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Summary

The astonishing progress in the field of stem cell biology
during the past 40 years has transformed both science and
medicine. Neural stem cells (NSCs) are the stem cells of
the nervous system. During development they give rise to
the entire nervous system. In adults, a small number of
NSCs remain and are mostly quiescent; however, ample
evidence supports their important roles in plasticity, ag-
ing, disease and regeneration of the nervous system.
Because NSCs are regulated by both intrinsic genetic
and epigenetic programs and extrinsic stimuli transduced
through the stem cell niche, dysregulation of NSCs due to
either genetic causes or environmental impacts may lead
to disease. Therefore, extensive investigations in the past
decades have been devoted to understanding how NSCs
are regulated. On the other hand, ever since their discov-
ery, NSCs have been a focal point for cell-based therapeu-
tic strategies in the brain and spinal cord. The limited
number of NSCs residing in the tissue has been a limiting
factor for their clinical applications. Although recent ad-
vancements in embryonic and induced pluripotent stem
cells have provided novel sources for NSCs, several chal-
lenges remain. In this special issue, leaders and experts in
NSCs summarize our current understanding of NSC mo-
lecular regulation and the importance of NSCs for disease
modeling and translational applications.

Stem cells

The term Bstem cells^ first appeared in the scientific literature
in 1868 by the German biologist Ernst Haeckel (Haeckel
1868). In his writings (Haeckel 1868), Bstem cells^ had two
distinct meanings: one is the unicellular evolutionary origin of
all multicellular organisms and the other is the fertilized egg
giving rise to all other cell types of the body. The latter defi-
nition has evolved into the modern definition of stem cells—
cells that can divide to self-renew and to differentiate into
other cell types in tissues and organs (Li and Zhao 2008;
Ramalho-Santos and Willenbring 2007).

The behavior and fate of stem cells are strongly influenced
by their specific anatomical locations and surrounding cell
types, called “the stem cell niche.” The niche provides phys-
ical support to host or anchor stem cells and supplies factors to
maintain and regulate them (Li and Zhao 2008). Stem cells are
also regulated by intrinsic signaling cascades and transcrip-
tional mechanisms, some of which are common among all
stem cells and others that are unique to specific types. Some
of the best known regulators include TGF-β, BMP, Smad,
Wnt, Notch and EGF fibroblast growth factors (Jobe et al.
2012; Li and Zhao 2008). Therefore, stem cells are regulated
by complex mechanisms in both temporal- and context-
specific manners to maintain their unique characteristics.
Understanding stem cell regulation gives us the opportunity
to explore mechanisms of development, as well as disorders
resulting from their dysfunction.

NSCs in development

During development, the central nervous system (CNS) is
generated from a small number of neural stem cells (NSCs)
lining the neural tube (Kriegstein and Alvarez-Buylla 2009).
A great deal of experimental evidence has demonstrated that
radial glia, the NSCs during mammalian CNS development,
undergo both symmetric divisions to expand the NSC pool
and asymmetric divisions to give rise to intermediate
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progenitors (IPCs) and the differentiated cell types. The three
major cell types in the CNS arise from NSCs in a temporally
defined sequence, with neurons appearing first, followed by
astrocytes and then oligodendrocytes (Okano and Temple
2009). The technical advancement of live imaging and geno-
mic tools have allowed for the identification of human-
specific NSC populations (e.g., outer radial glia, or oRG) lo-
cated at the outer subventricular zone (SVZ) (Gertz et al.
2014). These oRG are essential for cortical expansion to
achieve the large size of the human cortex. Single-cell geno-
mic technologies have identified specific oRG markers that
might be used for further characterization of these cells (Liu
et al. 2016, Pollen et al. 2014). Investigating the regulatory
mechanisms governing the self-renewal and fate specification
of NSCs, especially human-specific developmental features,
has significantly contributed to our understanding of human
brain development and developmental diseases. In addition,
this knowledge has also helped scientists refine protocols for
pluripotent stem cell differentiation into specific nervous sys-
tem cell types for both therapeutic goals and disease
modeling.

NSCs in the adult brain

In adult brains, NSCs are reduced and become restricted to
specific brain regions. In rodents, both NSCs and ongoing
neurogenesis have been widely documented in the SVZ of
the lateral ventricles and the subgranular zone (SGZ) of the
dentate gyrus (DG) of the hippocampus (Kempermann et al.
2015). In humans, experimental evidence has supported on-
going neurogenesis in the hippocampus (Eriksson et al. 1998;
Spalding et al. 2013). The confirmation of mammalian adult
neurogenesis in the 1990s was one of the most exciting mo-
ments in science in the 21st century. Not only did it overthrow
the prevailing dogma suggesting no neurons were made in the
adult brain but it also hinted that these adult NSCs could be
utilized for neural repair in disease and following injury. Forty
years later, we have learned a lot about NSCs. In the adult
rodent SVZ, neurogenesis has been shown to be important
for olfactory function and olfactory learning (Alonso et al.
2006). During development, a subset of slowly-dividing
NSCs are set aside to be the NSCs of the SVZ in the postnatal
and adult brain (Fuentealba et al. 2015; Furutachi et al. 2015).
The majority of neurogenic radial glia, however, become as-
trocytes and ependymal cells at the end of embryonic
neurogenesis (Noctor et al. 2004). A subset of these astrocytes
persist as NSCs in specialized niches in the adult brain and
continuously generate neurons that functionally integrate into
restricted brain regions (Doetsch 2003). In the hippocampus,
radial glia-like stem cells of the SGZ make newborn neurons
throughout life (Goritz and Frisen 2012). These newborn neu-
rons integrate into the circuity of the DG, contributing to

behaviors such as pattern separation (Aimone et al. 2011)
and spatial learning (Dupret et al. 2008), as well as
hippocampus-associated learning, memory and executive
functions (Kempermann et al. 2015).

Significant effort has been devoted into understanding the
regulation of adult neurogenesis. As a result, we now know
that many extrinsic stimuli and intrinsic mechanisms can af-
fect this process. Mouse genetic studies have clearly demon-
strated the important role of transcriptional regulation of
NSCs through intrinsic genetic mechanisms (Hsieh and
Zhao 2016). Some examples include SOXC family proteins
(Kavyanifar et al. 2018, in this issue), Bmi-1 (Molofsky et al.
2003), Sox2 (Ferri et al. 2004; Graham et al. 1999), PTEN
(Bonaguidi et al. 2011) and Notch (Zhang et al. 2018, in this
issue). In addition, epigenetic regulation by DNAmethylation
pathways (e.g., Mbd1, Mecp2, Dnmt, Tet) (Noguchi et al.
2015; Smrt et al. 2007; Tsujimura et al. 2009; Zhang et al.
2013; Zhao et al. 2003), chromatin remodeling (e.g., BAF,
BRG1) (Ninkovic et al. 2013; Petrik et al. 2015; Tuoc et al.
2017) and noncoding RNAs (Liu et al. 2010; Anderson and
Lim 2018, in this issue) play important roles. Many growth
factors, signaling molecules and neurotransmitters have been
shown to regulate neurogenesis (Kempermann et al. 2015).
Catavero et al. (2018, in this issue) review the role of
GABA circuits, signaling and receptors in regulating develop-
ment of adult-born cells, as well as the molecular players that
modulate GABA signaling. Because progenitors with
multipotent differentiation potentials have been found in brain
regions without active neurogenesis (Palmer et al. 1997), it is
hypothesized that these progenitors might be manipulated to
become neuron-competent in vivo so that they can contribute
to brain generation (Wang and Zhang 2018, in this issue).

A great amount of literature has documented how physio-
logical activities and an enriched environment influence adult
neurogenesis (Kempermann et al. 2015). However, as sum-
marized by Eisinger and Zhao (2018, in this issue), the genes
and gene network involved in these changes within NSCs
have not been systematically analyzed at genome wide levels.
Adult neurogenesis is also influenced by diseases including
epilepsy (Parent and Lowenstein 1997), stroke (Zhang and
Chopp 2016), depression (Dranovsky and Hen 2006;
Kempermann et al. 2003) and injury (Morshead and Ruddy
2018, in this issue). Thodeson et al. (2018, in this issue) fur-
ther summarize the contribution and dysregulation of adult
neurogenesis in epilepsy and discuss how we can translate
these findings to human therapeutics by using patient-
derived neurons to study monogenic epilepsy-in-a-dish.

Aging affects every individual and is a major risk factor for
many diseases. One of the strongest negative regulators of
adult neurogenesis is aging. Both intrinsic and extrinsic com-
ponents regulate the limitations of NSC proliferation and
function (Moore and Jessberger 2017; Seib and Martin-
Villalba 2015). In this issue, Mosher and Schaffer (2018)
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and Morshead and Ruddy (2018) examine factors such as
secreted signals, cell contact-dependent signals and extracel-
lular matrix cues that control neurogenesis in an age-
dependent manner and define these signals by the extrinsic
mechanism through which they are presented to the NSCs.
Smith et al. (2018, in this issue) discuss how age-related
changes in the blood, such as blood-borne factors and periph-
eral immune cells, contribute to the age-related decline in
adult neurogenesis in the mammalian brain.

Despite the extensive knowledge we have gained regarding
adult neurogenesis, critical questions remain. For example, the
control of the functional integration of new neurons remains a
mystery. It has been shown that adult NSC-differentiated new-
born neurons exhibit a critical period for sensitivity to external
stimuli (Bergami et al. 2015) and a heightened sensitivity to
seizures (Kron et al. 2010). It remains unclear how new neu-
rons choose their connections. Jahn and Bergami (2018, in
this issue) further discuss the critical period and its regulators
during adult-newborn neuron development.

Understanding the extrinsic and intrinsic regulation of
adult NSCs and their newborn progeny and their response to
both positive and negative stimuli will further illuminate their
role in disease, injury, stress and brain function.

Pluripotent stem cell-derived NSCs

Human pluripotent stem cells (PSCs), including human em-
bryonic stem cells (ESCs) and induced PSCs (iPSCs), offer a
model system to reveal cellular and molecular events
underlying normal and abnormal neural development in
humans. ESCs are pluripotent cells derived from the inner
cell mass of blastocyst stage preimplantation embryos,
which were first isolated in 1981 from mouse by Evans and
Kaufman (1981) and later, in 1998, from humans by Thomson
et al. (1998). Human ESCs are invaluable in the study of early
embryonic development, allowing us to identify critical regu-
lators of cell commitment, differentiation and adult cell
reprogramming (Dvash et al. 2006; Ren et al. 2009). iPSCs
are reprogrammed from somatic cells by forced expression of
stem cell genes and have the characteristics of ESCs (Okita
et al. 2007; Yu et al. 2007). The development of iPSC tech-
nology has allowed us access to cells of the human nervous
system through reprogramming of patient-derived cells, revo-
lutionizing our ability to study human development and
diseases.

To generate neural cells from either ESCs or iPSCs, the first
step is neural induction. Through actions of a number of acti-
vators and inhibitors of cell signaling pathways, this process
yields neural epithelial cell-like NSCs and then intermediate
neural progenitors, resembling embryonic development.
Despite many advances, a major hurdle of neural differentia-
tion is lineage control. Using a Bstandard^ dorsal forebrain

neural differentiation protocol, most neural progenitors ob-
tained are forebrain excitatory progenitors that produce mostly
forebrain glutamatergic excitatory neurons. However, the pu-
rity and layer-specific composition of these progenitors, as
well as neurons, vary significantly from experiment to exper-
iment, cell line to cell line and lab to lab. In addition, differ-
entiation into specific types of neurons with high purity has
always been a challenging goal. Much effort has been devoted
into improving the efficiency of dopaminergic neuron and
GABAergic neuron differentiation with great success (Hu
et al. 2010). However, the brain has many other types of neu-
rons. Vadodaria et al. (2018, in this issue) discuss how to
generate serotonergic neurons, a type of neuron highly rele-
vant to psychiatric disorders. To better understand the molec-
ular control of human PSC and NSC differentiation, where
protocols result in a large amount of cellular heterogeneity in
identity and response, analysis must be done at the level of
single cells. Harbom et al. (2018, in this issue) summarize how
new state-of-the-art single-cell analysis methods may help to
define differentiation from pluripotent cells.

The advancement in iPSC and gene editing technology has
transformed the field of human disease modeling. As in many
human disorders, especially neuropsychiatric disorders,
mouse models have been useful. Yet there are several critical
reasons why it is necessary to use human cells to define the
underlying mechanisms that lead to human patient character-
istics, particularly those affecting the nervous system. For ex-
ample, in fragile X syndrome (FXS), the epigenetic silencing
of the Fragile X Mental Retardation Gene 1 (FMR1) gene that
causes FXS occurs only in humans. Mice engineered tomimic
the human mutation in the FMR1 gene do not show the same
methylation and silencing characteristics of the gene as in
humans (Brouwer et al. 2007). These results indicate that
some epigenetic mechanisms in human and mice are different
and preclude the ability to study epigenetic mechanisms of
FMR1 silencing in mouse models of FXS (Bhattacharyya
and Zhao 2016). In this issue, Li and Shi discuss disease
modeling using human PSC-differentiated neural progenitors
(Li et al. 2018), and Brito et al. specifically focus on modeling
autism spectrum disorder (Brito et al. 2018).

Use of NSCs as therapy

The use of NSCs as a treatment strategy in CNS disease and
injury has been tested for decades. Parkinsons’ disease specif-
ically has gained the most momentum for potential therapeutic
benefits (Studer 2017); however, similar work has been per-
formed in Huntington’s disease, stroke and following spinal
cord injury (for a review on this topic, see Vishwakarma et al.
2014). In some of these paradigms, NSCs are expected to
differentiate into a specific cell type in the local CNS environ-
ment; in other cases, they are in a supportive role. In this issue,
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Kameda et al. explore progress in using NSCs as a therapy
following spinal cord injury (Kameda et al. 2018).

Bypassing NSCs?

While the development of PSC technologies has been a sci-
entific breakthrough for future studies, there are limitations
and risks that may be associated with their use. ESCs, iPSCs
and their differentiated NSCs are dividing cells. Either trans-
plantation of NSCs or in vivo reprogramming of endogenous
cells into NSCs could lead to tumorigenesis. In addition,
reprogramming somatic cells into iPSCs results in a loss of
some epigenetic signatures of disease and aging, which are
critical for disease modeling (Mertens et al. 2015; Miller
et al. 2013; Ocampo et al. 2016). In recent years, direct
reprogramming of fibroblasts or other cell types into induced
neurons (iN) has been developed (for review, see Mertens
et al. 2016). Remarkably, a growing number of studies have
demonstrated that such direct reprogramming also can be ef-
fective in vivo. Wang and Zhang (2018, in this issue) summa-
rize recent progress of in vivo reprogramming into new neu-
rons and present how this method can be used for spinal cord
injury.

In cellular reprogramming, the cells targeted and the genet-
ic factors used vary; however, the biggest difference is that
some protocols push cells through a NSC stage, whereas
others skip these stages (Gascon et al. 2017; Guo et al.
2014; Wang et al. 2016). Bypassing this developmental stage
has both pros and cons and may lead to a completely novel
path towards lineage commitment (discussed by Falk and
Karow 2018 in this issue).

Perspective

NSCs are fascinating and promising cells because of their
capability, flexibility and multiplicity. Understanding how
NSCs function provides important knowledge in the develop-
ment, adaptation, disease, regeneration and rehabilitation of
the nervous system. The studies of cortical development and
adult neurogenesis using rodent models have contributed sig-
nificantly to our knowledge about NSCs and will continually
yield important new information, taking advantage of novel
genetic and imaging technologies. However, using human
NSCs provides us with a window to investigate human-
specific aspects of development and disease mechanisms,
which is potentiated by the fast advancement of stem cell
and gene editing technologies. Challenges still remain regard-
ing cell lineage control, in vivo NSC behavior, three-
dimensional cellular interactions and preservation of epigenet-
ic and aging marks.
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