are one of the main 
causes of disability and death. According to the Global Bur-
den of Diseases, Injuries, and Risk Factors Study, 544.9 mil-
lion people worldwide had a CRD in 2017, a 39.8% increase 
from 1990 (Soriano et al. 2020). As stated by WHO, chronic 
obstructive pulmonary disease (COPD) was the third lead-
ing cause of death in 2019, after ischemic heart disease 
and stroke. By 2040, premature mortality from many non-
communicable diseases, including COPD and lung cancer, 
will increase by more than 70% by 2040 (Foreman et al. 
2018). Oxygen therapy, pulmonary rehabilitation, and phar-
macological and surgical treatments (lung volume reduction 
surgery and lung transplantation) are current strategies for 
CRD (Keen et al. 2017; Siddiqui et al. 2018). Cell therapy 
and tissue engineering are modern and actively developing 
methods for treatment of lung diseases (Geiger et al. 2017; 
Sun et al. 2018; Kadyk et al. 2017). As of December 2020, 

ClinicalTrials.gov reported eleven completed clinical trials 
on transplantation of various types of cells (hematopoietic 
stem cells, mesenchymal stem cells (MSCs), bone marrow 
mononuclear cells, bronchial basal cells, and endothelial 
progenitor cells) for the treatment of lung diseases. Intra-
venous administration of MSCs was reported to be safe in 
patients with moderate to severe acute respiratory distress 
syndrome (ARDS) and COPD (Zheng et al. 2014; Wilson 
et al. 2015; Matthay et al. 2019; Weiss et al. 2013). Infusion 
of autologous bone marrow mononuclear cells in patients 
with COPD was also safe (Stessuk et al. 2013; Ribeiro-Paes 
et al. 2011). In 2020, a review article was published that 
summarized clinical data on the feasibility, safety, and tol-
erability of infusion of MSCs derived from bone marrow 
or umbilical cord in Severe Acute Respiratory Syndrome, 
ARDS, and Middle East Respiratory Syndrome (Majolo 
et al. 2020). Only three stem cell-related clinical trials were 
considered complete, of which two were in Phase 1 and 
one was in Phase 2. Cell therapies were shown to cause no 
complications in gas exchange, spirometry, quality of life, 
cardiopulmonary circulation, and immune system of those 
suffering from the lung disease. However, there exist some 
obstacles such as low mobilization of transplanted MSCs at 
the site of injury and their low survival rate.

Lung transplantation is often the last chance for patients 
with various lung conditions. Recently, a new method of 
transplantation was developed: the lungs undergo decel-
lularization following recellularization (Peloso et al. 2015; 
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Tsuchiya et al. 2014; Tebyanian et al. 2019; Calle et al. 
2017). Recellularization is carried out using various types 
of cells, for example, alveolar epithelial cells, endothelial 
cells, MSCs, embryonic stem cells (ESCs), induced pluri-
potent stem cells (iPSCs), and other stem/progenitor cells. 
Currently, decellularization protocols are being standardized 
and recellularization methods are being optimized.

The use of three-dimensional (3D) cell structures, such 
as organoids, is a new and dynamically developing direction 
in cell therapy. Organoids, according to Huch and Koo, are 
defined as a 3D structure derived from either PSCs, neo-
natal tissue stem cells, or adult progenitor cells, in which 
cells spontaneously self-organize into properly differentiated 
functional cell types and progenitors, and which resemble 
their in vivo counterparts and recapitulate at least some of 
the functions of the organ (Huch et al. 2015). Organoids 
are used for study of intercellular interactions, disease mod-
eling, drug screening, and regenerative medicine (Nikolić 
et al. 2017b; Kim et al. 2020; Bartfeld et al. 2017). Lung 
organoids recapitulate lung development and may serve as 
a useful tool for modeling lung disease (Chen et al. 2017a, 
b). In this review, we shall discuss the main type of lung 
organoids and how to obtain them. We shall also focus on 
in vivo lung organoid transplantation studies to analyze the 
viability, engraftment, and maturation of organoids, as well 
as the effectiveness of the treatment of pulmonary diseases.

Types of lung organoids

The respiratory system consists of the upper and lower res-
piratory tracts. The upper respiratory tract comprises the 
nasal cavity, pharynx, and larynx. The lower respiratory tract 
consists of the trachea, primary bronchi leading to the bron-
chioles, and alveoli. The epithelium in the lower respiratory 
tract is mainly composed of basal cells, goblet cells produc-
ing mucus, and ciliated cells required for mucociliary clear-
ance (Chang et al. 2008; Klein et al. 2011). In the bronchi-
oles, the epithelium consists of more cuboidal-shaped cells 
with shorter cilia and secretory club cells; in the alveoli, the 
epithelium consists of alveolar type I and II cells. Alveolar 
type II cells perform the functions of surfactant producers or 
differentiate into alveolar type I cells. Thus, the most com-
mon classification of lung organoids is based on the cell 
types present in organoids (Fig. 1):

•	 airway organoids (include tracheospheres, bronchos-
pheres, and nasospheres) consisting of ciliated, goblet, 
basal, club, tuft, and pulmonary neuroendocrine cells;

•	 alveolar organoids consisting of alveolar type I and II 
cells;

•	 lung organoids consisting of cell types characteristic of 
both airway and alveolar organoids.

Airway, alveolar, and lung organoids can be obtained 
from both adult cells and pluripotent stem cells, including 
ESCs and iPSCs (Table 1).

Airway organoids

Airway organoids derived from adult cells are often clas-
sified according to the location of the biopsy used to iso-
late these cells, namely, tracheospheres, bronchospheres, 
and nasospheres. Such organoids are characterized by the 
expression of markers of basal cells (KRT8 + , KRT14 + , 
and p63 +), ciliated cells (AC-TUB + and FOXJ1 +), muco-
secretory or goblet cells (MUC5AC + and MUC5B +), and 
club cells (CC10 +) (Rock et al. 2009; Lee et al. 2020; Tesei 
et al. 2009; Kumar et al. 2011).

All protocols for obtaining airway organoids from 
adult cells are similar to each other with some variations 
(Fig. 2). The first protocol for obtaining mouse tracheo-
spheres was published in 2009 and involved mechanical 
separation and enzymatic digestion of a piece of mouse tra-
chea, fluorescence-activated cell sorting (FACS), 1:1 mix-
ing with Matrigel and further cultivating on the Transwell 
inserts at the air–liquid interface (ALI) for 26 days (Rock 
et al. 2009). The ALI-culture method consists of seeding 
cells onto a permeable membrane of a cell culture insert, 
with the basal side of the cells in contact with liquid cul-
ture medium, whereas the apical side is exposed to air. This 
initiates the differentiation of cells into a mature polarized 
pseudo-stratified epithelium consisting of functional basal, 
ciliated, and secretory cells (Choi et al. 2020; Kumar et al. 
2011; Usui et al. 2000). Another method called culturing 
self-assembled spheres (SAS) uses seeding of cells after 
their digestion onto ultra-low attachment plates (Tesei et al. 
2009). With nasal spheroids, ALI cultures were shown to 
stratify into basal cells and suprabasal differentiated cells, 
while SAS cultures remain a monolayer of ciliated and gob-
let cells and lack basal cells (Kumar et al. 2011). And one 
of the most popular methods of organoid cultivation is the 
use of the extracellular matrix. One of the most common 
matrices for cultivation is Matrigel. Matrigel is xenogenic; 
it is derived from the basement membrane matrix secreted 
by Engelbreth–Holm–Swarm mouse sarcoma cells. Matrigel 
is extremely complex: it contains more than 1,800 unique 
proteins (Hughes et al. 2010). The concentrations of growth 
factors and mechanical and biochemical properties may vary 
from batch to batch in Matrigel, which may lead to uncer-
tainty in cell culture experiments and lack of reproducibility 
(Aisenbreyet al. 2020). Many synthetic matrices based on 
polyacrylamide and polyethylene glycol, as well as natural 
matrices based on decellularized tissues, are currently being 
developed (Aisenbreyet al. 2020; Kozlowski et al. 2021).

Airway organoids from embryonic stem cells are obtained 
in the same way as from adult cells. Nikolić M. Z. et al. 
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showed that human embryonic lung distal tip epithelium 
comprises a multipotent progenitor cell population with 
the capacity of self-renewal and differentiation (Nikolić 
et al. 2017a). Human lung epithelial tips from 5 to 9 weeks 
post-conception were microdissected, digested, mixed with 
Matrigel, and transferred into a low-attachment plate. Then, 
the tip-derived organoids were differentiated into bronchi-
olar and alveolar lineages. The bronchiolar organoids at 
high passages contained mostly goblet cells (MUC5AC +), 
while at lower passages, the organoids contained basal cells 
(KRT5 +).

The development of the lungs consists of the following 
stages: embryonic (appearance of the definitive and anterior  
foregut endoderm), pseudoglandular (formation of the 
bronchial tree), canalicular (expansion of the respiratory  
tree), saccular (specification of the alveolar epithelium), and  

alveolar (maturation of the alveoli and microvessels). During 
embryogenesis, the definitive endoderm (DE) develops and 
transforms into a gut tube located along the anterior–posterior 
and dorsal–ventral axes (Zorn et al. 2009). As the development 
proceeds, the anterior foregut endoderm (AFE) is formed, which 
gives rise to the esophagus, trachea, stomach, lungs, thyroid, 
liver, biliary system, and pancreas. Then, lung specification 
begins with the expression of the thyroid transcription factor-1 
(NKX2.1) on the ventral side of the AFE (Goss et al. 2009).  
Thus, obtaining airway organoids from iPSCs includes  
differentiation into DE, then into AFE, and finally into 
NKX2-1 + lung epithelial progenitors which are purified by 
sorting cell surface markers and cultured in Matrigel with WNT 
signaling inhibitors to form 3D epithelial-only airway organoids, 
since McCauley K. B. et al. showed that the inhibition of WNT 
signaling efficiently induces proximal lung progenitors, while 

Fig. 1   Types of lung organoids. PNEC—pulmonary neuroendocrine cells, AT1—alveolar type 1 cells, AT2—alveolar type 2 cells. All figures 
are created with BioRender.com
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Table 1   Main studies on generation of lung organoids

Organoid types Cell sources Methods of 
generation

Cell types in the 
organoids (day 
from start of 
differentiation)

Expressed markers References

Adult cells
Nasospheres Human nasal 

epithelial stem cells
SAS Ciliated cells (15d)

Goblet cells (15d)
Squamous epithelial 

cells (21d)

AC-TUB + 
MUC5A + 
KRT10 + 

Kumar et al. (2011)

Matrigel Squamous epithelial 
cells (21d)

Involucrin + , 
KRT10 + 

Tracheobronchial 
spheres

Human tracheal 
airway stem cells

Matrigel Squamous epithelial 
cells (21d)

KRT10 + 

Distal airway 
spheres

Human distal airway 
stem cells

Matrigel Alveolar type II cells 
(21d)

Alveolar cells (21d)

PDPN + 
4C10 + 

Bronchospheres Human bronchial 
epithelial cells

Matrigel Basal cells (0–14d)
Goblet cells (5d, 7d)
Ciliated cells (7d)

p63 + 
MUC5AC + , 

MUC5B + , 
FOXA3 + 

FOXJ1 + , DNAI2 + 

Hild et al. (2016)

Human lung cells SAS Mesenchymal stem 
cells (n/a)

Epithelial cells (n/a)
Basal cells (n/a)
Alveolar type II cells 

(n/a)
Club cells (n/a)

CD90 + , CD105 + 
KRT8 + , KRT18 + , 

KRT19 + 
KRT5 + 
SP‐A + 
CC10 + 

Tesei et al. (2009)

Tracheospheres Mouse tracheal basal 
cells

Matrigel Basal cells (9d)
Luminal cells (9d)
Ciliated cells (20d)

p63 + , KRT14 + 
KRT8 + 
AC-TUB + 

Rock et al. (2009)

Alveolospheres Human alveolar type 
2 cells combined 
with human fetal 
lung fibroblast cell 
line

Matrigel and 
Transwell insert

Alveolar type II cells 
(14d)

SFTPC + , HTII-
280 + 

Barkauskas et al. 
(2013)

Mouse alveolar type 2 
cells combined with 
mesenchymal cell 
populations

Alveolar type II cells 
(16–17d)

Alveolar type I cells 
(16–17d)

SFTPC + , T1a + 
AQP5 + , HOPX + 

Alveolar organoids Human alveolar type 
II cells (HTII-
280 +) or alveolar 
epithelial progenitor 
cells (HTII-280 + , 
TM4SF1 +) 
combined with 
human fetal lung 
fibroblast cell line

Matrigel and 
Transwell insert

Alveolar type II cells 
(21d)

Alveolar type I cells 
(21d)

SFTPC + 
AQP5 + 

Zacharias et al. (2018)

Lung organoids Human lung cells Matrigel Alveolar type II cells 
(n/a)

Basal cells (n/a)
Ciliated cells (n/a)
Goblet cells (n/a)
Club cells (n/a)

SFTPB + , SFTPC + 
KRT5 + 
AC-TUB + 
MUC5AC + 
CC10 + 

Tindle et al. (2021)

Embryonic cells
Alveolospheres Human embryonic 

stem cells
Matrigel Lung epithelial cells 

(30d)
Alveolar type II cells 

(30d)

NKX2.1 + 
proSFTPB + , 

proSFTPC + 

Jacob et al. (2017)
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Table 1   (continued)

Organoid types Cell sources Methods of 
generation

Cell types in the 
organoids (day 
from start of 
differentiation)

Expressed markers References

Alveolar organoids Mouse fetal epithelial 
tips

Matrigel Proximal epithelial 
cells

(0–6d)
Distal epithelial cells 

(6d)
Ciliated cells (6d)
Basal cells (6d)
Alveolar cells (2–6d)

SOX2 + 
SOX9 + 
FOXJ1 + 
KRT5 + 
SFTPC + , RAGE + 

Gkatzis et al. (2021)

Lung epithelial tip 
organoids

Human embryonic 
lung distal tip cells

Matrigel Bronchiolar cells 
(70–98d)

Lung epithelial tip 
cells (70–98d)

SOX2 + 
SOX9 + , HMGA2 + , 

ETV5 + , HNF1B + 

Nikolic et al. (2017a)

Lung epithelial stalk 
organoids

Human embryonic 
lung epithelial stalk 
cells

Bronchiolar cells 
(42d)

Lung epithelial tip 
cells (42d)

SOX2 + 
SOX9 + 

Lung bud organoids Human embryonic 
lung epithelial cells

SAS/
Matrigel

Mesodermal cells 
(25d)

Lung epithelial cells 
(25d)

Alveolar type II cells 
(70d and > 170d)

Goblet cells (70d)
Proximal epithelial 

cells (70d 
and > 170d)

Distal epithelial cells 
(70d and > 170d)

PDGFR + 
KRT8 + , NKX2.1 + , 

FOXA1 + , P63 + 
SFTPC + , SFTPB + , 

ABCA3 + 
MUC5B + , 

MUC5AC + 
SOX2 + 
SOX9 + 

Chen et al. (2017a, b)

Lung organoids Rat fetal distal lung 
epithelial cells

combined with 
CD31 + rat 
endothelial cells

Matrigel and ALI-
culture

Alveolar type II cells 
(15d)

Club cells (15d)
Epithelial cells (15d)

RT2-70 + 
CC10 + 
EPCAM + 

Laube et al. (2021)

iPSCs
Airway organoids Human iPSCs Matrigel Secretory cells

Goblet cells
Basal cells

SP-B + /NKX2.1 + ; 
SCGB3A2 + /
NKX2.1 + 

MUC5AC + /
NKX2.1 − 

NKX2.1 + /P63 + /
KRT5 + 

McCauley et al. (2017)
McCauley et al. (2018)

Alveolospheres Human iPSCs Matrigel Alveolar type II cells 
(n/a)

Lung epithelial cells 
(n/a)

proSFTPB + 
NKX2.1 + 

Jacob et al. (2017)

Alveolospheres Human iPSCs 
combined with 
human fetal lung 
fibroblasts

Matrigel and 
Transwell insert

Lung epithelial cells 
(n/a)

Alveolar type I cells 
(n/a)

Alveolar type II cells 
(n/a)

NKX2.1 + 
AQP5 + /PDPN + 
SFTPC + , SFTPB + 

Gotoh et al. (2014)
Yamamoto et al. (2017)
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the activation of WNT leads to a significant increase in distal 
patterning (McCauley et al. 2017, 2018). The airway organoids 
obtained using this protocol contain all cells characteristic of 

this type of organoids (basal, ciliated, goblet, and club cells). 
Figure 3 summarizes different protocols for differentiation of 
iPSCs into airway, alveolar, and lung organoids.

Table 1   (continued)

Organoid types Cell sources Methods of 
generation

Cell types in the 
organoids (day 
from start of 
differentiation)

Expressed markers References

Alveolar organoids Human pluripotent 
stem cells

SAS Alveolar progenitor 
cells (27d)

Alveolar type I cells 
(27d)

Alveolar type II cells 
(27d)

Mesenchymal cells 
(27d)

EPCAM + , CPM + , 
NKX2.1 + 

AQP5 + , T1α + 
SFTPC + 
Vimentin + 

Kim et al. (2021)

Lung bud organoids Human iPSCs SAS/
Matrigel

Lung epithelial cells 
(70d)

Alveolar type II cells
(70d and > 170d)
Proximal epithelial 

cells
(70d and > 170d)
Distal epithelial cells
(70d and > 170d)

NKX2.1 + 
SFTPC + , SFTPB + 
SOX2 + 
SOX9 + 

Chen. (2017a)

Lung organoids Human iPSCs Matrigel Proximal epithelial 
cells

(2, 6, and 16 weeks)
Distal epithelial cells 

(n/a)
Club cells (n/a)
Goblet cells (n/a)

NKX2.1 + , SOX2 + 
SOX9 + 
SCGB1A1 + 
MUC5AC + 

Miller et al. (2018)

Human iPSCs Matrigel Basal cells (n/a)
Club cells (n/a)
Goblet cells (n/a)
Alveolar cells (n/a)

KRT5 + 
SCGB3A2 + 
MUC5AC + 
SP‐C + , SP‐B + , 

HTII‐280 + , 
AGER + 

Leibel et al. (2020)

Human iPSCs Matrigel Proximal epithelial 
cells (15d)

Basal cells (65d)
Distal epithelial cells 

(15d, 65d)
Ciliated cells (65d)
Club cells (65d)
Alveolar type I cells
(65d)
Alveolar type II cells
(65d)

SOX2 + 
P63 + 
SOX9 + 
FOXJ1 + , AC-TUB + 
CC10 + 
PDPN + , HOPX + 
SFTPB + , SFTPC + 

Dye et al. (2015)

ABCA3, ATP-binding cassette, sub-family A; AC-TUB, acetylated tubulin; AGER, advanced glycosylation end product-specific receptor; AQP, 
aquaporin; CC10, Club cell 10kD protein; CD, cluster of differentiation; d, day; DNAI, dynein intermediate chain 1; EPCAM, epithelial cell 
adhesion molecule; ETV5, ETS variant gene 5; ETS, ERM transcription factor; FOXA2, forkhead box protein A2; FOXJ, forkhead-box J1; 
HMGA2, high mobility group AT-hook protein 2; HNF1B, hepatocyte nuclear factor 1; HOPX, homeodomain-only protein; HTII-280, a 280–
300 kDa protein specific for human alveolar type II cells; KRT, keratin; MUC5AC, mucin-5 subtype AC; MUC5B, mucin-5 subtype B; NKX2.1, 
NK2 homeobox 1; p63, transformation-related protein 63; PDGFR, alpha Platelet-Derived Growth Factor receptor; PDPN, podoplanin; proS-
FTPB, pro–surfactant protein B; RAGE, advanced glycosylation end product-specific receptor; SAS, self-assembled spheres; SCGB3A2, secre-
toglobin family 3A member 2; SFTPC, pulmonary-associated surfactant protein C; SOX, SRY (sex determining region Y)-box; SP-A, surfactant 
protein A; SP-B, surfactant protein B; n/a, not available
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Alveolar organoids

Alveolar organoids can be derived from adult tissue, embryonic  
progenitors, and induced pluripotent stem cells; they are char-
acterized by the expression of markers of AT2 cells (SFTPC + , 
ProSPC + , AQP5 + , HT2-280 +) and alveolar type 1 (AT1) 
cells. In research, AT2 cells are isolated from adult or embry-
onic tissues, since these cells behave as facultative stem cells, 
they are capable of self-renewal and differentiation into AT1 
cells (Evans et al. 2020). For isolation of AT2 cells, it is neces-
sary to enzymatically digest and mechanically dissociate whole 
lungs or transbronchial samples (Barkauskas et al. 2013, 2017; 
Dinh et al. 2017; Nikolić et al. 2017a; Zacharias et al. 2018). 
Dissociated AT2 cells are isolated by FACS (EPCAM + , 
HT2‐280 + or TM4SF1-, APC +), mixed with fibroblasts 
and Matrigel and ALI cultured (Zacharias et al. 2018). Dinh 
P. U. C. suggested an alternative protocol according to which 
tissue explants are cultured on a fibronectin-coated plate for 
17–25 days (Dinh et al. 2017). After that, cells are seeded into 
an ultra-low attachment flask and in 5–7 days reseeded onto 
fibronectin-coated surfaces to produce alveolar organoids. 
Recent studies showed that alveolar organoids derived from 
both murine and human AT2 cells are capable of differentiating 
into AT1 cells in vitro (Chen et al. 2021; Katsura et al. 2020). 
Obtaining alveolar organoids containing AT1 and AT2 cells 
from iPSCs is reduced to the differentiation of NKX2.1 + cells 
using a combination of CHIR99021, FGF10, KGF, and DAPT, 
which are plated in Matrigel and cultured with or without lung 
fibroblasts. Co-cultivation with fibroblasts proved to be advan-
tageous for the induction and stable expansion of SFTPC + cell 
populations while maintaining their stem cell properties, which 
suggests that the niche provided by epithelial–mesenchymal 
interaction may be crucial for maintaining the progenitor prop-
erties of AT2 cells (Yamamoto et al. 2017; Kim et al. 2021).

Lung organoids

Lung organoids can also be derived from adult tissue, embry-
onic progenitors, induced pluripotent stem cells; they con-
tain proximal and distal lung cells, such as basal, ciliated, 
club, AT1, and AT2 cells. Obtaining lung organoids from 
adult tissue consists of enzymatic digestion and 3D culturing 
(Nikolić et al. 2017a). Both for organoids derived from iPSCs 
and for organoids derived from embryonic cells, a similar 
protocol of differentiation into lung organoids is employed 
(Leibel et al. 2020). Leibel et al. described a protocol for 
the production of human lung organoids (HLOs) from PSCs 
by endoderm induction using activin A and CHIR99021, 
followed by induction of anterior foregut endoderm using 
inhibition of BMP and TGFβ signaling by SB431542 and 
dorsomorphin (Leibel et al. 2020). The anterior foregut cells 
were then cultured with BMP4, CHIR99021, and all‐trans 
retinoic acid (ATRA). At the last stage, the cells were placed 
in Matrigel with FGF7, FGF10, EGF, and CHIR99021 to 
form organoids. The resulting organoids expressed airway 
(KRT5 + , MUC5AC + , SCGB3A2 +) and alveolar (SP‐C + , 
SP‐B + , HTII‐280 + , AGER +) markers. Dye et al. described 
a similar protocol for obtaining lung organoids from iPSCs, 
however, the authors obtained anterior foregut spheroids 
which were then placed in Matrigel with Noggin, SB431542, 
FGF4, CHIR99021, and 1% fetal bovine serum for maturation 
of lung organoids (Dye et al. 2015). The resulting organoids 
expressed proximal (SOX2 +) and distal (SOX9 + , HOPX + , 
SFTPC +) lung markers. HLOs cultured for more than 
2 months had epithelial structures resembling the proximal 
and distal airways and expressing markers of basal (P63 +), 
ciliated (FOXJ1 + , AC-TUB +), club (SCGB1A1 +), AT2 
(SFTPC + , SFTPB +), and AT1 (PDPN + , HOPX +) cells.

Fig. 2   Scheme for obtaining lung organoids from adult and embryonic cells. FACS—fluorescence-activated cell sorting, MACS—magnetic-
activated cell sorting, 3D—three-dimensional
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Fig. 3   Schemes of differentia-
tion iPSCs into airway, alveolar, 
and lung organoids
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Transplantation of lung organoids 
for maturation

Almost all of the above described organoids that were 
obtained in vitro have incomplete differentiation so far as 
they are not exposed to air (Schilders et al. 2016). There-
fore, in some of the studies, the last stage of differentiation  
is transplantation which promotes cell maturation and formation of 
vascular and neuronal networks (Tan et al. 2017; Chen et al. 2018). 
It is also worth noting that «organoid transplantation» refers to 
both the transplantation of whole organoids and the transplantation  
of cell suspensions derived from organoids.

The most common in vivo approach is xenotransplantation, 
in which human organoids are transplanted into laboratory 
animals. Many studies showed that human lung organoids 
can be grafted to mammalian hosts. Dinh et al. successfully 
engrafted human lung spheroids into athymic nude mice; on 
days 1, 4, 7, 11, and 20 after transplantation, cells were found 
in the lungs and liver (Dinh et al. 2017). The cells expressed 
alveolar (AQP5 + and ProSPC +), secretory (CCSP +), and 
epithelial (EPCAM +) markers in the lung tissue, while they 
were absent in the liver. Thus, the authors showed that lung 
spheroid cells engrafted into mammalian hosts retain lung 
phenotype in orthotopic transplantation, in contrast to ectopic 
transplantation.

Orthotopic transplantation has important advantages, 
such as providing the best environment for cell survival and 
function, allowing to assess vascularization and neurogene-
sis, increasing the translational potential of organoid models, 
etc. However, in most cases, lung organoids are transplanted 
into an ectopic site, since this opens up the possibility of 
choosing a site with good access to blood supply and mainte-
nance of vascularization of the grafted tissue without impair-
ing the necessary functions of mammalian organ (Deward 
et al. 2014; Holloway et al. 2019). The site of transplantation 
was shown to have no effect on the engraftment of organoids 
(Dye et al. 2016). The authors transplanted HLOs grown 
in vitro from 1 to 65 days into the subcapsular pocket of the 
mouse kidney and into the greater omentum. They showed 
that alien sites of ectopic localization do not reliably support 
the survival or growth of the HLO lung epithelium in vivo.

Unlike ectopic localization, orthotopic graft localiza-
tion provides the best environment for the cell and plays 
an important role in the maturation and differentiation of 
organoids. Chen et al. hypothesized that ectopic locali-
zation prevents organoids from definitive differentiation  
(Chen et al. 2017b). Human lung bud organoids (LBOs) 
were transplanted under the kidney capsule into immuno-
deficient NSG mice. After 7 months, LBOs were found 
at the transplantation site, but full phenotypic and archi-
tectural alveolar maturation was not achieved. However,  
(Nikolić et al. 2017a) showed (also in 2017) that 8 days after 

orthotopic in vivo transplantation of lung tip organoids  
(SOX2 + , SOX9 +) into NGS mice, cells retained the co-
expression of SOX2 and SOX9, which means incomplete 
airway differentiation (Nikolić et al. 2017a). This result can 
be explained by the short observation period. The authors 
then performed an ectopic transplantation of lung tip orga-
noids that were dissociated and mixed with a cell pellet 
formed from dissociated E13.5 mouse lungs under the 
kidney capsule of NSG mice. After 12 weeks, only some 
human cells expressed SOX9 at a very low level; thus, 
alveolar differentiation was either premature or ineffective. 
The authors concluded that human cells may be unable to  
respond efficiently to mouse differentiation signals, pos-
sibly because they require different signaling inputs.

As mentioned above, transplantation is in most cases con-
sidered the last stage in the differentiation of lung organoids, 
since lung organoids differentiate better in vivo than in vitro. 
The authors compared the efficiency of differentiation of 
HLOs grown in vitro and HLOs seeded onto a bioartificial 
microporous poly(lactide-co-glycolide) (PLG) scaffold, cul-
tured for 5–7 days in vitro and transplanted into epididymal 
fat pads of mice (Dye et al. 2016). The use of PLG scaffold 
with HLOs demonstrated that 8 weeks after transplantation 
100% of the recovered constructs possessed huMITO + and 
NKX2.1 + mature airway-like structures, while in the control 
group (HLOs in a Matrigel plug), no tissue recovery was 
observed. In addition, 8 weeks after transplantation, multiple 
epithelial structures per cross section were observed. The 
identified airway-like structures were densely surrounded by 
mesenchymal cells and there were pockets of organized car-
tilage throughout the transplants, while HLOs seeded on the 
scaffold and grown in vitro for 4–8 weeks did not represent 
epithelial structure. Therefore, the authors concluded that 
the scaffold provides critical support for the engraftment and 
survival of the lung epithelium and the combination of the 
scaffold and the in vivo environment ensures the growth and 
maturation of the HLO epithelium. Later, in a 2019 study, the 
authors showed that the rate of scaffold degradation affects 
the HLO maturation—rapidly degrading polymers lead to 
an increase in the size of airway structures (Dye et al. 2020). 
The use of scaffolds in research is advancing the field of 
regenerative medicine, where matrices play an important role 
and should provide a stable and supportive vehicle to deliver 
cells to the desired location in vivo (Aisenbrey et al. 2020). 
Matrigel, due to its animal origin, makes it difficult to use it 
in the future in human transplantation in clinic due to poten-
tial immunogenicity (Schneeberger et al. 2017; Kozlowski 
et al. 2021). therefore, the creation of suitable matrices is an 
important direction for future research.

It was also shown that the stage of transplanted HLO 
culture did not affect the survival of the HLO lung epi-
thelium (Dye et al. 2016). However, in  (Chen et al. 2018) 
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transplanted HLOs at different stages of cultivation into 
the subcapsular pocket of the kidney of immunodeficient 
B-NSG mice and showed that it is better to use 41-day HLOs 
to obtain mature AT1-like cells and AT2 cells after long-
term transplantation, since at this time the expression of the 
genes of distal cells of the alveolar epithelium reaches maxi-
mum. Earlier, on days 21 and 31 of culturing HLOs in vitro, 
there is a peak in the expression of the genes specific for 
lung progenitors and stem cells (NKX2.1, SOX9, SOX2, 
and P63) and transplanted HLOs can differentiate into bipo-
tent progenitor cells after long-term engraftment (Chen 
et al. 2018). The authors also showed that 100–120 days 
after transplantation HLOs possessed a vascular network 
(ACTA2 +) and a neuronal network (PGP9.5 +), resembling 
the human lung.

The issue of vascularization is important in transplanta-
tion, since it is critical to ensure the distribution of oxygen 
and nutrients in large organoids in vivo and to provide the 
integration of airway organoid grafts with the host tissue 
(Tan et al. 2017; Vargas-Valderrama et al. 2020). In (Tan 
et al. 2017) obtained multicellular airway organoids contain-
ing vascular structures by combining human primary adult 
bronchial epithelial cells with human primary adult micro-
vascular lung endothelial cells and human primary adult 
lung fibroblasts at a ratio of 10:7:2; they were transplanted 
under the kidney capsule of NSG mice (Tan et al. 2017). 
One week after implantation, organoids were visible in the 
kidney capsule, with human specific CD31 + endothelial cells 
within airway organoids. However, staining with specific 
anti-human antibodies demonstrated that the vast majority of 
proliferating cells was not within airway organoids, but rather 
within host tissue. Six weeks after implantation, the orga-
noids regressed in size, abundant host vasculature invaded 
the organoid area where proximal secretory airway cells 
(CC10 +) and distal alveolar cells (AQP5 + and SPC +) were 
observed. Thus, the authors showed that bronchial epithelial, 
mesenchymal, and vascular cells in the airway organoids can 
survive and undergo significant maturation after engraftment 
in vivo; however, ectopic transplantation, as mentioned ear-
lier, prompted a shift towards cell lineage commitment and 
differentiation towards mature, non-proliferating states, limit-
ing the regenerative potential of the current system.

Transplantation of lung organoids for repair 
of lung injury

Model of lung injury in mice can be created by direct dam-
age to the bronchoalveolar epithelium and capillary endothe-
lium due to intratracheal administration of acid or bleomy-
cin, prolonged hyperoxia, prolonged mechanical ventilation 
at high tidal volume, or intravenous injection of oleic acid 
or endotoxin (lipopolysaccharide) (Aeffner et al. 2015). 

Ischemia/reperfusion models, sepsis models, influenza virus 
models, and secondary peritonitis models can also be used. 
‘Smoking mouse’ models accurately reflect the pathophysi-
ology of COPD, since cigarette smoke is the main cause of 
this disease (Vlahos et al. 2014). There are several works on 
transplantation of lung organoids into the area of lung injury 
(Nikolić et al. 2017a; Miller et al. 2018; Weiner et al. 2019). 
In 2015, sublethal whole-body irradiation of the recipient 
before the transplantation of cells was developed (Rosen 
et al. 2015). Sublethal irradiation was performed 48 h after 
naphthalene treatment to clear the precursor niches in the 
lungs, reduce the competition of stem cells and improve 
engraftment of infused donor cells. It was shown that expo-
sure to irradiation before treatment with naphthalene did not 
lead to effective destruction of the endogenous pool of pre-
cursors. Although the authors transplanted human fetal lung 
tissue and not organoids, we consider this study to be a key 
publication on the long-term engraftment of transplanted 
lung cells and organoids. The need for irradiation to engraft 
the lungs with transplanted cells is the most significant 
obstacle for the clinical development and implementation of 
this approach. The search for other ways to eliminate recipi-
ent’s own stem cells in the appropriate niches is necessary 
for the development of organoid transplantation (Table 2). 
Although numerous studies show that irradiation is not nec-
essary, the efficiency of cell engraftment after irradiation is 
significantly improved.

In addition to the competition of stem cells, there is the 
problem of immune rejection in allotransplantation, which 
is usually solved by chronic suppression of the immune sys-
tem. Hillel-Karniel et al. developed a protocol that allowed 
efficient transplantation across major genetic barriers by co-
infusion of T cell-depleted hematopoietic progenitor cells 
together with lung cells and treatment with cyclophospha-
mide after transplantation (Hillel-Karniel et al. 2020). On 
the other hand, obtaining organoids from donor’s own iPSCs 
eliminates the problem of immune rejection, which is a great 
advantage.

An analysis of the literature shows that human organoids 
can be transplanted into mice, and after a few days or weeks 
human cells can be detected. In 2018, transplantation of bud 
tip progenitor organoids derived from hPSCs into the air-
ways of injured mouse lungs was performed (Miller et al. 
2018). A short-term engraftment experiment showed that 
79% of the cells expressed the markers SOX2 and SOX9, 
half of the cells expressed the club cell marker SCGB1A1 
and a quarter of the cells expressed the goblet cell marker 
MUC5AC; no other cell markers were observed. Three 
groups of mice were involved in the long-term engraft-
ment experiment: (a) received an injury but no injection 
of cells; (b) received an injury and injection of undiffer-
entiated hPSCs; and (c) received an injury and injection of 
bud tip organoid cells. Lungs in animals of all experimental 
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groups successfully recovered from the injury. Engraftment 
of human cells was observed in 8 out of 15 surviving mice 
that received bud tip organoid injections. Engrafted cells 
were found in bronchioles, trachea, and primary/secondary 
bronchi of mice. All engrafted human cells expressed SOX2, 
with roughly 75% of the cells acquiring a mucus-producing 
phenotype, ∼13% acquiring a ciliated cell profile, and ∼0.5% 
exhibiting a neuroendocrine cell profile. The P63 marker or 
alveolar cell specific markers were not detected. In 2019, 
AT2 organoids and primary AT2 cells were transplanted 
into influenza-injured recipient mice 11 days after infec-
tion (Weiner et al. 2019). Mice with cellular transplantation 
recovered ~ 65% faster than the control group, whereas the 
transplantation of AT2 organoids did not improve the recov-
ery process. Thirteen days after transplantation, cells from 
AT2 organoids demonstrated two distinct fates: maintenance 
of AT2 lineage (SPC + , Lamp3 +) or dysplastic regenera-
tion (Scgb3a2 + , Krt5 +), while primary AT2 cells either 
retained their AT2 lineage or differentiated into AT1 cells 
and did not exhibit dysplastic regeneration. The authors 
concluded that primary AT2 cells which never experienced 
in vitro conditions may retain a more appropriate lineage 
restriction upon transplantation.

Another significant problem in the transplantation of orga-
noids derived from embryonic or induced pluripotent stem 
cells is incomplete differentiation and presence of poorly dif-
ferentiated cells in the cellular mass that could theoretically 
form tumors (teratomas, for example) after transplantation. 
To date, this problem has been insufficiently studied. It is 
necessary to study the long-term consequences of transplan-
tation of stem cell-derived organoids not only from the point 
of view of the survival rate of donor cells, but also for the 
assessment of the risk of tumor formation. In addition, it is 
necessary to develop protocols for detecting incomplete dif-
ferentiation of stem cells before transplantation.

Lung organoids are promising instruments in regenera-
tive medicine, since organoids can be obtained from a small 
amount of donor cells and can provide autologous cells or 
even tissue for transplantation (Bartfeld et al. 2017). Lung 
organoids are believed to be grafted onto scaffolds, includ-
ing a decellularized lung, as it is done today with gastric, 
hepatic, pancreatic, and small intestinal organoids (Giobbe 
et  al. 2019). Various methods of scaffold grafting with 
cells and organoids have been reported. For each of these 
methods, successful growth and maturation of cells were 
observed, which gives hope for their further development 
and application to lung organoids.

Organoid technology can be combined with recent 
advances in genome editing based on CRISPR-Cas9. There 
are three ways to incorporate CRISPR-Cas9 method in 
organoid technology: genome modification of cells prior to 
creation of organoids; genome modification of organoids 
dissociated into single cells and subsequent re-formation 

of 3D structures; delivery of Cas9 and sgRNA to the orga-
noids without their dissociation into single cells (Gopal et al. 
2020). The first two methods are often used in the studies of 
lung diseases, including generation of disease-specific lung 
organoids (Strikoudis et al. 2019), or for the correction of 
the CFTR gene in intestinal organoids (Maule et al. 2020).

Conclusion

Lung organoids are a promising approach in the treatment of 
pulmonary diseases. The review describes the main proto-
cols for obtaining airway, alveolar, and lung organoids from 
adult tissue, embryonic progenitors, and induced pluripo-
tent stem cells. Organoids are transplanted into ectopic and 
orthotopic sites for maturation and formation of vascular 
and neuronal networks. In most cases, lung organoids are 
transplanted into an ectopic site, since this opens up the pos-
sibility of choosing a site with good access to blood sup-
ply and maintenance of vascularization of the grafted tis-
sue; however, the best results of organoid maturation were 
obtained with orthotopic transplantation. Studies on the 
transplantation of lung organoids into the area of lung injury 
showed that organoids engraft, preserve the phenotype, and 
contribute to the repair of injured tissue. However, there is 
little research on the fate of transplanted organoids, their 
vascularization and restoration of tissue architecture over a 
long period of time.

Since organoids have appeared relatively recently, their use in 
clinical practice requires their thorough characterization, devel-
opment of the most effective protocols for obtaining and trans-
plantation, and conductance of preclinical studies. In our opinion, 
there are still a number of unresolved problems in this area. It is 
necessary to develop protocols for confirming complete differen-
tiation of stem cells, if they are the source of organoids. Protocols 
for successful colonization of the lungs with donor cells need 
to be improved, as irradiation is dangerous for patients. Solving 
these problems will bring us closer to the clinical use of respira-
tory organoids for the treatment of various lung diseases.

Funding  This work was supported by the Ministry of Science and 
Higher Education of the Russian Federation.
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