Skip to main content

Advertisement

Log in

Neuroprotection of medical IOP-lowering therapy

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Intraocular pressure (IOP)-lowering therapy has been shown to arrest or retard the progression of optic neuropathy typical for glaucoma and can, thus, be described as neuroprotective. At present, six classes of medical therapy are employed, namely parasympathomimetics, alpha/beta-sympathomimetics, β-blockers, carbonic anhydrase inhibitors, α2-adrenergic receptor agonists and prostaglandin analogues. For several of these substances, some experimental evidence exists of a possible neuroprotective mechanism, beyond their IOP-lowering activity. β-Blockers are involved in the up-regulation of brain-derived neurotrophic factor (BDNF) and can decrease glutamate-mediated NMDA receptor activation. Not only systemic but also topical carbonic anhydrase inhibitors are able to increase retinal blood flow. α2-Adrenergic receptor agonists can up-regulate the formation of BDNF and anti-apoptotic factors. Prostaglandin analogues increase blood flow to the eye, possibly including the retina. To date, evidence for a neuroprotective effect independent of IOP regulation in human glaucoma is scarce and has only been shown to be likely for the α2-adrenergic receptor agonist, brimonidine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson DR, Hendrickson A (1974) Effect of intraocular pressure on rapid axoplasmic transport in monkey optic nerve. Invest Ophthalmol 13:771–783

    PubMed  CAS  Google Scholar 

  • Bathija R (2000) Optic nerve blood flow in glaucoma. Clin Exp Optom 83:180–184

    Article  PubMed  Google Scholar 

  • Burgoyne CF, Downs JC, Bellezza AJ, Suh JK, Hart RT (2005) The optic nerve head as a biomechanicl structure: a new paradigm for understanding the role of IOP-related stress and strain in the pathophysiology of glaucomatous optic nerve head damage. Prog Retin Eye Res 24:39–73

    Article  PubMed  Google Scholar 

  • Cheon EW, Park CH, Kang SS, Cho GJ, Yoo JM, Song JK, Choi WS (2003) Betaxolol attenuates retinal ischemia/reperfusion damage in the rat. Neuroreport 14:1913–1917

    Article  PubMed  CAS  Google Scholar 

  • Gao H, Qiao X, Cantor LB, WuDunn D (2002) Up-regulation of brain-derived neurotrophic factor expression by brimonidine in rat retinal ganglion cells. Arch Ophthalmol 120:797–803

    Article  PubMed  CAS  Google Scholar 

  • Harris A, Chung HS, Ciulla TA, Kagemann L (1999) Progress flow and relevance to our understanding of glaucoma and age-related macular degeneration. Prog Retin Eye Res 18:669–687

    Article  PubMed  CAS  Google Scholar 

  • Heijl A, Leske MC, Bengtsson B, Hymann L, Hussein M (2002) Reduction of intraocular pressure and glaucoma progression: results from the Early Manifest Glaucoma Trial. Arch Ophthalmol 120:1268–1279

    Article  PubMed  Google Scholar 

  • Hiraoka M, Inoue K, Ninomiya T, Takada M (2003) Ischaemia in the Zinn-Haller circle and glaucomatous optic neuropathy in macaque monkeys. Trans Am Ophthalmol Soc 101:163–269

    Google Scholar 

  • Hollander H, Makarov F, Stefani FH, Stone J (1995) Evidence of constriction of optic axons at the lamina cribrosa in the normotensive eye in humans and other mammals. Ophthalmic Res 27:296–309

    Article  PubMed  CAS  Google Scholar 

  • Johnson DH, Bradley JMB, Acott TS (1990) The effect of dexamethasone on glycosaminoglycans of human trabecular meshwork in perfusion organ culture. Invest Ophthalmol Vis Sci 31:2568–2571

    Google Scholar 

  • Kanamori A, Naka M, Fukuda M, Nakamuta M, Negi A (2009) Latanoprost protects rat retinal ganglion cells from apoptosis in vitro and in vivo. Exp Eye Res 88:535–541

    Article  PubMed  CAS  Google Scholar 

  • Kass MA, Heuer DK, Higginbotham EJ, Johnson CA, Keltner JL, Miller JP, Parrish RK 2nd, Wilson MR, Gordon MO (2002) The Ocular Hypertension Treatment Study: a randomized trial determines that tropical ocular hypotensive medication delays or prevents the onset of privary open-angle glaucoma. Arch Ophthalmol 120:701–713

    Google Scholar 

  • Krupin T, Liebmann JM, Greenfield DS, Ritch R, Gardiner S (2011) A randomized trial of brimonidine versus timolol in preserving visual function: results from the Low-Pressure Glaucoma Treatment Study. Am J Ophthalmol 151:671–681

    Article  PubMed  CAS  Google Scholar 

  • Kuehn MH, Fingert JH, Kwon YH (2005) Retinal ganglion cell death in glaucoma: mechanisms and neuroprotective strategies. Ophthalmol Clin North Am 18:383–395

    Article  PubMed  Google Scholar 

  • Martinez A, Sanchez-Salorio M (2009) A comparison of the long-term effects of dorzolamide 2% and brinzolamide 1%, each added to timolol 0.5%, on retrobulbar hemodynamics and intraocular pressure in open-angle glaucoma patients. J Ocul Pharmacol Ther 25:239–248

    Article  PubMed  CAS  Google Scholar 

  • Miglior S, Pfeiffer N, Torri V, Zeyen T, Cunha-Vaz J, Adamsons I (2007) Predictive factors for open-angle-glaucoma among patients with ocular hypertension in the European Glaucoma Prevention Study. Ophthalmology 114:3–9

    Article  PubMed  Google Scholar 

  • Minckler DS, Tso MO, Zimmerman LE (1976) A light microscopic, autoradiographic study of axoplasmic transport in the optic nerve head during ocular hypotonie, increased intraocular pressure, and papilledema. Am J Ophthalmol 82:741–757

    PubMed  CAS  Google Scholar 

  • Minckler DS, Bunt AH, Johanson GW (1977) Orthograde and retrograde axoplasmic transport during acute ocular hypertension in the monkey. Invest Ophthalmol Vis Sci 16:426–441

    PubMed  CAS  Google Scholar 

  • Nakanishi Y, Nakamura M, Mukuno H, Kanamori A, Seigel GM, Negi A (2006) Latanoprost rescues retinal neuro-glial cells from apoptosis by inhibiting caspase-3 which is mediated by p44/p42 migenactivated protein kinase. Exp Eye Res 83:1108–1117

    Article  PubMed  CAS  Google Scholar 

  • Ogidigben M, Chu TC, Potter DE (1994) Alpha-2-adrenoceptor mediated changes in aqueous dynamics: effect of perussis toxin. Exp Eye Res 58:729–736

    Article  PubMed  CAS  Google Scholar 

  • Okazawa H, Yamauchi H, Sugimoto K, Toyoda H, Kishibe Y, Takahashi M (2001) Effects of acetazolamide on cerebral blood flow, blood volume, and oxygen metabolism: a positron emission tomography study with healthy volunteers. J Cereb Blood Flow Metab 21:1472–1479

    Article  PubMed  CAS  Google Scholar 

  • Osborne NN, Cazervieille C, Carvalho AL, Larsen AK, DeSantis L (1997) In vivo and in vitro experiments show that betaxolol is retinal neuroprotective agent. Brain Res 751:113–123

    Article  PubMed  CAS  Google Scholar 

  • Osborne NN, Ugarte M, Chao M, Chidlow G, Bae JH, Wood JP, Nash MS (1999) Neuroprotection in relation to retinal ischemia and relevance to glaucoma. Surv Ophthalmol 43(Suppl 1):S102–S128

    Article  PubMed  Google Scholar 

  • Osborne NN, Wood JP, Chidlow G, Casson R, DeSantis L, Schmidt KG (2004) Effectiveness of levobetaxolol and timolol at blunting retinal ischaemia is related to their calcium and sodium blocking activities: relevance to glaucoma. Brain Res Bull 62:525–428

    Article  PubMed  CAS  Google Scholar 

  • Pedersen DB, Koch Jensen P, Cour M la, Kiilgaard JF, Eysteinsson T, Bang K, Wiencke AK, Stefánsson E (2005) Carbonic anhydrase inhibition increases retinal oxygen tension and dilates retinal vessels. Graefe Arch Clin Exp Ophthalmol 243:163–168

    Google Scholar 

  • Pinar-Sueiro S, Urcola H, Rivas MA, Vecino E (2011) Prevention of retinal ganglion cell swelling by systemic brimonidine in a rat experimental glaucoma model. Clin Exp Ophthalomol 39:799–807

    Google Scholar 

  • Priestley Smith J (1879) Glaucoma:its causes, symptoms, pathology, and treatment. Churchill, London

    Google Scholar 

  • Quigley HA, Broman AT (2006) The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol 90:262–267

    Article  PubMed  CAS  Google Scholar 

  • Quigley HA, Addicks EM, Greenn WR, Maumence AE (1981) Optic nerve damage in human glaucoma. II. The site of injury and susceptibility to damage. Arch Ophthalmol 99:635–649

    Article  PubMed  CAS  Google Scholar 

  • Reitsamer HA, Bogner B, Tockner B, Kiel JW (2009) Effects of dorzolamide on chorioidal blood flow, ciliary blood flow, and aqueous production in rabbits. Invest Ophthalmol Vis Sci 50:2301–2307

    Article  PubMed  Google Scholar 

  • Rokicki W, Dorecka M, Romaniuk W (2007) Retinal ganglion cells death in glaucoma—mechanism and potential treatment. Part II. Klin Oczna 109:353–355

    PubMed  Google Scholar 

  • Saylor M, Mc Loon LK, Harrison AR, Lee MS (2009) Experimental and clinical evidence for brimonidine as an optic nerve and retinal neuroprotective agent: an evidence-based review. Arch Ophthalmol 12:402–406

    Google Scholar 

  • Seki M, Tanaka T, Matsuda H, Togano T, Hashimoto K, Ueda J, Fukuchi T, Abe H (2005) Topically adminstered timolol and dorzolamide reduce intraocular pressure and protect retinal ganglion cells in a rat experimental glaucoma model. Br J Ophthalmol 89:504–507

    Article  PubMed  CAS  Google Scholar 

  • Shih GC, Calkins DJ (2012) Secondary neuroprotective effects of hypotensive drugs and potential mechanisms of action. Expert Rev Ophthalmol 7:161-175

    Article  PubMed  CAS  Google Scholar 

  • Son JL, Soto I, Oglesby E, Lopez-Roca T, Pease ME, Quigley HA, Marsh-Armstrong N (2010) Glaucomatous optic nerve injury involves early astrocyte reactivity and late olig dendrocyte loss. Glia 58:780–789

    PubMed  Google Scholar 

  • Sugrue MF (2000) Pharmocological and ocular hypotensive properties of topical carbonic anhydrase inhibitors. Prog Retin Eye Res 19:87–112

    Article  PubMed  CAS  Google Scholar 

  • Toris CB, Camras CB, Yablonski ME (1999) Acute versus chronic effects of brimonidine on qqueous humor dynamics in ocular hypertensive patients. Am J Ophthalmol 128:8–14

    Article  PubMed  CAS  Google Scholar 

  • Torring MS, Holmgaard K, Hessellund A, Aalkjaer C, Bek T (2009) The vasodilating effect of actazolamide and dorzolamide involves mechanisms other than carbonic anhydrase inhibition. Invest Opthalmol Vis Sci 50:345–351

    Article  Google Scholar 

  • Wheeler LA, Lai R, Woldemussie E (1999) From the lab to the clilnic: activation of an alpha-2 agonist pathway is neuroprotective in models of retinal and optic nerve injury. Eur J Ophthalmol 9 (Suppl 1):S17–S21

    PubMed  Google Scholar 

  • Woldemussie E, Wijono M, Pow D (2007) Localization of alpha 2 receptors in ocular tissues. Vis Neurosci 24:745–756

    Article  PubMed  Google Scholar 

  • Wood JP, DeSantis L, Chao HM, Osborne NN (2001) Topically applied betaxolol anttenuates ischaemia-induced effects to the rat retina and stimulates BDNF mRNA. Exp Eye Res 72:79–86

    Article  PubMed  CAS  Google Scholar 

  • Wood JP, Schmidt KG, Melena J, Chidlow G, Allmeier H, Osborne NN (2003) The beta-adrenoceptor antagonists metipranolol and timolol are retinal neuroprotectants: comparison with betaxolol.Exp Eye Res 76:505-516

    Article  PubMed  CAS  Google Scholar 

  • Yoles E, Wheeler LA, Schwartz M (1999) Alpha-2 adrenoreceptor agonists are neuroprotective in a rat model of optic nerve degeneration. Invest Ophthalmol Vis Sci 40:65–73

    PubMed  CAS  Google Scholar 

  • Yoshida Y, Sugiyama T, Utsunomiya K, Oguta Y, Ikeda T (2010) A pilot study for the effects of donepezil therapy on cerebral and optic nerve head flow, visual field defect in normal-tension glaucoma. J Ocul Pharmacol Ther 26:187–192

    Article  PubMed  CAS  Google Scholar 

  • Zhao DY, Cioffi GA (2000) Anterior optic nerve microvascular changes in human glaucomatous optic neuropathy. Eye (Lond) 14:445–449

    Article  Google Scholar 

  • Zheng J, Feng X, Hou L, Cui Y, Zhu L, Ma J, Xia Z, Zhou W, Chen H (2011) Latanoprost promotes neurote outgrowth in differentiated RGC-5 cells via the PI3K-Akt-mTOR signalling pathway. Cell Mol Neurobiol 31:597–604

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norbert Pfeiffer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pfeiffer, N., Lamparter, J., Gericke, A. et al. Neuroprotection of medical IOP-lowering therapy. Cell Tissue Res 353, 245–251 (2013). https://doi.org/10.1007/s00441-013-1671-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-013-1671-1

Keywords

Navigation