Skip to main content
Log in

Gene duplication of C-type natriuretic peptide-4 (CNP4) in teleost lineage elicits subfunctionalization of ancestral CNP

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The diversified natriuretic peptide (NP) family, consisting of four CNPs (CNP1-4), ANP, BNP, and VNP, has been identified in the eel. Here, we successfully cloned additional cnp genes from the brain of eel (a basal teleost) and zebrafish (a later branching teleost). The genes were identified as paralogues of cnp4 generated by the third round of whole genome duplication (3R) in the teleost lineage, thereby being named eel cnp4b and zebrafish cnp4-like, respectively. To examine the histological patterns of their expressions, we employed a newly developed in situ hybridization (ISH) chain reaction using short hairpin DNAs, in addition to conventional ISH. Eel cnp4b was expressed in the medulla oblongata, while mRNAs of eel cnp4a (former cnp4) were localized in the preoptic area. In the zebrafish brain, cnp4-like mRNA was undetectable, while the known cnp4 was expressed in both the preoptic area and medulla oblongata. Together with the different mRNA distribution of cnp4a and cnp4b in eel peripheral tissues determined by RT-PCR and ISH, it is suggested that subfunctionalization by duplicated cnp4s in ancestral teleosts has been retained only in basal teleosts. Intriguingly, cnp4b-expressing neurons in the glossopharyngeal-vagal motor complex of the medulla oblongata were co-localized with choline acetyltransferase, suggesting an involvement of Cnp4b in swallowing and respiration functions that are modulated by the vagus. Since teleost Cnp4 is an ortholog of mammalian CNP, the identified localization of teleost Cnp4 will contribute to future studies aimed at deciphering the physiological functions of CNP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ando M, Ogawa M, Fukuda M (2013) A vagal nerve branch controls swallowing directly in the seawater eel. J Comp Physiol B 183:1015–1021

    Article  CAS  PubMed  Google Scholar 

  • Antunes-Rodrigues J, Favaretto A, Ballejo G, Gutkowska J, McCann S (1996) ANP as a neuroendocrine modulator of body fluid homeostasis. Rev Bras Biol 56:221–231

    PubMed  Google Scholar 

  • Chen HH, Burnett JC Jr (1998) C-type natriuretic peptide: the endothelial component of the natriuretic peptide system. J Cardiovasc Pharmacol 32(Suppl 3):S22-28

    CAS  PubMed  Google Scholar 

  • Dirks RM, Pierce NA (2004) Triggered amplification by hybridization chain reaction. Proc Nat Acad Sci 101:15275–15278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finn RN, Kristoffersen BA (2007) Vertebrate vitellogenin gene duplication in relation to the 3R hypothesis: correlation to the pelagic egg and the oceanic radiation of teleosts. PloS One 2:e169

  • Fivelstad S, Waagbø R, Zeitz SF, Hosfeld ACD, Olsen AB, Stefansson S (2003) A major water quality problem in smolt farms: combined effects of carbon dioxide, reduced pH and aluminium on Atlantic salmon (Salmo salar L.) smolts: physiology and growth. Aquaculture 215:339–357

    Article  CAS  Google Scholar 

  • Foran CM, Bass AH (1999) Preoptic GnRH and AVT: axes for sexual plasticity in teleost fish. Gen Comp Endocrinol 116:141–152

    Article  CAS  PubMed  Google Scholar 

  • Fujiwara K, Kikuchi M, Takigami S, Kouki T, Yashiro T (2007) Expression of retinaldehyde dehydrogenase 1 in the anterior pituitary glands of adult rats. Cell Tissue Res 329:321–327

    Article  CAS  PubMed  Google Scholar 

  • Gatti PJ, Johnson TA, Massari VJ (1996) Can neurons in the nucleus ambiguus selectively regulate cardiac rate and atrio-ventricular conduction? J Auton Nerv Syst 57:123–127

    Article  CAS  PubMed  Google Scholar 

  • Glasauer SM, Neuhauss SC (2014) Whole-genome duplication in teleost fishes and its evolutionary consequences. Mol Genet Genomics 289:1045–1060

    Article  CAS  PubMed  Google Scholar 

  • Greenwood AK, Wark AR, Fernald RD, Hofmann HA (2008) Expression of arginine vasotocin in distinct preoptic regions is associated with dominant and subordinate behaviour in an African cichlid fish. Proc Biol Sci 275:2393–2402

    PubMed  PubMed Central  Google Scholar 

  • Hamasaki S, Mukuda T, Kaidoh T, Yoshida M, Uematsu K (2016) Impact of dehydration on the forebrain preoptic recess walls in the mudskipper, Periophthalmus modestus: a possible locus for the center of thirst. J Comp Physiol B 186:891–905

    Article  CAS  PubMed  Google Scholar 

  • Hodes A, Lichtstein D (2014) Natriuretic hormones in brain function. Front Endocrinol 5:201

    Article  Google Scholar 

  • Holmgvist BI, Ekström P (1995) Hypophysiotrophic systems in the brain of the Atlantic salmon. Neuronal innervation of the pituitary and the origin of pituitary dopamine and nonapeptides identified by means of combined carbocyanine tract tracing and immunocytochemistry. J Chem Neuroanat 8:125–145

    Article  Google Scholar 

  • Huang FL, Skala KD, Samson WK (1992) C-type natriuretic Peptide stimulates prolactin secretion by a hypothalamic site of action. J Neuroendocrinol 4:593–597

    Article  CAS  PubMed  Google Scholar 

  • Inoue K, Naruse K, Yamagami S, Mitani H, Suzuki N, Takei Y (2003a) Four functionally distinct C-type natriuretic peptides found in fish reveal evolutionary history of the natriuretic peptide system. Proc Natl Acad Sci USA 100:10079–10084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inoue K, Russell MJ, Olson KR, Takei Y (2003b) C-type natriuretic peptide of rainbow trout (Oncorhynchus mykiss): primary structure and vasorelaxant activities. Gen Comp Endocrinol 130:185–192

    Article  CAS  PubMed  Google Scholar 

  • Inoue K, Sakamoto T, Yuge S, Iwatani H, Yamagami S, Tsutsumi M, Hori H, Cerra MC, Tota B, Suzuki N, Okamoto N, Takei Y (2005) Structural and functional evolution of three cardiac natriuretic peptides. Mol Biol Evol 22:2428–2434

    Article  CAS  PubMed  Google Scholar 

  • Inoue K, Takei Y (2006) Molecular evolution of the natriuretic peptide system as revealed by comparative genomics. Comp Biochem Physiol D 1:69–76

    Google Scholar 

  • Katayama Y, Sakamoto T, Saito K, Tsuchimochi H, Kaiya H, Watanabe T, Pearson JT, Takei Y (2018) Drinking by amphibious fish: convergent evolution of thirst mechanisms during vertebrate terrestrialization. Sci Rep 8:625

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Katayama Y, Wong MK-S, Kusakabe M, Fujio M, Takahashi N, Yaguchi M, Tsukada T (2020) Seawater transfer down-regulates C-type natriuretic peptide-3 expression in prolactin-producing cells of Japanese eel: Negative correlation with plasma chloride concentration. Mol Cell Endocrinol 507:110780

  • Kikuchi Y, Hosono K, Yamashita J, Kawabata Y, Okubo K (2015) Glucocorticoid receptor exhibits sexually dimorphic expression in the medaka brain. Gen Comp Endocrinol 223:47–53

    Article  CAS  PubMed  Google Scholar 

  • Kozaka T, Fujii Y, Ando M (2003) Central effects of various ligands on drinking behavior in eels acclimated to seawater. J Exp Biol 206:687–692

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langub MC Jr, Watson RE Jr, Herman JP (1995) Distribution of natriuretic peptide precursor mRNAs in the rat brain. J Comp Neurol 356:183–199

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Juntti SA, Hu CK, Huguenard JR, Fernald RD (2015) Electrical synapses connect a network of gonadotropin releasing hormone neurons in a cichlid fish. Proc Natl Acad Sci USA 112:3805–3810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Massari VJ, Johnson TA, Gatti PJ (1995) Cardiotopic organization of the nucleus ambiguus? An anatomical and physiological analysis of neurons regulating atrioventricular conduction. Brain Res 679:227–240

    Article  CAS  PubMed  Google Scholar 

  • Moyes AJ, Hobbs AJ (2019) C-type natriuretic peptide: a multifaceted paracrine regulator in the heart and vasculature. Int J Mol Sci 20:2281

    Article  CAS  PubMed Central  Google Scholar 

  • Mueller T, Vernier P, Wullimann MF (2004) The adult central nervous cholinergic system of a neurogenetic model animal, the zebrafish Danio rerio. Brain Res 1011:156–169

    Article  CAS  PubMed  Google Scholar 

  • Mukuda T, Ando M (2003a) Brain atlas of the Japanese eel: comparison to other fishes. Mem Fac Integrated Arts and Sci, Hiroshima Univ, Ser IV 29:1–25

    Google Scholar 

  • Mukuda T, Ando M (2003b) Medullary motor neurons associated with drinking behaviour of Japanese eels. J Fish Biol 62:1–12

    Article  Google Scholar 

  • Mukuda T, Ando M (2010) Central regulation of the pharyngeal and upper esophageal reflexes during swallowing in the Japanese eel. J Comp Physiol A 196:111–122

    Article  Google Scholar 

  • Nobata S, Ventura A, Kaiya H, Takei Y (2010) Diversified cardiovascular actions of six homologous natriuretic peptides (ANP, BNP, VNP, CNP1, CNP3, and CNP4) in conscious eels. Am J Physiol Regul Integr Comp Physiol 298:R1549-1559

    Article  CAS  PubMed  Google Scholar 

  • Porzionato A, Macchi V, Rucinski M, Malendowicz LK, De Caro R (2010) Natriuretic peptides in the regulation of the hypothalamic–pituitary–adrenal axis. Elsevier. Int Rev Cell Mol Biol 280:1–39

  • Potter LR, Abbey-Hosch S, Dickey DM (2006) Natriuretic peptides, their receptors, and cyclic guanosine monophosphate-dependent signaling functions. Endocr Rev 27:47–72

    Article  CAS  PubMed  Google Scholar 

  • Sabbatini ME, Rodriguez MR, Dabas P, Vatta MS, Bianciotti LG (2007) C-type natriuretic peptide stimulates pancreatic exocrine secretion in the rat: role of vagal afferent and efferent pathways. Eur J Pharmacol 577:192–202

    Article  CAS  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Sakamoto T, Nishiyama Y, Ikeda A, Takahashi H, Hyodo S, Kagawa N, Sakamoto H (2015) Neurohypophysial Hormones Regulate Amphibious Behaviour in the Mudskipper Goby. PloS One 10:e0134605

  • Takei Y (1999) Structural and functional evolution of the natriuretic peptide system in vertebrates. Int Rev Cytol 194:1–66

    Article  CAS  Google Scholar 

  • Takei Y, Inoue K, Trajanovska S, Donald JA (2011) B-type natriuretic peptide (BNP), not ANP, is the principal cardiac natriuretic peptide in vertebrates as revealed by comparative studies. Gen Comp Endocrinol 171:258–266

    Article  CAS  PubMed  Google Scholar 

  • Toop T, Donald JA (2004) Comparative aspects of natriuretic peptide physiology in non-mammalian vertebrates: a review. J Comp Physiol B 174:189–204

    Article  CAS  PubMed  Google Scholar 

  • Tracy MR, Hedges SB (2000) Evolutionary history of the enolase gene family. Gene 259:129–138

    Article  CAS  PubMed  Google Scholar 

  • Trajanovska S, Inoue K, Takei Y, Donald JA (2007) Genomic analyses and cloning of novel chicken natriuretic peptide genes reveal new insights into natriuretic peptide evolution. Peptides 28:2155–2163

    Article  CAS  PubMed  Google Scholar 

  • Tsuneoka Y, Funato H (2020) Modified in situ hybridization chain reaction using short hairpin DNAs. Front Mol Neurosci 13:75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Westerfield M (2000) The zebrafish book: a guide for the laboratory use of zebrafish. https://zfin.org/zf_info/zfbook/zfbk.html

  • Wiedemann K, Jahn H, Kellner M (2000) Effects of natriuretic peptides upon hypothalamo-pituitary-adrenocortical system activity and anxiety behaviour. Exp Clin Endocrinol 108:5–13

    CAS  Google Scholar 

  • Wullimann M, Rupp B, Reichert H (1996) The brain of the zebrafish Danio rerio: a neuroanatomical atlas. Neuroanatomy of the Zebrafish brain. Springer, pp 19–87

  • Yoshida M, Yokoo H, Mizoguchi K, Kawahara H, Tsuda A, Nishikawa T, Tanaka M (1992) Eating and drinking cause increased dopamine release in the nucleus accumbens and ventral tegmental area in the rat: measurement by in vivo microdialysis. Neurosci Lett 139:73–76

    Article  CAS  PubMed  Google Scholar 

  • Zuckerkandl E, Pauling L (1965) Evolutionary divergence and convergence in proteins. Evolving genes and proteins. Elsevier, pp 97–166

Download references

Acknowledgements

We thank Dr. Andre P. Seale of the University of Hawaii for critical reading of the manuscript and Dr. Wataru Iwasaki of Atmosphere and Ocean Research Institute, the University of Tokyo, for providing an eel genome database. We also thank Ms. Masako Ino of Nikon Solutions for the technical assistance of confocal laser microscopy.

Funding

This work was supported in part by JSPS KAKENHI Grants (nos. 20K06242 to TT and 20K15604 to YK), the Scientific research funds to YK from Okayama University.

Author information

Authors and Affiliations

Authors

Contributions

YK wrote the manuscript and analyzed data; AS performed in situ hybridization for cnp4s and immunohistochemistry; MO performed synteny and phylogenetic analyses; YT established and designed in situ hybridization chain reaction in eel brain; TM analyzed eel brain anatomy; MA established signal enhancement method of in situ hybridization for cnp4s; MK sampled and processed eel tissues for reverse-transcription PCR; TY performed in silico analyses; TT coordinated the project. All authors read, edited, and approved the final manuscript.

Corresponding author

Correspondence to Takehiro Tsukada.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

441_2022_3596_MOESM1_ESM.eps

Supplementary Figure 1. Principle of in situ hybridization chain reaction. A Short hairpin DNA (H1, H2) and initiator. Hairpin DNA is composed of toehold, stem, and loop domains, and is conjugated to a fluorophore. Complementary sequences of a, b, and c are a’, b’ and c’, respectively. Initiator first hybridizes with H1 to open the hairpin structure, which promotes hybridization to H2, followed by continuous H1-H2 hybridization. B Design of split-initiator probes. Each probe has 25 nucleotide (nt) complementary to the target mRNA, 2 nt spacer sequence, and 9 nt partial initiator sequence of b’. Only when a set of split-initiator probes hybridizes to the target mRNA, H1 recognizes the initiator sequence and chain reaction starts. C A schematic diagram of in situ HCR. In this experiments, 4 and 2 sets of split-initiator probes against eCNP4a and eCNP4b mRNAs were designed, respectively. (EPS 1786 KB)

441_2022_3596_MOESM2_ESM.eps

Supplementary Figure 2. Nucleotide and amino acid sequences of eel Cnp4b. A Nucleotide sequence of eel cnp4b mRNA. Capital letters indicate coding sequence. B Comparison of amino acid sequence among eel Cnps. Signal peptide, furin cleavage site (RXXR) and endopeptidase cleavage site (KK: dibasic amino acid), and disulfide bond are shown. Gray fillings indicate mature Cnp sequences. Eel cnp2 transcripts has not been found. (EPS 2165 KB)

441_2022_3596_MOESM3_ESM.eps

Supplementary Figure 3. Nucleotide and amino acid sequences of zebrafish Cnp4-like. A Nucleotide sequence of zebrafish cnp4-like mRNA. Capital letters indicate coding sequence. B Amino acid sequence of zebrafish Cnp4s. Signal peptide, furin cleavage site (RXXR) and endopeptidase cleavage site (KK: dibasic amino acid), and disulfide bond are shown. Gray fillings indicate mature Cnp sequences (EPS 1873 KB)

441_2022_3596_MOESM4_ESM.eps

Supplementary Figure 4. Original agarose gel image of Fig. 3A. A cnp4a, B cnp4b, and C Elongation Factor 1 α (ef1a) (EPS 4739 KB)

441_2022_3596_MOESM5_ESM.eps

Supplementary Figure 5. Brain atlas of the Japanese eel (Sagittal view). A Ob: olfactory bulb, Tel: telencephalon, TeO: optic tectum, Ce: cerebellum, MO: medulla oblongata, AP: area postrema, and P: pituitary. B in situ hybridization using eel cnp4a/4b sense probe in the eel brain as control. P: pituitary, II: optic nerve. Scale bars: 1 mm. C in situ hybridization using cnp4b sense probe in the eel peripheral tissues as control. Scale bars: 50 µm (EPS 124781 KB)

441_2022_3596_MOESM6_ESM.eps

Supplementary Figure 6. Characterization of medaka cnp4-expressing cells in medaka brain. In situ hybridization for medaka cnp4. Medaka cnp4-expressing neurons were localized in the preoptic area a and the medulla oblongata b. Magnified views of red box a, b are shown in the bottom panels. Scale bars: 1mm (upper panels), 100 µm (bottom panels)(EPS 47204 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Katayama, Y., Saito, A., Ogoshi, M. et al. Gene duplication of C-type natriuretic peptide-4 (CNP4) in teleost lineage elicits subfunctionalization of ancestral CNP. Cell Tissue Res 388, 225–238 (2022). https://doi.org/10.1007/s00441-022-03596-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-022-03596-y

Keywords

Navigation