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Abstract The genes encoding transmembrane glycoproteins
of the cadherin family, i.e., the Ca2+-dependent cell-cell
adhesion molecules, are typically expressed in cell-type- or
cell-lineage-specific patterns. One of them, vascular endo-
thelial (VE)-cadherin, is widely considered to be specific for
vascular endothelia in which it is either the sole or the
predominant cadherin, often co-existing with N-cadherin.
This specificity of VE-cadherin for vascular endothelial cells
is important not only in blood and lymph vessel biology and
medicine, but also for cell-type-based diagnoses, notably
those of metastatic tumors. Surprisingly, however, we have
recently noted the frequent synthesis, surface exposure, and
junction assembly of VE-cadherin in certain other cells, in
which this glycoprotein is clustered into adherens junctions
(AJs), either alone or in combination with N-cadherin and/or
cadherin-11. Such cells include mammalian astrocytes and

glioma, probably mostly astrocytoma cells growing in
culture, and a specific subtype of astrocytoma in situ.
Moreover, VE-cadherin synthesis and AJ assembly, plus
the regional clustering of such AJs in certain domains, are
not clonally fixed but can appear again and again in cells of
the progeny of cloned homogeneous-appearing individual
cells, thus resulting in clonal cell colonies that are often
heterogeneous in their cadherin junction patterns. We discuss
the constitutive presence of VE-cadherin in some non-
endothelial cells with respect to certain architectural features
and possible physiological and pathogenic functions of the
cells, and in comparison with recent reports of VE-cadherin-
positive melanomas.
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Introduction

Cell-cell interactions of vertebrates, in particular cell-cell
adhesions and tissue formations, are mediated and archi-
tecturally organized by intercellular junctions in many
systems. These include, other than the tight and the gap
junctions, the diverse types of adhering junctions that are
usually subdivided into the desmosomes (maculae adhaer-
entes) and the adhaerens junctions (AJs), which, according
to their specific morphological arrangement and molecular
composition, can be divided into more extended zonulae or
fasciae adhaerentes and the small and mostly near-
isodiametric puncta adhaerentia. The desmosomes with
their characteristic desmosomal cadherins of the desmo-
glein (Dsg1–4) and desmocollin (Dsc1–3) group and their
associated cytoplasmic plaque proteins, i.e., desmoplakin,
plakoglobin, and one or two plakophilins of the PKP1–3
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subfamily of so-called armadillo-type proteins, are typical
of epithelial and epithelium-derived cells, including carci-
nomas, although desmosome protein ensembles also occur
in junctions connecting meningeal and myocardial cells and
in certain reticulum cell systems, in particular those of the
thymus and the lymph nodes (e.g., Farquhar and Palade
1963; Staehelin 1974; Franke et al. 1982; Schwarz et al.
1990; Garrod et al. 2002; Godsel et al. 2004). On the other
hand, AJs contain, in addition to their subtype-specific
complement of AJ cadherins, a complex but characteristic
ensemble of cytoplasmic plaque proteins formed by
members of the group of α- and β-catenin, together with
proteins p0071, ARVCF, and neurojungin, plus plakoglo-
bin, which so far is the only protein common to both kinds
of junctions (for definitions and references see, e.g., Cowin
et al. 1986; Franke et al. 1989; Peifer and Wieschaus 1990;
Peifer et al. 1992; Perez and Nelson 2004; Hatzfeld 2007).
Right from the discovery of cadherins as major junctional
molecules, the various members of this glycoprotein family
have been noted to be synthesized and assembled into
junctions in combinations and with AJ patterns character-
istic of the specific cell type (e.g., Takeichi 1977, 1990,
1995; Behrens et al. 1985; Vestweber and Kemler 1985;
Hatta and Takeichi 1986; Nagafuchi and Takeichi 1989;
Ozawa and Kemler 1990; Steinberg and Takeichi 1994;
Gumbiner 1996; Steinberg 1996; Steinberg and McNutt
1999; Redies 2000; Angst et al. 2001; Garrod et al. 2002;
Wheelock and Johnson 2003).

Changes of the cadherin type or at least of the ratio of
the cadherins present in a certain kind of AJ have also been
reported in numerous studies. In particular, the process of
“cadherin switching” has attracted special attention, most of
all in the form of reports that, for example, in epithelial
cells, a switch from E- to N-cadherin is associated with

malignant cell transformation, notably metastasis (e.g.,
Behrens et al. 1993; Miettinen et al. 1994; Miyaki et al.
1995; Hazan et al. 1997, 2000; for a comprehensive review
see Strumane et al. 2004).

Endothelial cells of blood and lymph vessels are charac-
terized by zonula-adhaerens-like junctions based on a special
vascular endothelial (VE)-cadherin, which often coexists
with N-cadherin (in some cell systems, also with cadherin-
11), but the question of the colocalization of VE- and N-
cadherin is still intensely debated (e.g., Salomon et al. 1992;
Lampugnani et al. 1995; Dejana 1996; Lampugnani and
Dejana 1997; Navarro et al. 1998; Luo and Radice 2005).
The glycoprotein, VE-cadherin, is certainly important in
endothelial cell-cell adhesion and the formation of a good
endothelial barrier and is regarded as an endothelial hallmark
component serving a general and important function, i.e., the
sealing of a vascular lumen on the one hand and a regulated
passage control on the other (e.g., Caveda et al. 1996;
Carmeliet et al. 1999; Dejana et al. 1999; Dejana 2004; see
therein for further references). It has also been seen as an
endothelium-specific molecule strictly associated with angio-
genesis. Therefore, we and others have been surprised to note
that VE-cadherin can also occur in certain other normal and
malignantly transformed cell types, “anti-dogmatic” observa-
tions that, however, are so clear and consistent that we want to
share them with the biological and medical community.

Materials and methods

Cell cultures and cell culture lines

The following cell cultures and cell culture lines were
grown, usually with passage intervals of 3 or 4 days, as

Table 1 Proteins and glycoproteins demonstrated in immunoprecipitates with given antibodies to the specific cadherin by subsequent SDS-
polyacrylamide gel electrophoresis and immunoblotting (+ positive immunoblot result, − negative immunoblot result, −+ inconsistent results in
different experiments, n.d. not determined)

Protein or glycoprotein
identified

Immunoprecipitate with N-
cadherin

Immunoprecipitate with VE-
cadherin

Immunoprecipitate with cadherin-
11

N-Cadherin + – –
VE-Cadherin – + –
Cadherin-11 –+ – +
β-Catenin + + +
α-Catenin + + +
Plakoglobin + + +
Protein p120ctn + – +
Protein ARVCF + + +
Plakophilin-2 + + –
Cingulin + + –
Protein ZO-1 – + –
Afadin – + –
Protein p0071 + n.d. n.d.

Table 1 Proteins and glycoproteins demonstrated in immunoprecipitates
with given antibodies to the specific cadherin by subsequent SDS-
polyacrylamide gel electrophoresis and immunoblotting (+ positive

immunoblot result, − negative immunoblot result, −+ inconsistent
results in different experiments, n.d. not determined)
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detailed elsewhere (Achtstätter et al. 1986; Boda-Heggemann
2005). If not stated otherwise, the studied human cell lines
were obtained from gliomas, in most cases probably of
astrocytoma origin, including cases of defined glioblastoma
multiforme origin (in the terminology and characterizations
of the cells and tumors mentioned, we essentially follow the
work of Kleihues and Cavenee 2000): U333/MG, U87MG,
U138MG, U373MG, T98G (for origins, differentiation
markers, and relevant references, see Pontén and Macintyre
1968; Stein 1979; Osborn et al. 1981; Achtstätter et al. 1986;
de Ridder et al. 1987; Boda-Heggemann 2005). In addition,
we used cultures of cells specifically derived from a
glioblastoma multiforme (a kind gift from György Vereb,
University of Debrecen, Hungary). For comparison, we also
employed the following established human and murine cell
lines (from ATCC, Manassas, Va., USA): CaCo-2 and HT29
(from colon adenocarcinomas), MCF-7 (from breast carci-
noma), PLC, SkHep, and HepG2 (from hepatocellular
carcinomas), A431 (from squamous cell carcinomas of the
vulva) and A431-A1B2 cells, a A431 subline stably trans-
fected to express neurojungin (Paffenholz and Franke 1997;
Paffenholz et al. 1999), and “SV80 fibroblastoidal cells",
transformed by the SV40-large T-component. In addition,
we studied non-malignant, permanently growing human
keratinocytes of line HaCaT (Boukamp et al. 1988). As
primary and secondary human endothelial cell cultures, we
examined human umbilical cord endothelial cells of the line

HUVEC (cf. Peitsch et al. 1999) and human mesenchymal
stem cells (MSC), i.e., cells obtained from bone marrow and
grown in culture (cf. Wuchter et al. 2007).

As endothelial cell cultures of animal origin, we
routinely used bovine CPAE cells for comparison (Ryan

Fig. 2 Immunofluorescence microscopy of U333/MG glioma cells in
culture showing the abundance of actin microfilament bundles, stained
here with phalloidin coupled to the dye Alexa-594 (red), which anchor
at the plaques of focal adhesions, visualized by immunostaining with
antibodies against vinculin (green), resulting in a yellow-orange merge
color. For comparison, nuclei have been stained with DAPI (Hoechst
dye; blue). Bar 20 µm

Fig. 1 Immunofluorescence microscopy presenting three major
cytoskeletal and junctional proteins of glioma cells in culture, here
of the human line U333/MG, i.e., cytoplasmic bundles of intermedi-

ate-sized filaments containing vimentin (a), glial filament protein
(GFAP, b), and N-cadherin (c). Bars 20 µm
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et al. 1978; Franke et al. 1979). Murine primary cell
cultures of astrocytes prepared from brains of newborn
mice (cf. Burudi et al. 1999; for details, see also Boda-
Heggemann 2005) were as described elsewhere (Burudi et
al. 1999; Gresser et al. 2001).

The cloning of individual cells and establishment of
subclone cell cultures were essentially as described for
diverse other cell cultures (Knapp and Franke 1989; Knapp
et al. 1989).

Tissue samples

Tissue samples of human brain and of human brain tumor,
taken in accord with the specific local clinical regulations,
were obtained from Dr. G. Csécsei and Dr. Àlmos Klekner
(Institute of Neurosurgery, University of Debrecen, Hun-
gary), Dr. Zoltán Nemes (Institut of Pathology, University
of Debrecen, Hungary), and Markku Miettinen (Armed
Forces Institute of Pathology, Washington, D.C., USA).
Bovine and rodent tissue samples were obtained from
freshly killed animals. The tissue sample pieces were frozen
or fixed and processed as described elsewhere (Moll et al.

Fig. 4 SDS-PAGE-immunoblot reactions of total proteins from
murine astrocytes grown in primary cultures. Reactions shown were
obtained with antibodies against GFAP (lane 1), N-cadherin (lane 2),
VE-cadherin (lane 3), cadherin-11 (lane 4), plakophilin-2 (lane 5),
plakoglobin (lane 6), protein ZO-1 (lane 7), α-catenin (lane 8), β-
catenin (lane 9), ponsin (lane 10), and afadin (lane 11). Positions of
molecular weight markers co-electrophoresed are indicated left (from
top): 212, 158, 116, 97, and 66.4 kDa. In lanes 10 and 11, the specific
uppermost bands represent the intact polypeptide

Fig. 3 Biochemical identification and characterization of intercellular
adhering junction (AJ) proteins as revealed by SDS-polyacrylamide
gel electrophoresis (SDS-PAGE) and immunoblotting with specific
antibodies (for further details see Boda-Heggemann 2005). The lanes
contain total proteins of cell lysates (a, lane 1 U333/MG cells
[Coomassie blue staining], lane 2 human umbilical cord endothelial
cells grown in culture, lane 3 calf lens endothelial cells of line CPAE,
lane 4 colon carcinoma cells of line CaCo-2, lane 5 hepatocytic tumor
cells of line PLC. The SDS-PAGE-separated proteins shown in a were
reacted with antibodies against GFAP (b), endothelial factor VIII (b′,
only lane 2 is shown here), N-cadherin (c), VE-cadherin (d, d′), β-
catenin (e), protein p120 (f), neurojungin (f′), plakophilin-2 (g),
plakoglobin (h), plakoglobin after longer exposure (h′), cingulin (i),
protein ZO-1 (j), and protein ZO-2 (j′). These reactions show that the
U333 glioma cells (lane 1) contain N-cadherin but also VE-cadherin
(d, d′), β-catenin (e), protein p120 (f), plakophilin-2 (g), plakoglobin
(minor amounts, only faintly visible after prolonged exposure, h′, lane
1′), cingulin (i) and proteins ZO-1 and ZO-2 (j, j′). Positions of
molecular weight markers are indicated left (from top): 158, 116, 97,
and 66.4 kDa

�
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2008; Boda-Heggemann 2005; Hämmerling et al. 2006;
Langbein et al. 2002, 2003).

Antibodies and immunolocalization protocols

In addition to the antibodies listed as Supplementary Material
in Table 1 of the accompanying article by Moll et al. (2008),
the following antibodies were used:murine monoclonal
antibodies (mAbs) to VE-cadherin (BV9; kind gift of E.
Dejana, University of Milano, Italy; and ab 7047, from
Abcam, Cambridge, U.K.); R-cadherin (BD Biosciences,
San Jose, Calif., USA); M-Cadherin (Research Diagnostics,
Flanders, N.J., USA); cadherin-6 (US Biologicals, Swamp-
scott, Mass., USA); neurojungin (Progen Biotechnik, Hei-
delberg, Germany; Paffenholz et al. 1999); vimentin (Progen
Biotechnik; Franke et al. 1978; Herrmann et al. 1989); glial
fibrillary protein (GFAP; Roche Diagnostics, Mannheim,
Germany); nestin (Santa Cruz Biotechnolgy, Santa Cruz,
Calif., USA); desmin (Dako, Hamburg, Germany); pan-
cytokeratin (Dianova, Hamburg, Germany; cf. Franke et al.
1987); neurofilament (Diaclone, Besançon, France); cytoker-
atins 8, 18, 19, and 20 (all from Progen Biotechnik); ezrin
(Sigma, St. Louis, Mo., USA); moesin (Transduction
Laboratories, Lexington, Ky., USA); adipophilin (Progen
Biotechnik; cf. Heid et al. 1998); protein p0071 (kind gift of
M. Hatzfeld, University of Halle/S., Germany; Progen
Biotechnik; see also Hofmann et al. 2008).

Most polyclonal antibodies used were from rabbit sera to
GFAP (Dianova); VE-cadherin (Cayman Chemical, Ann
Arbor, Mich., USA, via Alexis Biochemicals, Grünberg,
Germany); desmoplakin (Natutec, Frankfurt, Germany);
merlin (Santa Cruz); cingulin (kind gift of S. Citi, University
of Geneva, Switzerland); vinculin (Sigma);α-actinin (Sigma);

perilipin (Progen Biotechnik; Heid et al. 1998). In addition,
we used guinea pig antibodies against protein ARVCF (cf.
Borrmann et al. 2006) and perilipin (Progen Biotechnik; cf.
Heid et al. 1998; Straub et al. 2008).

Cell cultures grown on coverslips or tissue pieces were
fixed with methanol and acetone, each at −20°C, or in
buffered formaldehyde solution as described in detail
elswhere (cf. Peitsch et al. 1999; Langbein et al. 2002,
2003; Schmitt et al. 2007; Rickelt et al. 2008). Protocols for
light and electron microscopy and for immunolocalization
microscopy were essentially as outlined in the accompa-
nying article by Moll et al. (2008).

Results and discussion

The notion that VE-cadherin, a hallmark of endothelial
differentiation and organization, can also occur, in contrast
to common belief and “endothelial only” textbook dogma,
in certain non-endothelial cells was initially a shock.
Specific experiments, however, have subsequently shown
us that AJs containing VE-cadherin indeed occur in certain
other cells as constitutive structural elements. The first and,
so far, most striking and consistent finding has been the
occurrence of such structures in diverse cell culture lines of
astrocyte and astrocytoma origin and in a subtype of glioma
tumors.

VE-cadherin in human glioma cell cultures

A remarkable number of established cell culture lines
derived from human gliomas exists, mostly astrocytic
tumors, and in particular tumors of the glioblastoma

Fig. 5 Biochemical demonstration of cadherin-containing complexes
in immunoprecipitates from total protein lysates of glioma U333 cells
(IP buffer A containing 1% Triton X-100 and 0.5 mM CaCl2),
analyzed by SDS-PAGE and immunoblotting. Top Immunoprecipi-
tates obtained with antibodies against N-cadherin. Middle Immuno-
precipitates obtained with VE-cadherin antibodies. Bottom Reaction
products of complexes obtained with cadherin-11 antibodies. For each
reaction, the total lysate (L) is compared with the specific immuno-
precipitate (IP). The antibodies used for immunoblotting are indicated
below. Note that N-cadherin antibodies here have co-immunoprecipi-

tated not only the plaque proteins α- and β-catenin, proteins p120,
and ARVCF, and plakoglobin and plakophilin-2, but also cingulin and
protein ZO-1. Antibodies against VE-cadherin have precipitated
complexes of this glycoprotein with α- and β-catenin, protein
ARVCF, plakoglobin, and afadin, and protein ZO-1 and cingulin,
but not N-cadherin, cadherin-11, or protein p120. Finally, note that the
cadherin-11 immunoprecipitates contain α- and β-catenin, proteins
120 and ARVCF, and plakoglobin, but no significant amounts of N-
and VE-cadherin, plakophilin-2, L-afadin, proteins ZO-1 and ZO-2, or
cingulin
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multiforme type (see also Materials and methods). All are
characterized by their differentiation marker complement.
Figure 1 presents an example of glioma cells of line U333/
MG, in which all cells contain abundant bundles of
intermediate-sized filaments (IFs) of the vimentin type
and IFs containing GFAP (for references, see, e.g., Pontén
and Westermark 1978; Paetau et al. 1980; Osborn et al.
1981; for reviews, see Kleihues and Cavenee 2000; Maher
et al. 2001) and adhaerens junctions based on N-cadherin.
Under normal culture conditions, these cells grow in
monolayers of flat substratum-adherent cells with typical
cytoplasmic actin microfilament cables and focal adhesion
attachments fixing these microfilament cables to the basal
plasma membrane (Fig. 2). Biochemical, molecular biolog-
ical, and immunological analyses of such cells, in direct
comparison with analyses of other cell cultures (Fig. 3),

have revealed that the glioma U333 cells contain, in
addition to the marker protein GFAP (Fig. 3b, lane 1), the
AJ components N-cadherin (Fig. 3c, lane 1), VE-cadherin
(Fig. 3d, d’), β-catenin (Fig. 3e), protein p120 (Fig. 3f),
neurojungin (Fig. 3f’), plakophilin-2 (Fig. 3g), plakoglobin
(Fig. 3h, h’), cingulin (Fig. 3i), protein ZO-1 (Fig. 3j), and
protein ZO-2 (Fig. 3j’).

The occurrence of VE-cadherin in glioma cells, in
particular cells of astrocytic origin, is by no means
restricted to tumors and the human species. Figure 4, for
example, shows the synthesis of VE-cadherin in primary
cultures of murine astrocytes, again occurring together
with N-cadherin (here also with cadherin-11, and the
cytoplasmic plaque proteins α- and β-catenin, plakophi-
lin-2, plakoglobin, protein ZO-1, ponsin, and afadin). The
specific molecular complexes present in the cell-cell

Fig. 6 Confocal laser-scanning (CLS) immunofluorescence micro-
graphs of cultured glioma cells of line U333 as seen after reactions with
antibodies against N-cadherin (green, a) and α-catenin (red, a′; a″
represents the color reaction of both channels) or with antibodies to VE-
cadherin (b, red) in comparison with α-catenin (b′, green; b″ represents

the hybrid color reaction of both antibodies). Note the extensive co-
localization of N-cadherin and α-catenin in many adhering junctions
(yellow colocalization in a″), whereas here only certain groups of
junctions show the presence of VE-cadherin together with α-catenin
(yellow in b″; e.g., reaction lower right). Bars 20 µm
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junctions of the human glioma U333 cells can be
determined by immunoprecipitation experiments as pre-
sented in Fig. 5. When detergent-solubilized complexes
are precipitated with antibodies to N-cadherin, VE-
cadherin, or cadherin-11, co-immunoprecipitation of VE-
cadherin with several cadherin-anchoring plaque proteins,
including β-catenin, plakoglobin, protein ARVCF, plako-
philin-2, cingulin, and protein ZO-1, are demonstrable (in
a parallel experiment positive results have also been
reported for α-catenin and protein p0071; for details, see
Boda-Heggemann 2005). Interestingly, we have not seen
cross-immunoprecipitation between the three cadherins
examined. On the other hand, we have to admit that we
have not so far systematically varied the solubilization
conditions so that we cannot yet exclude the occurrence of
hetero-cadherin complexes in such junctions. However,
from all our analyses, we can conclude that the AJs of the
glioma type cells under question contain the cadherins and
plaque proteins listed in Table 1, which also shows some
differences between the three kinds of cadherin complexes
precipitated.

When we examined the structures containing the various
cadherins and plaque proteins with the use of confocal
laser-scanning immunofluorescence microscopy, we noted
that all N-cadherin-positive cell-cell junctional structures
were also positive for α- and β-catenin (Fig. 6a-a″) whereas
antibodies to VE-cadherin decorated only certain regional
groups (“clusters”) of junctions positive for these catenins

(e.g., Figs. 6b-b″, 7). In extensive systematic double-label
immunolocalization experiments, we could also demon-
strate that not only plaque proteins of the armadillo protein
family, but also, for example, cingulin, protein ZO-1, and

Fig. 8 CLS microscopic characterization of VE-cadherin-containing
cell-cell junctions (a-c), many of which (but not all) show colocaliza-
tion with cingulin (a′), protein ZO-1 (b′), and afadin (c′). Bar 10 µm

Fig. 7 CLS micrograph showing U333 glioma cells immunostained
with antibodies specific for VE-cadherin (red) and α-catenin (green).
Only the merged image of both channels is shown. Note that some of
the α-catenin-containing cell junction structures are also positive for
VE-cadherin (yellow), and that most of these VE-cadherin-positive
junctions occur in clusters. Bar 10 µm
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afadin were colocalized (see Figs. 6, 7, 8). In general,
colocalization of two junctional components was frequent
but, in the same cell colony, regions characterized by only
one junctional protein without a frequent partner could not
be overlooked.

Colocalization of these components (see also Table 1)
could also be detected in various combinations (see
Figs. 8, 9). Figure 10, for example, presents a cell with a
predominance of AJs showing near-complete co-localization
of cadherin-11 and plakophilin-2, and the precision of
double-label coincidence can be seen with special clarity in
the insets (upper right in Fig. 10a-a″). In other words, we
have found no indication of systematic mutual exclusivity
in the AJ localization of these three cadherins, either
amongst each other or with respect to colocalization with
one of the various plaque proteins.

Junction type heterogeneity and domain segregations
in VE-cadherin-positive glioma cell junctions

In these studies, our attention was particularly attracted by
two hitherto unseen phenomena. First, in the same
monolayer culture of glioma cells in which VE-cadherin
localized, in most cells, to groups of N-cadherin-positive
junctions, neighboring cells were detected that were
positive for N-cadherin only (e.g., Fig. 9a-a″, c-c″),
indicating that VE-cadherin assembly into heterotypic

junctions is a process that may occur locally and highly
selectively in some cells but not in others.

The second remarkable phenomenon that was repeatedly
observed was the segregation of N-cadherin-containing and
VE-cadherin-containing AJs to different surface domains of
the same cell (e.g., Fig. 9b). Such localization results
obviously suggest that the surfaces of these cells can appear
as a checker-board or can even be totally polarized into
relatively large regions or “hemispheres": one N-cadherin-
dominated domain and one VE-cadherin region.

Finally, even a third type of cadherin-localization can be
noted (e.g., Fig. 9d-d″). Here, neighboring cells can be
connected to each other in one region by junctions of the N-
cadherin-only character, and in another region by junctions
positive for VE-cadherin only, and in a third category of
domain by mixed type junctions that are positive for both
cadherins. The relatively frequent occurrence of plakophilin-
2 in such AJs is also remarkable (for special junction plaque
organizing roles of this protein, see, e.g., also Mertens et al.
1996, 1999; Grossmann et al. 2004; Franke et al. 2006;
Goossens et al. 2007; Oxford et al. 2007).

Our surprise that VE-cadherin regularly occurred in non-
vascular cells and apparently not necessarily as a clonally
stable property, but as repeatedly and cell-specifically
occurring synthesis and junction assembly events (at
random or locally induced) prompted us to undergo a more
extensive study of these phenomena.

The identification of the various junction molecules was
initially based on immunological identification by immu-
noblot and immunofluorescence localization experiments.
The highly sensitive method of reverse transcription with
polmerase chain reaction (RT-PCR) then confirmed the
significance and specificity of the synthesis of VE-cadherin
in the cultured glioma cells (Fig. 11). VE-cadherin was
detected in the glioma cells and in bovine and human
endothelial cells growing in culture but was absent in a
series of other cells examined in parallel (Fig. 11a).
Moreover, the specific synthesis of VE-cadherin was also

Fig. 9 CLS microscopy of U333 glioma cells seen after immunoloc-
alization for N-cadherin (a-c, green) and VE-cadherin (a′, a″, b, c′, c
″, red) or for VE-cadherin (d, green) and cadherin-11 (d′, d″, red).
Note that, in some junctions, N-cadherin and VE-cadherin local-
izations are mutually exclusive, whereas other junctions show
colocalizations (a″, b, c″, seen as yellow-orange in a″, c″). Note
also the regional segregation of VE-cadherin- and N-cadherin-
containing junctions (particularly clear at higher magnification in b).
In addition, double-labelling for VE-cadherin (d, green) and cadherin-
11 (d′) shows regions with junctions of mutual exclusivity and some
with colocalization (d″, yellow). Bars 10 µm

�

Fig. 10 CLS micrographs showing the frequent colocalization of cadherin-11 (a) with plakophilin-2 (a′) as indicated by the yellow-orange merge
color (a″). This can be seen with special clarity in the higher magnification insets upper right. Bar 10 µm
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noted in other cell lines of glioma cells and in primary cell
cultures of mouse astrocytes (Fig. 11b). These and several
other gene expression experiments have led us to the
conclusion that the emergence of the synthesis of VE-
cadherin is not a trivial and widespread result of “loose” or
“leaky” gene control, as has been reported for other
cytoskeletal proteins in diverse cell cultures (e.g., Knapp
and Franke 1989; Knapp et al. 1989; and references cited
therein) but is the result of specific gene induction in these
glioma cells.

The RT-PCR method also allowed us to detect some
additional components of the AJs of the glioma cells such
as the armadillo type plaque protein p0071 (Fig. 12, lane
4), which in parallel was also demonstrable in cultures of
human mesenchymal stem cells, endothelial cells, and other
cells and tissues. This AJ protein 0071 has since also been
immunolocalized to the AJs of these glioma cells (see also
Hofmann et al. 2008).

VE-cadherin in adhering junctions of primary cultures
of astrocytes

The appearance of VE-cadherin is not confined to astrocy-
tomas and related malignancies. The intense reaction of
mRNA encoding VE-cadherin has previously been demon-
strated by RT-PCR analyses of normal murine astrocytes
(Fig. 11b, lane 5). The specific localization of VE-cadherin
in the AJs of primary cultures of such astrocytes has also
been demonstrated by immunofluorescence microscopy
(Fig. 13); the reactions of AJs are shown with antibodies
to VE-cadherin (Fig. 13c), in comparison with N-cadherin
(Fig. 13b), plakophilin-2 (Fig. 13d), protein ZO-1
(Fig. 13e), and ponsin (Fig. 13f) in cell cultures identified
as astrocytes by their intense GFAP decoration (Fig. 13a).
A certain subpopulation of such AJs also exhibits positive
reaction for cadherin-11 (not shown). We therefore con-
clude that VE-cadherin can be synthesized in normal
astrocytes and integrated with N-cadherin and/or cadherin-
11 into normal-looking AJs.

The formation of various types of adhering junctions
in the same cell and their segregation to homotypic clusters
in different cell surface regions are intrinsic properties
of a given glioma cell type

In order to examine whether the formation of VE-cadherin-
containing AJs and of the regional segregation of N-cadherin
versus VE-cadherin domains in cultured glioma cells are
general and stable properties of defined and distinct glioma
cell subtypes, or whether they represent the emergence of
specific clonal subtypes during the long cell culturing period,
we have systematically cloned individual cells of glioma line

Fig. 12 RT-PCR demonstrating the junctional (AJ) plaque protein
p0071 in human glioma U333 cells (lane 4), in comparison with
human bone marrow-derived cultured mesenchymal stem cells (MSC,
lane 5), human umbilical cord-derived endothelial cells (line HUVEC,
lane 6) and human liver carcinoma cells of line PLC (lane 3; here the
reaction is weak and only seen upon prolonged exposure), in
comparison with tissues of human heart (lane 2) and of bovine eye
lens (lane 1; for the negative reaction, see also Straub et al. 2003).
Lane 7 shows DNA size markers (Hinf-1 digest, bluescribe vector)

Fig. 11 Demonstration of VE-cadherin mRNAs by reverse transcrip-
tion with polymerase chain reaction (RT-PCR) in specific cell cultures.
a VE-cadherin mRNA was detected as 400-bp DNA in human U333
glioma cells (lane 8), in calf pulmonary artery endothelial (CPAE) cells
(lane 5), and human umbilical cord endothelial cells (HUVEC, lane 7),
but not in diverse other cells (lane 6 human breast carcinoma cells of
line MCF-7). Other negative controls shown are cell material without
template (lane 2), without sense-primer (lane 3), or without antisense-
primer (lane 4). Lane 1 contains size references of 517, 396, 356 and
247 bp. b Demonstration of VE-cadherin mRNA as a 400-bp DNA
fragment in diverse cell cultures such as human HUVEC cells (lanes 3,
4; see also above), primary cultures of mouse astrocytes (lane 5),
human glioblastoma cells of lines T98G (lane 6), U373MG (lane 7),
and U333 glioma cells (lane 8). The negative control (lane 2) contains
material from human colon carcinoma cells of line CaCo-2. Lane 1
contains DNA size standards (as in a, lane 1)
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U333 and generated clonal sublines (for methods, see
Knapp and Franke 1989). Some results are presented in
Figs. 14, 15. Clearly, regional segregation into VE-
cadherin-positive versus N-cadherin-positive domains
are frequently seen among the progeny of such clones,
even after only a few cell generations (Fig. 14).
Examples of both marked cell-to-cell heterogeneity and
regionalization of the different AJ subtypes in the same
cell have been noted in some of the clonal subcultures
(e.g., Fig. 15). In such clonally derived cell colonies,
regions of an exclusive VE-cadherin character can be
recognized in addition to domains with AJs containing
N-cadherin only and other AJs that display a true
hybrid character as they are intensely positive for both
N- and VE-cadherin (Fig. 15; see, in particular, the
insets). Consequently, we conclude that the abilities to
form AJs of different cadherin compositions and to
segregate different AJ subtypes to different domains is
an intrinsic property and a variability potential of such
glioma cells.

VE-cadherin as an immunohistochemical marker for certain
subtypes of astrocytes and astrocytomas
in neuropathological diagnoses

The occurrence of VE-cadherin-positive AJs along cell-
cell borders of astrocytomas and related tumors is not
only observed in cultured cells, but can also be seen in
situ, as is demonstrated by the immunohistochemistry of
the high-grade glioblastoma multiforme tumor shown in
Fig. 16. Here. practically all identifiable glioma cells react

Fig. 14 CLS double-label immunofluorescence micrograph showing
a monolayer of cells in a culture of progeny of a single U333 glioma
cell clone (no. 20); immunoreaction with antibodies to N-cadherin
(red) and cadherin-11 (green). Note some heterogeneity not only of
the cells, but also of the different plasma membrane domains within
the same cell. Cell domains connected to neighboring cells with only
N-cadherin-positive AJs are present (e.g., red, right) as are other
domains positive for both cadherins (yellow-orange) and certain small
AJs positive for only cadherin-11 (green), which are interspersed
between the yellow domains, i.e. mixed type junctions containing both
kinds of cadherins. Bar 20 µm

Fig. 13 Immunofluorescence microscopical characterization of pri-
mary murine astrocyte cultures with antibodies against GFAP (a) and
N-cadherin (b). The adhering junctions present in these cells also

contain VE-cadherin (c), plakophilin-2 (d), protein ZO-1 (e), and
ponsin (f). Bar 20 µm

Cell Tissue Res (2009) 335:49–65 59



with antibodies to GFAP, which is accompanied in almost
all cells by intense AJ reactions with antibodies against N-
cadherin and with antibodies against VE-cadherin.

This, however, is by no means a general character-
istic of gliomas. Indeed, in our hands, only a small
proportion of gliomas examined by immunohistochem-
istry have shown VE-cadherin positivity. Systematic
determinations will now have to be carried out in order
to ascertain the extent to which this glioma subtype is
biochemically, biologically, and clinically different from
other glial tumors. It will be particularly important to
test whether other typical endothelial molecular
“markers” can also be detected in the VE-cadherin-
positive or other subtypes of glial tumors, and in which
way the tumor-accompanying vasculogenesis is correlat-
ed (chronologically, developmentally, and topologically)
with the spread and the metastatic progression of such
tumors, notably glioblastomas (for a review, see Kleihues
and Cavenee 2000).

VE-cadherin-containing astrocytes and glioma tumors:
biological, pathological, and potential clinical problems

The occurrence of AJs containing VE-cadherin in a series
of glioma cell culture lines and in certain normal astrocytes
and some glioma tumors in situ may, at first sight, seem to
reflect bizarrely irregular protein synthesis and structure
assembly. However, a remarkably large body of literature
links astrocytes and astrocyte products, both spatially and
as regards molecular and developmental aspects, to blood
vessels, in particular endothelial cells. Indeed, as early as
1981, the anthology entitled “Glial-neurone interactions”
by J. Treherne (1981) presented, on its cover, a schematic
drawing of an astrocyte with its processes attached to a
neuron on the one side and a blood vessel on the other; this
book included a number of relevant articles on interactions
between astrocytes and endothelial cells in vertebrates and
invertebrates (e.g., Landis and Reese 1981; Lane 1981;
Lasek and Tytell 1981; Roots 1981; Somjen 1981). Soon

Fig. 15 CLS immunofluorescence microscopy of U333 glioma cells,
showing the progeny of a single N-cadherin-positive cell clone (no.
43; cf. Boda-Heggemann 2005), here with the remarkable re-
appearance of high complexity and heterogeneity in the resulting
clonal culture. Note the different subtypes of glioma cells that have
formed again as individual cells. Moreover, many, but by no means

all, of the AJs positive for N-cadherin (a) are also positive for VE-
cadherin (b). In addition to N:VE-cadherin hybrid AJs, strictly N-
cadherin- or VE-cadherin-positive AJs can also be seen (see brackets
in b). Insets: Higher magnification of N:VE-cadherin hybrid AJs. Bar
20 µm
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thereafter, Bär (1983) reviewed the literature on the
interrelationship of these two cell types and introduced the
concept of “glio-vascular contacts”. In general, cell-cell
contacts and secreted factors of astrocytes promoting and
regulating the growth of endothelial cells and the formation
of vascular architecture have been repeatedly described in
experiments with cultured cells (specifically co-culture
systems) and in situ, and the effects of astrocytes on
junctions and on the functioning of the blood-brain-barrier
have received special attention (e.g., Stewart and Wiley
1981; Risau et al. 1986; Janzer and Raff 1987; Wolburg
et al. 1994; Cecchelli et al. 1999; Brillault et al. 2002; Nico

et al. 2003; Hamm et al. 2004; Takano et al. 2006).
Researchers in this field have apparently been especially
impressed by the angiogenic and vasculogenic effects of
glioma cells (e.g., Plate and Risau 1995; Bian et al. 2000;
Carmeliet and Jain 2000; Maher et al. 2001; Miebach et al.
2006), and the pathogenic cross-talk of glial and endothelial
cells has also been reported (e.g., Liebner et al. 2000; Nico
et al. 2003). On the other hand, direct AJ contacts between
these two cell types and the occurrence of VE-cadherin in
AJs of adjacent astrocytes or glioma cells have not yet been
observed.

VE-cadherin as a constitutive component of cell-cell
junctions in a special type of melanoma

Hendrix and collaborators have reported and characterized
a highly aggressive subtype of melanoma of both cutaneous
and uveal origin; this subtype is distinguishable from other
melanoma forms by the presence of biochemically and
immunocytochemically demonstrable VE-cadherin, which
is enriched in the variously sized AJs of such cells (Hendrix
et al. 2001, 2003; Hess et al. 2001, 2006; Seftor et al. 2002;
for details, see also Maniotis et al. 1999; Folberg et al.
2000). Remarkably, melanomas of this subtype are often
also drastically enriched in another group of endothelial
markers, viz., receptor tyrosine kinases (TIE-1, EphA2),
enzymes known to be also synthesized in impressive
amounts in the vessels serving astrocytomas and glioblas-
tomas (for a review, see Cavenee et al. 2000). Therefore,
Hendrix et al. (2001; see also Maniotis et al. 1999; Folberg
et al. 2000) have introduced the term “vasculogenic
mimicry” for the appearance of such tumors with specific
endothelial markers; these authors have also been able to
down-regulate the VE-cadherin concentration and to abro-
gate, with molecular tools, the ability of these melanoma
cells to form vascular capillary-like tubular structures, a
characteristic differentiation form of this melanoma cell
subtype.

Concluding remarks

The general dogma that “VE-cadherin is endothelial-
specific” (e.g., Cavallaro et al. 2006) has held until today.
Obviously, here, as is all too often the case in cell and
molecular biology, the analysis books have been closed too
early. Although, in recent years, good careful biochemical
analyses and the resulting novel findings are of low esteem
and have earned pejoratives such as “archival”, “descrip-
tive”, or “non-mechanistic”, a logical request can be made
for the creation of a correct and solid analytical fundament
before valid functional hypotheses are formulated. With the
unexpected findings of VE-cadherin in certain astrocytes

Fig. 16 Immunofluorescence microscopy of cryostat sections through
a human glioma in situ (high-grade glioblastoma multiforme: grade
IV). In this tumor, almost all cells are positive for GFAP (a), N-
cadherin (b), and VE-cadherin (c). Bar 20 µm
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and glioma cell types and in a subtype of melanoma, we
must now start a thorough re-examination of the possible
occurrence of this cadherin in further cell types, including
those involved in diseases. The VE-cadherin-containing
AJs of certain astrocyte- and melanocyte-derived tumor
cells could heterotypically but trans-homophilically be
attached to vascular endothelial cells and tumors with a
particularly rich vascular system; gliomas and melanomas
are certainly good candidates for such attachment. More-
over, our findings of the regional segregation and polar
clustering of specific subforms of AJs, the VE-cadherin-
containing types included, now indicate that connections
between cells, including those that are malignant, may
differ in molecular character on different parts of the cell
surface. The surprising findings of junctions containing
VE-cadherin in non-endothelial cells have thus created
more questions than answers.

Open Access This article is distributed under the terms of the
Creative Commons Attribution Noncommercial License which per-
mits any noncommercial use, distribution, and reproduction in any
medium, provided the original author(s) and source are credited.
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