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Abstract Osteoarthritis is a degenerative joint disease
characterized by pain and disability. It involves all ages and
70% of people aged >65 have some degree of osteoarthritis.
Natural cartilage repair is limited because chondrocyte
density and metabolism are low and cartilage has no blood
supply. The results of joint-preserving treatment protocols
such as debridement, mosaicplasty, perichondrium trans-
plantation and autologous chondrocyte implantation vary
largely and the average long-term result is unsatisfactory.
One reason for limited clinical success is that most treat-
ments require new cartilage to be formed at the site of a
defect. However, the mechanical conditions at such sites are
unfavorable for repair of the original damaged cartilage.
Therefore, it is unlikely that healthy cartilage would form at
these locations. The most promising method to circumvent
this problem is to engineer mechanically stable cartilage ex
vivo and to implant that into the damaged tissue area. This
review outlines the issues related to the composition and
functionality of tissue-engineered cartilage. In particular, the
focus will be on the parameters cell source, signaling
molecules, scaffolds and mechanical stimulation. In addi-
tion, the current status of tissue engineering of cartilage will
be discussed, with the focus on extracellular matrix content,
structure and its functionality.
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Introduction

Osteoarthritis is a degenerative joint disease characterized by
pain and disability (Temenoff andMikos 2000). It involves all
ages and 70% of people aged >65 have some degree of
osteoarthritis (Engel 1968). Natural cartilage repair is limited
because the intrinsic regenerative ability of the tissue is low
and cartilage lesions in case of trauma or diseases tend to
progressively degrade (Hunziker 2002; Buckwalter and
Mankin 1998). Current clinical treatment strategies like
mosaicplasty, autologous chondrocytes injection and micro-
fracture have varying success rates, but average long-term
results are unsatisfactory (Kreuz et al. 2006; Redman et al.
2005; Bentley et al. 2003; Hunziker 2002; Buckwalter and
Mankin 1998). A general drawback of these therapeutic
strategies is that the newly formed tissue lacks the structural
organization of cartilage and has inferior mechanical
properties compared to native tissue, and is therefore prone
to failure (Hunziker 2009). The contribution that in vitro
cartilage tissue engineering can make is to create a more
durable and functional replacement of the degenerated tissue,
which is therefore more likely to survive the mechanical
conditions in a joint after implantation. One ultimate goal in
this field of research is to develop a replacement that has a
structure and composition resembling native cartilage,
yielding similar mechanical behavior and which fully
restores joint functionality.

This review will focus on issues related to functionality
of tissue-engineered cartilage. First, we discuss the most
important parameters for cartilage tissue engineering stud-
ies, including cell source, signaling molecules, scaffolds
and mechanical stimulation. Second, we will discuss the
current status of tissue engineering of cartilage, focusing on
ECM content, structure and its functionality. Finally, we
identify common limitations and provide further recom-
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mendations for future approaches to engineer a cartilage
matrix in vitro that can provide a functional replacement of
damaged articular cartilage in vivo.

Important parameters for cartilage tissue engineering
studies: cell source, signaling molecules, scaffolds
and mechanical stimulation

Cell source

The ideal cell source for cartilage tissue engineering is one that
can easily be isolated and expanded, and which synthesizes
abundant cartilage-specific extra-cellular matrix components,
e.g., aggrecan and type II collagen. The most investigated cell
sources for their potential in cartilage tissue engineering are
chondrocytes and stem cells (for a detailed overview, we refer
to Table 1 in Chung and Burdick 2008).

Chondrocytes

Chondrocytes are the most obvious cell source. They are
able to produce, maintain and remodel the cartilage ECM in
vitro. However, only a small number of autologous
chondrocytes are available, and cells harvested from
diseased joints are relatively inactive. Unfortunately, chon-
drocyte expansion in monolayer causes dedifferentiation,
characterized by decreased proteoglycan synthesis and type
II collagen expression and increased type I collagen
expression (Darling and Athanasiou 2005b; Goessler et al.
2004; Goessler et al. 2005). The age of chondrocytes is also
an issue that needs to be considered. In most cartilage tissue
engineering studies, chondrocytes from immature animals
are used, which proliferate faster and have increased
chondrogenic potential compared to chondrocytes from
older human donors (Hidaka et al. 2006; Pestka et al.
2011). Unfortunately, chondrocytes from older (OA)
patients are metabolically less active in vitro (Wenger et
al. 2006; Dehne et al. 2009). Even though these limitations
can be partly counteracted with altered culture condition,s
such as rotating bioreactor cultures (Marlovits et al. 2003),
culture in serum-free media (Giannoni et al. 2005), culture
with reduced oxygen tension (Foldager et al. 2011; Strobel
et al. 2010) and the addition of growth factors (Barbero et
al. 2004; Terada et al. 2005), the use of these cells for
cartilage repair is not favorable. Another disadvantage of
the use of isolated articular chondrocytes is morbidity at the
donor site and loss of joint function.

Stem cells

A possible solution for overcoming the limited supply of
primary chondrocytes is the use of multipotent stem cells,

mainly from bone marrow and adipose tissue. Bone
marrow-derived stem cells (BMSCs) can be easily obtained
and can be induced to differentiate into cartilage, even after
expansion (Song et al. 2004; Boeuf and Richter 2010).
Chondrogenic differentiation of BMSCs for cartilage tissue
engineering purposes is facilitated by the application of
TGF-β in various 3D culture environments (Worster et al.
2001; Mauck et al. 2006; Angele et al. 1999; Li et al. 2005;
Coleman et al. 2007; Williams et al. 2003; Meinel et al.
2004; Wang et al. 2005; Chen et al. 2004; Buxton et al.
2011; Alves da Silva et al. 2010). The main limitation of
the use of BMSCs for cartilage tissue engineering is that
matrix accumulation and the subsequent mechanical prop-
erties of BMSC-laden constructs are lower than those of
chondrocyte-seeded constructs (Erickson et al. 2009;
Mauck et al. 2007; Thorpe et al. 2010; Vinardell et al.
2010). A possible explanation could be that during culture
in vitro MSCs increase expression of collagen type X,
which is a hypertrophic chondrocyte marker (Barry et al.
2001; Koga et al. 2009). Some reports have shown that the
expression of hypertrophic-related genes could lead to cell
death or calcification followed by vascularization when
implanted (De Bari et al. 2004). Furthermore, MSCs
continue to express collagen type I (Steck et al. 2005).
Recently, several promising results have been published
that show the feasibility of inhibiting collagen type I and X
expression and thereby controlling the chondrogenic dif-
ferentiation pathway of MSCs (Rampersad et al. 2011; Petit
et al. 2011; Bian et al. 2011; Fischer et al. 2010).

Adipose-derived stem cells (ADSCs) have been shown
to be capable of differentiating into chondrocytes in 3D
culture systems in the presence of ascorbate, dexametha-
sone and TGF-β (Estes and Guilak 2011; Ronziere et al.
2010; Puetzer et al. 2010; Buckley et al. 2010; Diekman et
al. 2010). In these studies, production of cartilage-specific
matrix components was shown as well as increased
mechanical properties. Even though ADSCs are able to
differentiate into chondrocytes, their chondrogenic potential
is lower compared to BMSCs, which suggests that more
research needs to be done to improve the chondrogenic
potential of these cells.

Besides bone marrow and adipose tissue, other sources
such as muscle, synovium and periosteum are also being
investigated for cartilage tissue engineering purposes, all of
which have been shown to have chondrogenic potential, but
which is still lower compared to BMSCs and/or ADSCs
(Salgado et al. 2006; Li et al. 2011; O'Driscoll 1999).

Signaling molecules

Several cytokines, hormones and growth factors are known
to influence the anabolic and catabolic processes by
chondrocytes. Therefore, a number of growth factors,
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including transforming growth factor (TGF-β), insulin-like
growth factor (IGF-1), bone morphogenetic proteins
(BMPs), and to a lesser extent fibroblast growth factors
(FGFs) and epidermal growth factor (EGF), have been used
in cartilage tissue engineering studies in vitro to promote
the chondrogenic phenotype, to stimulate ECM production
and to promote chondrogenesis of MSCs (for a detailed
overview, we refer to Table 2 in Ahmed and Hincke 2010).
Members of the TGF-β superfamily play a major role in
cartilage development and repair. Mainly, the isoforms
TGF-β1, 2 and 3 enhance chondrocyte proliferation and
increase ECM synthesis by chondrocytes (Morales 1991;
Bujia et al. 1996; van der Kraan et al. 1992). Further, TGF-
β1 and 3 promote chondrogenesis of MSCs (Grimaud et al.
2002; Li et al. 2005; Schulz et al. 2008; Puetzer et al. 2010;
Xu et al. 2008). IGF-1 can stimulate the anabolic activity of
chondrocytes and can induce chondrogenesis of MSC cell
types (Yoon and Fisher 2008; Veilleux and Spector 2005;
Kurth et al. 2007; Indrawattana et al. 2004; Fukumoto et al.
2003; Gooch et al. 2001; Seifarth et al. 2009). BMPs,
especially BMP-2 and BMP-7, promote chondrogenesis of
MSCs and increase matrix production by chondrocytes and
MSCs (Kurth et al. 2007; Park et al. 2005; Hicks et al.
2007; Kaps et al. 2002).

Combinations of signaling molecules

Administration of a combination of growth factors to
chondrocyte and MSC cultures in vitro may increase their
impact. For example, combinations of IGF-1/TGF-β1, IGF-
1/TGF-β2, IGF-1/BMP-2 and IGF-1/bFGF/TGF-β2
exerted additive anabolic effects on chondrocytes and
stimulated ECM synthesis (Chua et al. 2004; Seifarth et
al. 2009; Wiegandt et al. 2007; Elder and Athanasiou 2009;
Yasuda et al. 2006). However, other studies have reported
that combinations of IGF-1/TGF-β, bFGF/ TGF-β and
FGF-2/IGF-1 did not further improve histological features
or mechanical performance of the engineered cartilage
(Arevalo-Silva et al. 2001; Veilleux and Spector 2005).

Combinations of growth factors have also been used to
induce chondrogenic differentiation of MSCs. For example, a
combination of IGF-1 and TGF-β1 induced chondrogenic
differentiation of MSCs (Xiang et al. 2007) and combinations
of TGF-β2/BMP-7, TGFβ2/BMP-6, TGF-β2/BMP-2 and
TGF-β2/IGF-1 promoted chondrogenesis of MSCs, with
TGF-β2/BMP-7 being most effective (Kim and Im 2009; Im
et al. 2006). Also, combinations of TGF-β3 with BMP-2,
BMP-4, BMP-6 and IGF-1 have been shown effective, both
in monolayer and 3D cultures (Sekiya et al. 2005; Hennig et
al. 2007; Indrawattana et al. 2004; Takagi et al. 2007).

Dose and timing of administration It has become clear that
the effect of application of signaling molecules is not only

dependent on the type of factor that is applied but other
parameters are also involved, such as dose and timing of
administration and the cell type on which they act. For
example, transient application of TGF-β3 resulted in higher
compressive properties and GAG content of chondrocyte-
laden hydrogels (Lima et al. 2007; Byers et al. 2008) and
MSC-laden constructs (Huang et al. 2009; Mehlhorn et al.
2006; Caterson et al. 2001), compared to continuous
application of TGF-β3. It has been suggested that TGF-β
may act to ‘prime the pump’, which makes continuous
application superfluous. Other studies have employed
sequential growth factor addition with the goal of first
increasing proliferation within the constructs with a
combination of FGF-2/TGF-β1 followed by enhancing
matrix production with IGF-1 (Pei et al. 2002). In most
cartilage tissue engineering studies, the commonly used
concentration of growth factors such as TGF-β, FGF-2 and
BMPs is 10 ng/ml (Ahmed and Hincke 2010). However,
continuous treatment of chondrocytes in agarose with 1,
2.5, 5 and 10 ng/ml TGF-β resulted in comparable
enhancement of both physical and biochemical properties
(Byers et al. 2008).

Mechanical stimulation

A well-established cue for improving the mechanical
properties of tissue-engineered cartilage is mechanical
stimulation. Bioreactors have been developed to apply
mechanical loading regimes to cell-seeded constructs (for
a detailed overview, we refer to tables and figures in Schulz
and Bader 2007). Direct confined or unconfined compres-
sion and hydrostatic pressure are the two most investigated
loading regimes in cartilage tissue engineering studies.
Direct dynamic compression applied to chondrocyte-seeded
constructs generally induces increased ECM production
and/or proliferation and has been shown to improve
compressive properties of the engineered tissue (Bian et
al. 2010; Kock et al. 2009; Kelly et al. 2006; Kisiday et al.
2004; Mauck et al. 2002). More recently, dynamic
compression has been applied to MSC-seeded constructs,
where it stimulated the accretion of cartilage-like extra-
cellular matrix (ECM) components relative to unloaded
controls (Mauck et al. 2007; Kisiday et al. 2009; Park et al.
2006; Thorpe et al. 2010). Application of hydrostatic
pressure in vitro has improved the properties of tissue-
engineered cartilage (Hu and Athanasiou 2006b; Miyanishi
et al. 2006a, b). However, as with direct compression, the
outcomes of these studies depend largely on the loading
parameters used. Besides the effect on metabolic activity of
the cells, hydrostatic pressure also stimulates the chondro-
cytic phenotype of chondrocytes in vitro (Candiani et al.
2008; Heyland et al. 2006; Kawanishi et al. 2007).
Furthermore, hydrostatic pressure has been used to stimu-
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late chondrogenic differentiation of bone marrow-derived
(Luo and Seedhom 2007; Miyanishi et al. 2006a, b; Wagner
et al. 2008), adipose-derived (Ogawa et al. 2009), and
synovium-derived stem cells (Sakao et al. 2008) with
promising results. Other loading regimes that have been
investigated are shear loading, sliding/rolling indentation
loading, tensile loading, centrifugal force, and gravity
(Darling and Athanasiou 2003a, b; Schulz and Bader
2007; Khoshgoftar et al. 2011; Sun et al. 2010; Wimmer
et al. 2009) with mixed results. In conclusion, it is
necessary to investigate which specific (combinations of)
mechanical stimuli, as well as their parameters, result in
optimal response of the cells in cultured constructs.

Scaffolds

The goal of the use of biomaterial scaffolds in cartilage
tissue engineering is to provide the cells with a comfortable
niche which stimulates cells to synthesize cartilage matrix,
and to (temporarily) replace the function of the native
matrix until new cartilage has formed. To fulfill that
function, the scaffold should preferably (1) be biodegrad-
able in a controlled way without toxic byproducts, (2) have
a porosity that allows diffusion of nutrients and waste
products, (3) support cell viability, proliferation, differenti-
ation and ECM production, (4) be able to fix to and
integrate with the tissue at the defect site, and (5) give
mechanical support to the engineered tissue. Many natural
and synthetic polymers have been used as scaffold material
in cartilage tissue engineering (for a detailed overview, we
refer to Table 1 in Ahmed and Hincke 2010).

Types of scaffold

Natural polymers can be subdivided into protein-based,
such as silk, fibrin and collagen, and carbohydrate based,
such agarose, alginate, hyaluronan and chitosan. Many of
these are hydrogels, which makes them appropriate for
engineering tissues such as cartilage, which have high water
content. These can be designed as injectable in liquid form,
which mixes well with chondrogenic cells. The most
attractive feature of hydrogels is that cells encapsulated in
the scaffold maintain their spherical chondrocyte phenotype
and do not (de)differentiate. Hydrogels are interesting for
studies in which mechanical loading is used, because they
are able to transduce mechanical loads such that forces can
be exerted on the cells (Spiller et al. 2011). Finally, natural
scaffold materials, particularly fabricated by biologics, are
believed to permit natural ECM remodeling with construct
maturation (Chung et al. 2006; Burdick et al. 2005; Li et al.
2005; Welsch et al. 2010).

The most widely used synthetic polymeric scaffolds in
cartilage tissue engineering are the poly-α-hydroxy esters,

especially polylactic acid (PLA) and polyglycolic acid
(PGA), because of their biodegradability and US Food
and Drug Administration (FDA) approval for clinical use
(Yoon and Fisher 2006). Scaffolds made of these polymers
have better mechanical strength than hydrogels, which
makes it easier to fix them in a defect and improves their
load-bearing properties (Munirah et al. 2008). In addition, it
is easier to modify the properties of these scaffolds, which
makes it easier to tune, for example, their degradation
characteristics, structure and mechanical strength. A disad-
vantage of synthetic polymers is that cells often do not
maintain their chondrocytic phenotype and produce ECM
with inferior properties (Chen et al. 2003).

Scaffold architecture, porosity and stiffness

Porosity, pore size and interconnectivity of scaffold
materials are important since these properties influence cell
migration and diffusion of oxygen, nutrients, waste prod-
ucts and signaling molecules (Nuernberger et al. 2011). For
example, inhomogeneous oxygen delivery from the periph-
ery towards the center of cell-seeded constructs may lead to
cell death in the central regions but not in the periphery
(Volkmer et al. 2008; Malda et al. 2004; Sengers et al.
2005a, b).

In addition, a porous material improves mechanical
interlocking between the implant and the surrounding
natural cartilage, providing a greater mechanical stability
at the interface. Porosity and permeability have a remark-
able effect on proliferation and phenotype of chondrocytes
(Lien et al. 2009; Stenhamre et al. 2010; Jeong and
Hollister 2010). The pore size for scaffolds to promote
proliferation is optimal between 100 and 500 μm (Ikada
2006; Lien et al. 2009). Porosity and architecture can also
be used to induce topographical organization. Woodfield et
al. (2005) produced a 100% interconnected pores scaffold
with pore size gradients, which promoted an inhomoge-
neous cell distribution and zonal distribution of GAGs and
collagen type II.

Stiffness of scaffolds also influences the mechanical
environment of the seeded cells which in turn can influence
cell differentiation and tissue growth in culture (Kelly and
Prendergast 2006). Increasing substrate stiffness influences
chondrocyte morphology which changed from a rounded
shape with nebulous actin on weaker substrates to a
predominantly flat morphology with actin stress fibers on
stiffer substrates (Genes et al. 2004). Further, the load on
cartilage is a stress and not a strain, hence the strain applied
to the cells at first is a function of the scaffold stiffness and
then a combination of scaffold and ECM properties as the
tissue is produced. For example, high agarose concentra-
tions (3%) yield initially stiffer tissue constructs, presum-
ably due to more efficient retention of matrix products, but
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long-term tissue properties become significantly inferior to
those with 2% agarose (Ng et al. 2005).

Biodegradability

Spatially and temporally controlled degradation of the
scaffold can affect production and deposition of new tissue.
Optimal degradation kinetics ensures initial stability and
shape of the scaffold, but do not hinder new cartilaginous
ECM deposition. Several degradable scaffolds have been
adopted for cartilage tissue engineering (Freed et al. 1994). It
has been shown that scaffolds that degrade slowly lead to
increased and more homogeneous ECM deposition com-
pared to fast degrading scaffolds (Meinel et al. 2004;
Solchaga et al. 2005; Bryant and Anseth 2002). Further,
degradation of the scaffold allows for integration and
remodeling of the new tissue into the surrounding cartilage
after implantation (Bryant and Anseth 2003). To direct
temporal degradation of scaffolds, hydrolytically degradable
components (Bryant and Anseth 2003), matrix metallopro-
teinase (MMP)-sensitive peptides (Lutolf et al. 2003; Park et
al. 2004), and exogeneous enzymes (Ng et al. 2009a; Rice
and Anseth 2007) have been introduced. For example, Ng et
al. (2009a) has shown that controlled degradation of agarose
scaffold with the enzyme agarase resulted in increased
collagen content and dynamic mechanical properties relative
to control over time in culture, which they hypothesize to be
the result of enhanced nutrient transport and increased space
for collagen fibril development with time of culture. In
addition, it has been shown that, in evolving MSC-laden
hydrogels with mesh sizes that change over time due to
crosslink degradation, GAG and collagen II content were
increased, and mechanical properties were superior to non-
evolving hydrogels (Chung et al. 2009).

Tissue-engineered cartilage: content, structure
and functionality

The joint is mechanically a very demanding environment. For
a tissue-engineered cartilage implant to survive those con-
ditions, it needs to have sufficient material properties to
withstand or respond to normal joint loading. This does not
necessarily mean that the engineered tissue is an exact copy of
the natural tissue; the tissue may further develop and adapt
properties post-implantation. The questions arise, what exactly
are these ‘sufficient material properties’, and how much do we
need to improve our current tissue-engineered cartilage.

Proteoglycan content

Several studies have been able to engineer cartilage
constructs in vitro with native sGAG content and equilib-

rium compressive properties (Lima et al. 2006, 2007; Elder
and Athanasiou 2008; Bastiaansen-Jenniskens et al. 2008;
Waldman et al. 2006). sGAG content and compressive
properties improved with increasing culture duration and
cell seeding density (Chang et al. 2001; Mauck et al. 2002;
Puelacher et al. 1994), and with addition of anabolic growth
factors and/or increased serum supplementation (Pei et al.
2002; Gooch et al. 2001; Mauck et al. 2003). Interestingly,
the deposition of sGAG was significantly enhanced when
dynamic loading was applied to chondrocytes-seeded
constructs (Chowdhury et al. 2003; Mauck et al. 2000).

Collagen content

The major shortcoming of tissue-engineered cartilage is
believed to be the lack of collagen content and consequently
its poor tensile properties. Collagen reaches only 15–35% of
the native content after 5–12 weeks (Hu and Athanasiou
2006a; Miot et al. 2006; Eyrich et al. 2007). Culture
conditions that have a significant impact on collagen
synthesis in vitro include cell source (Waldman et al.
2003), cell seeding density (Williams et al. 2005; Revell et
al. 2008), scaffold properties (Woodfield et al. 2005), growth
factors (Darling and Athanasiou 2005a; Jenniskens et al.
2006; Blunk et al. 2002) and mechanical stimulation (Mauck
et al. 2000; Waldman et al. 2006; Hu and Athanasiou 2006b;
Elder et al. 2006; Elder and Athanasiou 2008; Kock et al.
2010). A possible hypothesis that may explain low collagen
contents in constructs is that GAGs, which are initially
rapidly synthesized, impede increased collagen content.
Altered transport pathways of nutrients (Asanbaeva et al.
2007), or reduction of cell straining by environmental
loading may cause decreased collagen synthesis. Altered
transport of synthesised products (Asanbaeva et al. 2007) or
altered extracellular biochemical environment may modulate
collagen self-assembly (Saeidi et al. 2009). Finally, altered
cellular mechanical stimulation may induce MMP expres-
sion, resulting in collagen degradation. Also, collagen type I
in vitro degradation has been demonstrated to be strain-
dependent (Huang and Yannas 1977), and this likely also
holds for collagen type II (Flynn et al. 2010). If so, then it is
worthwhile to explore strains in cartilage tissue engineering
constructs, to evaluate whether these strain conditions would
either prevent or induce enzymatic collagen degradation. In
the latter case, we may proceed to seek loading conditions
that would prevent collagen degradation from occurring.

Furthermore, the excessive amounts of GAGs compared
to collagens in tissue-engineered cartilage are believed to
negatively influence tensile properties of the tissue
(Responte et al. 2007). Studies involving the application
of the enzyme chondroitinase-ABC, which degrades GAGs
(Prabhakar et al. 2006) and thus reduces stress on the
collagen network, have demonstrated increased tensile

Cell Tissue Res (2012) 347:613–627 617



properties of cartilage explants (Asanbaeva et al. 2007) and
self-assembled tissue-engineered cartilage (Natoli et al.
2009; Bian et al. 2009). This effect is likely due to more
or altered crosslinking, larger fibril size or altered fibril
orientation (Responte et al. 2007).

Collagen orientation

The importance of the arcade-like collagen structure for the
load-bearing properties of native cartilage is well-
emphasized in literature (Korhonen and Herzog 2008;
Owen and Wayne 2006; Wilson et al. 2007; Shirazi and
Shirazi-Adl 2008; Shirazi et al. 2008; Bevill et al. 2010). It
is logical to assume that this collagen architecture repro-
duced in engineered cartilage tissue would lead to superior
mechanical properties. However, only a few studies have
focused on the importance of depth-dependent material
properties in engineered cartilage. However, using depth-
dependent scaffold properties or cell sources did not lead to
an arcade-like collagen structure (Kim et al. 2003; Malda et
al. 2005; Ng et al. 2005, 2006; Klein et al. 2007; Moutos et
al. 2007). Mechanical loading could be another stimulus for
obtaining an anisotropic distribution of collagen in engi-
neered cartilage. The rationale is that, at birth, cartilage
contains a random collagen structure. However, a few
months after animals start to walk, cartilage develops its
arcade-like structure (van Turnhout et al. 2010). Radial
confinement of self-assembled constructs increased colla-
gen organization in the direction perpendicular to the
articular surface, with no change in collagen or GAG
content (Elder and Athanasiou 2008). Furthermore, using
polarized light microscopy, it has been shown that
unconfined compression aligns collagen fibers perpendicu-
lar to the compressive loading direction (Kelly et al. 2006),
i.e. aligned with the direction in which it cyclically
elongates due to Poissons effects and incompressibility of
the tissue. The strain field generated by applying uncon-
fined compression may be useful to generate a superficial
zone with collagen fibers parallel to the surface or higher
modulus near the surface (Kelly et al. 2006; Khoshgoftar et
al. 2011). However, a physiological collagen network with
additional vertical fibers in the deep zone may not be
produced by this loading regime, since vertical strains are
absent. A numerical study by Khoshgoftar et al. (2011)
suggests that a loading regime involving indentation with
subsequent sliding of the indenter can stimulate the
formation of an appropriate superficial zone with parallel
collagen fibers. Adding lateral compression to this loading
regime may stimulate the formation of a deep zone with
perpendicularly aligned fibers, creating an arcade-like
collagen architecture. Currently, in our group, experiments
are pending in which this loading regime is applied to
chondrocyte-seeded agarose constructs in order to create a

physiological collagen network in the engineered cartilage.
This particular sliding indentation setup has already been
shown to stimulate collagen synthesis in periosteum tissue
(Fig. 1) (Kock et al. 2010). In that study, periosteal explants
were embedded in between agarose layers, which induced
cartilage formation, confirmed by synthesis of sGAG and

Fig. 1 Sections of cultured periosteal explants, stained with Safranin-
O (red, proteoglycans)/Fast Green (blue, collagen) (a–d, magnifica-
tion ×40) and with antibodies for collagen types I and II (e–h,
magnification ×40). Cartilage was produced by the explants between
agarose layers, with and without addition of TGF-β1 (a, b) and
collagen type II was synthesized in this cartilage (e–f). Only collagen
type I was visible in explants that were cultured under tension by
dynamic loading and no cartilage was formed (c, g). When dynamic
loading was combined with TGF-β1 supplementation, cartilage
formation was visible (d) and collagen type II could be seen in the
chondrogenic area (h)
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collagen type II (Fig. 1a, e). Addition of TGF-β1 to the
culture medium did not further enhance this chondrogenic
response (Fig. 1b, f). Applying sliding indentation only to
the periosteum inbetween agarose layers enhanced the
production of collagen type I, leading to the formation of
fibrous tissue without any evidence of cartilage formation
(Fig. 1c, g). However, when stimulated by both TGF-β1
and sliding indentation, collagen production was still
enhanced, but now it was collagen type II, while sGAG
was found to be similar to TGF-β1 or unloaded samples
(Fig. 1d, h).

Zonal organization

Articular cartilage engineering studies typically use homo-
geneous cell mixtures from juvenile animals that produce
cartilage tissue with large amounts of ECM, but lack zonal
organization and structure. Considering the prevalence and
importance of zonal variations in normal articular cartilage,
recent studies have aimed at engineering cartilage with
zonal structure, function, or both. Approaches to mimic the
zonal structure and function include cell-based, scaffold-
based, a combination of cells and scaffold (hybrid), and
methods based on application of depth-dependent strain
fields.

Cell-based methods typically replicate the native distri-
bution of chondrocyte populations by isolation of zonal
chondrocytes, which are employed in specific regions of a
construct and are shown to preserve their zone-specific
phenotype and to secrete specific zonal markers (Kim et al.

2003; Klein et al. 2003; Waldman et al. 2003; Schuurman et
al. 2009; Malda et al. 2010). However, in those studies, the
depth-dependent material properties of the engineered
cartilage were generally not comparable to native cartilage
(Klein et al. 2007).

Scaffold-based methods include porous gradient scaf-
folds and multilayer hydrogels. An anisotropic pore
architecture within 3D PEGT/PBT copolymer scaffolds
developed using a 3D fiber deposition technique promoted
anisotropic cell distribution, and GAGs and collagen type II
distribution, like that in the superficial, middle, and lower
zones of immature bovine articular cartilage (Woodfield et
al. 2005). Other studies have used bi- or multilayered
hydrogels to support the cartilage production by the
different zonal subpopulations. Using zonal populations of
chondrocytes seeded into layers of 2 and 3% agarose, bi-
layered cartilage constructs were produced with zonal
chondrocyte organization and depth-dependent biochemical
content, qualitatively similar to native cartilage (Ng et al.
2009b). Interestingly, this depth-dependent effect was not
seen when full-depth chondrocytes were used in the same
culture set-up, emphasizing the need for cells with typical
zonal characteristics (Ng et al. 2005). Very recently,
hydrogel-based bio-printing approaches have become avail-
able which provide organization via both scaffold architec-
ture and controlled deposition of cells at predefined
locations (Klein et al. 2009a, b; Cohen et al. 2006).

Recently, researchers have combined cell- and scaffold-
based methods to induce spatially-varying properties into
tissue-engineered cartilage constructs. Nguyen et al.

Fig. 2 Sliding with an indenter over an chondrocyte-seeded agarose
construct (1). The sliding indentation protocol led to a depth-
dependent strain field (maximal principal strains) (2), with highest
strains in the superficial zone (SZ) and the middle zone (MZ) and

lowest strains in the deep zone (DZ). The sliding indentation protocol
induced depth-dependent ECM deposition (3), leading to the highest
GAG content in the top half of the construct (SZ and MZ), which
receives high strains according to numerical simulations. *p<0.0017
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(2011a, b) demonstrated that layer-by-layer organization of
specific combinations of natural and synthetic biomaterials
can direct MSCs to differentiate into zone-specific chon-
drocytes and creates a native-like articular cartilage with
mechanical and biochemical properties varying with depth.

A different approach to induce depth-varying inhomo-
geneity within chondrocyte-seeded agarose constructs is
based on application of mechanical loading. We hypothe-
sized that by applying depth-dependent mechanical cues to
the chondrocytes, the tissue would be stimulated to form
depth-dependent material properties. For this, we developed
a custom-built bioreactor that indents constructs with a bar,
which moves over the construct without relieving the
indentation strain, a loading regime we refer to as sliding
indentation (Kock et al. 2010). The sliding indentation
protocol induced depth-dependent ECM deposition, leading
to the highest GAG content in the top half of the construct
(Fig. 2), which receives high strains according to numerical

simulations (Khoshgoftar et al. 2011). This confirms the
hypothesis that depth-dependent mechanical cues give rise to
depth-dependent matrix content. Currently, experiments are
running to further investigate the effect of depth-dependent
strain magnitudes and orientations on collagen production and
orientation, since this is the major depth-varying component
in articular cartilage, which is known to significantly
contribute to the mechanical properties of the tissue.

Conclusions and future directions

Current treatments for in vivo repair of articular cartilage
damage, including mosaicplasty, microfracture, and autol-
ogous chondrocytes injection, have successfully been
shown to relieve pain and improve joint function, but
long-term results are unsatisfactory. The major drawback of
these methods is that these mostly result in the formation of

Fig. 3 Outlook on the approaches for tissue engineering of cartilage
with sufficient ECM amounts, ECM organization and mechanical
properties. The traditional approach relies on experimentally exploring
the effect of (a combination of) different input parameters (1, 2).
These experiments are very time consuming, labor intensive and
therefore expensive. We propose a computer-aided approach which
includes theoretical and computational evaluation of the influence of

different input parameters in a modeling approach (3). With such
models, it is possible to discriminate promising protocols from those
with poor potential via in silico experiments. In addition, the outcome
of experiments could be used for optimization and validation of the
theoretical and computational models (4). This approach is less based
on trial and error, less time consuming and therefore cheaper
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fibrocartilage with inferior mechanical properties, which is
likely to degrade over time because of its insufficient load-
bearing capacity. Tissue engineering has been proposed as a
promising solution to circumvent this problem. The major
advantages of engineering cartilage in vitro are that culture
conditions can be precisely controlled and that its material
properties can be evaluated during culture, in contrast to in
vivo approaches which greatly depend on the conditions at
the donor site. Implantation of a construct with properties
that enable it to withstand in vivo loads will have a higher
probability for success.

In the past decades, enormous progress has been made in
the optimization of strategies for tissue engineering of
functional articular cartilage. However, there are still many
issues to be addressed before engineered cartilage can be
used as a clinical therapy. Finding an optimal cell source is
the first critical issue. Although primary native chondro-
cytes perform best, their limited availability makes their use
unrealistic. Preventing loss of phenotype when chondro-
cytes are expanded is a major challenge. Stem cells seem to
be a promising alternative, but they produce cartilage tissue
with inferior properties compared to chondrocytes. In the
next years, it will become clear whether, and if so which,
stem cells could be the optimal cell source for cartilage
tissue engineering studies. The second issue involves the
choice for scaffold material. Natural and synthetic materials
have been investigated, but until now none of these fulfill
all the necessary requirements. Third, appropriate biochem-
ical and/or mechanical triggers for matrix production and
tissue organization are needed. It remains challenging to
derive optimal stimuli that can promote proliferation and
differentiation of cells and stimulate the synthesis of proper
and sufficient ECM components and the secretion of
enzymes that can remodel the produced ECM.

In this respect, the most important questions that remain
are: which characteristics should the engineered cartilage
possess in order to function as well as the healthy tissue,
and how do we get there? It is clear that ECM content is
important, but it is unclear to what extent we need to
reproduce the native matrix components in engineered
cartilage implants pre-implantation. It is possible to obtain
native amounts of GAG in engineered cartilage, but
collagen content is still far below native. In our opinion,
future research should particularly focus on approaches to
increase collagen content, which is essential for proper
mechanical functioning of the tissue. Further, in order for
tissue-engineered cartilage to be mechanically functional,
we think that it is essential that the depth-dependent matrix
organization, especially the arcade-like collagen architec-
ture, should be reproduced to some extent. But how can this
be best achieved? Some attempts have been made, but the
native structural ECM organization has not yet been
reproduced. Finally, for successful repair, complete integra-

tion of the neo-cartilage with the surrounding tissue is
required, which is an aspect that demands opposite
properties from those required for mechanical load bearing.

Exploring all these different aspects experimentally will
be challenging, costly and time-consuming. We would
progress faster if we could reduce the number of experi-
mental conditions to explore. This may be achieved if we
could refine or enhance the interpretation of experimental
results, or if we were able to predict the outcome of
particular experimental conditions and thereby discriminate
promising protocols from those with poor potential. One
way to achieve this is through theoretical modeling (Fig. 3).
Models may provide insight into aspects that are difficult to
assess during the experiment. For example, the profiles of
glucose, lactate and oxygen throughout a tissue engineering
construct in time are difficult to measure, but can be
computed based on nutrient utilization data. These com-
puted profiles allowed extended interpretation of measure-
ments related to compromised nutrition in the core of
engineered cartilage (Sengers et al. 2005b), and explained
why mixing of culture medium in rotating wall vessel
bioreactors partly compensates for this compromised
nutrition (Sengers et al. 2005a). Numerical studies have

Fig. 4 Determining optimized mechanical loading regimes for
engineering functional cartilage involves understanding how mechan-
ical loading at the macroscopic levels perturbs cells at the microscopic
level, how that perturbation stimulates the chondrocyte to adjust its
pericellular matrix by matrix turnover, and how that microscopic
tissue development modulates the functional properties at the
macroscopic scale. Ultimately, modeling will need to cross these
scales to predict how mechanical perturbation would modulate tissue
properties with time of culture
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also been dedicated to understanding how mechanical
loading applied at the macroscopic level would perturb
chondrocytes at the microscopic level. These perturbations
depend on the properties of the scaffold (Appelman et al.
2011) and the pericellular matrix (Guilak and Mow 2000).
The premise is that such insight could be used to optimize
scaffold properties, or the mechanical stimulation protocols
for tissue engineering. However, application of these
insights is difficult, because the cellular microenvironment
changes with time during tissue development. To incorpo-
rate cartilage matrix development is a major challenge that
modelers are currently exploring (Sengers et al. 2004;
Klisch et al. 2008; van Donkelaar et al. 2011). Models that
take into account the actual, measurable tissue composition
(Wilson et al. 2006; Klisch et al. 2008) are of particular
interest, because these allow direct translation between
predicted proteoglycan and collagen contents and biochem-
ical data, or between predicted matrix distributions and
histology. The next step in these developments is to add
effects of mechanical perturbation to these growth and
development models, in order to predict tissue content,
distribution, and collagen orientation depending on the
applied loading protocol (Khoshgoftar et al. 2011). Once
this has been established, it will be possible to predict the
effects of loading protocols on functional tissue develop-
ment. Such predictions may lead to the design of promising
tissue engineering protocols, and reduce the number of
experiments with poor potential (Fig. 4).

In summary, cell source, scaffolds, signaling molecules and
mechanical loading are considered to be the most important
parameters to optimize for improved tissue engineering
cartilage. Ultimately, the combination of these factors should
result in mechanically functional tissue-engineered cartilage
with sufficient collagen content and depth-dependent matrix
organization, which can be implanted and which will
withstand the mechanically demanding in vivo environment.
Cell source and signaling molecules may be essential to
enhance total matrix contents. However, these are not likely to
trigger tissue orientation. Therefore, we postulate that only by
controlling the mechanical cues will we be able to engineer a
cartilage with its particular collagen fiber orientation and
inhomogeneous matrix distribution.

Open Access This article is distributed under the terms of the
Creative Commons Attribution Noncommercial License which per-
mits any noncommercial use, distribution, and reproduction in any
medium, provided the original author(s) and source are credited.
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