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Abstract To shed some light on gluconeogenesis in
mammalian retina, we have focused on fructose-1,6-
bisphosphatase (FBPase), a regulatory enzyme of the
process. The abundance of the enzyme within the layers
of the rat retina suggests that, in mammals in contrast to
amphibia, gluconeogenesis is not restricted to one specific
cell of the retina. We propose that FBPase, in addition to its
gluconeogenic role, participates in the protection of the
retina against reactive oxygen species. Additionally, the
nuclear localization of FBPase and of its binding partner,
aldolase, in the retinal cells expressing the proliferation
marker Ki-67 indicates that these two gluconeogenic
enzymes are involved in non-enzymatic nuclear processes.
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Introduction

Glycogen, the major energy reserve in the retina, is stored
predominantly in Müller cells (Poitry-Yamate and Tsacopoulos

1991), the prevalent glial element of vertebrate retina. Retinal
glycogen is presumed to provide carbohydrate support to
retinal neurons when the glucose supply of the tissue falls
below its needs (Poitry-Yamate and Tsacopoulos 1992; Poitry-
Yamate et al. 1992).

In the retina, glycogen synthesis from carbohydrates
precursors, viz., glyconeogenesis, might be a mechanism of
metabolite and neurotransmitter (e.g., lactate and glutamate)
removal during periods of high metabolic activity of retinal
neurons and photoreceptors (Goldman and Witkovsky
1987; Coffe et al. 2004). Evidence for the occurrence of
glyco- and/or gluconeogenesis (synthesis of glucose from
non-carbohydrates) within the vertebrate retina has been
demonstrated by Goldman (1988), who has found that
amphibian retina contains a full complement of gluconeo-
genic enzymes, and that 11%-15% of the glucosyl units in
retinal glycogen are derived from C3 metabolites of the
glycolytic pathway, presumably from lactate. Retinal
gluconeogenesis is thought to be restricted to the Müller
cell fraction in Amphibia (Goldman 1990). However, until
now, no definitive evidence for the presence of gluconeo-
genic enzymes in the retina of other vertebrate groups has
been presented.

To gain insight into the presence and localization of
gluconeogenesis in the mammalian retina, we have studied
the retinal distribution, subcellular localization, enzymatic
activity, and isozyme pattern of fructose-1,6-bisphosphatase
(FBPase), a regulatory enzyme of glucose and glycogen
synthesis from non-carbohydrates, in structures of the rat
retina. On the basis of co-localization studies of FBPase
with its binding partner, viz., aldolase (EC 4.1.2.13; Rakus
and Dzugaj 2000), and with structural proteins, e.g.,
vimentin, glial fibrillary acidic protein (GFAP), and α-
tubulin, we hypothesize that Müller cells are not the only
retinal cells in which the conversion of non-carbohydrates
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into glycogen (or at least into glucose-6-phosphate) occurs.
We also propose that, in addition to its expected role in
retinal glyconeogenesis, FBPase might be involved in the
protection of the retina against the toxic effects of oxygen.

Additionally, the nuclear presence of the enzyme and of
aldolase in cells of the developing, but not adult, retina
indicates that both the enzymes are also engaged in some
non-enzymatic nuclear functions. The physiological mean-
ing of these findings is discussed.

Materials and methods

Adult and newborn (4-day-old) rats (Rattus norvegicus)
were obtained from the Medical Academy’s Animal
Quarters (Wroclaw, Poland). The animals were decapitated
according to the procedure approved by a Local Ethics
Committee in Wroclaw (permission no. 87/2006). Polyes-
ter wax was obtained from Science Services (Munich,
Germany). Ki-67 (NCL-Ki-67p) was purchased from
Biokom (Janki, Poland). Other reagents were from
Sigma-Aldrich (Poznan, Poland).

Isolation of RNA and reverse transcription with polymerase
chain reaction

Total RNA was isolated from 50 mg frozen (-70°C) rat
retina by using the GenElute Mammalian Total RNA
Miniprep Kit according to the manufacturer’s instructions.
For reverse transcription with the polymerase chain reaction
(RT-PCR), mRNA was transcribed into cDNA with the
Enhanced Avian HS RT-PCR Kit. The cDNA was a PCR
template in a reaction mixture containing 2.5 U JumpStart
Accu Taq LA DNA polymerase, 5 mM TRIS-HCl (pH 9.3),
2.5 mM MgCl2, 15 mM ammonium sulfate, 0.1% Tween
20, 2% dimethylsulfoxide, dNTPs (0.4 mM each), and
appropriate rat FBPase-specific primers (0.5 μM each). To
screen the expression of FBPase isozymes in retinal cells,
rat liver-FBPase-specific primers (5′-CGTCAACTGCTT
CATGCTGG; 5′-GTGACTCTCGAGCTCTGCTC) and rat
muscle-FBPase-specific primers (5′-GAGTGGATCTCTT
CATGCTG; 5′-GTGAATGCTCTCAGGCTTTAC) were
used. The primers were designed to amplify the fragments
of mRNA (395 bases for the muscle isozyme and 518 bases
for the liver) coded by more than one exon in the genomic
DNA (the length of amplified genomic DNA fragments by
using rat muscle-FBPase-specific primers and rat liver-
FBPase-specific primers should be equivalent to 9154 bp
and to 6405 bp, respectively). Thirty-five PCR cycles were
performed, each consisting of denaturation at 94°C for
1 min, annealing at 53°C for 1 min, and extension at 72°C
for 1 min. PCR-derived DNA fragments were electro-
phoresed on 2% agarose gel supplemented with 0.01%

ethidium bromide and examined under UV light (Vilber
Lourmat, Eberhardzell, Germany).

Determination of enzymatic activity

FBPase activity was determined as previously described
(Rakus and Dzugaj 2000). Phosphofructokinase-1 (PFK)
activity measurement was carried out according to Ling
et al. (1965) with modifications: 1 ml PFK assay mixture
contained 1 mM fructose-6-phosphate, 0.02 mM fructose-
2,6-bisphosphate, 0.2 mM NADH, 1 U aldolase, 5 U
triose-3-phosphate isomerase, 5 U glycerol-3-phosphate
dehydrogenase, 0.02 mM AMP, 1 mM ATP in the relevant
buffer (50 mM bis-TRIS propane, 0.25 mM EDTA,
1.25 mM MgCl2, 150 mM KCl; pH 7.4, 37°C). All
spectrophotometric measurements were performed with an
Agilent 8453 diode array spectrophotometer.

In order to determine FBPase and PFK activities in the
retina, dissected rat eyes were placed into Hanks’ balanced
salt solution (4°C), and the retinas were immediately gently
peeled away. Then 30 mg either adult or newborn rat retinas
were homogenized in 0.3 ml homogenization buffer
(100 mM KCl, 1 mM dithiothreitol, 5 mM EDTA, 5 mM
ethylene-bis[oxyethylenenitrilo]tetraacetic acid, 1 mM phe-
nylmethylsulfonyl fluoride, 0.014 mg/ml leupeptin, 1%
Triton X-100, 20 mM HEPES; pH 7.4, 4°C). The
homogenates were subsequently centrifuged (20 min,
20,000g, 4°C), and the supernatant fraction was assayed
for enzymes activities.

For all the measured enzymes, one unit of enzyme
activity is defined as the amount of the enzyme that
catalyzes the transformation of 1 μmol substrate per
minute.

Isolation and primary cell culture of Müller cells

Müller cells were separated from rat retina according to
Gerhardinger et al. (2005), and their primary culture was
established as described previously (Guidry 1996).

Immunocytochemistry

Rabbit polyclonal antisera against muscle aldolase or muscle
FBPase were produced and purified as described previously
by Mamczur and Dzugaj (2004) and Gizak and Dzugaj
(2003), respectively. The antisera were partially purified by
using A-protein-agarose gel chromatography according to
manufacturer’s procedure (HiTrap Protein A HP, GE Health-
care). To check the specificity of the antisera, preabsorption
experiments and immunoblotting were performed as described
by Towbin et al. (1979) with extracts from rat retina and
purified muscle FBPase and muscle aldolase as a control (see
Electronic supplementary material).
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Adult and newborn rat retinas were fixed in Carnoy’s
fluid and embedded in polyester wax. Dewaxed tissue
sections were used to study the distributions of the proteins
of interest. For co-localization experiments, sections of the
adult rat retina were incubated overnight at 4°C with rabbit
anti-FBPase antiserum (protein concentration: 100 μg/ml)
together with mouse antiserum against aldolase A
(100 μg/ml) or with mouse immunoglobulins against
GFAP (1 μg/ml) and α-tubulin (15 μg/ml). To test the
co-localization of the proteins in the neonatal retina,
rabbit anti-Ki-67 IgG (dilution: 1:1000) was incubated
overnight at 4°C separately or together with either mouse
anti-aldolase A (100 μg/ml) or mouse anti-FBPase
(100 μg/ml) antisera with rat neonatal ratinal sections.
The sections were subsequently incubated for 30 min at
room temperature with the appropriate pairs of secondary
fluorophore-labeled antibodies (dilution: 1:1000): goat
anti-rabbit-tetramethylrhodamine isothiocyanate (TRITC),
goat anti-rabbit-fluorescein isothiocyanate (FITC), goat
anti-mouse-TRITC, and goat anti-mouse-FITC.

Freshly isolated Müller cells were fixed in 4% parafor-
maldehyde (PFA) in PBS (phosphate-buffered saline:
137 mM NaCl, 2.7 mM KCl, 8 mM Na2HPO4, 1.5 mM
KH2PO4; pH 7.5, room temperature) for 10 min, then
centrifuged (300g, 10 min, room temperature), washed
twice in PBS, and centrifuged as above. Finally, a drop of
the cells suspended in PBS was placed on a microscopic
slide and air-dried for 15 min at 37°C. The primary cell
cultures were fixed for 15 min at room temperature in 4%
PFA, washed with PBS (2×10 min), and used for
immunofluorescent studies.

Before the immunostaining procedure, the membranes of
freshly isolated Müller cells and primary cell cultures were
permeabilized in 0.3% Triton X-100 in PBS (15 min, room
temperature). Subsequently, overnight incubation with the
primary antibodies was performed at 4°C. For co-localization
experiments, rabbit anti-FBPase serum (100 μg/ml) was used
jointly with either mouse anti-vimentin (1:100) or mouse
FITC-labeled anti-α-tubulin antibodies (15 μg/ml), followed
by incubation (30 min, room temperature) with the relevant
antibodies labeled with fluorophores (dilution: 1:1000): goat
anti-mouse-TRITC, goat anti-rabbit-FITC, and goat anti-
rabbit-TRITC.

To test the co-localization of aldolase isoforms, the tissue
sections and cultured Müller cells were incubated with both
mouse anti-aldolase A serum (100 μg/ml) and rabbit anti-
aldolase C immunoglobulins (0.8 μg/ml), followed by the
incubation (30 min, room temperature) with goat anti-
mouse TRITC-conjugated and goat anti-rabbit FITC-
conjugated antibodies.

Tissue sections, isolated cells, and cell cultures were
counterstained with 4,6-diamidino-2-phenylindole (DAPI;
0.5 μg/ml, 5 min, room temperature) or propidium iodide

(2 μg/ml, 30 min, 37°C) in order to visualize cell nuclei. To
avoid the unspecific binding of immunoglobulins, the tissue
sections and the cells were incubated with 5% bovine
serum albumin (BSA) in PBS for 1 h at room temperature
before the application of the primary antibodies. Excess
primary and secondary antibodies were removed by
intensive washes in 0.1% Triton X-100/PBS. All secondary
antibodies were diluted in PBS containing 0.5% BSA.
Primary antibodies were omitted in control reactions.

Images of adult rat retina were obtained by using an
Olympus IX71 inverted microscope. An Olympus FV1000
confocal microscope was employed to study the subcellular
localization of proteins in the isolated Müller cells, in their
primary cultures, and in sections of newborn rat retina. The
degree of co-localization, expressed as the Pearson’s
correlation coefficient (the proportion of all red intensities
that have green components among all red intensities), was
assessed by the co-localization analysis function of the
Olympus Fluoroview software (version 1.7c).

Results

As no literature on FBPase in mammalian retina exists, we
first aimed to determine the activity, isozyme-type distri-

Fig. 1 Only the muscle FBPase isozyme is expressed in adult rat
retina. Results of electrophoresis of samples after polymerase chain
reaction. Detection of FBPase isoforms was performed with cDNA
synthesized from total RNA isolated from rat retina. Lane a DNA
length standard (DirectLoad Wide Range DNA Marker, Sigma),
lane b specific primers for rat muscle FBPase, lane c specific primers
for rat liver FBPase
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bution between the layers, and subcellular localization of
the enzyme in rat retina cells. The measured activity of
FBPase was 0.59±0.04 mU/mg (n=5) of retinal proteins in
adult rats and 0.44±0.15 mU/mg (n=5) in newborns. These
values were similar to that previously reported for the
amphibian retina (0.83 mU/mg; Goldman 1988).

Nevertheless, the measured activities were low. There-
fore, we postulated that FBPase might be involved in the
regulation of the rate of glycolytic flux (forming, together
with PFK, the so-called “substrate cycle”) rather than in
gluconeogenesis. To validate our hypothesis, we tested the
retina for the PFK activity. The tissue homogenate
exhibited a high PFK activity level (228±77 mU/mg
protein; n=4), comparable with that measured in other
tissues (Oskam et al. 1985), and about 400–500 times
higher than the activity of FBPase, making the involvement
of the substrate cycle unlikely.

To determine which isozyme of FBPase was expressed
in the rat retina, PCR was performed with cDNA
synthesized from total RNA isolated from the whole
adult retina and by using primer pairs specific for the
muscle and liver FBPases. The specificity of the primers

was checked by PCR with cDNA synthesized from total
RNA isolated from rat liver and muscle (see Electronic
supplementary material). An electrophoretic analysis of
PCR products showed a specific band of the expected
length of 383 bp only when the muscle-specific primers
were used (Fig. 1). This suggests that the muscle isozyme
is exclusively expressed in rat retinal cells.

To identify which cell populations within the rat retina
expressed FBPase, we used immunofluorescence techni-
ques and confocal microscopy. In radial sections of the rat
retina, the use of antiserum against muscle FBPase revealed
immunoreactivity within several layers: within the inner
plexiform layer (IPL), outer plexiform layer (OPL), and
outer limiting membrane and within the inner segments of
photoreceptors (Fig. 2). Double-labeling with antibodies
against α-tubulin (Fig. 2a-d), aldolase A (Fig. 2e-h), or
GFAP (Fig. 2i-l) in combination with antibodies directed
against FBPase demonstrated at least partial co-localization
of FBPase with these proteins. The FBPase fluorescence
was particularly visible in the radially aligned elements of
the retina suggesting that the enzyme was localized mainly
in the Müller cells. Indeed, freshly isolated rat Müller cells

Fig. 2 Immunofluorescent
double-labeling of radial
sections of rat retina. a-d
Double-labeling with antibodies
against α-tubulin (a) and
FBPase (b) and merged image
of a–c (d). e-h Double-labeling
with antibodies against muscle
aldolase (e) and FBPase (f) and
merged image of e–g (h). i-
l Double-labeling with
antibodies against glial fibrillary
acidic protein (GFAP; i) and
FBPase (j) and merged image of
i–k (l). c, g, k DAPI
(4,6-diamidino-2-
phenylindole)-counterstained
nuclei (GCL ganglion cell layer,
IPL inner plexiform layer, INL
inner nuclear layer, OPL outer
plexiform layer, ONL outer
nuclear layer, ISPR inner
segments of photoreceptors,
OSPR outer segments of
photoreceptors, arrows outer
limiting membrane). Bars40 μm
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treated with antibodies against vimentin, a specific marker
of these cells (Guidry 1996; Ishii et al. 1997), showed
relatively strong immunofluorescent signals for FBPase
(Fig. 3). However, other than the Müller cells, strong
FBPase-related immunoreactivity was also found in retinal
astrocytes in which FBPase appeared to be co-localized
with α-tubulin (Fig. 4).

Similarly, in the cultured Müller cells, FBPase was
localized in the cytoplasm where it partially co-localized
with the marker for these cells, viz., vimentin (Fig. 5a-d)
and with α-tubulin (Fig. 5e-h). The Pearson’s coefficient
for the overlap of FBPase and α-tubulin was approximately
0.8, both for the cultured Müller cells (Fig. 5h) and for the
retinal astrocytes (Fig. 4d).

Unexpectedly, FBPase and the muscle, but not
brain, isozyme of aldolase was localized in the nuclei
of some neonatal retina cells (Fig. 6). Staining with
antiserum against proliferation marker Ki-67 revealed
the co-localization of aldolase A and FBPase with this
marker suggesting that both the enzymes accumulated

only within the nuclei of proliferating cells (Fig. 6).
Neither FBPase (Fig. 2) nor aldolase exhibited nuclear
localization in the adult retina (Fig. 7), but the aldolase
A antiserum strongly stained nuclei of cultured prolif-
erating Müller cells (Fig. 8).

Discussion

FBPase, which catalyzes the practically irreversible reaction
of fructose-1,6-bisphosphate hydrolysis to fructose-6-
phosphate, is a regulatory enzyme of gluconeogenesis and
glyconeogenesis. According to our results, the location of
FBPase in the rat retina corresponds closely to the
localization of glycogen particles and to that of the enzymes
of glycogen metabolism, e.g., glycogen phosphorylase and
glycogen synthase, as described previously (Newell and
Kurimoto 1963; Pfeiffer-Guglielmi et al. 2005).

The activity of FBPase in the whole rat retina is
comparable with that determined previously in Amphibia
(Goldman 1988); this suggests that gluconeogenesis also
occurs in the retina of mammals. However, of note, the
activity of FBPase in the rat retina is at least ten-fold lower
than its activity in other tissues synthesizing glycogen from
non-carbohydrates, e.g., in the lungs (Rakus et al. 2000) or
skeletal muscles (Rakus and Dzugaj 2000). Thus, we can
hypothesize that gluconeogenesis does not play a signifi-

Fig. 3 Presence of FBPase in cytoplasm of Müller cells. Double-
immunofluorescent staining of isolated Müller cells with antibodies
against vimentin (a), FBPase (b, e), and α-tubulin (d). c, f Merged
images from, respectively, a, b or from d, e. Nuclei were counter-
stained with DAPI. Bar50 μm

Fig. 4 Co-localization of FBPase (a) with α-tubulin (b) in an isolated
retinal astrocyte. The nucleus in the merged image was counterstained
with DAPI (c). Graphical representation of Pearson’s correlation
coefficient (PC) for FBPase colocalization with α-tubulin (d). Bar
40 μm
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cant role in retinal energy homeostasis but is an auxiliary
process enabling the removal of excess lactate and
glutamate from the vicinity of neurons.

On the other hand, FBPase might be engaged in the
regulation of the velocity of the retinal glycolysis forming
the so-called substrate cycle with PFK. The substrate cycle
is a mechanism of metabolic flux regulation based on the
simultaneous activation and inhibition of enzymes catalyz-
ing reactions proceeding in opposite directions, such as
example FBPase and PFK (Newsholme and Start 1976). To
achieve a significant efficiency of the substrate cycle,
similar activities of both the enzymes are required.
Consequently, because of the large difference between
PFK and FBPase activities in the retina, the substrate cycle

seems unlikely to regulate glycolysis or gluconeogenesis in
this tissue.

Both the IPL and OPL are regions of high activity of
synaptic transmission of retinal neurons and are areas in
which numerous connections between neuronal and glial
cells, mainly the Müller cells, are formed (Newman 2004;
Bringmann et al. 2009). The presence of FBPase, a key
enzyme of gluconeogenesis, in these layers confirms the
hypothesis that glycogen synthesis from lactate and
glutamate is a mechanism for the removal of retinal
monocarboxylates during periods of high synaptic activity
(Goldman and Witkovsky 1987; Coffe et al. 2004).

The physiological role of FBPase is commonly assumed
to be restricted to its participation in glucose/glycogen

Fig. 5 Co-localizat ion of
FBPase (a, e) with vimentin (b)
and α-tubulin (f) in primary
culture of Müller cells. Images
c, g represent merged images of
a, b or of e, f, respectively. The
nuclei were counterstained with
DAPI. Images d, h show
graphical representation of
Pearson’s correlation coefficient
(PC) for FBPase co-localization
with vimentin or α-tubulin,
respectively. Bars40 μm

Fig. 6 Immunofluorescent
localization of aldolase A,
FBPase, and Ki-67 in rat neo-
natal retinal sections. Labeling
by antibodies against Ki-67 (b)
with propidium-iodide-
counterstained nuclei (a) and
merged image of a, b (c).
Double-labeling with antibodies
against muscle aldolase (d) and
Ki-67 (e) and merged image of
d, e (f). Double-labeling with
antibodies against FBPase (g)
and Ki-67 (h) and merged image
of g, h (i). Merged images
reveal co-localization of
aldolase and FBPase with Ki-67.
Bar15 μm
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synthesis. However, the reaction catalyzed by FBPase
might also be regarded as part of the pentose phosphate
pathway: the product of FBPase reaction, upon isomeriza-
tion to glucose-6-phospate, becomes a substrate for
glucose-6-phosphate dehydrogenase (G6PDH; Rakus et al.
2000). G6PDH, which catalyzes the first reaction of the
pentose phosphate pathway, viz., the reduction of NADP to
NADPH, plays a key role in maintaining the normal redox
status of cells and thus in the protection of cells against
reactive oxygen species.

The rate of the pentose phosphate pathway in retina is
relatively high, and NADPH generated in this pathway is
utilized for stabilization of intracellular levels of reduced
glutathione; this is presumed to be the main defense system
protecting the eye against oxidative stress (Ganea and
Harding 2006). Thus, FBPase, by participating in NADPH

synthesis, might indirectly influence the protection of the
retina against the toxic effect of oxygen. FBPase possibly
plays the same dual gluconeogenic and antioxidant
physiological role in the outer limiting membrane, the
region in which multiple connections between the Müller
cells and photoreceptors are formed (Williams et al. 1990).
The inner segment of the photoreceptor is a region of high
glycolytic activity (Lowry et al. 1961). The phosphocrea-
tine shuttle has been postulated to transport high-energy
phosphate groups from the inner to the outer segment for
ATP production (Hsu and Molday 1994). The presence of a
key enzyme of glycogen metabolism, viz., glycogen
phosphorylase (Rothermel et al. 2008), and of glycogen
particles (Newell and Kurimoto 1963) in the inner segments
of photoreceptors indicates that glycogen might be used in
the segment as a source of glucose for glycolysis. Thus, the
presence of FBPase within the inner segments of photo-
receptors suggests that glyconeogenesis is an additional
pathway of energy accumulation therein and might be used
to sustain phototransduction in the outer segment during
hypoglycemia.

FBPase isozymes differ in their physiological proper-
ties. Testing their expression in the rat retina, we have
found that this tissue expresses exclusively the muscle
isozyme of FBPase. A previous study (Löffler et al.
2001) has demonstrated that rat brain neurons express the
liver FBPase isozyme, whereas both isozymes are
expressed in brain astrocytes. This inconsistency between
our result and those of Löffler et al. (2001) suggests the
presence of a distinct expression pattern in the rat brain
and retina. Such distinctions in the expression of the
glycogen phosphorylase isozymes have been shown to
reflect differences in the regulation of brain and retinal
glycogenolysis, suggesting a local specialization of the
retinal cells (Pfeiffer-Guglielmi et al. 2005).

Muscle FBPase, in contrast to the liver form, is highly
sensitive to inhibition by AMP, NAD, and Ca2+, and under
physiological concentrations of the inhibitors, the enzyme
is almost completely inactive (Rakus and Dzugaj 2000;
Gizak et al. 2004). Thus, the provision of substrates for
NADP reduction and/or glycogen synthesis from non-
carbohydrates should cease in their presence. The only

Fig. 7 Immunofluorescent localization of aldolase A (a) and
aldolase C (b) in radial sections of adult rat retina (GCL ganglion
cell layer, IPL inner plexiform layer, INL inner nuclear layer, OPL
outer plexiform layer, ONL outer nuclear layer, ISPR inner segments
of photoreceptors, OSPR outer segments of photoreceptors). Nuclei
were counterstained with DAPI (c). Merged image from a–c (d). Bar
40 μm

Fig. 8 Localization of aldolase
A (a) and aldolase C (b) in
primary culture of Müller cells.
Merged image showing
counterstaining with DAPI (c).
Bar40 μm
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known factor desensitizing muscle FBPase to the action of
its inhibitors is the muscle isozyme of aldolase, viz.,
aldolase A (Rakus et al. 2003, 2004; Mamczur et al.
2005). Studying the distribution of FBPase in the rat retina,
we have found that the enzyme co-localizes with aldolase.
The brain isozyme of aldolase (aldolase C) has been shown
to be the principal form of the enzyme in neural cells in
which it occurs as a part of the heterotetrameric A-C hybrid
set (Beemer et al. 1982). Our immunofluorescent studies
with the aldolase-isozyme-specific antibodies indicate that,
in the rat retina, the amount of aldolase A is comparable
with that of aldolase C. In contrast to earlier immunochem-
ical studies (Caffé et al. 1994), we have found that both
aldolase isozymes are expressed across all the retinal layers,
except for ONL in which only the muscle aldolase is
present.

A microscopic examination of wax sections of the retina
have revealed that FBPase is present mainly in cells
characterized by GFAP fluorescence, i.e., the glia cells.
Among the retinal glia, the highest capacity for glyconeo-
genesis from lactate and glutamate is possessed by Müller
cells (Goldman 1990). Therefore, FBPase localization is
possibly confined to these cells. However, the analysis of
freshly isolated rat Müller cells has shown that FBPase is
evenly distributed within the cells, and as seen in Fig. 2, the
FBPase immunostaining pattern of wax sections of the
retina does not resemble the morphology of the Müller cells
extending from the inner to the outer limiting membrane
(Bringmann et al. 2009). Thus, neither the cell shape nor
the subcellular distribution of FBPase therein explains the
strong immunoreactivity of the plexiform layers.

Evidently, the Müller cells are not the only retinal glia
cells containing FBPase. Freshly isolated retinal astrocytes
also express FBPase. This indicates that the resynthesis of
glycogen from lactate, as a mechanism of monocarboxylate
removal and/or the support of the pentose phosphate
pathway, might be typical for all the glial cells and
photoreceptors of the retina. Moreover, the high co-
localization coefficient of FBPase and α-tubulin implies
that the latter protein is the structural basis for glyconeo-
genesis in the glial cells. The Ovádi group has demonstrat-
ed that several glycolytic enzymes (e.g., hexokinase, PFK,
aldolase, triosephosphate isomerase, and pyruvate kinase)
interact with the microtubular system of cells, and that this
association leads to the formation of macromolecular
structure and results in alterations in the catalytic properties
of the enzymes (Ovádi et al. 2004).

Both FBPase and aldolase are expressed in primary
cultures of Müller cells. However, the morphology of these
cells in culture significantly changes; the cells de-differentiate
and gain a capability for proliferation that remains unchanged
for at least five passages of the culture (Guidry 1996). In such
cells, aldolase A, but not C or FBPase, localizes within

the cell nucleus. Unexpectedly, we have found that,
during retinal development, not only aldolase A, but
also FBPase localizes within the nuclei of proliferating
cells.

Our earlier studies have revealed that FBPase localizes
within the nuclei of cells that have the potential to
proliferate but that are also at least partially differentiated:
in some adult mammalian cardiomyocytes (Gizak and
Dzugaj 2003), in mouse cardiomyocytes cell line (HL-1)
stimulated with norepinephrine leading to their adult
phenotype (Gizak et al. 2009), and in muscle satellite cells
(Gizak et al. 2006). The nuclear localization of FBPase in
the developing retina suggests that, also in this tissue, the
cellular action of the enzyme is related in some manner to
cell differentiation.

In contrast to FBPase, aldolase A seems to localize
within the nuclei of all proliferating retinal cells, indepen-
dently of the level of their differentiation. Previously,
aldolase has been found in the nuclei of several cell types
in which mitosis or karyokinesis occurs: in smooth muscle
cells (Mamczur and Dzugaj 2008), cardiomyocytes
(Mamczur et al. 2007), and hepatocytes (Sáez and Slebe
2000). Hence, we are tempted to assume that the retinal
aldolase is a part of the cell division machinery.

In summary, our experiments have demonstrated that rat
retinal cells express exclusively the muscle isozyme of
FBPase. The enzyme localizes in the inner segments of
photoreceptors and in the glial cells of the rat retina in
which it is thought to be involved in the removal of the
excess of lactate and glutamate from the vicinity of
neurons. We suggest that the role of muscle FBPase goes
beyond its gluconeogenic action, and that, in addition to
participation in defense against reactive oxygen species, the
enzyme also takes part in regulation of cell differentiation.
Moreover, the muscle aldolase, viz., the enzyme desensitiz-
ing FBPase to the action of its inhibitors and, hence,
enabling glucose-6-phosphate synthesis from non-
carbohydrates, seems to be a multifunctional protein,
presumably being involved in cell cycle progression.
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