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Abstract

L-selectin is a type I transmembrane cell adhesion molecule expressed on most circulating leukocytes, including neutrophils.
Engagement of L-selectin with endothelial-derived ligands initiates neutrophil tethering and rolling behaviour along luminal
walls of post-capillary venules, constituting the first step of the multi-step adhesion cascade. There is a large body of evidence to
suggest that signalling downstream of L-selectin can influence neutrophil behaviour: adhesion, migration and priming. This
review will cover aspects of L-selectin form and function and introduce the “triad of L-selectin regulation”, highlighting the
inextricable links between adhesion, signalling and ectodomain shedding and also highlighting the cytosolic proteins that
interconnect them. Recent advances in how L-selectin impacts priming, transendothelial migration (TEM) and cell polarity will

also be discussed.
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L-selectin expression and domain
organisation

Gene expression, domain organisation
and glycosylation

L-selectin is one of three family members: L-, E- and P-
selectin (Ley 2003). Each selectin is defined according to
the cell type in which it was first characterised (L =lym-
phocyte, E =endothelial cell, P =platelet). L-selectin is a
type I transmembrane glycoprotein composed of numer-
ous functional and regulatory domains (Ivetic 2013;
Wedepohl et al. 2012). All three selectin genes reside in
tandem on human chromosome 1, suggesting that an orig-
inal gene had undergone multiple duplication events dur-
ing evolution (Watson et al. 1990). Selectin-like genes
have been identified in lower organisms and it is not clear
if their roles are distinct from mammalian selectins. A P-
selectin-like gene has been identified in zebrafish that

< Aleksandar Ivetic
aleksandar.ivetic@kcl.ac.uk

BHEF Centre for Research Excellence, School of Cardiovascular
Medicine & Sciences, Faculty of Life Sciences & Medicine, King’s
College London, James Black Centre 125, Coldharbour Lane,
London SE5 9NU, UK

bears 37-39% identity at the amino acid level to mamma-
lian P-selectin; no other selectin members have yet been
identified in zebrafish (Sun et al. 2010). A P-selectin-like
gene, furrowed, has also been identified in Drosophila
melanogaster, which localises to epithelial junctions and
regulates planar cell polarity (Chin and Mlodzik 2013).
Mutations within furrowed leads to developmental defects
in the eye and mechanosensory bristles (Leshko-Lindsay
and Corces 1997). L-selectin is also expressed in devel-
oping trophoblasts (Feng et al. 2017), sertoli cells
(Freeman et al. 2002) and skeletal muscle stem cells
(Torrente et al. 2003). While adhesion plays a fundamen-
tal role in the function of these extra-immune events, little
has been followed up on these findings. Each selectin
possesses an N-terminal calcium-dependent (C-type) lec-
tin domain (CTLD), an epidermal growth factor (EGF)-
like domain, a varying number of short complement-like
repeat (SCR) domains, a transmembrane domain and a
short cytoplasmic tail (see Fig. 1a). The predicted molec-
ular weight of L-selectin is approximately 30 kDa but the
actual molecular weight ranges between 70 and 100 kDa
and appears to be cell type-specific. These findings sug-
gest that differential N- and O-linked glycosylation of L-
selectin could impact its form and function on different
immune cell subsets, as well as interaction with other
molecules in cis (on the same plasma membrane) and
trans (between different cells).
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Fig. 1 L-selectin form and function. a Schematic representation of L-
selectin, showing the domain organisation: CTLD calcium-type lectin
domain; EGF epidermal growth factor-like domain; SCR sequence con-
sensus repeat; cleavage domain and cytoplasmic tail. Amino acid se-
quence (356-372) is provided for human (boxed) and mouse cytoplasmic
tail. Two superimposed impressions of L-selectin are depicted in the
folded and extended forms. These drawn forms do not faithfully reflect
the crystal structure but are intended to highlight changes in conforma-
tion. The folded form is facilitated by a hydrogen bond between tyrosine
(Y) 37 and asparagine (V) 138. Although the Ca2+ binding of the CTLD
is essential for sLex interaction, it is currently not clear how HSPGs

The C-type lectin domain (CTLD) and epidermal
growth factor (EGF)-like domain

The CTLD binds to glycans that decorate proteins or lipids
and are typically presented by endothelial cells or other leu-
kocytes. The minimal structural determinant for a selectin li-
gand is composed of a branched tetrasaccharide, called sialyl
Lewis x (sLe”), containing: sialic acid, galactose, fucose and
N-acetyl glucosamine (expressed as: Siax2,3Gal31,4
(Fuca1,3)GIcNAc) (McEver et al. 1995). L-selectin can bind
to sulfated variants of sLe™ with higher affinity, the expression
of which appears to be tissue-specific. For example, high en-
dothelial cells lining venules entering peripheral lymph nodes
constitutively express sulfo-sLe* (Bistrup et al. 1999).
Intriguingly, L-selectin on human neutrophils is itself decorat-
ed with sLe* and previous studies have shown that it can act as
a ligand for E-selectin (Zollner et al. 1997). This human-
specific glycan modification suggests that mechanisms medi-
ating initial recruitment (i.e., tethering and rolling) could be
species-specific. Of note, sLe™ is predominantly N-linked to
L-selectin, whereas the archetypal selectin ligand, P-selectin
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interact with L-selectin. b A schematic depiction of the catch—slip bond
that L-selectin experiences during cell rolling. / depicts initial L-selectin
interaction at the leading edge and 9 is L-selectin released at the rear of the
cell, by virtue of the slip bond. The pseudo-coloured scalene triangle
represents the increase in tensile force (blue low tensile force; red high
tensile force) experienced by L-selectin during rolling, where a transition
is made from “catch” to “slip”. ¢ Amino acid sequences of the membrane
proximal regions of wild-type (WT) and sheddase-resistant mouse L-
selectin. Dotted line represents the boundary between the end of the
2nd SCR and the beginning of the cleavage domain

glycoprotein ligand-1 (PSGL-1), is typically O-linked
(Buffone et al. 2013; Mondal et al. 2013). Moreover, studies
using the glycomimetic Rivipansel, which selectively masks
E-selectin recognition of sLex on L-selectin, reveals an impor-
tant role for L-selectin in transitioning neutrophils from rolling
to arrest (see “L-selectin-dependent signalling: homo/
heterotypic L-selectin clustering”). This has led to a paradigm
shift in understanding how mechanosignalling is transduced
in mouse and human neutrophils during recruitment (Morikis
etal. 2017).

Just over 20 years ago, L-selectin was first shown to act as a
shear-dependent cell adhesion molecule (Finger et al. 1996).
L-selectin undergoes sub-second changes in bond lifetime
with its ligand under flow conditions, categorised into “catch”
and “slip” bonds (see Fig. 1b). Initial contact between the
CTLD and ligand exerts a low tensile strength, which starts
at the leading edge of the cell. Under optimal shear stress
conditions (0.3—1.0 dyne per cm?), the tensile force between
the CTLD and its ligand increases to unfold and expose a
greater region for ligand binding. At this point, ligand inter-
action is positioned beneath the rolling cell. The bond lifetime



Cell Tissue Res (2018) 371:437-453

439

increases under this condition and is known as the “catch”
bond. As time proceeds, the tensile force between the CTLD
and ligand increases further as the leukocyte rolls over the
initial site of contact, where the bond is now at the trailing
end of the cell. As the tensile force exceeds the limit for catch
bonds, the bond lifetime decreases and “slips™ to release the
CTLD from its ligand. Under conditions of abundant ligand
availability, a new catch bond will form at the new leading
edge to allow the process repeat, culminating in classic cell
rolling behaviour. X-ray crystal structures of the L-selectin
CTLD and EGF-like domains have recently been solved
(Mehta-D'souza et al. 2017; Wedepohl et al. 2017). An “open”
to “closed” allosteric conversion of a seven amino acid loop
(containing residues 83—89) within the CTLD, which interacts
with Ca®* and sLe*, is thought to underlie the catch bond
mechanism (Mehta-D'souza et al. 2017). Structural compari-
son with family members E- and P-selectin reveals highly
conserved features, again implying conserved mechanisms
underlying ligand binding. The CTLD and the EGF-like do-
main are connected by a flexible hinge region that contributes
to selectivity and strength of ligand binding under flow con-
ditions (Lou et al. 2006). Aside from adhesion under flow,
others have shown that L-selectin can bind to negatively
charged (heavily sulfated) glycosaminoglycans (GAGs)
(Kawashima et al. 2000; Kawashima et al. 1999;
Kawashima et al. 2003; Kitaya and Yasuo 2009). There are
several types of GAGs, which include: heparan sulfate, chon-
droitin sulfate, dermatan sulfate and keratan sulfate. While
these GAGs reside on the apical aspect of endothelial cells,
they appear to be more concentrated within the basolateral
aspect of the endothelium (Celie et al. 2009; Rzeniewicz
et al. 2015; Stoler-Barak et al. 2014). In silico studies have
identified a positively charged “patch” on the CTLD that can
bind to GAGs in a pH-dependent manner (Martinez et al.
2013), although this has not been confirmed experimentally.

The SCR domain

The SCR bears homology with complement regulatory pro-
teins, alternatively named: sushi domains, regulators of com-
plement activation or complement control proteins. Two con-
served disulfide bonds provide the secondary structure of a
single SCR domain. Each selectin family member possesses
a varying number of SCRs. Each domain acts as spacer mod-
ule between the CTLD and the plasma membrane, allowing
the selectins to stand head and shoulders above other cell
adhesion molecules, which is essential for successful tether-
ing, particularly in postcapillary venules greater than 20 pm in
diameter (Stein et al. 1999; von Andrian et al. 1995). L-
selectin only possesses two SCRs, whereas P-selectin pos-
sesses nine (Ley 2003). This disparity is likely due to the
anchorage of L-selectin to microvilli, placing the molecule

in an already advantageous subcellular location for tethering
under flow conditions.

The cleavage domain and cytoplasmic tail
of L-selectin

Both of these domains are discussed in greater detail in
“Ectodomain shedding of L-selectin” and “The cytoplasmic
tail of L-selectin: a central regulator of adhesion, signalling
and ectodomain shedding”.

Ectodomain shedding of L-selectin

Unlike its family members, L-selectin possesses a unique
membrane-proximal cleavage site positioned nine amino
acids up from the plasma membrane (Kahn et al. 1994,
Migaki et al. 1995) (see Fig. 1a, ¢). Ectodomain shedding of
L-selectin from neutrophils is triggered by numerous extracel-
lular cues, such as high-density ligand-induced clustering of
L-selectin (Liu and Kiick 2011), CD18 integrin clustering
(Walzog et al. 1994), exposure to oxidised LDL (Lehr et al.
1995), osmotic stress (Rizoli et al. 1999) and numerous pro-
inflammatory stimuli (Haribabu et al. 1997; Jutila et al. 1989;
Kishimoto et al. 1989; Smalley and Ley 2005). Ultimately,
ectodomain shedding serves to rapidly shut down L-selectin-
dependent adhesion and signalling. L-selectin is turned over at
the plasma membrane at steady state in leukocytes, including
neutrophils (Gomez-Gaviro et al. 2000; Zhao et al. 2001).
Significant decreases in the surface expression of L-selectin
has been observed in ageing neutrophils, which inversely cor-
relates with increased CXCR4 expression, a bone marrow-
homing receptor that is required for neutrophil clearance by
bone marrow-resident macrophages (Casanova-Acebes et al.
2013; Zhang et al. 2015).

Inducible ectodomain shedding of L-selectin

Neutrophil activation with pro-inflammatory stimuli such as
formyl peptides (from Gram-negative bacteria or host cell-
derived mitochondria), TNF or Toll-like receptor agonists
leads to robust and rapid shedding of L-selectin within mi-
nutes (Hazeldine et al. 2015; Killock and Ivetic 2010).
Indeed, loss of L-selectin expression in neutrophils is used
as the gold standard to assess neutrophil activation in vivo
and in vitro. Reduced L-selectin expression is inversely cor-
related with increased Mac-1 (aMf32, or CD11b/CD18)
integrin expression (Kishimoto et al. 1989). Mac-1 is typically
associated with numerous neutrophil effector functions, such
as intraluminal crawling, TEM (Phillipson et al. 2006;
Sumagin et al. 2010), phagocytosis (Thompson et al. 1984)
and chemotaxis (Heit et al. 2005). L-selectin shedding leads to
the release of a soluble bioactive ectodomain, which can bind
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ligands expressed in the vasculature (Schleiffenbaum et al.
1992). In this context, soluble (s)L-selectin does not conform
to the catch—slip bond paradigm but acts as a potent compet-
itor of cell-associated L-selectin. Numerous reports suggest
sL-selectin can either be protective (Albertini et al. 1999;
Haught et al. 1996; Patiar et al. 2002) or a risk factor in certain
clinical settings (Atalar et al. 2001; Signorelli et al. 2003;
Siminiak et al. 1998, 1999; Wei et al. 2011), implying com-
plex roles in disease pathogenesis. The amount of sL-selectin
measured from the serum of healthy individuals ranges from
0.7 to 1.5 pug per mL, which can rise to 2-3 pg per mL in
patients with autoimmune diseases such as Lupus (Font et al.
2000) or primary Sjogren’s syndrome (Garcia-Carrasco et al.
2000). Studies in mice have shown the half-life of sL-selectin
can beup to 20 h (Tu et al. 2002). While sL-selectin in healthy
individuals is thought to regulate homeostatic leukocyte traf-
ficking, the masking of ligands through acute rises in sL-
selectin production can negatively impact on adhesion during
the inflammatory response. For example, sL-selectin released
from neutrophils responding to acute pain can self-limit re-
cruitment and therefore lessen the extent of inflammation in
that area (Strausbaugh et al. 1999). The major source of sL-
selectin in human serum is not known, although mice express-
ing wild-type (WT) L-selectin exclusively on T-cells contrib-
ute up to 70% of total sL-selectin (Galkina et al. 2003), sug-
gesting a significant contribution of sL-selectin originates
from this cell type. Given the disparity in the percentage of
circulating lymphocytes and neutrophils in mice and humans
(lymphocytes =90% in mice vs .50% in humans; neutro-
phils =25% in mice vs. 70% in humans), the source of sL-
selectin and its contribution to (patho)physiology may differ
between species.

L-selectin shedding during adhesion and migration

L-selectin shedding can be activated during rolling and TEM
under flow conditions (Lee et al. 2007; Rzeniewicz et al.
2015). For example, in parallel plate flow chamber studies,
primary human neutrophils engaged in prolonged rolling ac-
tivity on immobilised sLe* can over time re-enter flow.
Labelling of primary human neutrophils with fluorescently
conjugated anti-L-selectin antibody enabled visualisation of
cleaved L-selectin, deposited as fluorescent tracks along
rolling contact sites. Furthermore, sustained release of L-
selectin led to faster rolling speeds that eventually culminated
in detachment of the neutrophil back into flow. The term
“mechanical shedding of L-selectin” was coined to explain
this phenomenon, which could be blocked specifically with
synthetic inhibitors of p38 MAPK, implying that intracellular
signalling is underpinning the mechanism (Lee et al. 2007).
Although this observation stems from in vitro studies, it has
yet to be described and characterised in vivo (see “The impor-
tance of mechanosignalling in circulating neutrophils”).
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Earlier studies showed, under “static” conditions (i.e., in the
absence of haemodynamic shear stress), a direct correlation
between neutrophil TEM and L-selectin expression.
Transmigrated neutrophils harvested from beneath activated
endothelial monolayers registered L-selectin-negative by flow
cytometry, suggesting that L-selectin shedding occurred dur-
ing recruitment and/or during TEM (Allport et al. 1997).
Integrating fluorescence timelapse microscopy with the paral-
lel plate flow chamber has exposed exactly where and when
L-selectin shedding occurs in transmigrating leukocytes
(Rzeniewicz et al. 2015) (see “L-selectin: a driver of invasion
and cell polarity”).

Genetic and pharmacologic approaches towards
blocking L-selectin shedding

L-selectin sheddases

There is abundant evidence to suggest that the enzyme respon-
sible for cleaving L-selectin on neutrophils is a disintegrin and
metalloproteinase 17 (ADAM17) or TNF-alpha converting
enzyme (Ager 2012; Condon et al. 2001; Long et al. 2010;
Peschon et al. 1998; Tang et al. 2011). Other members, such as
ADAMBS and ADAMI0, can also cleave L-selectin (Gomez-
Gaviro et al. 2007; Le Gall et al. 2009). ADAMS is expressed
at the plasma membrane and within intracellular (“specific”
and “small storage”) granules of neutrophils. Soluble
ADAMS can be enzymatically released from the neutrophil
plasma membrane but the enzyme mediating this event is not
known. There is some evidence to suggest that ADAMS can
autoactivate in vitro using a human epithelial kidney cell line
but this has not been seen in primary neutrophils. ADAMS is
highly abundant and enzymatically active in the synovia of
human rheumatoid arthritic joints. Soluble ADAMS can
cleave cell-associated L-selectin, suggesting that, unlike
ADAM17, it can cleave L-selectin in trans (Gomez-Gaviro
etal. 2007). Cell-associated ADAM10 has also been shown to
cleave other substrates in trans, suggesting that L-selectin
shedding (for example during TEM) may be cleaved by
endothelial-derived ADAMI10.

Regulation of ADAM17 activity

ADAMI17 is expressed and stored in vesicles in numerous
leukocyte subtypes and can be rapidly mobilised to the plasma
membrane in response to cell-activating stimuli (Ebsen et al.
2013; Killock and Ivetic 2010). ADAM17 knockout mice are
embryonic lethal (Peschon et al. 1998) and therefore the trans-
fer of ADAMI17 foetal liver cells (E15.5) into lethally irradi-
ated WT recipient (or “chimeric”) mice is a typical approach
to study the in vivo role of ADAMI17-deficient
haematopoietic cells. Flow cytometry reveals that basal turn-
over of L-selectin is blocked in ADAM17-null chimeric mice.
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Therefore, ADAM17-null neutrophils express significantly
higher levels of surface L-selectin than WT neutrophils, a
feature that is mirrored when the L-selectin cleavage site is
mutated in vivo (see “Cleavage-resistant mutants of L-selectin
and sheddase inhibitors”). Also, L-selectin expression re-
mains unchanged in neutrophils harvested from peritoneal
cavities of ADAMI17-null mice challenged with E. coli or
thioglycollate (Long et al. 2012; Tang et al. 2011). Given that
these studies were conducted in chimeric mice, this reaffirms
that ADAM17 cannot cleave L-selectin in trans. ADAMI17 is
therefore the dominant “sheddase” in cleaving L-selectin on
neutrophils. However, given that ADAMS is released as a
soluble enzyme by sheddase activity, it is still not clear if
potential cascades of sheddase activity are required for the
proteolytic release of L-selectin in some
(patho)physiological settings. In leukocytes, ADAM17 activ-
ity is controlled by two major kinases: PKC and p38 MAPK.
Systematic activation of either PKC or p38 MAPK reveals
fundamental differences in ADAM17-dependent shedding of
L-selectin (Killock and Ivetic 2010). PKC-induced shedding
of L-selectin is strongly dependent on regulatory elements
within the cytoplasmic tail of L-selectin (e.g., serine phos-
phorylation and Ezrin-Radixin-Moesin binding; see “Serine
and tyrosine phosphorylation of the L-selectin tail” and
“Ezrin—Radixin—Moesin (ERM)”), whereas p38 MAPK-
induced shedding of L-selectin is independent of these regu-
latory elements. In contrast, threonine phosphorylation of the
ADAM17 cytoplasmic tail is an essential pre-requisite for p38
MAPK-induced shedding, which is not required for PKC-
induced shedding. Tipping intracellular signalling predomi-
nantly towards PKC or p38 MAPK activation will very much
depend on the origin of the input signal. Indeed, {MLP/LPS/
TNF-induced shedding of L-selectin is mediated more
through p38 MAPK than PKC (Fan and Derynck 1999;
Killock and Ivetic 2010). In contrast, shedding of L-selectin
induced by T-cell receptor signalling is driven predominantly
by PKCo (Gharbi et al. 2013).

Non-steroidal anti-inflammatory drugs (NSAIDs) can pro-
mote the shedding of L-selectin in neutrophils (Diaz-Gonzalez
et al. 1995). While this mode of action is one of many anti-
inflammatory effects of NSAIDs, it is not thought to involve
classic inhibition of cyclooxygenase and prostaglandin pro-
duction. Instead, two theories have been put forward: the first
is that NSAIDs can directly block the binding of calmodulin to
the cytoplasmic tail of L-selectin (Cantabrana et al. 1995),
where calmodulin dissociation typically leads to L-selectin
shedding (more detail of L-selectin/calmodulin interaction is
provided in “Calmodulin (CaM) interaction with the L-
selectin tail”). The second theory relates to NSAIDs reducing
intracellular ATP in neutrophils and its positive correlation
with L-selectin shedding (Gomez-Gaviro et al. 2000). Acute
depletion of cellular ATP levels in neutrophils, using sodium
azide to block mitochondrial respiration, promotes a similar

effect. Interestingly, however, while extracellular ATP can
promote L-selectin shedding in lymphocytes (Jamieson et al.
1996), it cannot in neutrophils (Sengstake et al. 2000).
Neutrophils can secrete ATP (Chen et al. 2006b; Eltzschig
et al. 2006) and while this reduces net intracellular levels,
the shedding of L-selectin is likely not driven via cell surface
ATP or adenosine receptors (e.g., A3, P2X7R and P2Y2)
(Barletta et al. 2012). More recently, the mechanism of action
of NSAIDs driving L-selectin shedding was postulated to oc-
cur via the production of superoxide (Dominguez-Luis et al.
2013). Furthermore, oxidation of critical cysteine residues
within the ectodomain of ADAMI17 enhances its catalytic
activity for L-selectin shedding (Wang et al. 2009). These
examples of intracellular and extracellular regulatory mecha-
nisms of ADAMI17 activity are clearly complex and their
physiological significance in health/disease is yet to be
addressed.

Cleavage-resistant mutants of L-selectin and sheddase
inhibitors

Understanding the contribution of L-selectin shedding to leu-
kocyte behaviour has been achieved mainly through pharma-
cologic and genetic approaches. Cell lines that do not express
endogenous L-selectin have been used to cleanly investigate
the contribution of L-selectin in its WT or non-cleavable form.
An eight amino acid deletion (amino acids: MIKEGDYN,
termed “AM-N”) of human L-selectin renders the protein
non-cleavable or “sheddase-resistant” (Chen et al. 1995).
Two different mouse models have been engineered, each ex-
pressing a domain swap mutation between the L-selectin
cleavage site and the corresponding region of E or P-selectin,
called: “L(E)” and “LAP” (Galkina et al. 2003; Venturi et al.
2003) (see Fig. 1c). The L(E) model is a global knock-in
mutation, while the LAP model expresses sheddase-resistant
L-selectin from a transgene under the control of a CD2 pro-
moter (T-cell lineage-specific). Importantly, the LAP trans-
gene is expressed in L-selectin-deficient mice giving rise to
L-selectin expression only in T-lymphocytes. Both in vivo
models exhibit delayed leukocyte emigration across venular
walls, suggesting the importance of L-selectin shedding in
transmigration. Blocking L-selectin shedding in primary hu-
man neutrophils does not affect TEM rates across activated
endothelial monolayers in vitro, implying that the delayed
emigration phenotype seen in vivo could be due to a delay
in breaching other physical barriers beyond the endothelium,
e.g., the basement membrane or pericytes (Alon and
Nourshargh 2013; Nourshargh and Alon 2014; Proebstl
et al. 2012). To date, detailed examination of the migratory
behaviour of sheddase-resistant interstitial neutrophils has not
been undertaken. However, bright-field intravital microscopy
reveals that L(E) neutrophils emigrating in response to local-
ised keratinocyte-derived chemokine (KC or CXCL1)
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gradients remain close to the vessel wall (Venturi et al. 2003).
Given that this phenotype is copied in L-selectin-null neutro-
phils (Hickey et al. 2000), it begs the question of whether the
membrane-retained fragment (MRF; the by-product of L-
selectin shedding) plays a more direct role in chemotaxis, as
the MREF is absent in both sheddase-resistant (L(E)/LAP) and
L-selectin-null neutrophils.

Studies where L-selectin cannot be genetically manipulated
(e.g., in primary human neutrophils) have relied on the use of
hydroxamate-based synthetic inhibitors of ADAM17 (Ro-31-
9790, KD-IX-73-3, TAPI-0, TAPI-1, TMI005 and GM6001)
being the most commonly used/cited. While these inhibitors
are far from specific to ADAM17, most have demonstrated
retention of L-selectin expression following cellular activation
and some studies have shown increased accumulation of neu-
trophils along inflamed postcapillary venules in vivo (Hafezi-
Moghadam et al. 2001). The recent development and refine-
ment of an anti-human ADAM17 phage display antibody,
targeting the active site, should provide clearer understanding
of the importance of ADAM]17-dependent shedding of L-
selectin in human neutrophils (Tape et al. 2011).

The cytoplasmic tail of L-selectin: a central
regulator of adhesion, signalling
and ectodomain shedding

The cytoplasmic tails of selectin family members bear little
resemblance to one another, suggesting unique contributions
to intracellular signalling (Ivetic and Ridley 2004b; Ley
2003). Clustering human L-selectin with monoclonal anti-
body or exposure to physiological ligand can promote tyrosine
phosphorylation on intracellular proteins that include MAP
kinases (Waddell et al. 1995), strongly implying that L-
selectin can transduce intracellular signals. Similar methods
used to cluster L-selectin can also activate 31 (Giblin et al.
1997) and (32 integrins (Green et al. 2004; Hwang et al. 1996),
promoting the respective adhesion to fibronectin/vascular cell
adhesion molecule-1 (VCAM-1) and intercellular adhesion
molecule-1 (ICAM-1). Clustering of L-selectin also increases
chemokine receptor expression in lymphocytes, which in turn
increases efficiency in chemotaxis (Ding et al. 2003;
Duchesneau et al. 2007; Subramanian et al. 2012). Many of
these observations were made before any intracellular binding
partners for L-selectin were identified and characterised.
Needless to say, the L-selectin tail is likely to play a crucial
role in many if not all of the cellular responses following L-
selectin clustering (see Table 1 for examples). Therefore, the
identity and nature of the binding partner provides invaluable
insight into how signals are potentially propagated down-
stream of L-selectin-dependent adhesion leading to changes
in cell behaviour. The L-selectin tail is composed of 17 amino
acids and is highly basic, possessing a theoretical isoelectric
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point (pI) of 11.17 (for human L-selectin). Despite its small
size, numerous binding partners of the L-selectin tail have
been identified: alpha-actinin, calmodulin (CaM), Ezrin-
Radixin-Moesin (ERM), PKC isozymes and, most recently,
pul alpha-adaptin. Other putative binding partners co-
precipitate in anti-L-selectin immunoprecipitates but have
not been validated as direct binding partners (see “Other indi-
rect binding partners of the L-selectin tail”). The diverse na-
ture in binding partners likely reflects their unique contribu-
tions to adhesion, signalling and shedding of L-selectin.

Serine and tyrosine phosphorylation of the L-selectin
tail

The tail of human L-selectin contains two serine residues at
positions 364 (S364) and 367 (S367) and a single tyrosine at
position 372 (Y372) (Fig. 1a). The cytoplasmic tails of mouse
and human L-selectin carry 82% identity at the amino acid
level and are 100% identical within the first 10 membrane-
proximal amino acids. S364 is common to both mouse and
human L-selectin, suggesting conserved mechanisms in phos-
phorylation at this site between species. Y372 is the last amino
acid on the L-selectin tail. Although one study has demon-
strated Y372 phosphorylation in response to antibody-
mediated clustering of L-selectin (Brenner et al. 1997), its
contribution to signalling or adhesion is not fully understood.
S364 and S367 are phosphorylated in response to fMLP or
chemokine receptor stimulation (Haribabu et al. 1997). Cells
expressing L-selectin with alanine mutations at S364 and
S367 revealed no phosphorylation of Y372 when challenged
with a panel of potent neutrophil chemoattractants (Haribabu
et al. 1997). It could be that Y372 is phosphorylated only in
response to outside—in signalling, whereas S364/S367 phos-
phorylation occurs exclusively in response to inside—out sig-
nalling. Given the spacing between S364 and S367 and as-
suming the L-selectin tail adopts an alpha helix in its native
form, it is likely that these serine residues are positioned on
opposite faces of the tail. Biophysical experiments have
shown that the tail of L-selectin has the potential to interact
with highly negatively charged phosphatidylserines enriched
within the inner leaflet of the plasma membrane (Deng et al.
2011). It has been postulated that phosphorylation of S367
promotes L-selectin repulsion from the negatively charged
phospholipids within the inner leaflet of the plasma mem-
brane. Mouse L-selectin lacks S367 but contains an extra as-
partate (D) residue at position 369. It is possible that a negative
charge cloud at D369 (see Fig. la for mouse L-selectin tail
sequence) is sufficient to prevent L-selectin from interacting
with the inner leaflet of the plasma membrane, which could
render the molecule constitutively “peeled off” from the inner
leaflet. Both PKC theta and iota can bind to the non-
phosphorylated tail of human L-selectin and catalyse the phos-
phorylation of S364 and S367 (Kilian et al. 2004). Once
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Table 1 The impact of clustering L-selectin with ligand or anti-L-selectin antibody on cell behaviour/function
Cell type and organism Treatment Cellular outcome Reference
Human PMN AMC Clustering of L-selectin by different anti-L-selectin (DREG) antibodies pro- (Palecanda et al.
motes ectodomain shedding. 1992)
Human PMN Sulfatides Increases intracellular calcium and enhances expression of TNF-oc and IL-8  (Laudanna et al.
mRNA in neutrophils. 1994)
Human PMN AMC Potentiates oxidative burst in neutrophils. (Waddell et al.
1994)
Human PMN AMC Increases in H,O, and intracellular calcium. (Crockett-Torabi
et al. 1995)
Human PMN AMC Enhancement of tyrosine phosphorylation and activation of MAP kinase. (Waddell et al.
1995)
Human PMN AMC Increases adhesive function of Mac-1 (CD11b/CD18) 32-integrin. (Simon et al.
1995)
Human PMN Sulfatides Engagement of L-selectin impairs the actin polymerising capacity of (Ng-Sikorski et al.
[32-integrins on neutrophils 1996)
Canine PMN AMC L-selectin stimulation of canine neutrophil initiates calcium signalling, (Crockett-Torabi

Human, mouse and rat
leukocytes

Human PMN
Human PMN
Human PMN
Human PMN

Human PMN

Human PMN

Human PMN

Human PMN
Human and mouse
leukocytes
Human PMN
Mouse PMN

Human PMN

Jurkat T-cells

Human lymphocytes
Human T-cells

Human Jurkat T-cells

AMC and glycomimetics

AMC and co-stimulation
with chemoattractants

Sulfatides
AMC
AMC

AMC

AMC by microspheres

Challenge with soluble
E-selectin

AMC
Sulfatide and AMC
Challenge with E-selectin

Clustering of PSGL-1 and
L-selectin

E-selectin-dependent
adhesion

IL-2 challenge

L-selectin binding to
Glycam-1

AMC

AMC and glycomimetics

secondary to tyrosine kinase activation.

Ligation of L-selectin through conserved regions within the lectin domain
activates signal transduction pathways and integrin function in human,
mouse and rat leukocytes.

Synergy between L-selectin signalling and chemotactic activation during
neutrophil adhesion and transmigration.

Activation of p21-Activated Kinases (Paks), possibly via L-selectin.
Alterations in cell rigidity, the cytoskeleton and co-localisation with CD18.

L-selectin signalling of neutrophil adhesion and degranulation involves p38
mitogen-activated protein kinase.

Evidence for a signalling partnership between urokinase receptors (CD87)
and L-selectin (CD62L) in neutrophils.

Size and frequency of receptor clustering modulates L-selectin-dependent
signalling via p38 MAPK and ERK/MEK in neutrophils.

Shear-dependent capping of L-selectin and P-selectin glycoprotein ligand 1
by E-selectin signals activation of high-avidity beta2-integrin on neutro-
phils.

c-Abl is involved in the F-actin assembly triggered by L-selectin cross--
linking.

Up-regulation of leukocyte CXCR4.

Neutrophil adhesion to E-selectin under shear promotes the redistribution and
co-clustering of ADAM17 and L-selectin.

The PSGL-1-L-selectin signalling complex regulates neutrophil adhesion
under flow.

Selectin catch-bonds mechanotransduce integrin activation and neutrophil
arrest on inflamed endothelium under shear flow.

Regulation of L-selectin mRNA in Jurkat cells. Opposing influences of cal-
cium and protein kinase C-dependent signalling pathways.

GlyCAM-1, a physiologic ligand for L-selectin, activates beta 2 integrins on
naive peripheral lymphocytes.

L-selectin cross-linking induces integrin-dependent adhesion: evidence for a
signalling pathway involving tyrosine kinases but not PKC.

L-selectin activates the Ras pathway via the tyrosine kinase p56lck.

and Fantone
1997)

(Steeber et al.
1997)

(Tsang et al.
1997)

(Huang et al.
1998)

(Simon et al.
1999)

(Smolen et al.
2000)

(Sitrin et al. 2001)

(Green et al.
2003)

(Green et al.
2004)

(Chen et al.
2006a)

(Duchesneau et al.
2007)

(Schaff et al.
2008)

(Stadtmann et al.
2013)

(Morikis et al.
2017)

(Kaldjian and
Stoolman
1995)

(Hwang et al.
1996)

(Sikorski et al.
1996)

(Brenner et al.
1996)
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Table 1 (continued)

Cell type and organism Treatment Cellular outcome

Reference

Jurkat T-cells AMC and glycomimetics  L-selectin activates JNK via src-like tyrosine kinases and the small G-protein (Brenner et al.
Rac. 1997)
Jurkat T-cells AMC and glycomimetics  L-selectin stimulates the neutral sphingomyelinase and induces release of ~ (Brenner et al.
ceramide. 1998)
Human lymphocytes ~ AMC Intracellular mechanisms of L-selectin-induced capping. (Junge et al. 1999)
(primary and cell
lines)
Jurkat T-cells AMC after surfactant Surfactant modulates intracellular signalling of the adhesion receptor (Brenner et al.
challenge L-selectin. 2000)
Jurkat T-cells AMC Mechanisms of L-selectin-induced activation of the nuclear factor of acti- (Brenner et al.
vated T-lymphocytes (NFAT). 2002)
Mouse T-cells Challenge cells expressing AgC10 binding to L-selectin inhibits IL-2 secretion and T cell proliferation. (Alcaide and
L-selectin with AgC10 Fresno 2004)
Mouse naive T-cells  Antibody-mediated Co-stimulation of T-cell proliferation by anti-L-selectin antibody is associated (Nishijima et al.
clustering of CD3 and with the reduction of a cdk inhibitor p27. 2005)

Activation of c-Abl and phosphorylation of the terminal tyrosine residue in

L-selectin ligation-induced CSF-1 gene transcription is regulated by AP-1 ina

(Chen et al. 2007)

(Chen et al. 2008)

c-Abl kinase-dependent manner.

L-selectin
Jurkat T-cells AMC
the L-selectin tail.
Jurkat T-cells AMC
Jurkat T-cells Sulfatide exposure

Critical role of Lck in L-selectin signalling induced by sulfatides engagement

(Xu et al. 2008)

(direct interaction not confirmed).

Mouse splenocytes AMC with primary L-selectin and CCR7 synergise to promote increased chemokine (Subramanian
and lymphocytes antibody alone responsiveness for T-cell homing etal. 2012)
Human PBMCs and ~ AMC The L-selectin antibody FMC46 mediates rapid, transient increase in intra-  (Po et al. 1995)
lymphoma cell line cellular calcium in human PBMCs and Daudi lymphoma cells.
Human PBMC AMC L-selectin clustering induces association of tyrosine—phosphorylated Cbl with (Brenner et al.
CrkL and Grb2 (direct interaction not confirmed) 2001)
Human Monocytes AMC and adhesion to sLe* Ligand-induced clustering of L-selectin promotes CaM and ERM from (Killock et al.
neighbouring tails. 2009)

Monocytes and
macrophages

Glycodelin-A challenge

Glycodelin-A interacts with L-selectin to induce IL-6 production in
monocytes/macrophages by activating the ERK signalling pathway

(Lee et al. 2012)

The table provides a chronological overview of cellular outcomes following L-selectin clustering in neutrophils, monocytes and lymphocytes. These
experimental approaches have enabled researchers to understand the signalling potential of L-selectin. Note that most of these procedures were
conducted on cell suspensions, so it is not fully understood whether L-selectin can influence similar cellular outcomes in isolation in vivo

PMN neutrophil, AMC antibody-mediated clustering of L-selectin, PBMC peripheral blood mononuclear cells

phosphorylated, PKC«x can then bind the L-selectin tail from
where it is thought to mediate signalling events through
serine/threonine phosphorylation of nearby signalling sub-
strates or other receptors. What is not clear from this study is
whether PKCux is binding to the MRF or the full-length form
of L-selectin. More recent insight into T-cell receptor signal-
ling would suggest PKCx mediates binding to the MRF of L-
selectin (Gharbi et al. 2013).

Cytosolic binding partners of L-selectin
Calmodulin (CaM) interaction with the L-selectin tail

The cytoplasmic tail of L-selectin is known to play a crucial
role in regulating the shedding of L-selectin. Monoclonal
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(CA21) and polyclonal (JK924) antibodies, respectively
targeting the cytoplasmic and cleavage domains of L-selectin,
were used in immunoprecipitation experiments and identified
CaM as a novel binding partner (Kahn et al. 1998). The bind-
ing was shown to occur specifically with purified CaM and
peptide corresponding to the L-selectin tail (Matala et al.
2001). CaM is an 18-kDa ubiquitous calcium-binding protein
that can bind to and regulate a multitude of different protein
targets, thereby affecting many different cellular functions.
CaM consists of two structurally related globular domains
located at the N- and C-termini, where each can bind two
calcium ions. CaM acts as a negative regulator of shedding
and its constitutive association with the L-selectin tail in rest-
ing cells, imposes a conformational constraint on the cleavage
site that renders it resistant to proteolytic attack by ADAM17
(Kahn et al. 1998). Biophysical and in silico assessments of L-
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selectin/CaM interaction reveal that CaM binds two regions
on L-selectin, one within the cytoplasmic tail and another
within the transmembrane domain (Gifford et al. 2012). By
binding to both domains, CaM is postulated to “pull” the L-
selectin cleavage site down towards the plasma membrane.
This ratchet-like activity is thought to underlie why
ADAMI17 cannot access the L-selectin cleavage site when
CaM is bound. Currently, it is unclear if the hydrophobic
transmembrane domain is pulled into the cytosol by CaM or
how the hydrophilic membrane-proximal extracellular do-
main would become the de facto transmembrane domain.
Co-precipitation of CaM in anti-L-selectin immunoprecipi-
tates is calcium-dependent (Matala et al. 2001); however,
CaM can bind to the L-selectin tail in a calcium-independent
manner (Killock et al. 2009). These observations suggest mul-
tiple routes towards interaction.

An alternative mode of CaM binding to the L-selectin tail
comes from in silico approaches. Using a pre-existing NMR
structure of an extended conformation of CaM, the C-terminal
globular domain of CaM is proposed to interact with L-
selectin, allowing the free N-terminal domain to interact with
other potential binding partners, such as K-Ras. Interestingly,
K-Ras is enriched in microvilli of leukocytes (Hao et al. 2008)
and CaM/K-Ras co-localise at the plasma membrane of living
cells (Villalonga et al. 2001). These observations might shed
light on how specific clustering of L-selectin is proposed to
signal to Ras in T-cells (Brenner et al. 1996). A more recent
study has shown that the Unique domain of ¢c-Src (common to
all Src family kinases; SFKs) can interact with CaM in cells,
further indicating how some of the observed signal transduc-
tion events involving SFKs could be mediated (Perez et al.
2013). Clearly, more work is required to determine if CaM
adopts a folded or extended conformation (and if calcium
binding is necessary) to regulate L-selectin-dependent adhe-
sion, shedding and signalling in neutrophils. Recent biochem-
ical and cell biological data show that phosphorylation of
S364 but not S367, in human L-selectin is essential for CaM
dissociation (Rzeniewicz et al. 2015).

Ezrin-Radixin—-Moesin (ERM)

The plasma membrane and underlying cortical actin cytoskel-
eton are physically distinct entities that are interconnected by
cytoskeletal proteins, such as ERM (Fehon et al. 2010; Ivetic
and Ridley 2004a). Thus, dynamic changes in membrane
shape, for example in microvillar formation and collapse, are
structurally supported by ERM (Brown et al. 2003; Nijhara
et al. 2004). Moesin is highly abundant in leukocytes, follow-
ed by ezrin and radixin is either extremely low in abundance
or absent. ERM have up to 85% amino acid identity within the
3-lobed cloverleaf-shaped N-terminal domain, which contains
a phosphatidylinositol 4,5-bisphosphate (PIP2)-binding do-
main that is proximal to a region that binds to the cytoplasmic

tail of transmembrane proteins (Ivetic and Ridley 2004a).
ERM adopt an autoinhibited conformation when in the cyto-
sol, where the N- and C-termini physically interact with one
another. Unfolding occurs when ERM come in contact with
PIP2 and the unfolded molecule is further stabilised through
phosphorylation of a conserved C-terminal threonine residue
within the F-actin-binding domain (Barret et al. 2000). Taken
together, the actin-binding domain and the PIP2-binding do-
mains are critical in the membrane/cytoskeleton cross-linking
activity of ERM. Ezrin possesses unique tyrosine residues at
positions 145 and 353, the latter of which, when phosphory-
lated, supports binding of the p85 regulatory subunit of PI3-
kinase (Gautreau et al. 1999). Ezrin also possesses a
polyproline motif within the C-terminal half of the protein,
thought to mediate protein—protein interaction. Therefore,
while ezrin and moesin are highly similar, they possess unique
features that could be essential for mediating non-redundant
signal transduction events. Indeed, ezrin and moesin display
divergent roles downstream of T-cell receptor signalling (Ilani
et al. 2007).

Experiments using affinity chromatography columns, con-
taining immobilised synthetic peptides corresponding to the
tail of L-selectin, identified ezrin and moesin as novel binding
partners of L-selectin (Ivetic et al. 2002). ERM were originally
isolated from whole-cell extracts derived from naive T-cells
pre-treated with or without phorbol ester (phorbol myristate
acetate; PMA), a potent activator of PKC and inducer of L-
selectin shedding. Interestingly, ezrin from both sets of ex-
tracts could interact with the affinity column, whereas moesin
could only be retained on affinity columns from extracts of
cells pre-treated with PMA. Cell activation-dependent binding
of moesin but not ezrin suggests that each ERM member po-
tentially serves different roles in regulating L-selectin. Other
cell adhesion molecules that mediate tethering and rolling,
such as PSGL-1 and CD44, also interact with ERM. The iden-
tification of a cryptic immunoreceptor tyrosine-based activa-
tion motif (ITAM) within the N-terminal domain of ERM,
suggests that ERM can act as adaptors for signal transduction
events downstream of ligand engagement (Urzainqui et al.
2002). This mode of signal transduction would be particularly
advantageous for cell adhesion molecules with short cytoplas-
mic tails, such as L-selectin. Spleen tyrosine kinase has been
shown to bind to the cryptic ITAM of moesin, specifically
when PSGL-1 is clustered with monoclonal antibody. It is
tempting to speculate that such mechanisms occur when L-
selectin is clustered but this has not been tested.

Mutagenesis of the L-selectin tail led to the discovery of a
single amino acid exchange mutation that abrogates interac-
tion of both ezrin and moesin (Ivetic et al. 2004), where argi-
nine at position 357 is mutated to an alanine (R357A).
Interestingly, cells expressing R357A L-selectin display a sig-
nificant reduction in tethering efficiency under flow condi-
tions, which could be due to the absence of the mutated
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protein from microvilli. R357A L-selectin is more resistant to
PMA-induced shedding than WT L-selectin, implying that
ERM act as pro-shedding factors. ERM are therefore paradox-
ically involved in anchoring L-selectin to microvilli and driv-
ing L-selectin shedding. A resolution to this paradox could be
that ezrin supports L-selectin anchorage to microvilli while
moesin promotes shedding. Indeed, this hypothetical view
would fit with the manner in which ezrin and moesin interact
with affinity columns (Ivetic et al. 2002). In silico modelling
reveals that the L-selectin tail can support the simultaneous
binding of CaM and ERM, leaving little space for other pro-
teins to bind (Ivetic 2013; Killock et al. 2009). However, giv-
en that ERM and CaM can bind to other proteins, it is highly
likely that higher-ordered complexes can arise from these two
partners.

Alpha-actinin and p1A subunit of AP-1

Non-muscle alpha-actinin was the first characterised binding
partner of L-selectin (Pavalko et al. 1995). Its role in cross-
linking actin filaments would suggest an appropriate subcel-
lular location in microvilli. However, alpha-actinin does not
possess any known membrane/cytoskeleton cross-linking ac-
tivity and so its relationship with ERM is likely to be non-
redundant. The last 11 amino acids of the L-selectin tail are
essential for alpha-actinin interaction, which is at the opposite
end to where ERM binding is thought to occur (see Fig. 2).
Cell lines expressing the 11 amino acid-truncated mutant of L-
selectin revealed significantly reduced rolling efficiencies un-
der flow conditions. Interestingly, the remaining 6 amino acids
are sufficient to anchor L-selectin to microvilli (Dwir et al.
2001). Alpha-actinin plays a prominent role in integrin signal-
ling but its role in signalling downstream of L-selectin is not
clear.

plA of the AP-1 complex is the latest identified L-selectin
binding partner and was isolated from “pull-down” experi-
ments using extracts from Raw 264.7 mouse macrophages
and the interaction validated with purified proteins (Dib
etal. 2017). Pre-stimulation of Raw cells with PMA increased
the affinity of pl1A for L-selectin. In contrast to all the other
binding partners, the interaction of pnlA with L-selectin is
thought to dominate during vesicular transport through the
Golgi network. Imaging of THP-1 monocytes expressing L-
selectin-GFP revealed that L-selectin/wl A colocalised at
Golgi compartments but was excluded from the plasma mem-
brane. The N-terminal di-basic motifs and C-terminal aspar-
tate residues in mouse L-selectin (Fig. 1a) were required for
binding p1l1A, which would suggest that this protein is re-
quired to occupy a substantial region of the L-selectin tail
during anterograde vesicle trafficking. Phosphorylation of
S364 abrogates L1 A binding. Where and when the exchange
between 1wl A and CaM/ERM binding occurs is unknown and
will require further investigation.
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Fig. 2 The triad of L-selectin regulation: Adhesion, Shedding and
Signalling. For any given neutrophil engaged in tethering, rolling or
transendothelial migration (TEM), L-selectin is likely to be regulated very
differently in space and time. It is important to appreciate that these three
aspects of L-selectin regulation are inextricably linked. L-selectin-
dependent adhesion can be regulated by classic inside-out signalling,
which can lead to increases in avidity modulation (for specific
examples, see Table 1). Rapid shedding of L-selectin limits adhesion
and signalling. Although ADAMs 8 and 10 have been shown to contrib-
ute to shedding in specific settings, ADAM17 is considered to be the
dominant sheddase in neutrophils. Activation of either PKC or p38
MAPK can lead to different modes of shedding that culminate in
ectodomain shedding. Moesin, ezrin, protein kinase C isozymes (PKC),
calmodulin and alpha-actinin have all been shown to bind directly to the
L-selectin tail and therefore act as direct mediators of these responses. The
17 amino acid cytoplasmic tail of human L-selectin is drawn below,
boxed and colour-matched to their cytosolic binding partners (represent-
ed within the triangle)

Other indirect binding partners of the L-selectin tail

Direct binding can only be confirmed unequivocally via
interaction between purified proteins. Therefore, classic
immunoprecipitation (IP) or pull-down procedures from
whole cell extracts can at best infer indirect interaction.
IP approaches have identified numerous proteins, some
of which include: the Src family kinases Lyn, Hck, Fgr,
DAPI12 and FcRy; c-Abl; and Grb2/SOS and Rac
(referenced in Table 1). The high isoelectric point of
the L-selectin tail (11.17) should be considered when
performing and interpreting pull-down assays. The high-
ly positively charged tail can give rise to false-positive
binders, so pre-clearing whole-cell extracts with a
scrambled form of the L-selectin tail has been proven
to be highly effective in increasing the chances of iso-
lating true binders (Ivetic et al. 2002). Complementary
experimental approaches are always necessary to vali-
date the interaction within intact cells, e.g., Forster res-
onance energy transfer and/or fluorescence lifetime im-
aging microscopy.



Cell Tissue Res (2018) 371:437-453

447

Adhesion, shedding and signalling: the triad
of L-selectin regulation at the plasma
membrane

The past three decades of research into L-selectin has
unearthed three inextricably linked aspects of regulation: ad-
hesion, shedding and signalling. Figure 2 illustrates how each
aspect of the triad is linked and lists the intracellular binding
partners that interconnect them. It is important to appreciate
that manipulating one aspect of the triad will invariably impact
the other two aspects. Experimental design is therefore key to
understanding the outcome of the result. For example,
domain-swap mutations between the cytoplasmic and trans-
membrane domains of CD31 and CD44 with that of L-selectin
have broadly addressed the importance of these domains in
regulating L-selectin (Buscher et al. 2010; Fors et al. 2001).
However, given the importance of cytosolic binding partners
acting on disparate aspects of L-selectin function, the outcome
of such results are unlikely to be clear cut. Single point muta-
tions are therefore likely to unearth more meaningful data in
respect of teasing out mechanisms associated with adhesion/
shedding/signalling. The recent identification of the 11 A sub-
unit of AP1 adaptin complex may add a fourth dimension to
the current triad, delivery of translated and glycosylated L-
selectin to the plasma membrane (Dib et al. 2017). However,
for the purposes of this review, understanding the triad of L-
selectin regulation is restricted to the mature translated and
glycosylated form presented at the plasma membrane of cir-
culating neutrophils.

L-selectin-dependent signalling:
homo/heterotypic L-selectin clustering

The scope of this review precludes a detailed description of
many excellent experimental approaches that have been un-
dertaken to understand some of the consequences downstream
of L-selectin-dependent signalling. Most of what is under-
stood about cellular behaviour downstream of L-selectin-
dependent signalling stems from challenging isolated neutro-
phils with soluble/immobilised ligand, or with monoclonal
antibody followed by clustering with a secondary antibody.
While antibody-mediated cross-linking is the most guaranteed
way of specifically activating L-selectin-dependent signalling,
it lacks physiological relevance. In contrast, the use of
glycomimetics, while more physiologically relevant, are not
necessarily restricted to L-selectin-dependent adhesion and
clustering (Ding et al. 2000). Such approaches have led re-
searchers to understand that L-selectin clustering can prime or
directly promote specific cellular events in neutrophils (see
Table 1). Most of these include: (1) increases in intracellular
calcium concentration, (2) tyrosine phosphorylation, (3) cell
shape change, (4) 1 and 32 integrin activation, (5)

superoxide production, (6) cell stiffening, (7) Rac activation,
(8) actin polymerisation and (9) priming for degranulation.
While these approaches provide extremely invaluable insight
into the isolated effects of clustering L-selectin, they require
further validation in more physiologically relevant models.
The contribution of other signalling receptors, acting either
in cis or trans, requires careful consideration when addressing
the contribution of L-selectin-dependent signalling in more
complex settings (for example when neutrophils are perfused
over activated endothelial monolayers). Parallel plate flow
chamber assays have proved particularly useful in this regard,
since immobilising recombinant purified proteins (e.g., E-
selectin, ICAM-1 and chemokine) allows full control over
assay complexity (Morikis et al. 2017; Mueller et al. 2010;
Yago et al. 2010).

The structure of the plasma membrane and its cholesterol
composition (e.g., lipid rafts) are likely to play vital roles in
how signals are transduced during recruitment. Heterotypic
clustering of L-selectin with P-selectin glycoprotein ligand-1
(PSGL-1) has been shown to occur in neutrophils, which in-
creases in response to E-selectin-dependent rolling. Cis inter-
action between L-selectin and PSGL-1 occurs within mutual
lipid raft domains to mediate signalling to Src family kinases
and trigger LFA-1 («L32, CD11a/CD18) integrin activation
(Stadtmann et al. 2013). Ultimately, this work postulates that
L-selectin/PSGL-1 interaction might override chemokine-
dependent integrin activation in a tissue-/organ-specific man-
ner. A more recent study in human neutrophils showed that N-
linked sLe* presented on L-selectin binds to E-selectin under
flow to drive outside—in signalling, leading to the full activa-
tion of LFA-1 and chemokine-independent arrest of neutro-
phils on recombinant purified ICAM-1 under flow conditions
(Morikis et al. 2017). Interestingly, this mode of LFA-1 acti-
vation is independent of PSGL-1 in human neutrophils. The
glycomimetic Rivipansel was used to selectively mask sLe*
on L-selectin over sLe* moieties on PSGL-1, which exposed
the contribution of L-selectin-dependent modulation of LFA-1
activity. Mouse neutrophils lack fucosyl transferase 9, which
is essential for decorating N-linked glycans on L-selectin with
sLe®. Importantly, these studies reveal fundamentally diver-
gent signalling mechanisms between mice and humans.

The importance of mechanosignalling
in circulating neutrophils

X-ray crystallographic studies have revealed that L-selectin
adopts a bent conformation in circulating neutrophils, by virtue
of a hydrogen bond between tyrosine 37 (Y37) in the CTLD and
asparagine 138 (N138) within the EGF-like domain (Liu et al.
2017; Mehta-D'souza et al. 2017) (Fig. 1a). Mutating N138 to
glycine (N138G) in mice enabled researchers to question the
in vivo significance of this hydrogen bond (Liu et al. 2017).
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The N138G mutation reduced the force range for transi-
tions from catch—slip bond interactions (Fig. 1b), which
increased the bond lifetime at low shear stresses and
heightened priming in circulating neutrophils. As a result,
circulating N138G neutrophils expressed lower surface
levels of L-selectin (due to shedding) and a concomitant
increase in Mac-1 expression. Compared to WT neutro-
phils, N138G neutrophils produced more reactive oxygen
species in response to various challenges (Liu et al. 2017).
While this behavioural change in N138G neutrophils im-
proved bacterial killing compared to WT neutrophils, it
also worsened outcomes in models of sterile cutaneous
inflammation and venous thrombosis. Taken together, it was
understood that, while in the circulation, the Y37-N138 hydro-
gen bond decreases the propensity for neutrophil priming.
Mechanistically, the signalling mechanism is not fully under-
stood but is known not to require PSGL-1. This observation is
suggestive of L-selectin and PSGL-1 shifting into different
membrane domains to mediate exclusive signalling events.
The increased priming phenotype downstream of N138G L-
selectin was also witnessed (but not reported) in other leukocyte
subsets (Liu et al. 2017), suggesting that the phenomenon ex-
tends beyond just neutrophils. This work led to the first in vivo
demonstration of “mechanochemical regulation” of L-selectin.
It would be particularly interesting to understand whether hu-
man neutrophil rolling via L-selectin (sLe™)/E-selectin interac-
tion has any influence on the Y37-N138 hydrogen bond and
whether this contributes to neutrophil priming specifically dur-
ing recruitment to inflamed endothelium.

L-selectin: a driver of invasion and cell
polarity

L-selectin in monocytes can promote invasive behaviour spe-
cifically during TEM. Although cell lines lacking L-selectin
can undergo TEM, the expression of L-selectin in such cells
can significantly increase the invasion efficiency (Rzeniewicz
et al. 2015). Live imaging of primary human CD14+ mono-
cytes revealed that L-selectin is cleaved specifically during
TEM and not before (Rzeniewicz et al. 2015), suggesting that
full-length L-selectin can participate in signalling during TEM
and before the shedding event. Indeed, confocal microscopy
revealed that full-length L-selectin is present in pseudopods of
monocytes captured in mid-TEM (see Fig. 3a).
Mechanistically, L-selectin within transmigrating pseudopods
interacts with subendothelial glycans (such as biglycan),
which clusters L-selectin prior to ectodomain shedding.
Moreover, as TEM proceeds, the pool of L-selectin within
transmigrating pseudopods is phosphorylated at S364, leading
to the dissociation of CaM and subsequent ectodomain shed-
ding. While blocking ectodomain shedding of L-selectin did
not affect overall TEM rates, cell polarity and persistence in
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Fig. 3 The role of L-selectin in regulating TEM and polarity in
transmigrated leukocytes. a Neutrophils (yellow cells) undergoing TEM.
The L-selectin (green) within transmigrated pseudopods makes contact
with subendothelial ligands, such as biglycan, which leads to intracellular
signalling (/). Given that L-selectin interacts with ERM proteins and that
ezrin can act as an adaptor for PI3K signalling, it is hypothesised that this is
the main mode of L-selectin-dependent signalling. Sustained interaction of
L-selectin with biglycan leads to clustering (2). Signals, possibly down-
stream of L-selectin clustering (2), leads to ADAM17 activation (3) and
subsequent ectodomain shedding of L-selectin (4). It is likely that other
factors that are extrinsic to L-selectin clustering and signalling also play a
role in this mechanism. Although the activities of PKC and p38 MAPK are
known to drive L-selectin shedding (Killock et al. 2009), their exact con-
tribution in this setting is not clear. b When L-selectin shedding is blocked
genetically (e.g., AM-N) or pharmacologically, the L-selectin contacting
biglycan within the subendothelial space cannot be clustered, which is
thought to promote excessive signalling. AM-N cannot be clustered (pos-
sibly because of altered serine phosphorylation of the tail and/or altered
binding to cytosolic partners), which manifests in a multi-protrusion phe-
notype. This in turn can profoundly affect cell polarity and persistence in
directed cell migration. Further details of this work have been recently
reported (Rzeniewicz et al. 2015)

directed cell migration of fully transmigrated monocytes was
profoundly altered. Therefore, blocking the shedding of L-
selectin can profoundly alter cell polarity in monocytes entering
the subendothelial space (see Fig. 3b). Although WT L-selectin
can cluster upon biglycan binding, the AM-N sheddase resis-
tant mutant (described in “Cleavage-resistant mutants of L-
selectin and sheddase inhibitors™”) cannot. Blocking L-selectin
shedding can therefore have profound effects on cytosolic bind-
ing partner interaction and lateral mobility along the plane of
the plasma membrane. The phenotypic behaviour of monocytes
in this study could help understand the in vivo observations of
L(E) neutrophils emigrating from postcapillary venules in re-
sponse to chemokine (Venturi et al. 2003).



Cell Tissue Res (2018) 371:437-453

449

Concluding remarks

The last 30 years of research into L-selectin has unearthed
some important insights into how this cell adhesion molecule
regulates neutrophil behaviour. Blocking the CTLD of L-
selectin has shown limited success in clinical trials (Raffler
et al. 2005), which suggests that the mechanisms neutrophils
employ to exit the circulation are likely to be redundant and
may depend on the vascular bed in question. However, as
shown recently in human monocytes, blocking the shedding
of L-selectin could interfere with cell polarity and chemotaxis
(Rzeniewicz et al. 2015). Given that neutrophil chemotaxis is
an essential prerequisite for effector function, blocking L-
selectin shedding would be worth exploring in this regard.
Steering unwanted neutrophils away from sites of acute sterile
injury, such as in myocardial infarction, would be an interest-
ing avenue to explore. Lastly, targeting the sLe™ moiety on L-
selectin as a ligand for E-selectin on circulating neutrophils
(Morikis et al. 2017) could have the potential to block unwant-
ed neutrophil recruitment in sterile injury.
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