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Abstract. Let a Hölder continuous functionf be observed with noise.In the
present paper we study the problem of nonparametric estimation of certain
nonsmooth functionals of f, specifically,Lr norms ‖f ‖r of f . Known from
the literature results on functional estimation deal mostly with two extreme
cases: estimating a smooth (differentiable in L2) functional or estimating a
singular functional like the value of f at certain point or the maximum of f.
In the first case, the convergence rate typically is n−1/2, n being the number
of observations. In the second case, the rate of convergence coincides with
the one of estimating the function f itself in the corresponding norm.

We show that the case of estimating ‖f ‖r is in some sense intermediate
between the above extremes. The optimal rate of convergence is worse than
n−1/2 but is better than the rate of convergence of nonparametric estimates
of f . The results depend on the value of r . For r even integer, the rate occurs
to be n−β/(2β+1−1/r) where β is the degree of smoothness. If r is not an even
integer, then the nonparametric rate n−β/(2β+1) can be improved, but only
by a logarithmic in n factor.
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1. Introduction

The problem of estimating a functional is one of the basic problems in
statistical inference. Below we consider this problem in the nonparametric
set-up. Let a function f be observed with noise, and our goal is to estimate a
given real-valued functionalF(f ). Clearly the quality of estimation heavily
depends on smoothness properties of the functional F. The most developed
theory here deals with linear functionals. The “hardest single-parameter
subfamily” arguments yield both linear estimators with the smallest, as far
as linear estimates are concerned, worst-case risk, and demonstrate that the
resulting risk coincides, within factor (1 + o(1)) as n → ∞, with the min-
imax risk, see Levit (1974, 1975), Koshevnik and Levit (1976), Ibragimov
and Khasminski (1979, 1987) and Donoho and Liu (1991).

Another well studied situation deals with the case of “smooth” func-
tionals. Smoothness is usually understood as differentiability of F on L2. It
was shown in Levit (1978), Khasminski and Ibragimov (1979), Ibragimov,
Nemirovski and Khasminski (1986) that if F is smooth and the underlying
function f is also smooth enough thenF(f ) can be estimated with the para-
metric rate of convergence O(n−1/2), see also Ibragimov and Khasminski
(1991), Birgé and Massart (1995). The problem of estimation of quadratic
functionals is studied in details in Hall and Marron (1987), Bickel and Ritov
(1988), Donoho and Nussbaum (1990), Fan (1991), Efroimovich and Low
(1996), Laurent (1996) among others. Estimation of functionals of the type∫
f 3(t) dt is discussed in Kerkyacharian and Picard (1996).

The problem of estimation of non-smooth functionals is not well studied
so far, and there are very few results of this sort in the literature. Ibragimov
and Khasminski (1980) found the rate of convergence of estimating the
maximum of f , Korostelev (1990) studied the problem of estimating the
L1 norm of f.Korostelev and Tsybakov (1994) considered some functional
estimation problems in the image model, like estimating the area of an
image.

In this paper we are focusing on estimating Lr norm ‖f ‖r with a given
r ≥ 1. It is worth to mention that at least three cases of this problem – those
with r = 1, 2 and ∞ – have very natural interpretation. The case of r = ∞
corresponds to estimating the maximum of f . Ibragimov and Khasminski
(1980) have shown that the convergence rate of estimating F(f ) = ‖f ‖∞
coincides with the rate at which f itself can be recovered, the accuracy
being measured in the uniform norm, and one may therefore use the plug-in
estimator F̂ = ‖f̂ ‖∞ where f̂ is an optimal in order, with respect to the
uniform norm of the error, estimate of f .

Korostelev (1990) announced similar result for estimating the L1 norm
‖f ‖1 = ∫ |f (t)|dt : the optimal rate of convergence is O(n−β/(2β+1)), β
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being the order of smoothness of f , so that already a plug-in estimator∫ |f̂ (t)|dt associated with an optimal in order, the accuracy being mea-
sured in the L1 norm, non-parametric estimate f̂ of f , is optimal in order.
However, the inspection of the proof shows a gap in establishing the lower
bound, and a more detailed analysis demonstrates that the result itself is in-
correct: when estimating theL1 norm, a rate of convergence “slightly better”
(namely, by a logarithmic in n factor) than O

(
n−β/(2β+1)

)
is achievable.

Another interesting phenomenon occurs when estimating Lr norm for
r > 1. It turns out that both the optimal rates of convergence and the under-
lying estimators heavily depend on whether r is or is not an even integer.
When r is an even integer, the optimal rate of convergence is n−β/(2β+1−1/r),
i.e., is “significantly” better than the standard non-parametric raten−β/(2β+1)

associated with the plug-in estimators; as about the remaining values of r ,
the optimal rate of convergence is only by a logarithmic in n factor better
than the “plug-in” one.

It makes sense to compare the announced results with those related
to a seemingly very close problem of nonparametric hypotheses testing
associated with the case when the distance between the null hypothesis and
the alternative set is measured in Lr norm, see Ingster (1982, 1993), Lepski
and Spokoiny (1998) or Spokoiny (1996). A natural way to solve the testing
problem is to estimate the Lr norm of the function in question and then use
the estimate as a test statistics. This approach is known to work well for
r = 2 and r = ∞. However, comparing the optimal convergence rates in
the problem of nonparametric hypotheses testing and the one of estimating
the Lr norms, one can see that the cases of r = 2 and r = ∞ are the only
ones in which the outlined simple recipe works; for all other values of r ,
the convergence rates in the estimation and the testing problems differ from
each other.

The rest of the paper is organized as follows. In Section 2 we state our
main results, separately for r even integer and for the remaining cases. The
estimation procedures for r = 1 and for even integer r are presented in
Section 3. Section 4 contains the proofs.

2. Problem and main results

We start with formulating the problem. Consider the idealized “signal +
white noise” model of observations as follows: the observed data X(t),
t ∈ [0, 1] is a trajectory of the stochastic differential equation

dX(t) = f (t)dt + n−1/2 dW(t) (2.1)
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where f is the unknown function, W = (W(t), t ∈ [0, 1]) is the standard
Wiener process, and the parameter n plays the role of the “volume of obser-
vations” (cf. more realistic models where we are given noisy observations
of f at n equidistant or randomly generated points). Our a priori knowledge
on f is that it possesses some smoothness, namely, belongs to Hölder class
6(β,L) with known parameters β,L > 0. Recall that the latter means that
f is m times continuously differentiable on R1, m being the largest integer
which is less than β, and them-th derivative f (m) of f is Hölder continuous
with the exponentual β −m and constant L:

|f (m)(t)− f (m)(s)| ≤ L|t − s|β−m, t, s ∈ R1 .

By technical reasons, we assume also that f is bounded in the uniform norm
by a constant % < 1, so that

f ∈ 6%(β,L) = {f ∈ 6(β,L) : ‖f ‖∞ ≤ %} .
Our goal is to estimate the Lr norm of f

‖f ‖r =
[∫ 1

0
|f (t)|rdt

]1/r

,

with a given r ≥ 1.
We study our estimation problem in the standard asymptotic set-up, when

the parameter n tends to infinity. For an estimate f̂n of ‖f ‖r via observation
(2.1), let

R(f̂n) = sup
f∈6%(β,L)

`−1
(
E `

(
f̂n − ‖f ‖r

))
be the worst, over f compatible with our a priori knowledge, risk of the
estimate; here `(·) is a loss function. The results to follow are valid for
every homogeneous loss function ` satisfying the standard conditions, see,
e.g., Ibragimov and Khasminski (1979, Section 2.3). However, in order to
simplify presentation, we prefer to restrict ourselves with the simplest case
when `(z) = |z|, so that in what follows

R(f̂n) = sup
f∈6%(β,L)

E
∣∣f̂n − ‖f ‖r

∣∣ .
Let also

R∗(n) = inf
f̂n

sup
f∈6%(β,L)

E
∣∣f̂n − ‖f ‖r ,

∣∣
inf being taken over all estimates (i.e., measurable real-valued functions of
observation X), be the associated minimax risk.

Our first result deals with the case of r = 1.
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Theorem 2.1 Let r = 1. There exist estimatorŝfn and a positiveC > 0
depending onβ only such that for all large enough values ofn one has

R(f̂n) ≤ CL1/(2β+1)(n log n)−β/(2β+1) . (2.2)

This result shows that the L1 norm can be estimated better than with the
standard “nonparametric” convergence rate O

(
n−β/(2β+1)

)
, although the

improvement is only by a logarithmic factor. The next result states that a
more substantial improvement is impossible.

Theorem 2.2 Assume thatr is not an even integer. Then forn large enough
it holds

L−1/(2β+1)(n log n)β/(2β+1)R∗(n) ≥ c/(log n)r

with some positivec > 0 depending only onβ andr.

The situation with estimating Lr norm, r being an even integer, is as
follows:

Theorem 2.3 Letr = 2k be an even integer. There exist positive constants
c, C depending onβ, r only such that forn large enough one has

c ≤ L−(1−1/r)/(2β+1−1/r)nβ/(2β+1−1/r)R∗(n) ≤ C .

3. Estimation procedures

In this section we present two estimation procedures: one for estimating the
L1 norm, and the other one for estimating the Lr norm, r being an even
integer.

We start with the case of r = 1. The idea behind the construction is
as follows. The function |t | is not smooth at the origin. However, it can be
approximated on [−1, 1] by its truncated Fourier series:

|t | ≈
N∑
k=1

ck cos(πkt) (3.1)

within accuracy of order of N−1. Consequently, the functional
∫ |f (t)|dt

can be approximated by the finite sum
N∑
k=1

ck

∫ 1

0
cos(πkf (t))dt (3.2)

of smooth functionals which can be estimated with accuracyO(n−1/2) each,
e.g., by the method proposed in Ibragimov, Nemirovski and Khasminski
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(1986). Let f̃ (t) be a proper nonparametric estimator of f (t), e.g. a kernel
estimator, with the variance λ. Then the estimator of

∫ 1
0 cos(πkf (t))dt can

be taken in the form

F̂k = Eξ

∫ 1

0
cos(πk(f̃ (t)+iλξ))dt =

∫ 1

0
cos(πkf̃ (t)) exp{π2k2λ2/2}dt .

Here ξ is a N(0, 1) random variable independent of our observationX and
Eξ is the expectation w.r.t. ξ . It remains to chooseN in a way which balances
the approximation error of (3.1) (which is the less the larger is N ) and the
“stochastic error” – the one of estimating the smooth functional (3.2) via
noisy observations (the latter error is the larger the larger is N ).

The outlined scheme can be implemented as follows. Letm be the largest
integer which is smaller than β and let K be a compactly supported kernel
of order m i.e., K is a continuous function satisfying the conditions

(K.1) K(t) = 0 for |t | > 1;
(K.2)

∫
K(t)dt = 1;

(K.3)
∫
t iK(t) = 0 for i = 1, . . . , m.

We denote by ‖K‖ the L2 norm of K:

‖K‖ =
√∫

K2(t)dt . (3.3)

Let h ∈ (0, 1) be a “bandwidth” (a parameter of the construction to be
specified later), and let

f̃h(t) = 1

h

∫ 1

0
K

(
t − u

h

)
dX(u) (3.4)

be the standard kernel estimator of f associated withK,h. As always in the
kernel estimation, the kernelK should be corrected near the endpoints 0, 1:
for t ∈ [0, h] we should replaceK in the right hand side of (3.4) by a kernel
K− vanishing outside [0, 1], while for t ∈ [1 − h, 1],K should be replaced
with a kernelK+ vanishing outside [−1, 0], the modified kernels satisfying
the requirements (K.1)–(K.3). Without loss of generality we may assume
that all three kernels K,K± have the same L2 norm; with this assumption,
in the constructions/proofs to follow we may use, with no risk of confusion,
the same notationK for all three kernels, and we use this possibility in order
to make the presentation more readable.

Due to (2.1), the estimate f̃h(t) admits the usual decomposition into
deterministic and stochastic components:

f̃h(t) = fh(t)+ λhξh(t) , (3.5)
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where

fh(t) = 1

h

∫ 1

0
K

(
t − u

h

)
f (u)du ,

λh =
√√√√E {(1

h

∫ 1

0
K

(
t − u

h

)
n−1/2 dW(u)

)2
}

= ‖K‖√
nh

,

ξh(t) = 1

hλh

∫ 1

0
K

(
t − u

h

)
n−1/2 dW(u)

= 1

‖K‖√h

∫ 1

0
K

(
t − u

h

)
dW(u) .

ξh(t) clearly is N(0, 1) and hence

E f̃h(t) = fh(t) ,

Varf̃h(t) ≡ E
(
f̃h(t)− fh(t)

)2 = λ2
h .

Let us now set

h = (
L2n log n

)−1/(2β+1)
, (3.6)

N = bθL−1/(2β+1)(n log n)β/(2β+1)c , (3.7)

where

θ = 1

2π‖K‖√2β + 1
.

For all k = 1, 2, . . . , N and λ > 0, we define functions νk,λ(·) as

νk,λ(t) = cos(πkt) exp{π2k2λ2/2} (3.8)

and set

QN,λ(t) = c0 +
N∑
k=1

ckνk,λ(t) (3.9)

where ck are the Fourier coefficients of the function µ(t) = |t |:

ck = 2
∫ 1

0
t cos(πkt)dt =


1, k = 0
0, k = 2, 4, 6, . . . ,
4(πk)−2, k = 1, 3, 5, . . . .

(3.10)
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Finally, we define the estimator F̂ of ‖f ‖1 as

F̂n =
∫ 1

0
QN,λh(f̃h(t))dt = c0 +

∫ 1

0

N∑
k=1

ckνk,λh(f̃h(t))dt .

3.1. Estimating‖f ‖r for an even integerr

The difference between this case and the previous one comes from the fact
that for even integer r the function |t |r is analytic. This fact will be essentially
used in the construction.

Let us first consider the functional 8r(f ) = F rr (f ):

8r(f ) = ‖f ‖rr =
∫ 1

0
f r(t)dt .

This functional is smooth and it can be estimated (under some mild condi-
tions on f ) from observations X with the convergence rate n−1/2.

Let f̃h(t) be the kernel estimator off we have built. Applying the method
from Ibragimov, Nemirovski and Khasminski (1986), we get the following
estimator 8̂n of 8r(f ):

8̂n = Eξ

∫ 1

0

(
f̃h(t)+ iλhξ

)r
dt =

∫ 1

0

r/2∑
j=0

b2jλ
2j
h |f̃h(t)|r−2j dt . (3.11)

Here i is the imaginary unit, ξ is an N(0, 1) random variable independent
of observation X, and Eξ is the expectation w.r.t. ξ , so that

b2j = (−1)j
(
r

2j

)
Eξξ

2j . (3.12)

Now we set (cf. (3.6))

h = (L2n)
− 1

2β+1−1/r (3.13)

and define the estimator F̂n of ‖f ‖r as

F̂n = (max{0, 8̂n})1/r .

Remark 3.1.Our estimate heavily exploits the fact that |f | is known not to
exceed a given quantityρ < 1. Of course, applying the scalingf 7→ constf ,
we can reduce to the case in question also the case when we have an a priori
known upper bound of |f |.
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4. Proofs

Below we present complete proofs of Theorems 2.1, 2.2 and 2.3. In what
follows, κ (possibly, with sub- or superscripts) denote positive quantities
(not necessary the same in independent proofs) depending on r, β,K,K±
only.

4.1. Proof of the upper bound in Theorem 2.1

We start with several technical lemmas. Let νk,λ(t) = cos(πkt) exp
{π2k2λ2/2}, k ≥ 1, see (3.8).

Lemma 4.1 Letz ∈ [−1, 1], λ > 0 and letξ beN(0, 1) random variable.
Then for allk ≥ 1,

E νk,λ(z+ λξ) = cos(πkz) . (4.1)

If σk,λ(z) is defined by

σ 2
k,λ(z) ≡ Varνk,λ(z+ λξ) = E

∣∣νk,λ(z+ λξ)− cos(πkz)
∣∣2 ,

then

σk,λ(t) ≤ πkλ exp{π2k2λ2/2} .

Proof. Let ϕ(x) = (2π)−1/2 exp{−x2/2} be the standard Gaussian density.
Then

E νk,λ(z+ λξ) =
∫ ∞

−∞
νk,λ(z+ λx)ϕ(x)dx

= exp{π2k2λ2/2}
∫ ∞

∞
cos(πk(z+ λx))ϕ(x)dx

= (2π)−1/2Re

(∫ ∞

∞
exp{π2k2λ2/2 + iπk(z+ λx)

−x2/2}dx
)

= Re

(
exp{iπkz} (2π)−1/2

∫ ∞

∞
exp{−(x − iπkλ)2/2}dx

)
= cos(πkz)

and (4.1) follows.
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Similarly,

σ 2
k,λ(t) ≡

∫ ∞

∞
(νk(z+ λx)− cos(πkz))2ϕ(x)dx

=
∫ ∞

∞
ν2
k (z+ λx)ϕ(x)dx − cos2(πkz)

= exp{π2k2λ2}
∫ ∞

∞
0.5{1 + cos(2πkz+ 2πkλx)}ϕ(x)dx

− cos2(πkz)

= 0.5 exp{π2k2λ2} [1 + cos(2πkz) exp{−2π2k2λ2}]
−0.5 [1 + cos(2πkz)]

= 0.5
[
exp{π2k2λ2} − cos(2πkz)

] · [1 − exp{−π2k2λ2}]

≤ π2k2λ2 exp{π2k2λ2} .
�

Lemma 4.2 Letλ > 0 be fixed and letQN,λ be defined by(3.9). Then for
everyz ∈ [−1, 1]

EQN,λ(z+ λξ) = c0 +
N∑
k=1

ck cos(πkz) ,

VarQN,λ(z+ λξ) ≤ κ2
1λ

2 exp{π2N2λ2} log2(N + 1) .

with κ1 ≤ 2/π .

Proof. The first statement follows from the definition ofQN,λ by Lemma 4.1.
Now, [

VarQN,λ(z+ λξ)
]1/2 ≤

N∑
k=1

ck
[
Varνk,λ(z+ λξ)

]1/2
,

so that by Lemma 4.1[
VarQN,λ(z+ λξ)

]1/2 ≤
N∑
k=1

ckπkλ exp{π2k2λ2/2}

≤ πλ exp{π2N2λ2/2}
N∑
k=1

kck

≤ 2λπ−1 exp{π2N2λ2/2} log(N + 1) ,

as claimed. �
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Lemma 4.3 Letck, k = 0, 1, . . . be given by(3.10). Then for everyN ≥ 1
and all z ∈ [−1, 1] one has∣∣∣∣∣|z| − c0 −

N∑
k=1

ck cos(πkz)

∣∣∣∣∣ ≤ κ2N
−1

with κ2 = 2π−2.

Proof. By origin of ck, we have for |z| ≤ 1

|z| = c0 +
∞∑
k=1

ck cos(πkz)

and therefore∣∣∣∣∣|z| − c0 −
N∑
k=1

ck cos(πkz)

∣∣∣∣∣ ≤
∞∑

k=N+1

ck ≤ 1

2

∞∑
k=N+1

4

(πk)2
≤ 2π−2N−1

as required. �

We are ready to prove the upper bound from Theorem 2.1. Consider
decomposition (3.5) of the kernel estimate f̃h(t) with h given by (3.6).
Note first that the inclusion f ∈ 6(β,L) by standard reasons (see, e.g.,
Ibragimov and Khasminski (1979), Section 4.4, p. 317) implies that

|fh(t)− f (t)| ≤ κ3Lh
β (4.2)

with κ3 depending on β and the kernels K,K± only. Since h is small for
large n, from (4.2) combined with the fact that ‖f ‖∞ ≤ % < 1 we conclude
that for all large values of n for all f ∈ 6%(β,L) one has |fh(t)| ≤ 1.
In what follows we assume that n is so large that the latter assumption is
satisfied.

Let

γn(t) = QN,λh(f̃h(t))

so that F̂n = ∫ 1
0 γn(t)dt. In view of decomposition (3.5) and by Lemma 4.2

as applied with z = fh(t) it holds

E γn(t) = c0 +
N∑
k=1

ck cos(πkfh(t)) .

Applying Lemma 4.3 with z = fh(t) and λ = λh and taking into account
(4.2), we get
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|E γn(t)− f (t)| ≤ |E γn(t)− fh(t)| + |fh(t)− f (t)| ≤ κ2N
−1 + κ3Lh

β

and hence∣∣∣∣E ∫ 1

0
γn(t)dt − ‖f ‖1

∣∣∣∣ ≤
∫ 1

0
|E γn(t)− f (t)| ≤ κ2N

−1 + κ3Lh
β .

Now let us bound the variance of the estimator F̂n.
The definition of f̃h(t) and the condition (K.1) yield that f̃h(t) and f̃h(t ′)

are independent random variables when |t − t ′| ≥ 2h. Let Covξξ ′ means
the covariance E(ξ − E ξ)(ξ ′ − Eξ ′) between two random variables ξ, ξ ′.
Using the Cauchy-Schwarz inequality, we get

Cov(γn(t), γn(t
′)) ≤ [

Varγn(t)Varγn(t
′)
]1/2

1(|t − t ′| ≤ 2h)

≤ 0.5
(
Varγn(t)+ Varγn(t

′)
)

1(|t − t ′| ≤ 2h) .

This gives

VarF̂n = Var

(∫ 1

0
γn(t)dt

)
=
∫ 1

0

∫ 1

0
Cov(γn(t), γn(t

′))dt dt ′

≤ 0.5
∫ 1

0

∫ 1

0

(
Varγn(t)+ Varγn(t

′)
)

1(|t − t ′| ≤ 2h) dt dt ′

≤ 4h
∫ 1

0
Varγn(t)dt . (4.3)

Applying further Lemma 4.2 and recalling the origin of λh, we get

VarF̂n ≤ κ2
1 4‖K‖2n−1 exp{π2N2‖K‖2/(nh)} log2(N + 1) .

Now,

E
∣∣F̂n − ‖f ‖1

∣∣ ≤ E
∣∣E F̂n − ‖f ‖1

∣∣+ E
∣∣F̂n − E F̂n

∣∣
≤ E

∣∣E F̂n − ‖f ‖1

∣∣+ [
VarF̂n

]1/2

≤ κ2N
−1 + κ3Lh

β

+ 2κ1‖K‖n−1/2 log(N + 1) exp

{
π2N2‖K‖2

2nh

}
. (4.4)
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Substitutingh,N given by (3.6), (3.7) respectively, we see that for alln ≥ κ4

it holds

π2N2‖K‖2

2nh
≤ α log n

with certain constant α < 1/(4β+2). Therefore for all large enough values
of n the exponent in (4.4) can be bounded as

exp{π2N2‖K‖2/(2nh)} ≤ n1/(4β+2) ;

with this bound, (4.4) implies (2.2).

4.2. Proof of the upper bound in Theorem 2.3

First we study the behavior of the estimator 8̂n of 8r(f ), see (3.11).

Lemma 4.4 Letfh(t) be given by(3.6). Then

E 8̂n =
∫ 1

0
f rh (t)dt = ‖fh‖rr ,

Var8̂n ≤ κ4n
−1 max

{
λ2r−2
h , ‖fh‖2r−2

2r−2

}
whereκ4 depends only onr and the kernelK.

Proof. Observe first that for every two pair of independentN(0, λ2) random
variables ξ , ξ ′ and for every polynomial p(·) on the complex plane C one
has

E(p(z+ ξ + iξ ′)) = p(z), z ∈ C , (4.5)

i being the imaginary unit. Indeed, our expectation can be rewritten as
the mean value, over certain probability distribution on the ray {R ≥ 0},
of the means 1

2π

∫ 2π
0 p(z+R exp{iφ}) dφ; all latter means are equal to p(z)

(the Cauchy Theorem on the integral representation of an analytic function).
Combining (4.5) and decomposition (3.5) of the kernel estimate f̃t (t)

we get

E 8̂n = E

∫ 1

0
Eξ (fh(t)+ λhξh(t)+ iλhξ)

r dt =
∫ 1

0
f rh (t)dt , (4.6)

which is the first assertion of Lemma.
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Let

γn(t) = Eξ(f̃h(t)+ iλhξ)
r ;

by (4.6) we have Eγn(t) = |fh(t)|r . Using (3.5) once more, we get

γn(t)− E γn(t) = Eξ (fh(t)+ λhξh(t)+ iλhξ)
r − |fh(t)|r

=
r∑
j=1

(
r

j

)
f
r−j
h (t)λ

j

hEξ (λhξh(t)+ iλhξ)
j ,

whence

Varγn(t) ≤ λ2
h

r∑
j=1

ajλ
2j−2
h |fh(t)|2r−2j

with some positive numbers aj depending on r only (we have used the
fact that for two independent N(0, 1) random variables ξ ′, ξ ′′ one has
E
[
(ξ ′ + iξ ′′)j (ξ ′ + iξ ′′)k

] = 0 when j 6= k, z being the complex conju-
gate of z; to get this relation, it suffices to pass to integration in the polar
coordinates, cf. (4.5)).

By exactly the same reasons which led us to (4.3) we have

Var8̂n ≤ 4h
∫ 1

0
Varγn(t)dt ,

whence

Var8̂n ≤ 4hλ2
h

r∑
j=1

∫ 1

0
ajλ

2j−2
h |fh(t)|2r−2j dt

≤ 4‖K‖2n−1
r∑
j=1

ajλ
2j−2
h ‖fh‖2r−2j

2r−2 ,

which clearly implies the second assertion of Lemma. �

Lemma 4.5 There exists a constantκ5 depending only onr and on the
kernelsK,K± such that

‖fh‖2r−2
2r−2 ≤ κ5h

−1+1/r‖f ‖r−1
r ‖fh‖r−1

r .

Proof. Applying the Minkovski inequality, we get
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|fh(t)|r−1 =
∣∣∣∣∫ 1

0
f (u)h−1K

(
t − u

h

)
du

∣∣∣∣r−1

≤
(∫ 1

0
|f (u)|rdu

) 1
r

×
(
h− r

r−1

∫ 1

0
|K(h−1(t − u)

)| r
r−1 du

) r−1
r

r−1

= κ5h
−1+1/r‖f ‖r−1

r

where κ5 depends on r and the kernels K,K± only. Consequently,

‖fh‖2r−2
2r−2 =

∫ 1

0
|fh(t)|2r−2 dt

≤ κ5h
−1+1/r‖f ‖r−1

r

∫ 1

0
|fh(t)|r−1 dt

≤ κ5h
−1+1/r‖f ‖r−1

r ‖fh‖r−1
r ,

the concluding ≤ being given by the Jensen inequality. �

Now we are ready to complete the proof of the theorem. Denote

%n = L
1−1/r

2β+1−1/r n
− β

2β+1−1/r . (4.7)

Then %n is exactly the convergence rate mentioned in the theorem; note that
by (3.13) one has %n = Lhβ .

Recall that the Hölder smoothness constraint implies the bound

‖f − fh‖r ≤ κ3Lh
β = κ3%n , (4.8)

whence ‖fh‖r ≤ ‖f ‖r + κ3%n. Consider separately the cases of ‖f ‖r ≤
2κ3%n and of ‖f ‖r > 2κ3%n. If ‖f ‖r ≤ 2κ3%n, then

E|F̂n − ‖f ‖r | ≤ E|F̂n| + 2κ3%n

≤ (E 8̂2
n)

1/(2r) + 2κ3%n

≤ [
Var8̂n + (E 8̂n)

2
]1/(2r) + 2κ3%n

≤ (Var8̂n)
1/(2r) + (E 8̂n)

1/r + 2κ3%n .
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It is easily seen that for n ≥ κ4 one has %n < λ2
h = ‖K‖2/(nh). Using

Lemma 4.4, we come to the bound

rclE|F̂n − ‖f ‖r | ≤ (
κ5n

−1λ2r−2
h

)1/(2r) + ‖fh‖r + 2κ3%n

≤ (
κ5n

−1λ2r−2
h

)1/(2r) + [‖f ‖r + κ3%n
]+ 2κ3%n

≤ (
κ5n

−1λ2r−2
h

)1/(2r) + κ6%n .

Substituting λh = (nh)−1/2 in the expression for h from (3.13), and using
the bound (4.8), we get the desired risk bound.

It remains to consider the case of ‖f ‖r > 2κ3%n. In this case from (4.8)
it follows that ‖fh‖r ≥ ‖f ‖r − κ3%n ≥ κ3%n whence

E|F̂n − ‖f ‖r | ≤ E|F̂n − ‖fh‖r | + κ3%n

≤ E|F̂ rn − ‖fh‖rr |
‖fh‖r−1

r

+ κ3%n

≤ E|8̂n − E 8̂n|
‖fh‖r−1

r

+ κ3%n

≤ (Var8̂n)
1/2

‖fh‖r−1
r

+ κ3%n .

Combining Lemma 4.4 and (4.8), we get

(Var8̂n)
1/2 ≤ κ6n

−1/2
(
λr−1
h + h−(r−1)/(2r)‖fh‖r−1

r

)
and we end up with

E|F̂n − ‖f ‖r | ≤ κ6n
−1/2

(
λr−1
h %−r+1

n + h−(r−1)/(2r)
)+ κ3%n .

Recalling that λh = ‖K‖2/(nh) and substituting the expression for h, we
come to the desired risk bound.

4.3. Proof of the lower bound in Theorem 2.3

The problem under consideration is rather special, and the standard tech-
niques for establishing lower bounds in the problems of estimating the value
of a functional (e.g., the one of “the hardest single-parametric subfamily”)
seemingly do not work. The reason is that the functional ‖f ‖r , r being an
even integer, is “nearly smooth” – it looses smoothness at the unique point
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f = 0. Note that the value of an “actually smooth” functional can be es-
timated with the parametric convergence rate O(n−1/2), while our goal is
to establish a kind of nonparametric lower bound. To this end we intend
to build a pair of “high-dimensional” distributions concentrated each near
its own small “r-sphere” {f ∈ 6%(β,L) | ‖f ‖r = R}, R = R1, R2, in
such a way that the Kullback distance between the distributions is small, so
that they cannot be distinguished reliably from the observations. Ensuring
this property, we can use the standard arguments to demonstrate that the
minimax risk in our problem of estimating ‖ · ‖r is (at least)O(|R1 −R2|).

Our first step is to replace the nonparametric set6%(β,L)with its prop-
erly chosen parametric subset where the aforementioned distributions will
be concentrated. Let us fix a function g ∈ 6(β, 1) vanishing outside the
interval [0, 1] and such that ‖g‖2(t)dt = ∫

g2 > 0. Note that by evident
reasons all functions of the form Lb−βg(a + bt) with b ≥ 1 belong to
6%(β,L), provided that b is greater than a constant depending on % only.

Let us set

N = b(L2n)
1

2β+1−1/r c ,
h = N−1 ; (4.9)

note that our new values of N, h differ from those used in the construction
of the estimators F̂n.

Now let I = {Ii, i = 1, . . . , N} be the partition of the interval [0, 1]
into N = h−1 subintervals I1, . . . , IN of length h each, and let ti be the
left endpoint of subinterval Ii . With a point θ = (θ1, . . . , θN) from the
N -dimensional cube BN = [−1, 1]N we associate the function

fθ(t) = L

N∑
i=1

θih
βg((t − ti)/h)

Assuming n large enough, for all θ ∈ BN we have fθ ∈ 6%(β,L) and

‖fθ‖rr = Lrhβr
N∑
i=1

|θi |r
∫
Ii

∣∣∣∣g ( t − ti

h

)∣∣∣∣r dt
= (

L‖g‖rhβFr(θ)
)r

(4.10)

where

Fr(θ) =
(

1

N

N∑
i=1

|θi |r
)1/r

. (4.11)

For i = 1, . . . , N let
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Yi = Y θi =
√
n

‖g‖√h

∫
Ii

g

(
t − ti

h

)
dXθ(t) ,

where Xθ is observation (2.1) associated with f = fθ . We clearly have

Yi = α(N)θi + ξi, i = 1, . . . , N, (4.12)

where

α(N) = L‖g‖n1/2hβ+1/2 = L‖g‖n1/2N−β−1/2 ,

ξi = 1

‖g‖√h

∫
Ii

g

(
t − ti

h

)
dW(t) .

(4.13)

Clearly ξ = (ξ1, . . . , ξN) is a collection of independent N(0, 1) random
variables. It is also straightforward to see that the set of statistics Yi, i =
1, . . . , n is sufficient for the parametric submodel (withf ∈ 6N = {fθ , θ ∈
BN }). Therefore, when restricting f to belong to 6N and setting si =
α(N)θi , i = 1, . . . , N , the original “signal + white noise” model (2.1)
becomes the “sequence space” model

Yi = si + ξi, i = 1, . . . , N , (4.14)

with s = (s1, . . . , sN) from the cube SN = B
α(N)
N = [−α(N), α(N)]N .

With this transformation, the original estimation problem (reduced to 6N )
becomes the problem of estimating the quantity

Fr(s) =
(

1

N

N∑
i=1

|si |r
)1/r

(cf. (4.11)) via observations (4.14). Let Rs(N) be the corresponding mini-
max risk:

Rs(N) = inf
F̂

sup
s∈SN

Es |F̂ − Fr(s)| ,

the infimum being taken over all Borel functions F̂ = F̂ (y) on RN and Es
being the expectation over the observations (4.14) associated with a given s.
Comparing (4.11) and the definition ofFr(s) and taking into account (4.10),
we get

R∗(n) ≥ L‖g‖rhβα−1(N)Rs(N) = κg
√
N/nRs(N) (4.15)

where κg = ‖g‖r/‖g‖.
Now we are going to establish the following
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Proposition 4.1 For all large enough values ofN one has

Rs(N) ≥ κ7α(N) (4.16)

with κ7 depending onr, β only.

Note that the statement of Theorem 2.3 is an immediate consequence of
Proposition 4.1. Indeed, combining (4.16), (4.9), (4.15) and (4.13), we get

R∗(n) ≥ κ7κg
√
N/nα(N) = κ7κgL‖g‖N−β = κ8L

1−1/r
2β+1−1/r n

− β

2β+1−1/r

with κ8 depending on r, β only, as claimed in Theorem 2.3.

Proof of Proposition 4.1 is based on the following idea. We introduce two
prior measures µN,0 and µN,1 on the parameter set SN and denote by PN,0
and PN,1 the corresponding marginal measures on RN ,

PN,j = µN,j ∗ L, j = 0, 1 ;
here L is the distribution of the observation noises ξ in (4.14). Let also
K(PN,0, PN,1) be the Kullback distance between PN,0 and PN,1

K(PN,0, PN,1) =
∫

log

(
dPN,1

dPN,0

)
dPN,1 .

We will bound the minimax risk from below by the maximum of two
Bayesian risks corresponding to the distributionsµN,0 andµN,1 on the space
SN of “signals” s. To this end we need the following statement (which can
be obtained from the Fano inequality; we, however, prefer to present a direct
proof).

Lemma 4.6 Let prior measuresµN,0 andµN,1 be such that the Kullback
distanceK(PN,0, PN,1) satisfies the condition

K(PN,0, PN,1) ≤ � (4.17)

with some positive�. Let8 be a function on the parametric setSN , and let

vN,j =
∫
8(s)µN,j (ds) , (4.18)

d2
N,j =

∫
(8(s)− vN,j )

2µN,j (ds) , (4.19)

for j = 0, 1. One has

R(N) ≡ inf
8̂

sup
s∈SN

Es |8̂−8(s)| ≥ 0.25|vN,0−vN,1|e−�−max{dN,0, dN,1} ,
(4.20)

the infimum being taken over all estimators of8(s) via observations(4.14).
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Proof. First note that for an arbitrary prior measure µ and every estimator
8̂ of 8(s) via observations (4.14) one has

sup
s∈SN

Es |8̂−8(s)| ≥ EN,µ|8̂−8(s)|

≥ EN,µ|8̂− EN,µ8(s)| − EN,µ|8(s)− EN,µ8(s)|

≥ EN,µ|8̂− EN,µ8(s)| − dN,µ .

It follows that

R(N) ≥ 0.5 inf
8̂

{
EN,0|8̂− vN,0| − dN,0 + EN,1|8̂− vN,1| − dN,1

}
≥ 0.5 inf

8̂

{
EN,0|8̂− vN,0| + EN,1|8̂− vN,1|

}
− max{dN,0, dN,1} . (4.21)

Now let us use the well known fact (see e.g. Borovkov (1984, Theorem 2.1,
Chapter 3)) that the maximum likelihood test T̂N = 1(dPN,1/dPN,0 > 1)
is optimal for testing the hypothesis H0 : P = PN,0 versus the alternative
H1 : P = PN,1 (P is the distribution of observations (4.14)) in the sense
that it minimizes the sum of probabilities of errors: for an arbitrary test TN ,

PN,0(TN = 1)+PN,1(TN = 0) ≥ PN,0(T̂N = 1)+PN,1(T̂N = 0) . (4.22)

Let ZN = dPN,0/dPN,1. Then T̂N = 1(ZN ≤ 1) and, since the function
log(z) is concave, using Jensen’s inequality we get

log
(
PN,0(T̂N = 1)+ PN,1(T̂N = 0)

)
≥ logPN,0(ZN ≤ 1)

= log
∫
ZN1(ZN ≤ 1)dPN,1

≥
∫

log(ZN)1(log(ZN) ≤ 0)dPN,1

≥ −K(PN,0, dPN,1) ≥ −� . (4.23)

Let now 8̂ be an estimator of 8(s). Consider the following test

TN = 1(8̂− vµ,0 > 1N)
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where

1N = (vN,1 − vN,0)/2

(we assume that vN,1 > vN,0). Applying (4.22) and (4.23), we get

PN,0(TN = 1)+ PN,1(TN = 0) ≥ e−�

or

PN,0(8̂− vN,0 > 1N)+ PN,1(8̂− vN,1 < −1N) ≥ e−� .

Since

EN,0|8̂− vN,0| + EN,1|8̂− vN,1|

≥ (
PN,0(8̂− vN,0 > 1N)+ PN,1(8̂− vN,1 < −1N)

) |1N |

≥ 0.5|vN,1 − vN,0|e−� ,

(4.21) implies (4.20). �

We shall apply Lemma 4.6 to the function 8(s) = N−1(sr1 + · · · + srN)

and a pair of prior measures µN,0 and µN,1 with the product structure:

µN,0 = µN0 ,

µN,1 = µN1 .

We shall build the measures µ0, µ1 on [−α(N), α(N)] in such a way that
(4.17) holds with some fixed �, while and the difference |vN,1 − vN,0| is
“large”.

First we note that, for j = 0, 1,

vN,j = 1

N

∫ N∑
i=1

|si |rµN,j (ds) =
∫

|s|rµj (ds) = vj (4.24)

and similarly

d2
N,j = 1

N2

∫ N∑
i=1

(|si |2r − v2
j )µN,j (ds)

= N−1
∫
(|s|2r − v2

j )µj (ds) = N−1d2
j
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where

vj =
∫

|s|rµj (ds) ≤ αr(N)

d2
j =

∫
|s|2rµj (ds)− v2

j ≤ α2r (N) .

(4.25)

To bound the Kullback distance between the marginal measures PN,0 and
PN,1, note that the product structure of model (4.14) and of the priors
µN,0, µN,1 altogether imply that

K(PN,0, PN,1) = N

∫
log(pµ0(y)/pµ1(y))pµ0(y)dy (4.26)

where, for a finitely supported measure µ on the axis,

pµ(y) =
∫
ϕ(y − t)µ(dt) ,

ϕ(y) = (2π)−1 exp{−y2/2}

being the standard Gaussian density on the axis.
Assuming that the priors µN,0 = µN0 , µN,1 = µN1 and an � > 0 satisfy

(4.17) and applying Lemma 4.6, we get the following lower bound on the
risk of an arbitrary estimate 8̂ of 8(s):

sup
s∈SN

Es |8̂−8(s)| ≥ 0.25|v1 − v0|e−� − αr(N)N−1/2 (4.27)

(see 4.25).
Now let us derive from the latter bound a lower bound for the risk Rs(N)

of estimating Fr(s). Let F̂ be an estimate of Fr(s), s ∈ SN . When bounding
from below the risk of F̂ on SN , we may assume without loss of generality
that |F̂ (·)| ≤ α(N). Indeed, since |Fr(s)| ≤ α(N) for s ∈ SN , we only
decrease the risk of F̂ at s ∈ SN when passing from F̂ to the “projected”
estimate ψ(F̂ (·)), where

ψ(t) =


−α(N), t ≤ −α(N),
t, −α(N) ≤ t ≤ α(N),
α(N), t ≥ α(N) .

Let 8̂ = F̂ r be the estimate of 8(s) = F rr (s) induced by F̂ . Since |F̂ | ≤
α(N), we have

Es |8̂−8(s)| = Es |F̂ r − F rr (s)| ≤ rαr−1(N)Es |F̂ − Fr(s)| .
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Applying (4.27), we get

Rs(N) ≥ (rαr−1(N))−1(0.25|v1 − v0|e−� − αr(N)N−1/2)

= r−1α(N)(0.25α−r (N)|v1 − v0|e−� −N−1/2) . (4.28)

It is time now to specify our choice of the measures µ0, µ1. Let δ be the
distance (in the uniform norm on [−1, 1]) from the function t r to the space
Lr−2 of polynomials of degree ≤ r−2. We claim that there exists a measure
µ on [−1, 1] of variation 2 such that

∫
t lµ(dt) = 0 for l = 0, 1, . . . , r − 2,

while
∫
t rµ(dt) = 2δ. The justification of our claim is quite standard. Con-

sider the space C(−1, 1) of continuous real-valued functions on [−1, 1]
(equipped with the uniform norm) along with its finite-dimensional sub-
space L spanned by Lr−2 and the polynomial t r . L is a finite-dimensional
linear space equipped with the norm ‖·‖ inherited fromC(−1, 1), andLr−2

is a linear subspace in L of codimension 1. Let the linear functional ψ(·)
on L be defined by the requirements that ψ vanishes on Lr−2 and is equal
to δ at t r . Observe that the norm of our functional is 1:

‖ψ‖∗ ≡ max{ψ(q(·)) | q(·) ∈ L, ‖q‖ ≤ 1} = 1 .

Indeed, if q(·) is the closest to t r element of Lr−2, then ψ(tr − q(·)) = δ =
‖t r − q(·)‖, so that ‖ψ‖∗ ≥ 1. On the other hand, assuming that ‖ψ‖∗ > 1,
we are able to find d ∈ L with ‖d‖ = 1 and ψ(d) = ‖ψ∗‖ > 1; the vector
t r − (δ/‖ψ‖∗)d ∈ L belongs to Lr−2 (since the value of ψ at this vector is
0) and is at a smaller than δ ‖ · ‖-distance from t r , which is impossible.

By the Hahn-Banach Theorem, we can extend the linear functional ψ
from L on the entire C(−1, 1) not increasing the norm of the functional,
and by the Riesz Theorem, the resulting linear functional ψ̂(g) onC(−1, 1)
can be represented as

ψ̂(g) =
∫ 1

−1
g(t)dν(t)

for a Borel (not necessarily nonnegative) measure ν with variation equal to
the norm of ψ̂ , i.e., to 1.

Setting µ = 2ν, we get a measure on [−1, 1] of variation 2 such that∫ 1

−1
t lµ(dt) = 0, l = 0, 1, . . . , r − 2,

∫ 1

−1
t rµ(dt) = 2δ .

Note that if µ possesses the indicated properties, so is the “reflected” mea-
sure µ∗ (µ∗(A) = µ(−A)) and hence the measure (µ + µ∗)/2; therefore
µ may be assumed to be symmetric. Let µ+,−µ− be the positive and the
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negative components of µ, respectively. Since µ is symmetric with varia-
tion 2 and

∫ 1
−1 µ(dt) = ∫ 1

−1 t
0µ(dt) = 0, both µ+ and µ− are symmetric

probability distributions on [−1, 1] such that∫ 1

−1
t lµ+(dt) =

∫ 1

−1
t lµ−(dt), l = 0, 1, . . . , r − 2 ;∫ 1

−1
t rµ+(dt) =

∫ 1

−1
t rµ−(dt)+ 2δ .

(4.29)

Let µ0, µ1 be obtained from µ± by “expanding” associated with the sim-
ilarity transformation which maps [−1, 1] onto [−α(N), α(N)]: µ0(A) =
µ+(α−1(N)A), µ1(A) = µ−(α−1(N)A), A ⊂ [−α(N), α(N)]. The quan-
tities v0, v1 associated with ourµ0, µ1 (see (4.24)) clearly satisfy the relation

v0 − v1 = αr(N)

∫ 1

−1
|t |rµ(dt) = 2δαr(N)

and the associated bound (4.28) is

Rs(N) ≥ r−1α(N)(δe−� −N−1/2) , (4.30)

�being the Kullback distance between the marginal distributionsPN,0, PN,1
given by the priors µN0 , µ

N
1 . All we need is to evaluate �.

Let us associate with a symmetric probability distribution ν on [−1, 1]
and a real α the distribution Fαν on the axis with the density

pν(α, y) =
∫ 1

−1
ϕ(y−αt)ν(dt) = ϕ(y)

∫ 1

−1
ch(αty) exp{−α2t2/2}ν(dt) ,

(4.31)
so that

pµ0(y) = pµ+(α(N), y), pµ1(y) = pµ−(α(N), y) . (4.32)

Note that (4.31) defines function pν(α, y) for an arbitrary (not necessarily
nonnegative) symmetric measure ν on [−1, 1].

Let

K(α) =
∫ ∞

−∞
log(pµ+(α, y)/pµ−(α, y))pµ+(α, y)dy (4.33)

be the Kullback distance from pµ+(α, ·) to pµ−(α, ·). Note that by (4.26)
and (4.32) it holds

� = K(PN,0, PN,1) = NK(pµ0, pµ1) = NK(α(N)) . (4.34)
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Lemma 4.7 The functionK(α) is C∞ smooth and it has a zero of order at
least2r at the pointα = 0.

Proof. It is clearly seen that one may differentiate K(α) arbitrarily many
times and that

K(l)(α) =
∫ ∞

−∞

∂l

∂αl

[
log

(
pµ+(α, y)

pµ−(α, y)

)
pµ+(α, y)

]
dy

for all l. Note that

pµ+(α, y) = pµ−(α, y)+ pµ(α, y) .

Let us first demonstrate that for all x

∂lpµ(α, y)

∂αl

∣∣∣∣
α=0

= 0, l = 0, 1, . . . , r − 1 . (4.35)

Indeed, one has

∂lpµ(α, y)

∂αl

∣∣∣∣
α=0

= ϕ(x)

∫ 1

−1

[
l∑
i=0

(
l

i

)(
∂i exp{−α2t2/2}

∂αi

)

×
(
∂l−ich(αty)

∂αl−i

)]
µ(dt)

∣∣∣∣∣
α=0

=
∫ 1

−1
t l(a0 + a1y + · · · + aly

l)µ(t) = 0

(we have used (4.29)), as required in (4.35).
According to (4.35), pµ(α, y) can be represented in the form

pµ(α, y) = αrw(α, y)

with smooth function w(·, ·) (which, as it is easily seen, is a summable
function of y). Since

∫∞
−∞ pµ(α, y)dy = 0 for all α, it also is the case for

w(α, y): ∫ ∞

−∞
w(α, y)dy = 0, ∀α .

Now we have

log

(
pµ−(α, y)

pµ+(α, y)

)
= log

(
1 − αrw(α, y)

pµ+(α, y)

)
= −α

rw(α, y)

pµ+(α, y)
− α2rv(α, y) ,

v being a smooth function of y, α. Hence
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K(α) = −
∫ ∞

−∞
log

(
pµ−(α, y)

pµ+(α, y)

)
pµ+(α, y)dy

= αr
∫ ∞

−∞
w(α, y)dy + α2r

∫ ∞

−∞
v(α, y)pµ+(α, y)dy

= α2r
∫ ∞

−∞
v(α, y)pµ+(α, y)dy

and the assertion of Lemma follows.

The result of Lemma 4.7 says that for small positive α one has

K(α) ≤ κ10α
2r . (4.36)

In particular, for all large enough values of n (and thus – of N ) we have

� = NK(α(N)) [by (4.34)]
≤ κ10Nα

2r (N) [by (4.36)]
≤ κ11N(Ln

1/2N−β−1/2)2r [see (4.13)]
≤ κ12 [see (4.9)]

Applying (4.30), we see that for n large enough it holds

Rs(N) ≥ κ13α(N) ,

as required in Proposition 4.1. �

4.4. Proof of the lower bound in Theorem 2.2

Here we establish the lower bound from Theorem 2.2 for the case when r is
not an even integer. We follow the line of the proof of the lower bound from
Theorem 2.3; the only difference is in construction of the priors µ0 and µ1.

We start with translating the problem into the “sequence space” model
in exactly the same manner as in Section 4.3, with the only difference that
now we set

N = b(200L‖g‖)2/(2β+1)(n log n)1/(2β+1)c . (4.37)

Note that with this setup for all large enough values of n one has (see (4.13))

α(N) ≡ L‖g‖√nN−β−1/2 ≤ 0.01√
logN

. (4.38)

Relation (4.15) for R∗(n) remains valid for our new setup as well, and
the required result is obtained from this relation and a lower bound on
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the worst case, over s ∈ SN , risk of recovering the functional Fr(s) =
(N−1(sr1 + · · · + srN))

1/r via observations (4.14). The latter bound is given
by the following statement (which now plays the role of Proposition 4.1):

Proposition 4.2 For all large enough values ofN one has

Rs(N) ≡ inf
F̂

sup
s∈SN

Es |F̂ − Fr(s)| ≥ κ9(logN)−rα(N) (4.39)

whereκ9 > 0 depends onr andβ only.

Postponing for the moment proof of Proposition, let us derive from this
statement Theorem 2.2. Indeed, we have

R∗(n) ≥ κg
√
N/nRs(N) [by (4.15)]

≥ κ9κg
√
N/n(logN)−rα(N) [by (4.39)]

≥ κ10L‖g‖N−β(logN)−r [by (4.13)]

≥ κ11L
1/(2β−1)(n log n)−β/(2β+1)(log n)−r [by (4.37)]

with κ11 depending on β, r only, as required in Theorem 2.2.

Proof of Proposition 4.2 This differs from the one of Proposition 4.1 only
in how we define the measuresµ±. LetPk be the space of polynomials of de-
gree ≤ k, and let δ(k) be the distance (in the uniform norm on [−1, 1]) from
the function |t |r to the space P2k. It is known (see, e.g., Timan A.F., Theory
of approximation of functions of real variable, Moscow, 1960, p. 430) that
if k is a nonnegative integer, then

δ(k) ≥ κ10k
−r ,

with κ10 > 0 depending on r only. Let us set

k(N) = blogNc ,

with N given by (4.37); we assume n to be so large that N ≥ 3. Same as
in the proof of Proposition 4.1, for our N there exists a symmetric measure
µN on [−1, 1] with variation 2 such that∫ 1

−1
t lµN(dt) = 0, l = 0, 1, . . . , 2k(N) ,∫ 1

−1
|t |rµN(dt) = 2δ(k(N)) ≥ 2κ10k

−r (N) ,
(4.40)
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and the positive and the negative components, µ+, µ− (µN = µ+ − µ−)
are symmetric probability distributions on [−1, 1].

Same as in Section 4.3, we define the measures µ0 and µ1 on [−α(N),
α(N)] “expanding” the measures µ±, thus coming to a pair of symmetric
probability distributions µ0, µ1 on [−α(N), α(N)] satisfying the relations∫ α(N)

−α(N)
t lµ0(dt) =

∫ α(N)

−α(N)
t lµ1(dt), l = 0, 1, . . . , 2k(N) ;∫ α(N)

−α(N)
|t |rµ0(dt) ≥

∫ α(N)

−α(N)
|t |rµ1(dt)+ 2δ(k(N))αr(N) .

(4.41)

Setting µN,0 = µN0 , µN,1 = µN1 and denoting by PN,0, PN,1 the marginal
distributions of observations (4.14) associated with the priors µN,0, µN,1,
we, same as in the proof of the lower bound in Theorem 2.3, come to the
inequality (cf. (4.30))

Rs(N) ≥ r−1α(N)
(
0.25δ(k(N))e−� −N−1/2

)
, (4.42)

where � is the Kullback distance between the distributions PN,0, PN,1:

� = K(PN,0, PN,1) = NK(α(N)) ,

K(α) =
∫ ∞

−∞
log(pµ+(α, y)/pµ−(α, y))pµ+(α, y)dy ,

(4.43)

with pν(α, ·) given by (4.31).
For T > 0, let us set

KT (α) =
∫

|y|≤T
log(pµ+(α, y)/pµ−(α, y))pµ+(α, y)dy . (4.44)

Lemma 4.8 For everyT > 0

dlKT (α)

dαl

∣∣∣∣
α=0

= 0, l = 0, . . . , 2k(N) .

Proof. We have

KT (α) =
∫ T

−T
log

(
1 + pµ(α, y)

pµ−(α, y)

)
pµ−(α, y)dy ,

and the result is readily given by (4.35) (in view of the first relation in
(4.41), equality (4.35) is now valid for l = 0, 1, . . . , 2k(N), see the proof
of (4.35)). �

The remaining part of the required information on KT (·) is given by
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Lemma 4.9 For everyT ≥ 20 and allα ∈ [−1, 1], one has

K(α) ≤ exp{−(T − 1)2/2} + KT (α) . (4.45)

The functionKT (α) can be extended analytically into the circle|α| ≤
(10T )−1, and in this circle

|KT (α)| ≤ 2/3 .

Proof. We clearly have

K(α) = KT (α)+ RT (µ+, µ−) ,

RT (ν, ν
′) =

∫
|y|>T

log(pν(α, y)/pν ′(α, y))pν(α, y)dy ,

ν, ν ′ being probability distributions on [−1, 1]. Now, RT (ν, ν ′) is a convex
functional of probability distributions ν, ν ′; therefore its supremum, over all
pairs (even non-symmetric) probability distributions on [−1, 1] is the same
as its supremum over the setP 2

s of pairs of distributions on the same segment
with singleton supports. Indeed, every probability distribution ν on [−1, 1]
can be approximated by a sequence {νi} of discrete distributions with finite
supports in the sense that

∫
g(x)νi(dx) → ∫

g(x)ν(dx) for every continu-
ous on [−1, 1] function g. From this observation and the fact thatRT , as it is
easily seen, is lower semicontinuous (in fact even continuous) with respect
to the weak topology on the set P 2 of pairs of probability distributions on
[−1, 1] we conclude that sup(ν,ν ′)∈P 2 RT (ν, ν

′) = sup(ν,ν ′)∈P 2
d
RT (ν, ν

′), P 2
d

being the set of pairs of discrete probability distributions on [−1, 1] with
finite supports. Finally, every pair (ν, ν ′) ∈ P 2

d is a convex combination of
pairs from P 2

s ; since RT is convex, its supremum over P 2
d is the same as

the one over P 2
s , whence sup(ν,ν ′)∈P 2 RT (ν, ν

′) = sup(ν,ν ′)∈P 2
s
RT (ν, ν

′), as
claimed.

Now consider a pair of distributions (ν+, ν−) ∈ P 2
s ; let ν+ be concen-

trated at a point t and ν− be concentrated at a point τ (t, τ ∈ [−1, 1]). In
this case we have

RT (ν, ν
′) =

∫
|y|>T

[
−(y − αt)2

2
+ (y − ατ)2

2

]
× exp

{
−(y − αt)2

2

}
1√
2π

dy

=
∫

{y≤−T−αt}∪{y≥T−αt}

[
α(t − τ)y + α2(t − τ)2/2

]
ϕ(y)dy
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= α(t − τ)(2π)−1/2
[
exp{−(T − αt)2/2}

− exp{−(T + αt)2/2}]
+ 2(2π)−1/2α2(t − τ)2(T − 1)−1 exp{−(T − 1)2/2}

≤ (2π)−1/2(2 + 8(T − 1)−1) exp{−(T − 1)2/2}

≤ exp{−(T − 1)2/2}

(we have taken into account that T ≥ 20). Thus,

sup
P 2

RT (ν, ν
′) = sup

P 2
s

RT (ν, ν
′) ≤ exp{−(T − 1)2/2} ,

and (4.45) follows.
Let us now look at the function KT . Let y be a real with |y| < T ,

and let t be a real with |t | ≤ 1. The absolute value of the derivative of
the function g(α) = exp{−α2t2/2}ch(αty) in the circle |α| ≤ z ≤ 1
clearly does not exceed (T +1) exp{zT +z2/2}, and therefore |g(α)−1| =
|g(α) − g(0)| ≤ (zT + z) exp{zT + z2/2} in this circle. It follows that in
the circle |α| ≤ z ≡ (10T )−1 we have∣∣∣∣∫ 1

−1
exp{−α2t2/2}ch(αty)ν(dt)− 1

∣∣∣∣
≤ (zT + z) exp{zT + z2/2} ≤ 1/5 exp{0.105} ≤ 1/4 ,

both for ν = µ+ and for ν = µ−. Consequently, for the indicated z and
|α| ≤ z we have ∣∣∣∣pµ+(α, y)

pµ−(α, y)
− 1

∣∣∣∣ ≤ 1/3 .

We see that if y is real and |y| ≤ T , then the function log(pµ+(α, y)/pµ−
(α, y)), regarded as a function of α, can be extended analytically from the
segment |α| ≤ dT = (10T )−1 of the real axis onto the circle |α| ≤ dT in
the complex plane, and the absolute value of the extended function in this
circle does not exceed the quantity

∞∑
m=1

1

m

(
1

3

)m
= log(3/2) .

By the same reasons, for real y with |y| ≤ T and every α from the circle
|α| ≤ dT we have |pµ+(α, y)| ≤ 5/4ϕ(y), and we see that KT is an analytic
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function in the circle |α| ≤ dT with absolute value in the circle not exceeding
5/4 log 3/2 ≤ 2/3.

According to Lemma 4.9,KT (α) is an analytic function ofα in the circle
|α| ≤ dT = (10T )−1 which is bounded in absolute value in this circle by
2/3; according to Lemma 4.7, KT (α) has zero of order at least 2k(N)+ 1
at the origin, and since the function is even, the order of this zero is at least
2k(N)+2. Consequently, the function d2k(N)+2

T KT (α)α
−2k(N)−2 is analytic

in the circle |α| ≤ dT and therefore the maximum of its absolute value in
the circle is equal to the one on the boundary of the circle, i.e., it does not
exceed 2/3. We conclude that

KT (α) ≤ 2

3

α2k(N)+2

d
2k(N)+2
T

, −dT ≤ α ≤ dT . (4.46)

Now let us set

T = T (N) = 1 +
√

2 logN

and let us look what (4.46) with this T implies for α = α(N). In view of
(4.38) for large enough values of n we have

α(N)

dT (N)
= 10T (N)α(N) ≤ 0.2 < exp{−1} ,

so that (4.46) indeed is applicable to α = α(N) and results in

KT (N)(α(N)) ≤ exp{−2k(N)− 2} ≤ N−2

(see (4.4)). Applying (4.45) with α = α(N), T = T (N), we therefore get

K(α(N)) ≤ N−2 + exp{−(T (N)− 1)2/2} ≤ N−2 +N−1 ,

so that (see (4.43))

� = NK(α(N)) ≤ 1 +N−1 .

The latter relation, in view of (4.42), (4.4) and the lower bound for δ(k(N))
from (4.41), implies (4.39). Proposition 4.2 is proved. �
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