Skip to main content

Advertisement

Log in

Oct4 facilitates chondrogenic differentiation of mesenchymal stem cells by mediating CIP2A expression

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Bone development and cartilage formation require strict modulation of gene expression for mesenchymal stem cells (MSCs) to progress through their differentiation stages. Octamer-binding transcription factor 4 (Oct4) expression is generally restricted to developing embryonic pluripotent cells, but its role in chondrogenic differentiation (CD) of MSCs remains unclear. We therefore investigated the role of Oct4 in CD using a microarray, quantitative real-time polymerase chain reaction, and western blotting. The expression of Oct4 was elevated when the CD of cultured MSCs was induced. Silencing Oct4 damaged MSC growth and proliferation and decreased CD, indicated by decreased cartilage matrix formation and the expression of Col2a1, Col10a1, Acan, and Sox9. We found a positive correlation between the expression of CIP2A, a natural inhibitor of protein phosphatase 2A (PP2A) and that of Oct4. Cellular inhibitor of PP2A (CIP2A) expression gradually increased after CD. Overexpression of CIP2A in MSCs with Oct4 depletion promoted cartilage matrix deposition as well as Col2a1, Col10a1, Acan, and Sox9 expression. The chondrogenic induction triggered c-Myc, Akt, ERK, and MEK phosphorylation and upregulated c-Myc and mTOR expression, which was downregulated upon Oct4 knockdown and restored by CIP2A overexpression. These findings indicated that Oct4 functions as an essential chondrogenesis regulator, partly via the CIP2A/PP2A pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ba P, Duan X, Fu G, Lv S, Yang P, Sun Q (2017) Differential effects of p38 and Erk1/2 on the chondrogenic and osteogenic differentiation of dental pulp stem cells. Mol Med Rep 16:63–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boiani M, Schöler HR (2005) Regulatory networks in embryo-derived pluripotent stem cells. Nat Rev Mol Cell Biol 6:872–884

    Article  CAS  PubMed  Google Scholar 

  • Burdon T, Smith A, Savatier P (2002) Signalling, cell cycle and pluripotency in embryonic stem cells. Trends Cell Biol 12:432–438

    Article  CAS  PubMed  Google Scholar 

  • Cheng L, Sung MT, Cossu-Rocca P, Jones TD, MacLennan GT, De Jong J, Lopez-Beltran A, Montironi R, Looijenga LH (2007) OCT4: biological functions and clinical applications as a marker of germ cell neoplasia. J Pathol 211:1–9

    Article  CAS  PubMed  Google Scholar 

  • Chiou SH, Wang ML, Chou YT, Chen CJ, Hong CF, Hsieh WJ, Chang HT, Chen YS, Lin TW, Hsu HS, Wu CW (2010) Coexpression of Oct4 and Nanog enhances malignancy in lung adenocarcinoma by inducing cancer stem cell-like properties and epithelial-mesenchymal transdifferentiation. Cancer Res 70:10433–10444

    Article  CAS  PubMed  Google Scholar 

  • De P, Carlson J, Leyland-Jones B, Dey N (2014) Oncogenic nexus of cancerous inhibitor of protein phosphatase 2A (CIP2A): an oncoprotein with many hands. Oncotarget 5:4581–4602

    Article  PubMed  PubMed Central  Google Scholar 

  • Djouad F, Bony C, Häupl T, Uzé G, Lahlou N, Louis-Plence P, Apparailly F, Canovas F, Rème T, Sany J, Jorgensen C, Noël D (2005) Transcriptional profiles discriminate bone marrow-derived and synovium-derived mesenchymal stem cells. Arthritis Res Ther 7:R1304–R1315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ezeh UI, Turek PJ, Reijo RA, Clark AT (2005) Human embryonic stem cell genes OCT4, NANOG, STELLAR, and GDF3 are expressed in both seminoma and breast carcinoma. Cancer 104:2255–2265

    Article  CAS  PubMed  Google Scholar 

  • Gidekel S, Pizov G, Bergman Y, Pikarsky E (2003) Oct-3/4 is a dose-dependent oncogenic fate determinant. Cancer Cell 4:361–370

    Article  CAS  PubMed  Google Scholar 

  • Goldring MB, Tsuchimochi K, Ijiri K (2006) The control of chondrogenesis. J Cell Biochem 97:33–44

    Article  CAS  PubMed  Google Scholar 

  • Greco SJ, Liu K, Rameshwar P (2007) Functional similarities among genes regulated by OCT4 in human mesenchymal and embryonic stem cells. Stem Cells 25:3143–3154

    Article  CAS  PubMed  Google Scholar 

  • Hata K, Takahata Y, Murakami T, Nishimura R (2017) Transcriptional network controlling endochondral ossification. J Bone Metab 24:75–82

    Article  PubMed  PubMed Central  Google Scholar 

  • Hidaka K, Kanematsu T, Takeuchi H, Nakata M, Kikkawa U, Hirata M (2001) Involvement of the phosphoinositide 3-kinase/protein kinase B signaling pathway in insulin/IGF-I-induced chondrogenesis of the mouse embryonal carcinoma-derived cell line ATDC5. Int J Biochem Cell Biol 33:1094–1103

    Article  CAS  PubMed  Google Scholar 

  • Hochedlinger K, Yamada Y, Beard C, Jaenisch R (2005) Ectopic expression of Oct-4 blocks progenitor-cell differentiation and causes dysplasia in epithelial tissues. Cell 121:465–477

    Article  CAS  PubMed  Google Scholar 

  • Jo A, Denduluri S, Zhang B, Wang Z, Yin L, Yan Z, Kang R, Shi LL, Mok J, Lee MJ, Haydon RC (2014) The versatile functions of Sox9 in development, stem cells, and human diseases. Genes Dis 1:149–161

    Article  PubMed  PubMed Central  Google Scholar 

  • Junttila MR, Puustinen P, Niemelä M, Ahola R, Arnold H, Böttzauw T, Ala-aho R, Nielsen C, Ivaska J, Taya Y, Lu SL, Lin S, Chan EK, Wang XJ, Grènman R, Kast J, Kallunki T, Sears R, Kähäri VM, Westermarck J (2007) CIP2A inhibits PP2A in human malignancies. Cell 130:51–62

    Article  CAS  PubMed  Google Scholar 

  • Khanna A, Pimanda JE, Westermarck J (2013) Cancerous inhibitor of protein phosphatase 2A, an emerging human oncoprotein and a potential cancer therapy target. Cancer Res 73:6548–6553

    Article  CAS  PubMed  Google Scholar 

  • Kita K, Kimura T, Nakamura N, Yoshikawa H, Nakano T (2008) PI3K/Akt signaling as a key regulatory pathway for chondrocyte terminal differentiation. Genes Cells 13:839–850

    Article  CAS  PubMed  Google Scholar 

  • Laine A, Sihto H, Come C, Rosenfeldt MT, Zwolinska A, Niemelä M, Khanna A, Chan EK, Kähäri VM, Kellokumpu-Lehtinen PL, Sansom OJ, Evan GI, Junttila MR, Ryan KM, Marine JC, Joensuu H, Westermarck J (2013) Senescence sensitivity of breast cancer cells is defined by positive feedback loop between CIP2A and E2F1. Cancer Discov 3:182–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lefebvre V, Smits P (2005) Transcriptional control of chondrocyte fate and differentiation. Birth Defects Res C Embryo Today 75:200–212

    Article  CAS  PubMed  Google Scholar 

  • Liu CF, Samsa WE, Zhou G, Lefebvre V (2017) Transcriptional control of chondrocyte specification and differentiation. Semin Cell Dev Biol 62:34–49

    Article  CAS  PubMed  Google Scholar 

  • Liu TM, Wu YN, Guo XM, Hui JH, Lee EH, Lim B (2009) Effects of ectopic Nanog and Oct4 overexpression on mesenchymal stem cells. Stem Cells Dev 18:1013–1022

    Article  CAS  PubMed  Google Scholar 

  • Ma N, Teng X, Zheng Q, Chen P (2019) The regulatory mechanism of p38/MAPK in the chondrogenic differentiation from bone marrow mesenchymal stem cells. J Orthop Surg Res 14:434

    Article  PubMed  PubMed Central  Google Scholar 

  • Maali A, Maroufi F, Sadeghi F, Atashi A, Kouchaki R, Moghadami M, Azad M (2021) Induced pluripotent stem cell technology: trends in molecular biology, from genetics to epigenetics. Epigenomics 13:631–647

    Article  CAS  PubMed  Google Scholar 

  • Matta C, Mobasheri A (2014) Regulation of chondrogenesis by protein kinase C: emerging new roles in calcium signalling. Cell Signal 26:979–1000

    Article  CAS  PubMed  Google Scholar 

  • Melnik S, Werth N, Boeuf S, Hahn EM, Gotterbarm T, Anton M, Richter W (2019) Impact of c-MYC expression on proliferation, differentiation, and risk of neoplastic transformation of human mesenchymal stromal cells. Stem Cell Res Ther 10:73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monk M, Holding C (2001) Human embryonic genes re-expressed in cancer cells. Oncogene 20:8085–8091

    Article  CAS  PubMed  Google Scholar 

  • Mrugala D, Dossat N, Ringe J, Delorme B, Coffy A, Bony C, Charbord P, Häupl T, Daures JP, Noël D, Jorgensen C (2009) Gene expression profile of multipotent mesenchymal stromal cells: identification of pathways common to TGFbeta3/BMP2-induced chondrogenesis. Cloning Stem Cells 11:61–76

    Article  CAS  PubMed  Google Scholar 

  • Nichols J, Zevnik B, Anastassiadis K, Niwa H, Klewe-Nebenius D, Chambers I, Schöler H, Smith A (1998) Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 95:379–391

    Article  CAS  PubMed  Google Scholar 

  • Nishimura R, Hata K, Nakamura E, Murakami T, Takahata Y (2018) Transcriptional network systems in cartilage development and disease. Histochem Cell Biol 149:353–363

    Article  CAS  PubMed  Google Scholar 

  • Niwa H, Miyazaki J, Smith AG (2000) Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat Genet 24:372–376

    Article  CAS  PubMed  Google Scholar 

  • Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    Article  CAS  PubMed  Google Scholar 

  • Preitschopf A, Schörghofer D, Kinslechner K, Schütz B, Zwickl H, Rosner M, Joó JG, Nehrer S, Hengstschläger M, Mikula M (2016) Rapamycin-induced hypoxia inducible factor 2A is essential for chondrogenic differentiation of amniotic fluid stem cells. Stem Cells Transl Med 5:580–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Puustinen P, Jäättelä M (2014) KIAA1524/CIP2A promotes cancer growth by coordinating the activities of MTORC1 and MYC. Autophagy 10:1352–1354

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Razmara E, Bitaraf A, Yousefi H, Nguyen TH, Garshasbi M, Cho WC, Babashah S (2019) Non-coding RNAs in cartilage development: an updated review. Int J Mol Sci 20:4475

    Article  CAS  PubMed Central  Google Scholar 

  • Saito T, Yano F, Mori D, Ohba S, Hojo H, Otsu M, Eto K, Nakauchi H, Tanaka S, Chung UI, Kawaguchi H (2013) Generation of Col2a1-EGFP iPS cells for monitoring chondrogenic differentiation. PLoS One 8:e74137

  • Schminke B, Frese J, Bode C, Goldring MB (2016) Miosge NJTAjop. Laminins and Nidogens in the Pericellular Matrix of Chondrocytes: Their Role in Osteoarthritis and Chondrogenic Differentiation 186:410–418

    CAS  Google Scholar 

  • Shimozaki K, Nakashima K, Niwa H, Taga T (2003) Involvement of Oct3/4 in the enhancement of neuronal differentiation of ES cells in neurogenesis-inducing cultures. Development 130:2505–2512

    Article  CAS  PubMed  Google Scholar 

  • Sinha N, Mukhopadhyay S, Das DN, Panda PK, Bhutia SK (2013) Relevance of cancer initiating/stem cells in carcinogenesis and therapy resistance in oral cancer. Oral Oncol 49:854–862

    Article  CAS  PubMed  Google Scholar 

  • Soofiyani SR, Hejazi MS, Baradaran B (2017) The role of CIP2A in cancer: a review and update. Biomed Pharmacother 96:626–633

    Article  CAS  PubMed  Google Scholar 

  • Tondreau T, Meuleman N, Delforge A, Dejeneffe M, Leroy R, Massy M, Mortier C, Bron D, Lagneaux L (2005) Mesenchymal stem cells derived from CD133-positive cells in mobilized peripheral blood and cord blood: proliferation, Oct4 expression, and plasticity. Stem Cells 23:1105–1112

    Article  CAS  PubMed  Google Scholar 

  • Ventelä S, Sittig E, Mannermaa L, Mäkelä JA, Kulmala J, Löyttyniemi E, Strauss L, Cárpen O, Toppari J, Grénman R, Westermarck J (2015) CIP2A is an Oct4 target gene involved in head and neck squamous cell cancer oncogenicity and radioresistance. Oncotarget 6:144–158

    Article  PubMed  Google Scholar 

  • Wang J, Okkeri J, Pavic K, Wang Z, Kauko O, Halonen T, Sarek G, Ojala PM, Rao Z, Xu W, Westermarck J (2017) Oncoprotein CIP2A is stabilized via interaction with tumor suppressor PP2A/B56. EMBO Rep 18:437–450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang MS, Chang SH, Sonn JK, Lee YS, Kang SS, Park TK, Chun JS (1998) Regulation of chondrogenic differentiation of mesenchymes by protein kinase C alpha. Mol Cells 8:266–271

    CAS  PubMed  Google Scholar 

  • Zangrossi S, Marabese M, Broggini M, Giordano R, D’Erasmo M, Montelatici E, Intini D, Neri A, Pesce M, Rebulla P, Lazzari L (2007) Oct-4 expression in adult human differentiated cells challenges its role as a pure stem cell marker. Stem Cells 25:1675–1680

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Weng M, Chen Z (2021) Fibroblast growth factor 9 (FGF9) negatively regulates the early stage of chondrogenic differentiation. 16:e0241281

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Zhu or Yi Chen.

Ethics declarations

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

$CBoth authors contributed equally to this work and should be considered as equal first coauthors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Fu, Q., Shao, J. et al. Oct4 facilitates chondrogenic differentiation of mesenchymal stem cells by mediating CIP2A expression. Cell Tissue Res 389, 11–21 (2022). https://doi.org/10.1007/s00441-022-03619-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-022-03619-8

Keywords

Navigation