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Abstract Pneumonia is counted among the leading causes
of death worldwide. Viruses, bacteria and pathogen-
related molecules interact with cells present in the human
alveolus by numerous, yet poorly understood ways.
Traditional cell culture models little reflect the cellular
composition, matrix complexity and three-dimensional ar-
chitecture of the human lung. Integrative animal models
suffer from species differences, which are of particular im-
portance for the investigation of zoonotic lung diseases.
The use of cultured ex vivo infected human lung tissue
may overcome some of these limitations and complement
traditional models. The present review gives an overview
of common bacterial lung infections, such as pneumococ-
cal infection and of widely neglected pathogens modeled
in ex vivo infected lung tissue. The role of ex vivo infected
lung tissue for the investigation of emerging viral zoonosis
including influenza A virus and Middle East respiratory
syndrome coronavirus is discussed. Finally, further direc-
tions for the elaboration of such models are revealed.
Overall, the introduced models represent meaningful and
robust methods to investigate principles of pathogen-host
interaction in original human lung tissue.
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Introduction

Pneumonia is counted among the group of widespread dis-
eases and lower respiratory tract infections belong to the five
most common causes of death worldwide (Global Burden of
Disease Study 2015). The high burden of disease consequent-
ly entails a great economic burden to the general public (Welte
et al. 2012). Pneumonia is a severe inflammatory condition of
the lung affecting primarily the peripheral alveolar compart-
ment. Clinically, patients suffer from a productive or dry
cough, chest pain, fever and compromised respiration. A sim-
ple pneumonia may progress to a life-threating condition with
subsequent respiratory failure and systemic inflammation
(Bauer et al. 2006). Usually, infection with viruses or bacteria
and less commonly with other microorganisms causes pneu-
monia. Despite applicable vaccination strategies against path-
ogens commonly causing pneumonia, such as Streptococcus
pneumoniae (Mehr and Wood 2012; Scott et al. 2012) and
influenza A virus (IAV; Ortiz et al. 2016), being available,
these pathogens still cause tremendous morbidity and mortal-
ity worldwide. Furthermore, antibiotic resistance is an emerg-
ing problem in infectious diseases per se (Brown and Wright
2016). Risk factors for pneumonia comprise further lung dis-
eases such as cystic fibrosis, chronic obstructive pulmonary
disease (COPD) and asthma and include other problematic
conditions such as diabetes, heart failure, a history of
smoking and alcohol abuse (Torres et al. 2015). In addition,
children younger than 5 years of age (Walker et al. 2013) and
people older than 65 years (Torres et al. 2013) are at a higher
risk for developing pneumonia.

Why is the investigation of host-pathogen interaction, es-
pecially in human lung tissue, the key for developing new
intervention strategies in pneumonia? Classical cell culture
models are useful for the mechanistic and functional analysis
of the one-to-one interaction between cell and microbe. In an
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expanded version, a second implemented cell type could, for
example, reflect the simple influence of additional host fac-
tors. However, these basic in vitro systems neither reflect tis-
sue diversity at a cellular level, nor recapitulate the typical
alveolar cell-cell interaction in the natural matrix (e.g., alveo-
lar epithelial cell [AEC]-I interaction with AEC-II and the
capillary endothelium) of the three-dimensional architecture.
Therefore, if researchers would like to investigate the cellular
tropism of a virus causing pneumonia in a realistic model, this
is only possible if all cell types forming the potential habitat
are present in the dish at once. Frequently passaged primary
immortalized cells (such as bronchial epithelial BEAS-2B; Ke
et al. 1988) or tumor-derived cells (such as alveolar A549
cells; Smith 1977), by using proteases such as trypsin for cell
splitting, may lack central biological characteristics important
for host-pathogen interactions. These include, for example,
the capability to form tight junctions (Rothen-Rutishauser
et al. 2008) or to express receptors involved in pathogen-
binding or recognition. In addition, the use of wild-type en-
capsulated bacteria is limited in most cell cultures because of
the cell toxic effects of the capsule (N’Guessan et al. 2005;
Schmeck et al. 2004) motivating researchers to use
unencapsulated laboratory-derived strains. Since, for the path-
ogenicity of, for example, the over 90 serotypes of
S. pneumoniae (the major cause of pneumonia; Bauer et al.
2006; Bogaert et al. 2004; Drijkoningen and Rohde 2014;
Jefferson et al. 2006), capsule-related effects are of enormous
significance for virulence and tissue invasion (Geno et al.
2015), the use of original encapsulated patient-derived strains
is important for the realistic modeling of pathogen-host
interaction.

Animals such as mice represent integrative models and
modern genetic animal manipulation allows the sophisticated
analysis of host-pathogen interaction, including that of the
lung (Baron et al. 2012; Hraiech et al. 2015; Thangavel and
Bouvier 2014). Nevertheless, significant differences in anato-
my, innate and adaptive immunity have long been known to
exist between humans and, in particular, small rodents
(Mestas and Hughes 2004). For many results obtained in such
models, their translation to humans remains unclear (Mak
et al. 2014). With respect to the investigation of infectious
diseases in rodents, including pneumonia, a major problem
is the host specificity of most pathogens (Bean et al. 2013;
Bouvier 2015; Gretebeck and Subbarao 2015; Sutton and
Subbarao 2015; Ware 2008; Wolfe et al. 2007). For example,
the human nasopharynx seems to represent the natural reser-
voir for S. pneumoniae (Bogaert et al. 2004; Kadioglu et al.
2008) and only rare observations of this pathogen in wildlife
species without contact to humans are documented (Chi et al.
2007). Some animal models, such as ferrets and guinea pigs,
are naturally susceptible to infection by human influenza A
strains (IAV); others, such as mice, require adaptation of the
virus (Bouvier 2015). In particular, the majority of IAV

research in mice employs either BALB/C or C57BL/6 strains
in conjunction with the laboratory adapted A/Puerto Rico/8/
1934 (H1N1) (PR8) or A/WSN/1933 (H1N1) (WSN). Such
adaptation of pathogens to animal model species involves se-
rial passaging to increase virulence, a procedure that inevita-
bly alters pathogen behavior. Emerging viral lung diseases,
such as the severe acute respiratory syndrome coronavirus
(SARS-CoV; Peiris et al. 2004; Poon et al. 2004), Middle
East respiratory syndrome coronavirus (MERS-CoV; Fehr
et al. 2016; Mohd et al. 2016; Zumla et al. 2015) and new
IAV strains infecting humans (e.g., H5N1, H1N1, H7N9; Lai
et al. 2016; Novel Swine-Origin Influenza et al. 2009; Peiris
et al. 2009; Zhu et al. 2016) represent classical zoonotic dis-
eases, indicating that the species used for research is of great
importance. Noteworthy, although, for example, IAV infects a
broad variety of species, it does not infect rodents such asmice
in nature. For some diseases, such as MERS-CoV, the avail-
able animal models do not represent the human clinical dis-
ease (Gretebeck and Subbarao 2015; Sutton and Subbarao
2015) and the lack of receptors for viral binding (Raj et al.
2013) has forced researchers to create complex transgenic
humanized models (Gretebeck and Subbarao 2015; Sutton
and Subbarao 2015).

Overall, in order to investigate the biology and to estimate
the virulence potential of such pathogens, we need to complement
in vitro cell culture studies and animal studies with suitable
human-derived models. In the following, the use of ex vivo
cultured and infected human lungs for the investigation of
bacterial and viral infections will be discussed and further
directions for model development will be revealed.

Ex vivo bacterial infection of human lung tissue

Streptococcus pneumoniae

Pneumococci frequently colonize the human nasopharynx
(Bogaert et al. 2004; Scott et al. 2012), which seems to be
indeed the primary natural habitat of this important human
pathogen. S. pneumoniae infections of animals such as race
horses, rhesus monkeys, or chimpanzees occur mostly in an-
imals held in human captivity and are suspected to be attrib-
utable to human-animal transmission (Chi et al. 2007). In all
studies searching for the causative agent of pneumonia, pneu-
mococci are the most frequently isolated pathogen, in both
out-patient and in-inpatient settings (including severe
pneumonia treated at intensive care units; Drijkoningen and
Rohde 2014). S. pneumoniae strains differ considerably in
their capacity to cause a disease in humans in general and
some strains may primarily cause invasive disease, whereas
others predominately induce otitis media (Jefferson et al.
2006; Mehr and Wood 2012). Since pneumococci are a true
human-specific pathogen of high clinical importance with a
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high diversity of diseases caused by the various clinical iso-
lates, we urgently need to study the biology of this pathogen in
human tissue.

The ex vivo infection of human lungs with pneumococci
induces the expression of immunomodulatory molecules such
as tumor necrosis factor α (TNFα), interleukin-1β (IL-1β),
granulocyte-macrophage colony-stimulating factor, platelet-
derived growth factor (PDGF), IL-6, IL-8, IL-10, IL-15, IL-
17, or prostaglandin-E2 (PGE2; Fatykhova et al. 2015;
Szymanski et al. 2012; Xu et al. 2008). Experiments per-
formed with the clodronate-induced depletion of alveolar lung
macrophages (AM) indicated that these cells might, in partic-
ular, contribute to the induction of IL-6 and TNFα (Xu et al.
2008). Fatykhova et al. (2015) involved the use of various
clinical isolates to investigate their capacity to induce the po-
tent pro-inflammatory cytokine IL-1β. These clinical strains
differed in the expression of the cholesterol-dependent cyto-
lysin pneumolysin (PLY), a major virulence factor of pneu-
mococci (Kadioglu et al. 2008): Whereas serotypes 2, 3, 6B
and 9N pneumococci express fully hemolytic PLY, serotype 1
and 8 strains express non-hemolytic PLY (Fatykhova et al.
2015). The authors demonstrated that only strains expressing
lytic PLY induce IL-1β in a NLRP3-inflammasome-
dependent manner. Experiments with purified allele 1 PLY
(capable of causing pores) and allele 5 PLY (not causing
pores) verified that pore formation is a pre-requisite for PLY-
related IL1β induction in human lung tissue. In addition to the
mechanistic information about IL-1β regulation in human
lungs, this study highlighted the suitability of the model to
analyze the biology of patient-derived bacterial isolates and
showed the meaningfulness of the results obtained.

Cyclooxygenases (COX) produce fatty acid mediators, in-
cluding prostaglandins such as PGE2, which play an important
role in the regulation of lung immunity (Claar et al. 2015;
Zhou et al. 2016). In human lungs, pneumococci induce the
strong up-regulation of the inducible form of COX, namely
COX-2, in particular, in AM, AEC-II (but not AEC-I) and the
vascular endothelium. Notably, same results have been seen in
the tissue of patients suffering from pneumonia (Szymanski
et al. 2012). Inhibition of p38 MAPK (mitogen-activated
protein kinase) or ERK1/2 (extracellular signal-regulated ki-
nase 1/2) blocked both the induction of COX-2 and the release
of PGE2. In addition to PGE2, the authors showed the
release of 6-keto PGF1α and thromboxane B2 into the infected
tissue. Tissue expresses predominately the E prostanoid recep-
tor 4 (EP4) and EP4 stimulation results in an increased cAMP
production in lung tissue. Such PGE2 production by lung cells
may contribute to the control of inflammatory mediator pro-
duction, such as that of IL-1β (Mortimer et al. 2016) in pneu-
mococcal pneumonia.

Furthermore, Xu et al. (2008) noted the increased expres-
sion of Toll-like receptor 2 (TLR2) and TLR4 mRNA in
pneumococci-infected tissue; however, neither the way that

this translates into protein expression nor the effected cells
are known. In accordance, the means by which the observed
activation of signaling pathways such as MAPKs (Szymanski
et al. 2012; Xu et al. 2008) is made cell-specific is unknown.

In addition to PLY, pneumococci liberate significant
amounts of hydrogen peroxide and thus we can reasonably
suggest that this causes oxidative stress to the lungs
(Kadioglu et al. 2008). However, although pneumococci cause
oxidative stress in human lungs, as evidenced by a decreased
ratio of glutathione to glutathione disulfide in infected tissue
(Zahlten et al. 2015b), this seems not to depend on oxygen
radicals. Unexpectedly, a pneumococcal autolysin A (LytA)-
dependent process turns out to induce oxidant stress. LytA is
the major autolysin of pneumococci (Lopez and Garcia 2004)
and causes the release of intrabacterial components such as
PLYand bacterial DNA. Since the pneumococci-related expres-
sion of the immunomodulatory transcription factor Krueppel-
like factor (KLF) 4 (McConnell and Yang 2010) in human
lungs seems also to depend on LytA-related pneumococcal
autolysis (Zahlten et al. 2015b) and as KLFs have an impact
on lung cell activation in pneumococcal infection (Zahlten et al.
2010, 2013, 2015a, b), further investigation of LytA-related
activation of lung tissue is highly recommended.

The above-mentioned studies indicate strong pro-
inflammatory mediator release in pneumococci-infected lung
tissue (Fatykhova et al. 2015; Szymanski et al. 2012; Xu et al.
2008) and massive inflammation, in particular during severe
pneumonia, is suggested to foster the progression of the dis-
ease to acute respiratory failure, sepsis and multiorgan dys-
function (Bauer et al. 2006). Quinolones, such as
moxifloxacin, have been hypothesized to exert anti-
inflammatory (beneficial) effects, in addition to their well-
established antimicrobial properties (Dalhoff and Shalit
2003). However, when investigating the effect of
moxifloxacin on pneumococci- or TNF-α-stimulated IL-6
and IL-8 release in human lung tissue, Müller-Redetzky
et al. (2015) found that only TNF-α-related IL-6 release was
reduced by moxifloxacin. Accompanying investigations in a
pneumococcal mouse pneumonia model showed similar re-
sults and, thus, did not support the hypothesis that
moxifloxacin exhibits potent anti-inflammatory potency in
pneumococcal pneumonia.

Bacillus anthracis

Although Bacillus anthracis does not cause pneumonia, the
lung is the entry site for B. anthracis in inhalation anthrax,
which is the most deadly form of the disease. It seems that
inhaled spores escape from the alveolus into regional lymph
nodes. Therein, spores may germinate and induce disease after
having reached the circulatory system (Moayeri et al. 2015).
Important virulence factors of B. anthracis include two toxins:
both lethal toxin (LT) and edema toxin (ET) share the
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protective antigen (PA) as a common receptor-binding com-
ponent. PA allows the transport of the catalytic components
LF and EF into the cytosol of target cells (Friebe et al. 2016;
Moayeri et al. 2015). Chakrabarty et al. (2007) tested
B. anthracis spore-related inflammatory tissue activation by
utilizing spores prepared from the B. anthracis Sterne strain
7702(pX01+, pX02-). A significant increase in IL-6, TNFα,
IL-8, monocyte chemoattractant protein-1 (MCP-1) and mac-
rophage inflammatory protein 1 (MIP)-1 α/βwas noted in the
lung tissue supernatants; however, although a tremendous up-
regulation of IL-1β mRNAwas documented, the authors not-
ed no increase in IL-1β protein. Nevertheless, supernatants of
spore-exposed lung tissue stimulated neutrophil and mono-
cyte chemotaxis. B. anthracis spores caused strong activation
of the MAPKs ERK, JNK and p38 and chemical inhibition
of the kinases reduced chemo- and cytokine liberation.
Finally, immunohistochemistry revealed the presence of IL-6
and IL-8 in epithelial cells and AM. Overall, the study
(Chakrabarty et al. 2007) revealed that B. anthracis spores
initiated a prominent pro-inflammatory response.

An important unresolved question is: how do B. anthracis
spores escape from the alveolar airspace into the systemic
circulation (Friebe et al. 2016; Moayeri et al. 2015)? In prin-
ciple, transport might occur via host cells used as Trojan hors-
es (AM, dendritic cells [DC], or a hitherto unidentified
Bcarrier^ cell) or spores may cross the alveolar epithelial wall
without the help of migratory cells. Finally, a sequence of
spore clustering, germination and production of B. anthracis
virulence toxins has been proposed to cause epithelial damage
that allows free spore passage (Friebe et al. 2016; Goossens
and Tournier 2015; Moayeri et al. 2015), the so-called
Bjailbreak^ model (Weiner and Glomski 2012). By using the
above-mentioned model (Chakrabarty et al. 2007), the same
group (Booth et al. 2016) aimed to identify the role of carrier
cells and of B. anthracis toxins in this process. Around 5 % of
spores were internalized in APC and around 13 % in AEC,
whereas around 80 % of the spores were free after 2 h post-
infection and these numbers did not change over time.
Importantly, the clustering of spores occurred only in infected
cells. The clear identification of the AEC cells that take up
spores (AEC I, AEC II), by means of appropriate imaging
techniques, would be of interest. Interestingly, the addition
of PA or LT neither significantly influences spore uptake nor
causes any cytotoxicity (as spore treatment alone also does
not). Overall, the data suggest that B. anthracis spores migrate
through the lung soon after exposure. The primary initial
phase of spore movement from the alveolar space across the
alveolar epithelial barrier may not essentially require a cellular
carrier. However, the above study showed no translocation of
spores into lung blood vessels (e.g., alveolar capillaries) and
further investigations are required to demonstrate that the
presence of spores in alveolar cells finally results in spore
movement into the circulation.

Mycobacterium tuberculosis

Mycobacterial lung infections are still a major cause of mor-
bidity and mortality worldwide. In 2012, around 9.0 million
people developed tuberculosis (TB) and 1.5 million people
died of this chronic infectious lung disease (Zumla et al.
2013). Although the innate immune system may clear early
infection of M. tuberculosis in a significant number of cases
(Khan et al. 2016; Morrison et al. 2008), little is known about
the initial interaction of this important pathogen with human
lung tissue. Ganbat et al. (2016) have now started to explore
such interactions by establishing an ex vivo human lung infec-
t ion mode l wi th va r ious mycobac te r i a l s t r a ins
(M. tuberculosis, M. abscessus, M. avium). The authors note
that AM, monocytes, neutrophils and AEC-II cells are infect-
ed by the mycobacterial strains. Interestingly, AEC-II seem to
be infected in a significantly higher frequency by
M. tuberculosis than by M. abscessus or M. avium. The pre-
sented results indicate the occurrence of cell death in all in-
fected cell types but this also differs among strains. Although
the study is limited by the relatively short time period post-
infection (16 h post-infection), this model in principle will
allow the detailed analysis of the initial mycobacterium-
alveolar interac t ion, including the act ivat ion of
inflammation-regulating mediators by, for example, clinical
isolates. Thus, the model adds an important step forward for
the investigation of these important events in early mycobac-
terial infection.

Nontypeable Haemophilus influenzae

Nontypeable Haemophilus influenza (NTHI) infections, in
particular newly acquired strains, may trigger infection-
related exacerbation in COPD and recurrent infections may
induce overall disease progression (Duell et al. 2016). On
using the NTHI strain Rd KW20 isolated from a COPD pa-
tient suffering from invasive pneumonia, Wagner et al. (2015)
noticed strong IL-8 induction in ex vivo infected human lungs;
this was reduced in tissue pre-treated with the anti-
inflammatory drug budenoside. Interestingly, the steroid re-
duced not only the induction of IL-8; it furthermore reduced
the presence of intracellular bacteria in the tissue by a hitherto
unexplored mechanism. How the C-type lectin receptor
Dectin-1, which has recently been found to be expressed api-
cally on human bronchial and alveolar epithelium (Heyl et al.
2014), participates in the pro-inflammatory activation of hu-
man lung tissue, in addition to the Bclassic^ innate immune
receptors such as TLRs, needs to be determined. In a subse-
quent study, the group of Drömann (Dromann et al. 2010)
used two clinical isolates: one isolated from a COPD patient
with invasive disease and one from a patient without COPD
and invasion. Both strains infected AM and lung epithelial
cells; however, AEC subtypes were not identified in this
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study. Notably, the authors observed a moderate induction of
TGF-β but a strong upregulation of the TGF-β-
pseudoreceptor BMP and activin membrane-bound inhibitor
(BAMBI) on both the alveolar wall epithelium and AM. This
was accompanied by p38 MAPK-triggered induction of the
pro-inflammatory mediators IL-8 and TNF-α. TGF-β is an
important mediator of inflammatory and remodeling events
in the lung and elevated levels of BAMBI protein in plasma
were observed in COPD patients (Zhang et al. 2016). In these
patients, increased BAMBI expression on human CD4+ T cell
membranes was noted and the enhanced plasma BAMBI
levels in COPD positively correlated with increased plasma
TGF-β1 levels and the Th17/Treg ratio indicating that an im-
paired TGF-β/BAMBI pathway can promote inflammation in
COPD (Zhang et al. 2016). Furthermore, studies in the lungs
of idiopathic pulmonary fibrosis patients and the mouse model
of bleomycin-related lung fibrosis (Murphy et al. 2016) have
demonstrated increased levels of BAMBI (and related BMP
accessory proteins noggin and FSTL1) in the lungs suggesting
a role of these molecules in inflammatory and fibrotic lung
injury. Since other studies have suggested a role of TGF-β and
related molecules in acute lung infection, such as IAV-related
pneumonia (Furuya et al. 2015; Woods et al. 2015) and IAV-
bacterial coinfection (Li et al. 2015), a more detailed analysis
of the function of these molecules in human lungs is highly
desirable.

Legionella pneumophila

Legionella pneumophila (L. pneumophila) is the causative
agent of Legionnaires’ disease. The inhalation of contaminat-
ed water droplets causes disease outbreaks of public health
significance (Phin et al. 2014). The bacterium interacts with
the human host by the release of extracellular proinflammato-
ry outer membrane vesicles (OMV) and uses the Dot/Icm type
IVB translocation system to inject over 300 effector proteins
into the infected cell (Ensminger 2016). It creates a replicative
niche by avoiding fusion of phagosomes with the lysosome,
interacts with endoplasmic reticulum–Golgi traffic (Prashar
and Terebiznik 2015) and induces the massive pro-
inflammatory activation of human lung epithelium in vitro
(Schmeck et al. 2007, 2008). Jäger et al. (2014) started their
investigation of Legionella infection in human lung tissue by
using wild-type strain Corby and a DotA-negative mutant
(defect for the Dot/Icm type IVB translocation system).
Furthermore, they explored the role of OMV, suspected of
inducing massive lung cell activation (Galka et al. 2008).
They showed that extracellular adhesion to the alveolar epi-
thelial barrier took place before Legionella entered macro-
phages. Whereas wild-type bacteria multiplied more than
10-fold within 48 h, DotA-negative bacteria could not repli-
cate within the tissue. Of note, infection caused damage to
both the infected AM and the alveolar wall. Bacteria deficient

for DotA induced less damage than wild-type bacteria
highlighting the importance of this virulence system. The
AM surface and cytoplasm were decorated by OMV suggest-
ing that these cells are particularly targeted by pro-
inflammatory Legionella vesicles. OMV induced damage to
the lung comparable with that caused by wild-type bacteria,
shedding light on the possible important role of OMV in
Legionella pathogenesis. By using transcriptome analysis,
the authors showed the differentiated expression of more than
2400 genes in Legionella-infected human lung tissue, includ-
ing genes related to extracellular proteins, components of the
immune response and lipoprotein transport proteins. The
pathophysiological role of, for example, the observed down-
regulation of the protein content of immunoregulatory
uteroglobin (a member of the secretoglobin superfamily;
Mukherjee et al. 2007) and the downregulation of MARCO,
a class A scavenger receptor, which seems to be involved in,
for example, the pathogenesis of the pneumococcus
(Dorrington et al. 2013), remains unknown. In addition, the
further characterization of the way that vacuole formation
(Naujoks et al. 2016) and the activation of innate immune
receptors (Cunha and Zamboni 2014) take place in original
human lung tissue would be of great interest.

Coxiella burnetii

The obligate intracellular pathogenCoxiella burnetii causes Q
fever, a disease starting with flu-like symptoms, which, in
cases of prolonged infections, may proceed to severe endocar-
ditis. Similar to Legionnaires’ disease, the public health sys-
tem noticed Q fever mostly in the form of localized outbreaks
resulting from the inhalation of contaminated aerosols from
farm and domestic animals (in particular sheep and goats;
Cilloniz et al. 2016). Coxiella replicates within an acidic
lysosome-like parasitophorous vacuole (PV), mostly in mac-
rophages and uses a Dot/Icm type IV secretion-system-based
molecule delivery into host cells to hijack host cell signaling
cascades, thereby creating its replicate niche (Moffatt et al.
2015). Graham et al. (2016) compared the behavior of aviru-
lent C. burnetii NMII (RSA439, clone 4, a frequently used
laboratory strain) with virulent C. burnetii in human
precision-cut lung slices. Although single bacteria were de-
tected in the alveolar epithelium, bacteria replicated sufficient-
ly only in AM. Of note, only live avirulent bacteria induced
the liberation of IL-1β and IL-18, whereas virulent bacteria
did not. Subsequently, on using human AM, the authors found
that a human-specific noncanonical inflammasome dependent
on caspase-4/-5 might induce IL-1β release without the induc-
tion of pyroptosis. Since caspase-4 and caspase-5 are human-
specific proteins, caspase-5 is undetectable in the THP-1 hu-
manmacrophage-like cell linemodel andmouse macrophages
do not respond with IL-1β liberation to C. burnettii infection
(Cunha et al. 2015); this discovery was essentially based on
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the use of original human tissue. Notably, since numerous
studies involving the use of avirulent and virulent
C. burnettii indicated widely identical intracellular behavior
of the bacteria (Moffatt et al. 2015), further investigations in
primary human tissue (and cells) are needed in order to dis-
cover the way that virulent C. burnetii suppress IL-1β pro-
duction, thereby inhibiting one of the most powerful pro-
inflammatory mediators in the host.

Ex vivo viral infection of human lung tissue

Influenza virus

Because of the enormous clinical importance and continuous
emergence of new influenza A strains (IAV; Lai et al. 2016;
Trombetta et al. 2015), various workers have investigated IAV
infection of human lung tissue. Research has focused, in most
reports, on viral replication, tissue tropism and tissue activa-
tion in the sense of cytokine and chemokine liberation.
Knowledge of the level of efficiency of an emerging IAV
replicate in human lung tissue is of enormous importance to
estimate its potential to spread in the community and to gauge
the potential of the virus to cause harm to the lungs. For ex-
ample, the avian IAV H5N1 has caused typically severe hu-
man infections with a high fatality rate over many years (Lai
et al. 2016). By using human lung tissue ex vivo infected with
IAV H5N1, several groups have demonstrated strong viral
replication (R.W. Chan et al. 2009; Hocke et al. 2013a;
Nicholls et al. 2007; Weinheimer et al. 2012) comparable with
or even higher than that observed with classic pandemic
strains such as IAV H3N2 (Weinheimer et al. 2012). In
2009, the first pandemic of the 21st century started with a
novel swine-originated IAV H1N1 virus (Novel Swine-
Origin Influenza et al. 2009). In most cases, this virus caused
a disease of moderate severity as observed in most seasonal
influenza (Peiris et al. 2009). In accordance, compared with
highly virulent IAV strains such as H5N1 or classic pandemic
strains such as IAV H3N2, this virus showed intermediate
replication in ex vivo infected human lung tissue (M.C. Chan
et al. 2010; Weinheimer et al. 2012; Wu et al. 2010b, 2012;
Zhang et al. 2010) thus reflecting the moderate disease caused
in humans. A new IAV H7N9 virus resulting from sequential
reassortments in ducks and chickens has been shown to infect
human beings since 2013. Originated from eastern China, the
virus has caused repeated waves of outbreaks and has thus
raised concerns of a pandemic threat (Zhou et al. 2016).
Two reports have revealed that IAV H7N9 efficiently repli-
cates in human lung tissue (M.C. Chan et al. 2013; Knepper
et al. 2013). Noticeably, whereas virus isolated from a fatal
human infection (A/Anhui/1/2013 (H7N9)) replicated compa-
rably with seasonal IAV, classic avian H7 subtype viruses
propagated poorly indicating that this new H7N9 virus is well

adapted to replicate in the human host (Knepper et al. 2013).
In agreement, several studies have demonstrated that IAV
strains not adapted to humans (such as classic swine or avian
strains) do not propagate efficiently in human material (M.C.
Chan et al. 2010, 2013; Knepper et al. 2013;Weinheimer et al.
2012; Wu et al. 2010b; Zhang et al. 2010). Overall, the ex vivo
models used in these studies seem to robustly reflect the ca-
pacity to infect and propagate in humans.

Infection of a host cell with IAV results in numerous alter-
ations in cell function, ranging from the release of immune-
regulating mediators to changes in sodium pump activity and
finally the killing of IAV-infected cells (Herold et al. 2012;
Short et al. 2014). Thus, the identification of the primary target
cells of IAV in the human lung is of primary importance if we
are to estimate the possible effects of cell damage for organ
function and to investigate possible cell-based interventions.
Irrespective of the virus strain used in the ex vivo infection
models, most reports identify AEC II cells as the primary
replicative niche in the peripheral human lung (Fig. 1; M.C.
Chan et al. 2010, 2013; Hocke et al. 2013b; Knepper et al.
2013; Weinheimer et al. 2012; Zhang et al. 2010). Patients
with lung fibrosis typically show AEC II hyperplasia

Fig. 1 Influenza Avirus (IAV) targets AEC-II in ex vivo infected human
lung tissue. Cross-sections from infected lung explants were stained for
IAV antigen (green), for prosurfactant protein C (blue) to detect alveolar
epithelial cell II (AEC-II, T II; white arrowheads infected cells [cyan],
open arrowheads uninfected cells [blue]) and for CD68 (red) to detect
alveolar lung macrophages (asterisk infected cell [yellow]). Nuclear
staining with 4,6-diamidino-2-phenylindole is shown in dark orange
and lung structure is visualized with differential interference contrast.
The stains were visualized by confocal microscopy and tissue
autofluorescence was separated from specific fluorescence by spectral
unmixing. From Weinheimer et al. (2012). Reproduction by permission
of Oxford University Press

516 Cell Tissue Res (2017) 367:511–524



(Fernandez and Eickelberg 2012). Hocke et al. (2013b)
demonstrated massive infection of AEC II cells of fibrotic
lungs and Fujino et al. (2013) noticed increased IAV replica-
tion in AEC II cells derived from patients with pulmonary
fibrosis thus indicating that the AEC II cell is the primary
target cell of IAV in the human lung. In contrast, the presence
of viral antigen is detected much less frequently in human
alveolar macrophages (M.C. Chan et al. 2010, 2013;
Weinheimer et al. 2012) but nevertheless these cells are of
importance for the immune response to IAV (Halstead and
Chroneos 2015). Although (1) IAV H1N1 particles have been
identified in endothelial cells of fatal cases (Ru et al. 2011), (2)
in vitro experiments indicate IAV propagation in endothelial
cells (Wang et al. 2015) and (3) the endothelium might signif-
icantly contribute to the course of the disease (Teijaro et al.
2011), IAVantigen has not been detected in the ex vivomodels
discussed here.

The tissue responded to IAV infection with the release of
multiple immunomodulatory mediators including IL-1β, IL-
6, IL-8, MCP-1, MIP-1α/β, interferon-gamma inducible pro-
tein 10 kDa (IP-10) and interferon-beta (IFN-β) in a some-
what strain-specific manner (Knepper et al. 2013;Weinheimer
et al. 2012; Wu et al. 2010b, 2012). However, a subsequent
strain-related analysis of mediator expression is still lacking
and limited information is available about the mediator origin
(Wu et al. 2010b). Experiments with chemical inhibitors have
suggested an important role of MAPKs for the regulation of
inflammatory mediator expression (Wu et al. 2010b) and IAV
seem to interfere with the expression of the pattern-
recognition receptor retinoic acid-inducible gene I (RIG-I;
Wu et al. 2012). Patients with COPD are prone to IAV infec-
tions, and IAV vaccination is highly warranted in those suf-
fering from COPD (Sehatzadeh 2012). By using human lung
explants exposed to cigarette smoke extract before IAV infec-
tion Wu et al. (2011) demonstrated altered IFN and IP-10
expression and IAV-mediated RIG-I upregulation, suggesting
that smoking impairs the host response to IAV.

That these models might be useful for the testing of new
therapeutic approaches is indicated by a report of Chan et al.
(R.W. 2009). The binding to sialic acids (alpha2-6-linked and
alpha2-3-linked depending on the viral strain) on the host cell
membrane is an integral step of the IAV infection process.
R.W. Chan et al. (2009) demonstrated that DAS181 induces
de-sialylation of both sialic acids in ex vivo human lung tissue
and that two doses of DAS181 treatment given 12 h post-
infection are sufficient to block H5N1 infection in ex vivo lung
tissue culture.

Adenovirus 7

The human adenovirus 7 belongs to the Adenoviridae sub-
group B (HAdV-B7), which causes pneumonia and systemic
disease in both immuno-compromised and non-immuno-

compromised hosts, mainly in regional outbreaks (Ng et al.
2015; Scott et al. 2016). In addition to being human patho-
gens, recombinant adenoviruses attracted the interest of re-
searchers, several years ago, as promising tools for gene ther-
apy but the lack of suitable animal (Ginsberg et al. 1990) and
cell culture (Jogler et al. 2006) models supporting human
HAdV replication hampered research progress. Booth
et al. (2004) thus used a human ex vivo infection model with
human HAdV-B7 and showed efficient viral replication.
HAdV-B7 provoked activation of ERK kinases and ERK
inhibition blocked the release of IL-8. In a subsequent study
(Wu et al. 2010a), the same group showed the liberation of IL-
6, IL-8, IP-10, MIP-1α/β and MCP-1 in infected tissue.
Multicolor immunostaining documented the infection of
AEC-I and AEC-II cells. The authors identified lung AEC as
the primary source for IL-8, whereas IP-10 was found in AM
and epithelial cells. Overall, this model now gives a solid basis
for further assessment of HAdV viral replication and
pathology.

Coronaviruses

Infections with coronaviruses (CoVs) in humans primarily
target the upper respiratory tract and, in most cases, induce a
rather mild, self-limiting disease, such as the common cold
(Su et al. 2016). However, SARS-CoVand MERS-CoV differ
from the other CoV. In 2002/2003, SARS-CoV caused a glob-
al outbreak of a severe respiratory disease killing over 700
people and illustrating the potential worldwide impact of a
new interspecies transmission of a highly pathogenic zoonotic
virus (Peiris et al. 2004). An important initial step for the
understanding of such emerging viral infections of the lung
is the identification of host cell receptors and primary target
cells. By using human SARS-CoV-infected lung tissue slices,
the function of angiotensin-converting enzyme 2 as a human
receptor for SARS-CoV could be substantiated (V.S. Chan
et al. 2006). Furthermore, results indicate that a subpopulation
of lung cells expressing stem/progenitor cell markers CD34
and Oct-4 (while being negative for cytokeratin or surfactant)
may be important target cells of SARS-CoV in human lungs
(Chen et al. 2007). However, the way in which SARS-CoV
interacts with the human lung alveolus is far away from being
understood and research efforts to elucidate its pathobiology
have been paralyzed with the temporal distance of the
outbreak.

In 2012, MERS-CoV (originally named human
coronavirus-EMC) emerged as a new CoV causing an acute
respiratory syndrome in humans (Fehr et al. 2016; Mohd et al.
2016; Zumla et al. 2015). Probably originating in bats, the
MERS-CoV infection is endemic in dromedary camel popu-
lations of East Africa and the Middle East (Mohd et al. 2016).
Most human cases are based on dromedary camel to human
transmission, although, under some circumstances, significant
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human-to-human transmission also occur (Cho et al. 2016;
Drosten et al. 2014, 2015). MERS-CoV uses, as a receptor,
the human Dipeptidyl peptidase 4 (DPP4; Raj et al. 2013),
which is not present in the most frequently used animal
models (Gretebeck and Subbarao 2015; Sutton and
Subbarao 2015), thus impeding its analysis in complex lung
tissue.

Hocke et al. (2013a) and R.W. Chan et al. (2014) used
ex vivo infection of human lungs to assess viral replication
and cellular tropism of MERS-CoV. Both groups infected
the tissue with the original human MERS-CoV Erasmus
Medical Center strain and the group of R.W. Chan (2014)
expanded the observations to strains isolated from dromedar-
ies. Both groups showed strong viral replication in lung tissue.
Bronchial epithelial cells, AEC-I, AEC-II cells and endotheli-
al cells were shown to be infected (R.W. Chan et al. 2014;
Hocke et al. 2013a). Indeed, electron microscopy showed the
presence of MERS-CoV in the AEC-I and AEC-II cells
(Hocke et al. 2013a). The presence of virus particles in the
basal lamina below intact AEC suggested the basolateral re-
lease of MERS-CoV (Hocke et al. 2013a). Notably, both re-
ports showed no evidence for the infection of AM. DPP4 was
present in all cell types infected (Hocke et al. 2013a) and this
broad receptor expression might be one of the major factors
for the observed widespread cellular tropism of MERS-CoV.
To gain insight into the mechanistic cause of lung failure in
MERS-CoV, Hocke et al. (2013a) assessed the cell death of
epithelial cells and the integrity of the alveolar tight junction
protein occludin. Detachment of apoptotic MERS-CoV–in-
fected AEC-II from the alveolar base membrane with disrup-
tion of alveolar tight junctions (indicated by the disintegration
of the occludin protein band) indicated structural lung damage
caused by MERS-CoV (Fig. 2). Notably, the first (and only)
published autopsy performed on a fatal case of MERS-CoV
essentially confirmed the results of the ex vivo models with
respect to viral tissue tropism and damage (Ng et al. 2016).
Because of the persistent reintroduction of the virus into the
human population and the lack of specific therapies, an ongo-
ing need exists to investigate MERS-CoV interaction with the
human host.

Summary and outlook

The presented studies indicate that ex vivo infected human
lung tissue is useful for the investigation of basic principles
of pathogen-host interaction in the lung. A great advantage of
this model is the possibility of using wild-type patient isolates
of bacteria and viruses for the investigation of general patho-
genicity and risk assessment of emergent pathogens (e.g., new
zoonotic viruses) in original three-dimensional tissue. Many
studies focus on pathogen replication, cellular tropism and
t i ssue act iva t ion in the sense of the re lease of

immunomodulatory factors. Despite this obvious value, many
areas of human tissue culture per se can be improved and, in
particular, many further directions can be taken in the investi-
gation of infectious lung diseases.

One important issue is that we need to know, in more detail
and on several levels, Bwhat is in the box^. Most studies in-
volve the use of peripheral (alveolar) lung material obtained
from surgery because of lung cancer; some groups have in-
vestigated lung tissue not used for transplantation. Although
tumor-free tissue is used, we cannot rule out that the very
presence of the tumor in the lung has altered tissue responses
or that, for example, mechanical ventilation before explanta-
tion has affected sample responses. Donors of lung tissue
might have a long history of smoking and might suffer from
additional diseases. However, if sample numbers in the labo-
ratories increase, a detailed stratification of patient history and
an analysis of tissue responses may help us to understand the
way that smoking, COPD, asthma, or diabetes mellitus and
chronic heart disease lead to increased susceptibility to pneu-
monia (Torres et al. 2015). Lung tissue contains a huge variety
of cellular components and even nowadays, new cell types are
being identified (Franks et al. 2008). We need to use robust
technologies such as advanced cell sorting (Fujino et al. 2012;
Gross et al. 2015) and microscopy to identify cells present in

Fig. 2 MERS coronavirus (MERS-CoV) causes structural damage in
ex vivo infected human lungs. Detachment of MERS-CoV-infected cell
(green) from the alveolar epithelial layer disrupts epithelial continuity. An
annular formation of tight junction protein occludin (red, white
arrowheads) still surrounds the detached cell and is dissolved from the
alveolar junctional band (white arrow). Stain visualization by confocal
microscopy and separation of tissue autofluorescence from specific
fluorescence by spectral unmixing. From Hocke et al. (2013a).
Reprinted with permission of the American Thoracic Society. Copyright
© 2016 American Thoracic Society
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our samples and to investigate any changes in these popula-
tions over culture time and during lung-pathogen interaction.
This step is a prerequisite for the in-depth analysis of the role
of those hitherto neglected cells for the responses to lung
infection. For example, Piet et al. (2011) used human
lung tissue-derived T cells to investigate the specificity and
function of CD103+CD8+ T cells. Their study indicated that
the human lung might harbor local virus-specific epithelial
CD8+ T cells that might protect the lung against recurring
IAV infection (Piet et al. 2011). Techniques such as laser-
assisted cell picking for the extraction of single cells out of
infected lung tissue (Fink et al. 1998) combined with recently
developed assays for single-cell transcriptome analysis (Bell
and Eberwine 2015; Grun et al. 2015; Hodne and Weltzien
2015; Macaulay et al. 2016) might help to expand our knowl-
edge of cell-specific responses in the human lung. Indeed, the
combination of such cutting-edge technologies with complex
human samples is a challenge and needs strong interdisciplin-
ary collaboration. Microscopy-based documentation of live-
dead staining of cells and subsequent three-dimensional re-
construction will help us to gain insight into tissue viability
over time and into the specific effects of pathogens and their
virulence factors (e.g., PLY release of pneumocooci).

The preservation of the complex three-dimensional struc-
ture of the lung is one of the great advantages of these models
and high-end microscopy is a key to obtaining information
about pathogen-host interaction in this complex organ archi-
tecture. Unfortunately, human lung tissue contains very strong
autofluorescent structures (e.g., collagen, elastin) causing sig-
nificant overlap with fluorophore emission spectra. Spectral
confocal microscopy can be used to achieve higher signal-to-
noise ratios as demonstrated in some studies (Hocke et al.
2013a, b; Szymanski et al. 2012; Weinheimer et al. 2012).
On the other hand, autofluorescence itself may be useful for
the visualization of tissue morphology and cellular dynamics
in human lung tissue by performing autofluorescence multi-
photon microscopy (Kretschmer et al. 2016). No technical
reason exists as to why the real-time imaging of pulmonary
reactions combined with micropuncture techniques, which
have previously been successfully used in animal experiments
(Islam et al. 2012; Kreisel et al. 2010; Looney and
Bhattacharya 2014; Westphalen et al. 2014) should not also
be used for the dissection of intra-alveolar host-pathogen in-
teractions in ex vivo human lung models.

A next step is to advance from phenomenological studies to
mechanistic investigations in order to improve the analytical
potency of the model. Beyond the use of chemical inhibitors
or the testing of innovative anti-infective drugs, viral transfor-
mation (McBride et al. 2000) allowing cell-specific functional
analysis is a possible strategy. This can be combinedwith gene
editing approaches such as the CRISPR-Cas9 system (Chen
and Goncalves 2016; Wang and Qi 2016), thereby permitting
mechanistic studies.

In general, we need to be able to establish longer durations
of tissue cultivation. For example, viral transformation and
subsequent gene editing, together with studies addressing tis-
sue injury and repair, would profit from expanded observation
times. The rapid emergence of sophisticated microfluidic sys-
tems (Esch et al. 2015) better mimicking organ supply and
possibly including physical forces might lead to longer pe-
riods of lung tissue cultivation. Finally, studies are hampered
by limited tissue availability, a limitation that could, at least in
part, be overcome by the rigorous improvement of human
lung-specific cryopreservation methods (Baatz et al. 2014;
Bai et al. 2016; Rosner et al. 2014).

Beyond the analytical power of these models, we wish to
stress that the use of human lung tissue reduces the burden of
animal experiments by contributing to the 3-R principle to
replace, reduce, or refine animal experiments (Russell 1995).

Overall, ex vivo infection models of human lung tissue are
today of great value for the investigation of pneumonia-related
host-pathogen interaction. The combination of these models
with the now available cutting-edge technologies will booster
the mechanistic understanding of pneumonia in humans.
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