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Abstract
Neurotrophin signaling via receptor tyrosine kinases is essential for the development and function of the nervous system in
vertebrates. TrkB activation and signaling show substantial differences to other receptor tyrosine kinases of the Trk family that
mediate the responses to nerve growth factor and neurotrophin-3. Growing evidence suggests that TrkB cell surface expression is
highly regulated and determines the sensitivity of neurons to brain-derived neurotrophic factor (BDNF). This translocation of
TrkB depends on co-factors and modulators of cAMP levels, N-glycosylation, and receptor transactivation. This process can
occur in very short time periods and the resulting rapid modulation of target cell sensitivity to BDNF could represent a
mechanism for fine-tuning of synaptic plasticity and communication in complex neuronal networks. This review focuses on
those modulatory mechanisms in neurons that regulate responsiveness to BDNF via control of TrkB surface expression.
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Introduction

Nerve growth factor (NGF) was the first member of the
neurotrophin family that was discovered as a survival factor
for distinct populations of neurons during a critical period of
development. When brain-derived neurotrophic factor
(BDNF) and the other members of the neurotrophin family
were identified, it became apparent that the responsiveness
of BDNF-sensitive neurons was also qualitatively different
from NGF-dependent neurons. These differences can be ex-
plained by differential target cell responsiveness to BDNF
rather than differential expression of the corresponding TrkB
receptor. In the present article, we aim to provide an overview
about some historic aspects that first pointed to differences
between NGF and BDNF, and recent findings on molecular
mechanisms how target cell sensitivity to BDNF signaling is
regulated by TrkB cell surface expression. These mechanisms
could explain differential responsiveness of developing neu-
rons to NGF and BDNF.

Work by Viktor Hamburger and others has shown that
many types of neurons are generated in excess in the embry-
onic nervous system of vertebrates and that only subpopula-
tions that are supported by neurotrophic factors are maintained
(reviewed by Purves and Lichtman 1985a). In the peripheral
nervous system, these neurotrophic factors have been pro-
posed to be derived from innervated target areas (reviewed
by Purves and Lichtman 1985a), based on observations such
that limb bud elimination during this critical period enhances
cell death (Hamburger 1934). At the same time, augmentation
of target tissue by transplantation of a supernumerary limb
reduces neuronal loss. This was the basis for the discovery
of nerve growth factor (NGF), the first prototypical neuro-
trophic factor (reviewed by Lewin and Barde 1996, Purves
and Lichtman 1985b). Neurotrophins mediate survival effects
via specific transmembrane tyrosine kinase receptors of the
Trk family, TrkA, TrkB, and TrkC (reviewed by Chao 2003;
Huang and Reichardt 2003; Kaplan and Miller 2000). NGF is
required for the survival of developing sensory and sympa-
thetic neurons (Thoenen et al. 1981) but not spinal
motoneurons.

Whereas the physiological actions of NGF on developing
sympathetic and sensory neurons were confirmed by analyses
of in vitro models and knockout mice (Crowley et al. 1994;
Nikoletopoulou et al. 2010; Ruberti et al. 2000), the
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physiological action of BDNF on developing spinal motoneu-
rons remained obscure and partially also controversial. While
isolated early sensory ganglionic neurons from E8 chick em-
bryos survive in the presence of NGF (Davies and Lindsay
1985; Edgar and Thoenen 1982; Thoenen et al. 1981), E6
chick spinal motoneurons can be maintained in cell culture
only at low efficacy with BDNF (Arakawa et al. 1990). As a
positive control, other neurotrophic factors such as CNTF ap-
peared much more potent (Arakawa et al. 1990; Berkemeier
et al. 1991). However, responsiveness to BDNF developed in
cultures of embryonic chick motoneurons when these cells
were primed with muscle extracts (Becker et al. 1998).
Subsequent studies showed that it was not the absence of
TrkB that was responsible for the low survival response of
early embryonic chick motoneurons to BDNF. TrkB was
abundantly expressed in early chick motoneurons and it ap-
peared activated even in the absence of BDNF when these
cells were treated with glial-derived neurotrophic factor
(GDNF), ciliary neurotrophic factor (CNTF), or fibroblast
growth factor (FGF) (Becker et al. 1998). This indicates that
muscle extracts contain factors similar to CNTF or FGF that
potentiate the response of developing motoneurons to BDNF.
This could be interpreted as a differentiation effect that acti-
vates responsiveness to BDNF. Alternatively, and not exclu-
sively, other growth factors also could transactivate TrkB
(Castellino and Chao 1996; Lee and Chao 2001), and the
survival-promoting effects of activated G protein–coupled re-
ceptors such as adenosine type 2A receptors (A2A-R) depend
on the presence of TrkB (Wiese et al. 2007). On the other
hand, isolated rat or mouse motoneurons from E12 to E15
embryos survive with high efficacy in the presence of
BDNF when cultured with enriched cell culture media
(Hughes et al. 1993). Moreover, postnatal motoneurons can
be protected from axotomy-induced cell death by application
of BDNF (Sendtner et al. 1992; Yan et al. 1992), and this
effect was also observed in embryonic chick after limb bud
removal (Oppenheim et al. 1992). These findings suggested
that the TrkB-mediated response of developing motoneurons
to BDNF undergoes alterations during development and
might differ from the prototypic response of embryonic sym-
pathetic or sensory neurons to NGF. This hypothesis is also
supported by findings from NGF (Crowley et al. 1994;
Ruberti et al. 2000) and BDNF (Liu et al. 1995) gene knock-
out mice. Whereas NGF knockout mice show massive devel-
opmental cell death of sympathetic or sensory neurons
(Crowley et al. 1994; Ruberti et al. 2000), no enhanced loss
of motoneurons could be observed in BDNF and NT-4 knock-
out mice (Liu et al. 1995), indicating that the dependency and
response of developing sensory and motoneurons to
neurotrophins differ. A difference in response of TrkA- and
TrkB-expressing neurons became also apparent from experi-
ments with stem cell–derived neurons showing that TrkB,
unlike TrkA and TrkC, does not induce cell death in absence

of its ligand (Nikoletopoulou et al. 2010). This implies that
BDNF responsiveness, in contrast to the response to NGF or
NT-3, is a highly regulated process that depends on co-factors
and modulators. This review focuses on those modulatory
mechanisms in neurons that regulate responsiveness to
BDNF.

Regulation of TrkB cell surface expression

First insights into the mechanisms that modulate responsive-
ness to BDNF in developing neurons came from analyses with
cultured rat retinal ganglion cells (RGCs) and spinal motoneu-
rons (Meyer-Franke et al. 1995; Meyer-Franke et al. 1998).
These cultured neurons show only low responsiveness to
BDNF despite robust TrkB expression levels. This low re-
sponsiveness was found to be due to low levels of TrkB at
the cell surface when these neurons were cultured under
serum-free conditions (Meyer-Franke et al. 1998). cAMP
was identified in these studies as a key modulator of TrkB
cell surface expression. This second messenger strongly in-
duces responsiveness to BDNF in these neurons (Meyer-
Franke et al. 1998). Previous studies had shown that cAMP
also increases the responsiveness to other neurotrophins such
as NGF in adrenal medullary derived neuronal cell lines
(Birren et al. 1992). However, the effect of cAMP in these
sympathoadrenal precursor cells was due to a transcriptional
upregulation of TrkA expression and thus differed from the
upregulation of cell surface translocation that had been ob-
served for other transmembrane proteins such as ion pumps
or transporters in non-neuronal cells (Barres et al. 1989;
Lewis and de Moura 1984; Li et al. 1982; Murer and Biber
1996; Schwartz and Al-Awqati 1986; Wade 1986; Yao et al.
1996). In contrast, NT-3 mediated survival and TrkC activa-
tion in hippocampal neurons appeared independent of cAMP
treatment (Ji et al. 2005). Experiments using Xenopus nerve-
muscle co-cultures and rat hippocampal slice cultures showed
that BDNF responsiveness is potentiated by cAMP analogs,
while inhibition of cAMP signaling reduces TrkB phosphory-
lation, and cAMP alone cannot mimic the neurotrophin effects
on synaptic potentiation (Boulanger and Poo 1999; Tartaglia
et al. 2001). Depolarization by high K+ levels or electrical
stimulation has a similar effect as cAMP treatment. It activates
Ca2+-dependent adenylyl cyclases via Ca2+ influx through ion
channels and NMDA receptors (Du et al. 2000; Xia et al.
1991). This also results in elevated cAMP levels and increased
BDNF responsiveness (Meyer-Franke et al. 1995; Meyer-
Franke et al. 1998). Two characteristic parameters indicate that
this cAMP-induced BDNF responsiveness is due to a rapid
TrkB surface transport from pre-existing intracellular pools
rather than de novo transcription or translation of the mRNA
for this receptor. First, BDNF responsiveness occurs in a rela-
tively short time course of less than 5 min (Hanson Jr. et al.
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1998). Second, inhibition of translation with cycloheximide is
unable to block cAMP-mediated BDNF responsiveness
(Cheng et al. 2011; Du et al. 2000; Meyer-Franke et al. 1998;
Zhao et al. 2009). Furthermore, pretreatment with nocodazole
or cytochalasin D prevents TrkB translocation to the cell sur-
face, thus providing proof that cAMP-induced TrkB transloca-
tion depends on intact microtubule and actin microfilament
architecture (Zhao et al. 2009).

The cAMP-mediated induction of BDNF responsiveness
was observed also in other cell types such as cortical neurons
(McAllister et al. 1996). cAMP itself acts in a pathway with
protein kinase A (PKA) and phosphoinositide 3-kinase
(PI3K), and inhibition of either kinase drastically reduces the
viability of cultured retinal ganglion cells and spinal motoneu-
rons (Hanson Jr. et al. 1998; Meyer-Franke et al. 1995;
Meyer-Franke et al. 1998). This treatment also reduces TrkB
surface expression in hippocampal neurons (Cheng et al.
2011). Similarly, PI3K activity has been shown before to me-
diate the effects of insulin on cell surface expression of tran-
sient receptor potential cation channel (TRPV2) in Min6,
CHO, and dispersed pancreatic beta-cells (Hisanaga et al.
2009). This observation revealed parallels to cAMP-induced
TrkB surface translocation since it requires depolarization via
Ca2+ entrance and an intact cytoskeleton, especially intact
actin filaments (Hisanaga et al. 2009). In conclusion, cAMP
was proposed to have a “gating” function that elevates trans-
location of TrkB via PKA and PI3K activity from intracellular
stores to the cell membrane (Cheng et al. 2011; Du et al. 2000;
Ji et al. 2005; Meyer-Franke et al. 1998; Zhang et al. 2000;
Zhao et al. 2009).

Dynamics of TrkB cell surface translocation

TrkB cell surface translocation is accompanied by a signifi-
cant enrichment of TrkB in postsynaptic spines, thus leading
to a rapid enhancement in sensitivity for incoming BDNF
signaling (Ji et al. 2005; Sui et al. 2015; Zhao et al. 2009).
This allows BDNF-mediated short-term changes in synaptic
transmission which then are further strengthened by dendritic
growth and structural refinement of synapses in an activity-
dependent manner (Lohof et al. 1993; Lu 2004; McAllister
et al. 1999; Wang et al. 1995). In fact, BDNF stimulation
increases synapse numbers in hippocampal and cerebellar
neurons (Shimada et al. 1998; Tyler and Pozzo-Miller 2001)
and also modulates dendritic complexity especially in the stri-
atum (Rauskolb et al. 2010) and hippocampus (Tyler and
Pozzo-Miller 2001). Association of TrkB with postsynaptic
spines was further confirmed by co-localization and co-
immunoprecipitation with PSD-95 which modulates guidance
and anchoring of transmembrane receptors and ion channels
into dendritic spines (Ji et al. 2005; Scannevin and Huganir
2000; Sheng 2001; Zhao et al. 2009). Interestingly, the

dynamics of cAMP-mediated TrkB translocation and locali-
zation in dendritic spines after chemically induced LTP
(cLTP) (Zhao et al. 2009) was described to parallel AMPA
receptor surface translocation under similar conditions
(Yudowski et al. 2007).

BDNF secretion and local recruitment of TrkB are also
crucial elements for axon differentiation (Cabelli et al.
1995). BDNF itself acts in a self-amplifying manner by pro-
moting TrkB surface expression through elevation of cAMP
and thereby drives differentiation of neurites towards axonal
fate (Cheng et al. 2011; Shelly et al. 2007; Shelly et al. 2011).
Thus, the differentiation of axons and dendrites seems to be
controlled by redistribution of cAMP-/PKA-sensitive auto-
crine BDNF secretion and TrkB surface expression towards
the axon (Cheng et al. 2011). Local changes in cAMP levels
and PKA activity can induce axon formation in rat hippocam-
pal neurons by modulating LKB1 and SAD kinases (Barnes
et al. 2007; Kishi et al. 2005; Shelly et al. 2007). Such local
cAMP changes could also fine-tune individual axonal termi-
nals, as shown in Drosophila motoneurons (Maiellaro et al.
2016). This could be important for neurons with high numbers
of axonal terminals, such as spinal motoneurons because it
allows autonomic regulation of BDNF responsiveness at each
individual axon terminal within the same neuron. Similarly,
BDNF responsiveness could be regulated by TrkB surface
translocation into individual dendritic spines, a process that
was observed in cultured hippocampal neurons (Ji et al. 2005).

In summary, these studies provide evidence that cAMP-
mediated TrkB surface translocation in dendritic spines but
also axon terminals involves several critical steps (Fig. 1).
First, neuronal activity triggers Ca2+ entry via AMPA and
NMDA receptors (a). Ca2+ stimulates adenylyl cyclase activ-
ity, thus causing an elevation of cAMP levels which trigger
PKA and PI3K activity (b). This leads to the mobilization of a
rapidly available intracellular reserve pool of TrkB (c). TrkB
containing vesicles are transported in a microtubule-
dependent manner to distinct sites at the cell surface where
they integrate, such as dendritic spines. In the dendritic target
area, TrkB is transported in an actin-dependent manner via
Myosin Va and associates with PSD-95 for guided integration
into the PSD (d). TrkB is then able to bind BDNF and gets
activated via autophosphorylation at C-terminal tyrosine resi-
dues (e).

The role of G protein–coupled receptors
in TrkB signaling

Elevated levels of cAMP play a central role in the transloca-
tion of TrkB to distinct cell surface regions within neurons.
Thus, it is not surprising that G protein–coupled receptors
(GPCRs)were proposed as key activators and potential central
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physiological regulators for the effects observed in cultured
neurons after cAMP treatment (Ji et al. 2005; Luttrell 2008).

G protein–coupled receptors (GPCRs) constitute the largest
and most diverse family of transmembrane receptors (for re-
view see (Huang and Thathiah 2015; Luttrell 2008)).
Intracellular signal transduction mediates cell proliferation,
growth, differentiation, and neurotransmission including syn-
aptic plasticity through modulation of presynaptic and post-
synaptic architecture and transmitter release (Gainetdinov
et al. 2004; Huang and Thathiah 2015; Luttrell 2008).
Ligand binding to GPCRs causes dissociation of Gα subfam-
ily members of G proteins which modulate the activity of
effector enzymes like adenylyl cyclases (AC), phospholipase
C (PLC), or L- and N-type Ca2+ channels (Luttrell 2008).
GPCRs can change the concentration of second messenger
molecules like cAMP via this Gα signaling pathway and thus
modulate PKA activity (Luttrell 2008). In parallel, released

Gβγ subunits modulate PKC activity and Ca2+ release from
the endoplasmatic reticulum (ER) via stimulation of phospho-
lipase C-beta (PLC-β) activity (Clapham and Neer 1993;
Morris and Scarlata 1997; Yan et al. 1999). Due to the ability
to change cAMP and Ca2+ levels, GPCRs potentially modu-
late TrkB surface translocation. Early evidence supporting this
hypothesis has been provided by studies using cultured striatal
medium spiny neurons (MSNs) (Du et al. 1995). This work
showed that dopamine addition potentiated the effects of
BDNF on the differentiation of tyrosine hydroxylase–
positive striatal neurons. This finding was supported by sub-
sequent studies both in vivo and in vitro (Li et al. 2012;
Plotkin et al. 2014). Taken together, these studies suggested
that the sensitivity of striatal neurons to BDNF depends on a
“co-factor”. In particular, Gαs–coupled GPCRs which elevate
cAMP levels were found to promote corticostriatal LTP, a
mechanism which most likely also involves BDNF/TrkB

Fig. 1 Schematic representation of cAMP-mediated TrkB surface trans-
location via PKA/PI3K. Neuronal activity triggers Ca2+ entry via AMPA
and NMDA receptors (a). Ca2+ stimulates adenylyl cyclase activity
followed by elevation of cAMP levels which trigger PKA and PI3K
activity (b). Rapidly available intracellular reserve pools of TrkB are
mobilized in a microtubule-dependent manner (c). TrkB containing

vesicles are transported to distinct target sites at the cell surface, like
dendritic spines where they integrate. In the dendritic target area, TrkB
is transported viaMyosin Va in an actin-dependent manner and associates
with PSD-95 which promotes guided transport and integration into the
PSD (d). At the cell surface, TrkB is sensitive for BDNF binding which
activates TrkB via phosphorylation at C-terminal tyrosine residues (e)
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signaling (Plotkin et al. 2014; Shen et al. 2008, 2016; Zhai
et al. 2019). Indeed, LTP of corticostriatal synapses was found
to depend on coordinated activation of NMDARs, TrkB, and
Gαs–coupled GPCRs like DRD1 or adenosine type 2A recep-
tors (A2A-R) (Plotkin et al. 2014; Shen et al. 2008, 2016; Zhai
et al. 2019). However, the precise role of TrkB in this context
remained undefined. Stimulation of Gαs–coupled DRD1 can
elevate TrkB surface expression in mixed cultures of striatal
neurons (Iwakura et al. 2008) after periods of several hours.
However, it remained unclear whether the increased cell sur-
face expression was due to enhanced expression on the tran-
scriptional and/or translational level, or enhanced cell surface
translocation from pre-existing intracellular pools. It is tempt-
ing to speculate that the effects of D1 receptors on striatal LTP
(Plotkin et al. 2014; Shen et al. 2008, 2016; Zhai et al. 2019)
and the effects of D2 receptor stimulation on striatal LTD
(Kreitzer and Malenka 2005; Shen et al. 2008, 2016; Zhai
et al. 2019) involve alterations in BDNF/TrkB signaling.
However, the mechanisms for this effect are still unresolved.
In particular, the question remains to be determined whether
alterations in transcriptional or translational control or rapid
effects on subcellular transport are responsible. The relatively
long time course of several hours observed for altered TrkB
surface expression after D1 stimulation in cultured striatal
neurons (Iwakura et al. 2008) suggests that transcriptional
and translational controls are involved. However, this stands
in contrast to the rapid effects of enhanced BDNF responsive-
ness within minutes after treatment of hippocampal neurons
with agonists for dopamine or adrenergic receptors (Ji et al.
2005). If the hypothesis that GPCR signaling acts as “co-fac-
tor” to promote BDNF sensitivity via TrkB surface transloca-
tion is correct, one would also expect that ablation of this “co-
factor” has similar consequences as ablation of BDNF or
TrkB. Dopamine depletion is known to cause massive spine
loss on striatal neurons (Day et al. 2006; Deutch 2006; Deutch
et al. 2007; Gerfen 2006; Ingham et al. 1989; Ingham et al.
1998; McNeill et al. 1988; Villalba et al. 2009; Villalba and
Smith 2010; Zaja-Milatovic et al. 2005) and altered LTP/LTD
(Plotkin et al. 2014; Shen et al. 2008, 2016; Zhai et al. 2018).
Similarly, conditional postnatal depletion of BDNF (Li et al.
2012; Rauskolb et al. 2010) or TrkB (Baydyuk et al. 2011; Li
et al. 2012) also causes decreased striatal volume, dendritic
atrophy, and spine loss in striatal MSNs, while scavenging of
striatal BDNF suppresses corticostriatal LTP (Jia et al. 2010).

The role of N-glycosylation in cargo
translocation from the ER

Apart from the ability to modulate TrkB surface translocation,
GPCRs are also known to activate Trk receptors in the ab-
sence of neurotrophins, a process called transactivation
(Iwakura et al. 2008; Lee and Chao 2001; Wiese et al.

2007). Similar transactivation effects were also observed in
early cortical neurons when these cells were treated with epi-
dermal growth factor (EGF) via activation of the EGF trans-
membrane tyrosine kinase receptor (EGFR) (Puehringer et al.
2013). TrkB plays a critical role for the migration of these
early neurons (Bartkowska et al. 2007; Medina et al. 2004)
at developmental stages when endogenous BDNF is still not
expressed (Maisonpierre et al. 1990; Puehringer et al. 2013).
This raises the question of how TrkB is activated in this de-
velopmental context. Phosphorylation of TrkB is not reduced
in E12 brain of BDNF/NT-3 double knockout mice. Instead, a
massive reduction of TrkB activation was observed in EGFR
KO brain at this stage (Puehringer et al. 2013). In the same
early cortical neurons, TrkB transactivation by EGFR signal-
ing was also found to drive TrkB translocation from intracel-
lular stores to the cell surface (Puehringer et al. 2013). This
endogenous TrkB appeared to be recruited from the
endoplasmatic reticulum to the cell surface within a few sec-
onds (Fig. 2). Inhibition of N-glycosylation disturbed this pro-
cess by abolishing retention of TrkB in the ER. This indicates
that TrkB N-glycosylation plays a central role in the rapid
recruitment and translocation of this receptor from the ER to
the cell surface.

Glycan structures on newly synthesized glycoproteins are
crucial for protein secretion. N-glycosylation is the most fre-
quent form of posttranslational modification in the ER
(Moremen et al. 2012). During this process, glycans are trans-
ferred from a lipid-linked oligosaccharide to the nascent poly-
peptide chain during translation (Moremen et al. 2012). After
this initial transfer, trimming of two glucose residues and se-
quential addition of diverse monosaccharides like glucose
(Glc), N-acetylgalactosamine (GalNAc), or mannose (Man)
modifies the core oligosaccharide (Moremen et al. 2012).
Upon proper folding, the protein normally exits the ER and
traverses the Golgi apparatus. Within the Golgi apparatus, the
attached glycans are further processed by trimming and exten-
sion, creating a huge diversity of potential N-glycans
(Moremen et al. 2012). While the ER is present in all com-
partments of the neuron, including dendrites and axons, the
Golgi apparatus is usually confined to the cell body (Yadav
and Linstedt 2011). This raises the question of how fast trans-
location of TrkB from Golgi could occur in dendrites and
axonal regions that are far distant from the cell body. Golgi
outputs have been identified in dendrites of rat hippocampal
(Hanus and Ehlers 2008; Horton and Ehlers 2003;
Mikhaylova et al. 2016; Torre and Steward 1996) and spinal
motoneurons (Gardiol et al. 1999), and these sites seem to be
in close association with ER structures for local synthesis of
transmembrane proteins, at least in dendritic microdomains.
Such regions could also contain TrkB, based on its association
with the ER-Golgi intermediate compartment (ERGIC) and
the cis-Golgi (Schecterson et al. 2010). Nevertheless, translo-
cation of TrkB via ERGIC and Golgi seems unlikely to be a
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fast process that occurs within seconds. This raises questions
on the mechanisms of how TrkB could be recruited within
seconds from intracellular stores to specific domains on the
cell surface.

An unconventional secretory pathway from the ER to the
cell surface that is independent of the Golgi apparatus has
recently been described (Hanus et al. 2016). In dendrites, hun-
dreds of “immature” core-glycosylated proteins reach the cell
surface without being further modified in the Golgi. These
proteins mainly function in the context of neuronal develop-
ment and synaptic plasticity (Hanus et al. 2016). This suggests
that dendritic and probably also axonal proteins can be direct-
ly translocated from the ER to the cell surface. Notably, TrkB
has also been identified among these “immature” core-
glycosylated proteins (Hanus et al. 2016). The Trk receptor
family contains nine sites for potential N-glycosylation of
which four are highly conserved (Watson et al. 1999). This
is in line with findings that the N-glycosylation of Trk recep-
tors contributes to cell surface translocation in early develop-
ing cortical neurons (Puehringer et al. 2013). In these cells,
TrkB is densely expressed but mostly localized in the ER so
that these early cortical neurons lack sufficient TrkB cell sur-
face expression to respond to BDNF stimulation. The cell
surface translocation is initiated by Src and Fyn-induced phos-
phorylation of C-terminal Shc and PLCγ sites of TrkB. Thus,
transactivation via Src kinases appears as an important event
during early postnatal development. A similar observation
was made in hippocampal neurons in which TrkB phosphor-
ylation of Ser478 in the juxtamembrane cytoplasmatic region
by cLTP-induced cyclin-dependent kinase 5 (Cdk5) activity
leads to rapid TrkB recruitment to the cell surface (Zhao et al.
2009). The intracellular retention of TrkB within the ER

seems to be regulated by N-glycosylation (Puehringer et al.
2013). Treatment with tunicamycin that inhibits the first step
of N-glycosylation causes enhanced cell surface translocation
of TrkB (Puehringer et al. 2013). In contrast to acting as a
retention signal for TrkB and TrkC in early cortical precur-
sors, N-glycosylation of TrkA on at least 9 glycosylation sites
has been reported as a requirement for reaching the cell sur-
face in PC-12 cells to respond to its ligand NGF (Schecterson
et al. 2010; Watson et al. 1999). Inhibition of TrkA N-
glycosylation by tunicamycin in PC12 cells led to an
unglycosylated TrkA core protein that remained intracellular
and showed ligand-independent autophosphorylation of the
Shc binding site, without being able to induce Erk1/2 down-
stream signaling (Watson et al. 1999). These data indicate that
TrkA requires N-glycosylation for cell surface translocation
(Watson et al. 1999), while TrkB does not (Puehringer et al.
2013). Similar effects of N-glycosylation were also observed
for insulin receptors that are retained intracellularly within the
ER upon glucose deprivation or tunicamycin treatment, both
of which result in a deglycosylated receptor of reduced size
(Hwang and Frost 1999; Ronnett et al. 1984). Also, the trans-
location of other transmembrane proteins from the ER to the
cell surface, such as the ß1 subunit of the Na-K-ATPase and
occludin, are regulated by mechanisms involving N-
glycosylation (Vagin et al. 2009).

Taken together, N-glycosylation appears as a modulatory
mechanism for retention or export of Trk receptors from the
ER.While TrkA and insulin receptors require N-glycosylation
for surface export, the same condition retains TrkB in the ER,
leading to the conclusion that N-glycosylation has individual
effects on distinct Trk receptors. Notably, TrkB export from
the ER after EGF-mediated transactivation is a very fast

Fig. 2 Rapid TrkB surface translocation upon EGF stimulation of cortical
precursor cells. Time course of pTrk-PLCγ activation after EGF stimu-
lation in cortical precursor cells (a–g: pTrk-PLCγ-IR; a′–g′: merged im-
ages). Immediately after the EGF pulse, after less than 2s (b, b′), the signal

for pTrk-PLCγ appears first intracellularly and subsequently at the cell
membrane after 10s (d/d–-g/g′). Bar: 3 μm. Figure reproduced with per-
mission from Puehringer et al. Nature Neurosci. 2013
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process and occurs within seconds. For this reason, it appears
unlikely that this mechanism involves processing in the
ERGIC and Golgi. This observation rather favors the idea of
a direct ER export to the cell surface (Puehringer et al. 2013).
However, transactivation of TrkB by GPCRs appears to fol-
low a slower time course and seems to involve ERGIC and
Golgi (Iwakura et al. 2008; Schecterson et al. 2010). More
work needs to be conducted in order to understand the indi-
vidual mechanisms which control Trk receptor N-
glycosylation and its role for surface expression in different
populations of neurons.

Conclusion

The development and function of neuronal networks, espe-
cially correct communication and adequate responses to in-
coming synaptic signals, crucially depend on neurotrophin
signaling. TrkB and TrkA differ in the way how they induce
cell death in the absence of corresponding ligands
(Nikoletopoulou et al. 2010), and TrkB has additional func-
tions beyond promoting survival and differentiation. It modu-
lates neuronal migration and network formation during devel-
opment (Bartkowska et al. 2007; Medina et al. 2004). TrkA
and TrkB also differ in the way how these receptors modulate
synaptic plasticity (Bibel and Barde 2000; Poo 2001).
Furthermore, the activation of TrkB and responsiveness to
BDNF shifts from ligand-independent transactivation during
early stages of development towards BDNF-induced receptor
activation at later stages.

The regulation of TrkB cell surface expression has many
advantages for the function of BDNF/TrkB signaling in the
context of synaptic plasticity. Changes in subcellular cAMP
could act in a highly local manner and thus fine-tune individ-
ual synapses (Maiellaro et al. 2016) in dendrites and axons,
without affecting others within the same neuron. This has
major consequences for shaping neuronal circuits. However,
such mechanisms require fast responses, and this can only be
achieved when TrkB can be recruited within a very short time
from intracellular stores towards synaptic sites (Ji et al. 2005;
Puehringer et al. 2013). A rapid mechanism for translocating
TrkB from intracellular to defined sites at the cell surface
could play a central role in such circuits, by integrating re-
sponses from firing neurons that release neurotransmitters
for modulating TrkB cell surface expression via correspond-
ing GPCRs and other neurons that release BDNF. The move-
ment of TrkB from the ER to synaptic sites in an N-
glycosylation-dependent manner, by circumventing the
Golgi (Hanus et al. 2016), could provide such a rapid mech-
anism that alters target cell responsiveness for BDNF within
seconds.

So far, it remains elusive whether the simultaneous activity
of different afferents is required to induce BDNF-/TrkB-

mediated LTP in such circuits. LTP then would be induced
in a spatio-temporal manner only when both afferents are ac-
tive. On the other side, such a scenario also would require a
highly precise mechanism for removal of TrkB from the cell
surface, and it is not clear whether this occurs only after
ligand-induced endocytosis or also by other mechanisms.
Alterations of such control mechanisms could cause aberrant
synaptic plasticity and network communication and thus
might be involved in numerous neuropsychiatric diseases.
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